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A pilot study to assess the effect of acute exercise on brain glutathione 

The brain is highly susceptible to oxidative stress due to its high metabolic demand. Increased 

oxidative stress and depletion of glutathione (GSH) are observed with aging and many 

neurological diseases. Exercise training has the potential to reduce oxidative stress in the brain. 

In this study, nine healthy sedentary males (aged 25  4 years) undertook a bout of continuous 

moderate intensity exercise and a high intensity interval (HII) exercise bout on separate days. 

GSH concentration in the anterior cingulate was assessed by magnetic resonance spectroscopy 

(MRS) in four participants, before and after exercise. This was a pilot study to evaluate the 

ability of the MRS method to detect exercise-induced changes in brain GSH in humans for the 

first time. MRS is a non-invasive method based on nuclear magnetic resonance, which enables 

the quantification of metabolites, such as GSH, in the human brain in vivo. To add context to 

brain GSH data, other markers of oxidative stress were also assessed in the periphery (in blood) 

at three time points [pre-, immediately post-, and post (~1 hour)- exercise]. Moderate exercise 

caused a significant decrease in brain GSH from 2.12 ± 0.64 mM/kg to 1.26 ± 0.36 mM/kg (p = 

0.04). Blood GSH levels increased immediately post-HII exercise, 580 ± 101µM to 692 ± 102 

µM (n=9, p = 0.006). The findings from this study show that brain GSH is altered in response to 

acute moderate exercise, suggesting that exercise may stimulate an adaptive response in the 

brain. Due to the challenges in MRS methodology, this pilot study should be followed up with a 

larger exercise intervention trial. 
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Introduction  

The human brain consumes approximately 20% of the oxygen utilized by the body even 

though it only constitutes approximately 2% of total body weight [1]. This makes it highly 

susceptible to oxidative stress, a state in which an imbalance exists between antioxidants and 

oxidants. Increased oxidative stress has been reported in normal aging [2], in chronic diseases 

such as cancer [3], and neurodegenerative diseases such as Alzheimer’s disease [4,5], and 

may arise due to increased reactive oxygen or nitrogen species (RONS), decreased 

antioxidants, or both. Glutathione (GSH) is the most abundant endogenous antioxidant in the 

body and its depletion can significantly contribute to oxidative stress; indeed, decreased brain 

GSH has been reported in aging and in diseases such as Alzheimer’s Disease, epilepsy, 

Parkinson’s disease and schizophrenia [6–10]. Interventions that facilitate GSH synthesis in 

the brain would therefore be a promising therapeutic strategy to treat and potentially prevent 

neurodegenerative disease.   

There is strong evidence linking regular physical activity to higher cognitive function 

[11,12], decreased cognitive decline [13], and reduced risk of numerous diseases such as 

dementia and cancer [14–16], however, the mechanism by which exercise has these effects is 

still uncertain. A single bout of exercise, dependent on factors including exercise intensity and 

duration, can induce a transient oxidative stress via increased RONS production. An increase 

in RONS, caused by exercise, can stimulate adaptive change [17,18], if exercise is undertaken 

repeatedly, as RONS act as critical signalling molecules. Therefore, taking part in regular 

bouts of exercise can therefore provoke an adaptive response of increased antioxidant 

capacity, including increased GSH, both at baseline and in response to exercise, following 

exercise training [17,19–22]. As the whole glutathione redox cycle is responsive to exercise, 

the increase in GSH following exercise training may be attributed to increased synthesis of 



endogenous GSH [20,23] and increased expression of key antioxidant enzymes involved in 

the glutathione redox cycle, such as glutathione peroxidase and glutathione reductase [24–26]. 

Indeed, there are numerous studies in humans that have shown that acute exercise can alter 

redox status in the peripheral circulation and in muscle [27], and one could extrapolate this to 

suggest that exercise can help maintain redox balance in the brain. However, to date, few 

studies have assessed the direct effect of exercise on brain redox status, in part due to the 

difficulty in acquiring samples from the brain. 

Magnetic resonance spectroscopy (MRS), is a technique which enables the non-

invasive quantification of metabolites and is the only method available to measure GSH in the 

human brain in vivo [9]. Trabesinger et al. [28] were the first to detect GSH in the human 

brain by MRS. MRS is based on nuclear magnetic resonance, a phenomenon that occurs when 

an atomic nucleus with a magnetic moment, or spin, exhibits resonance behaviour when 

placed in a magnetic field [29]. In the MRS signal obtained, the molecular structure of a 

particular metabolite is reflected by a typical peak pattern, and the area of a particular peak is 

directly proportional to the concentration of the metabolite. MRS becomes particularly useful 

when the region of tissue being investigated is difficult to access, such as is the case in the 

brain, however, there are limitations to the method.  

The popular hormesis theory, relating to a dose-response relationship for many 

different stimuli, has been extended to include RONS and the process of adaptation to 

exercise. The theory suggests that a low-dose stimulation will lead to beneficial effect, 

whereas a high-dose stimulation may cause a harmful or toxic effect [18]. Exercise intensity is 

one of the determinants of the magnitude of RONS release and thus the magnitude of 

oxidative stress in response to a single bout of exercise [30–32]. Assessing the effect of 

exercise intensity on redox balance may be a crucial step in determining the ‘best’ exercise 



strategy for optimising brain health [33]. High intensity interval (HII) exercise is a form of 

exercise that comprises short bursts of high intensity exercise interspersed with recovery 

periods of rest or low intensity exercise. Although HII involves substantially lower time 

commitment compared to traditional form of continuous moderate exercise, HII has been 

shown to provide equivalent or superior benefits for metabolic, cardiac, vascular and 

oxidative stress adaptations [19,31,33,34]. 

Increases in exercise intensity, up to around 60% of maximal oxygen uptake, produce 

elevations in cerebral blood flow, after which blood flow decreases toward baseline due to 

hyperventilation induced cerebral vasoconstriction, despite the cerebral metabolic demand 

[35]. Periods of intense exercise can cause temporary ischemia and hypoxia in certain regions 

of the body, and during reperfusion, the reintroduction of oxygen can result in burst of RONS, 

such as superoxide and hydrogen peroxide (H2O2), which could be expected to induce 

oxidative stress [36]. As ischemia-reperfusion can induce RONS production, a decrease in 

antioxidant capacity is likely. Indeed, brain tissue GSH has been shown to decrease as a result 

of brain ischemia in rodents [37,38].  

The aim of this pilot study was to assess MRS as a non-invasive method to detect 

potential exercise-induced changes in brain GSH. We hypothesized that HII would provoke a 

different response in GSH when compared to moderate intensity exercise. Cerebral blood 

flow was assessed during the intense intervals of HII to enable further understanding of any 

exercise induced changes in brain GSH in relation to brain blood flow. 

 



Methods 

Participants 

Nine untrained males (aged 25  4 years, VO2 max 40  8 ml.kg.min
-1

) who undertook <2 

hours of moderate exercise per week were recruited to this study. Four participants were 

assessed by MRS for brain GSH following the exercise bouts. Due to MRI-scanning 

contraindications, five participants were unable to be scanned for brain GSH. Participants 

were non-smokers, had not taken vitamin supplements for at least six weeks prior to 

recruitment and were healthy as assessed by a general health questionnaire. All participants 

gave their informed written consent and the study was approved by the Science, Technology 

and Mathematics ethics review committee at the University of Birmingham. 

Experimental design 

This study comprised 3 experimental visits, which were each separated by at least 3 days. 

Participants were asked to refrain from exercising and drinking alcohol for 24 hours prior to 

each visit and be fasted at least 4 hours prior to each visit. For the first visit, participants were 

accompanied to the Birmingham University Imaging centre (BUIC), where they undertook an 

MRS scan (baseline scan) to assess brain GSH. After the scan, the participants returned to the 

exercise laboratory to carry out an incremental exercise test to exhaustion (detailed below).  

During the second and the third visit, the participants took part in either HII exercise 

or moderate exercise. All participants undertook both forms of exercise, the order of which 

was counterbalanced. An indwelling catheter (that was kept patent by flushing regularly with 

saline) was placed into an antecubital vein in the forearm and a pre-exercise blood sample was 

taken. At the end of the exercise bout a blood sample (immediately post-exercise) was taken 

via the catheter. A post-exercise MRS scan was then undertaken to assess brain GSH. This 



scan was performed within 15 minutes after the end of exercise. A final blood sample (post-

exercise) was taken by venepuncture approximately 1 hour after the end of exercise.  

In order to measure blood flow velocity in the middle cerebral artery (MCAv) during 

high intensity phase of the HII bout, four participants were fitted with a transcranial Doppler 

(TCD) system (Doppler BoxX, DWL, Sipplingen, Germany) before starting HII exercise trial. 

Bilateral MCAv was obtained via two probes placed over the temporal window and held in 

place with an adjustable head piece. Standard procedures to locate and confirm the MCAv 

were followed, as described by [39].  

Exercise bouts 

All exercise tests were performed on an electromagnetically braked cycle ergometer (Lode 

Excalibur Sport, Netherlands). Maximal oxygen consumption (VO2 max) of participants was 

assessed by an incremental exercise test to exhaustion, which consisted of a 3-minute warm 

up at 60 watts after which workload increased by 35 watts every 3 minutes until volitional 

exhaustion. A breath-by-breath system (Oxycon Pro, Jaegar, Germany) was used for 

continuous measurement of oxygen uptake and the heart rate was monitored using a heart rate 

monitor (Polar Vantage, Finland). Participants were asked to maintain a constant pedal rate 

and encouragement was given by an experimenter. A respiratory exchange ratio (carbon 

dioxide consumption/oxygen consumption) > 1.10 – 1.15, plateau in participant oxygen 

consumption or a maximal heart rate > 220 beats min
-1

 – age were all factors used to indicate 

VO2 max and thus the termination of the test [40]. Maximal workload was calculated as  

Workload max = last completed work load + (time spent in the final non-completed work rate 

x work rate increment ( 1) 



A schematic representation of the HII and the continuous moderate exercise trials are 

shown in Figure 1. The HII exercise trial consisted of 4 x 30-seconds high intensity sprints at 

200% of workload max, separated by 4 minutes of active recovery during which participants 

cycled at 40% of workload max. The continuous moderate exercise trial consisted of cycling 

at 65% workload max for 20 minutes and then at 55% workload max for the last 20 minutes 

(the work load was decreased in the last 20 minutes to match the oxygen consumption in the 

first 20 minutes [41]). Both exercise bouts were preceded with a 3-minute warm up and 

followed by a 2-minute cool down of cycling at 40% workload max. 

Magnetic resonance spectroscopy 

All MRS scans were undertaken using 
1
H-MRS with a Philips 3.0 T Achieva scanner using 

MEGA-PRESS adapted for detection of the cysteinyl resonance of GSH (Mescher et al., 

1998). An editing pulse which edited the cysteinyl β-CH2 protons of GSH was applied in 

alternative fashion, thus two alternate datasets that differed in the treatment of the GSH spin 

systems were collected. The experimental parameters were TR = 1800 ms, TE = 130 ms, 

dynamics = 128, NSA = 8, excitation frequency = 4.56 ppm, volume of interest (VOI) = 

30×30 ×20 mm. 

In order to optimise the MEGA-PRESS MRS method, in vitro scans were carried out 

first using GSH ‘phantoms’, or standard solutions in 250 ml round bottom flasks. These GSH 

phantoms were made with various concentrations of GSH (14 mM, 20 mM, 30 mM and 60 

mM, Sigma-Aldrich, G4251) together with other common brain metabolites brain (20 mM 

creatine, 6 mM choline, 25 mM glutamate, 12mM glutamine, 10 mM lactate, 3 mM γ-

aminobutyric acid and 25 mM N-acetyl-L-aspartic acid) at a physiologically representative 

pH of 7.2. Additionally, in order to assess GSSG signal and any potential overlap with the 



GSH signal in the MRS spectrum, a GSH phantom was oxidised by the addition of 30 mM 

H2O2 (stored at 4 C). Scans were acquired before and 2 days after addition of H2O2. 

Post-exercise in vivo MRS scans were acquired with the participant in the supine 

position with the region of interest set in the anterior cingulate cortex as shown in Figure 3A.  

The anterior cingulate cortex was chosen since the activation of this region has been linked to 

the physical fitness of individuals [42], as well as shown to be detrimentally impacted by 

ageing and neurodegenerative conditions (e.g., dementia [43]). Optimisation of the method 

was undertaken in one young healthy male participant, in which three different excitation 

frequency positions of the selective 180° pulse for cysteine residue were assessed. The 

reproducibility of the method to detect brain GSH was assessed by repeating a scan on a 

different day. All conditions concerning, physical activity, and diet of participant were kept 

the same between days. 

Quantification of GSH  

All of the MRS data were analysed using the freely available software jMRUI. GSH was 

quantified after subtraction of the two alternate datasets that differed in the treatment of the 

GSH (edit-on and edit-off spectra). GSH concentrations in phantoms were estimated using 

water as internal standard. Brain GSH concentrations were estimated using tissue water as 

concentration standard (while taking into account the combination of the grey matter (GM), 

white matter (WM) and cerebrospinal fluid (CSF) water fractions) as described by Gasparovic 

et al. [44]. The T1-weighted images were segmented using SPM8 (Wellcome Trust Centre for 

Neuroimaging, University College London, UK) to determine the percentage of GM, WM and 

CSF in each VOI. 



Laboratory assays 

Glutathione assay 

GSH in whole blood was measured using a commercially available kit (GSH-Glo Glutathione 

Assay V6911, Promega, USA) according to the manufacturer’s instructions. The assay 

quantifies GSH using bioluminescence, based on the conversion of luciferin derivative into 

luciferin in the presence of GSH, catalysed by glutathione S-transferase.  

Total antioxidant capacity 

Total antioxidant capacity in plasma was assessed using the ferric reducing ability of plasma 

(FRAP) assay [45]. Samples and standards (ascorbic acid) (10 l) were added to the 

respective wells of a multiwell plate. This was followed by addition of 300 l FRAP reagent 

(300 mM sodium acetate, 10 mM 2,4,6-tripyridyl-s-triazine and 20 mM ferric chloride). After 

incubating for 8 minutes, the absorbance values were measured at 650 nm.  

Lipid peroxidation 

Lipid peroxidation in plasma samples was assessed using the malondialdehyde (MDA) assay 

and 8-isoprostane assay as described below.  

MDA assay 

Plasma samples and standards (1,1,3,3-tetramethoxypropane) (100 l) were mixed with 100 

l trichloroacetic acid (410 mM) and 800 l colour reagent (4.6 mM thiobarbituric acid, 1.74 

M glacial acetic acid and 0.67 M butylated hydroxytoluene) in Eppendorf tubes. After 

boiling vigorously in water (100 °C) for one hour, the reaction was stopped by placing the 

tubes in an ice bath for 10 minutes. Supernatant were transferred to a multiwell plate and the 



absorbance was measured at 540 nm.  

8-Isoprostane  

The concentration of 8-isoprostane in plasma samples was determined by a competitive 

enzyme-linked immunosorbent assay (ELISA) using a commercially available kit (8-

Isoprostane EIA kit 516351, Cayman Chemical, USA) according to the manufacturer’s 

instructions.  

Protein carbonylation  

The protein carbonyl concentration was measured in plasma samples using the ELISA method 

[46]. Briefly, the protein concentration of the plasma samples was determined using the 

bicinchoninic acid assay and protein carbonyls were expressed per mg of protein [47]. 

Samples and standards (50 l) were allowed to bind to the respective wells of multi-sorb 

plates (Nunc, Fisher Thermo Scientific) for 1 hour. Bound protein was incubated with 1 mM 

2,4-dinitrophenylhydrazine for 1 hour. Next, the wells were blocked with 200 l tris-buffered 

saline (TBS) with 0.1 % Tween-20 overnight at 4 °C. Wells were first incubated with mouse 

IgE anti-dinitrophenyl antibody (50 l, 1:1000 dilution) for 2 hours at 37 °C and then with 

anti-mouse IgE horse radish peroxidase conjugate antibody (50 l, 1:5000 dilution) for 1 

hour. All steps were followed by three washes with TBS with 0.05 % Tween. Then, 50 l 

substrate (0.5 M citrate phosphate buffer, hydrogen peroxide and 2 mg o-phenyldiamine) was 

added and the reaction was stopped with 50 l sulphuric acid (2 M) after 1 hour incubation in 

the dark. Absorbance values were measured at 490 nm.  



Brain derived neurotropic factor 

Brain derived neurotropic factor (BDNF) in plasma was measured using a sandwich ELISA 

method with a commercially available kit (BDNF Quantikine ELISA kit, R&D systems, 

Minneapolis, USA) according to the manufacturer’s instructions.  

Statistical analysis 

Data were analysed using SPSS 22.0 statistical package for Windows (SPSS Inc, USA). The 

Shapiro-Wilk test was used to check for normality of distribution of data. Parameters which 

were not normally distributed were transformed for normal distribution prior to statistical 

analyses. Analysis on the effect of exercise bouts on brain GSH were assessed using one-way 

repeated measure analyses of variance (ANOVA). Analyses on the effect of two exercise 

trials (HII and moderate exercise trial) at each of the three time points (pre-, immediately 

post- and post (~1hour)- exercise) on markers of oxidative stress and BDNF levels in the 

blood/plasma were performed using a two-way repeated measure ANOVA. Where 

appropriate, post hoc analyses were conducted to explore the main effects in more detail. The 

effect of HII exercise on MCAv during the high intensity phase was assessed using one-way 

repeated measure ANOVA. Statistical significance was accepted at the p<0.05 level and 

results are presented as means ± standard deviation. 

Results 

Optimisation of MRS method 

One of the most significant challenges of in vivo MRS is insufficient signal-to-noise ratio 

(SNR), and one way to improve the SNR is to increase the acquisition time. This allows a 

sufficient number of repeat signals to be recorded and averaged in order to obtain a spectrum 



of sufficient quality. However, this process significantly increases scan time, which has its 

own practical limitations [48]. As a consequence of these limitations, MRS is restricted in its 

ability to measure transient changes of the metabolite of interest. In addition, it is challenging 

to measure brain GSH in particular, because of the spectral overlap seen around the GSH 

peak, and the comparatively small concentration of GSH compared to other metabolites in 

particular the creatine peak (examples of these considerations are shown in Figure 2 and 

Figure 3). MEGA- PRESS (MEshcher-Garwood Point RESolved Spectroscopy) [49,50] is 

becoming the standard technique used in MRS measurement of GSH. This spectral editing 

technique allows the discrimination of GSH signals from stronger overlying signals of other 

metabolites, in particular the creatine peak, by utilising known couplings within the GSH 

molecule. This technique involves collection of two interleaved datasets that differ in their 

treatment of the GSH spin system.  

Figure 2 and Figure 3 show measurement of GSH using the MRS method in vitro (phantoms) 

and in vivo (brain) respectively. GSH signal measured by the MRS method was proportional 

to the concentration of GSH in the phantoms (Figure 2B). Oxidation of GSH phantom by 

addition of H2O2 resulted in decreased GSH signal at 2.95 ppm, and generation of a new peak 

at 3.24 ppm, proposed as GSSG (Figure 2C). In vivo, the highest GSH signal was obtained 

with excitation frequency position of the selective 180° pulse for cysteine residue of GSH at 

4.56 ppm (Figure 3C). Repeating the scan at 4.56 ppm excitation on a different day gave a 

coefficient of variation (CV) of 17%. 

Brain GSH 

Figure 4 shows brain GSH post-exercise (HII and moderate bout) compared to control GSH 

concentration. One-way repeated measure ANOVA showed that the concentration of brain 



GSH detected by MRS was altered following exercise F (2, 6) = 9.16, p = 0.01. Bonferroni 

post-hoc analysis showed a significant decrease in GSH level post-moderate exercise 

compared to baseline, p = 0.04.  

Oxidative stress markers in the blood 

Figure 5 A-E shows the response of the different peripheral markers of oxidative stress to 

exercise. GSH was assessed in whole blood and protein carbonyls, antioxidant potential, 

MDA and 8-isoprostanes were assessed in plasma at the three time points (pre-, immediately 

post- and post (~1 hour)-exercise) following the two different exercise bouts. For blood GSH, 

a two-way repeated measure ANOVA a significant interaction effect between the type of 

exercise and the time points on GSH level F (2, 14) = 9.22, p = 0.003 (significant difference 

between pre-exercise and immediately post-exercise comparing the two exercise trials, F(1, 7) 

=31.4, p = 0.001). Further analysis of each exercise bout revealed that in response to HII 

exercise there was a significant increase in blood GSH immediately post-exercise compared 

to pre-exercise level, p = 0.001.  

Two-way ANOVA showed a significant interaction effect between the type of 

exercise (HII and moderate exercise) and time points (pre-, immediately post- and post (~1 

hour)-exercise) for antioxidant capacity F (1.1, 8.08) = 6.3, p = 0.03 and for MDA levels, F 

(2, 12) = 4.72, p = 0.03. Contrasts revealed that for antioxidant capacity the difference was 

between pre- and post-exercise levels, F (1, 7) = 9.18, p = 0.02 and for MDA levels the 

difference was between immediately post- and post- exercise level, F (1, 6) = 6.23, p = 0.047. 

Two-way ANOVA showed no significant interaction effect between the type of exercise bout 

and the time points for isoprostane levels, F (1.04, 6.26) = 2.64, p = 0.15, and for protein 

carbonyl, F (2, 14) = 0.62, p = 0.55. 



Further analysis of the individual exercise bouts showed that for the HII bout there 

was an increase in antioxidant capacity post-exercise relative to pre-exercise (p = 0.003), and 

a decrease in MDA levels post-exercise compared to immediately post-exercise (p = 0.04). 

For moderate exercise, there was a significant decrease in protein carbonyl levels immediately 

post-exercise from pre-exercise level (p = 0.04). 

BDNF 

Two-way repeated measure ANOVA showed that there was no significant interaction in 

BDNF level between time and type of exercise, F (2, 16) = 1.77, p = 0.20 (data shown in 

Figure 6). Further analysis of the individual exercise bouts revealed that for the HII bout, 

there was a significant increase in BDNF at immediately post-exercise  and post (~1 hour)-

exercise  compared to pre-exercise  , p = 0.02 and p = 0.03 respectively.  

Cerebral blood flow  

Figure 7 shows MCAv changes during the high intensity phases of the HII bout (10 s 

increments) along with warm up/ recovery before the high intensity phase (1 minute average) 

and after the high intensity phase (10 s increments for 60 s after the high intensity phase). 

One-way repeated measure ANOVA showed a significant effect of HII exercise on MCAv F 

(9, 27) = 8.90, p < 0.001. Post-hoc tests revealed that compared to the first 10s of the high 

intensity phase, there was a significant decrease in MCAv during the second 10s (p = 0.003) 

and the third 10s (p= 0.006) of the high intensity phase.  

Discussion 

In this small cohort study, the MRS method described detected a difference in brain GSH in 

response to a moderate bout of steady state exercise. Altered brain GSH was not observed in 



response to HII. In the periphery, the blood GSH response to HII was significantly different to 

the blood GSH response to moderate exercise. In the blood, GSH showed greatest response to 

the HII exercise, whereas in the brain GSH showed greatest response to the moderate 

exercise. It is accepted that the contribution from the vasculature to the GSH levels measured 

in the brain using the MRS method is negligible [7,51] as GSH does not directly reach the 

brain due to blood-brain barrier (BBB) [52]. The transient increase seen in blood GSH after 

an acute bout of intense exercise has been reported by other studies [53–56]. This transient 

increase seen in blood is probably due to hepatic efflux of GSH [57,58] in order to 

compensate for the ROS production during exercise. However, not all studies report increased 

GSH following exercise.  Fisher-Wellman and Bloomer [27] reviewed several studies that 

either report a decrease or no change in blood/plasma GSH levels during, or at the end of 

exercise. These differences across studies could well be explained by training status of the 

participants, and duration, mode and intensity of exercise.  

A review by Camiletti-Moiron et al. [59] found that moderate aerobic exercise training 

in rodents promoted the antioxidant capacity of brain, while high-intensity or aerobically-

exhaustive exercise training could deteriorate the antioxidant response. The authors of the 

review did not find any relevant studies in humans but they hypothesised that aerobic 

moderate training is the most appropriate exercise to positively enhance the brain antioxidant 

response. The results presented herein are in agreement with this hypothesis, as moderate 

exercise, rather than HII exercise, caused a greater decrease in brain GSH in all of the 

participants tested. A single bout of exercise can induce a transient oxidative stress via 

increased RONS production. This is sometimes associated with a decrease in antioxidant, as 

the antioxidant is utilised in quenching RONS. This process can stimulate adaptive change 

[17,18], especially if it is repeated, as RONS act as critical signalling molecules. It is likely 



therefore that the decrease in brain GSH reported herein, in response to this acute bout, is part 

of the accepted process of adaptation to exercise. Taking part in regular bouts of exercise is 

known to provoke an adaptive response of increased antioxidant capacity, including increased 

GSH, by first stimulating a transient oxidative stress [17, 19-23].  

In this study a MEGA-PRESS MRS method was optimised for the detection of brain 

GSH. In vitro experiments showed that the measured GSH signal was proportional to the 

GSH concentrations in the phantoms, which confirmed that the observed signal was GSH and 

that GSH could be successfully quantified using this technique. Oxidation of the GSH 

phantom with H2O2 resulted in decreased GSH signal at 2.95 ppm and the appearance of a 

new peak at 3.24 ppm in the spectrum, which suggested that GSH had been oxidised to GSSG 

and that GSSG signal did not contribute to the detected GSH signal, in agreement with 

previous findings [62,63]. Repeated measurement of brain GSH between days in one male 

participant gave a CV of 17 %, which suggests that brain GSH measured by MRS is 

reproducible using this method. 

As presented in the introduction, the MRS method is limited due to its sensitivity. 

However, although it is limited in its ability to measure transient changes in brain metabolites 

(due to poor signal to noise ratio), a small proof-of-concept pharmacodynamics study did 

report measurement of increased brain GSH using an MRS method in humans [51]. A study 

involving larger numbers of individuals is needed in order to confirm the potential exercise-

induced changes in brain GSH observed in the current study. A power analysis (G*power, 

University of Dusseldorf, Germany) indicated that 46 participants would be required to 

observe a 0.80 power (i.e. 1- = 0.8) with  = 0.05 and partial 
2 

= 0.1. A further limitation of 

the study is that brain GSH was measured post-exercise only once, within the hour. Therefore, 

any changes in brain GSH in response to exercise at a later time was not assessed in this 



study. Slivka and Cohen [37] observed that GSH decreased in rodent brain in response to 

brain ischemia only after 4 hours post-ischemia, which suggest that brain GSH may have been 

altered at a later time in response to HII exercise.  

Similar to previous studies [22,30,32], the results presented herein found that the 

appearance of markers of oxidative stress in the periphery, in response to exercise, is 

dependent on exercise intensity. Total antioxidant capacity and lipid peroxidation were 

significantly altered post (~1 hour)-exercise in response to HII bout, while moderate exercise 

elicited a decrease in protein carbonyl immediately post exercise. Plasma BDNF increased in 

response to HII exercise but not moderate exercise, and thus, considering the role of BDNF in 

neurogenesis, exercise intensity may indeed be important in brain health. BDNF is the most 

abundant growth factor in the brain and it is often thought to be a link between exercise and 

improved brain health. 

The blood flow data from the high intensity phase of the HII exercise suggest that 

cerebral blood flow seems to be protective at high intensity exercise against hyperperfusion. 

The significant decrease in MCAv seen during the 2
nd

 10 seconds of the high intensity phase 

of HII, compared to the 1
st
 10 seconds was probably due to exercise-induced cerebral 

vasoconstriction due to hyperventilation hypocapnic effect. Hence this constrictive effect may 

serve as a neuroprotective response to prevent BBB disruption and hyperfusion injury [33]. 

Similarly, a recent study [64] also found a decrease in cerebral blood flow during high 

intensity phase of HII. These findings suggest that there might be intrinsic mechanisms which 

protect the brain during high intensity exercise including against hyperperfusion. 

Conclusion 

The results presented herein suggest that MRS is capable of detecting changes in brain GSH 

following an acute bout of exercise, and if the mechanisms of adaptation to oxidative stress 



are the same in the brain as they are in other tissues, then such response may contribute to 

brain health.  However, due to the small sample size and the limitations of the MRS method, 

the magnitude of change and the relationship to exercise intensity should be evaluated with 

caution. A bout of HII exercise consisting of short phases of a very high intensity exercise 

elicited a greater oxidative stress in the periphery compared to moderate exercise. Compared 

to moderate exercise, HII with its reduced time and energy cost may be an attractive exercise 

modality for a variety of populations with specific goals such as increased aerobic capacity. 

The results do not suggest that HII places any higher oxidative stress on the brain than a 

moderate exercise bout. 
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Figure 1. Schematic representation of the two exercise trials.  

  



 

 

Figure 2 In vitro measurement of GSH in phantoms using MRS. (A) GSH editing in a 

20 mM GSH phantom in spectra acquired using the optimised sequence parameters: i) 

spectrum acquired without editing GSH (edit-off spectrum), ii) spectrum acquired with 

editing of GSH with MEGA-suppression (edit-on spectrum) and iii) edited spectrum 

obtained on subtraction of spectrum ii from i (arrow pointing to the GSH signal 



obtained on subtraction). Ch, choline ; Cr, creatine (B) Superimposed spectra of edited 

GSH signals (edit-on and edit-off spectra subtracted) of three phantoms of varying GSH 

concentrations showed that GSH signal measured  by MRS method was proportional to 

the GSH concentration in the phantoms. (C) A 30 mM GSH phantom before (i) and 

after (ii) oxidation by addition of H2O2. On oxidation, the GSH peak was decreased and 

a new peak was observed at 3.24 ppm (shown by arrow). 

 

 



 



Figure 3. In vivo measurement of GSH in the human brain using MRS. (A) Placement 

of voxel at region of interest in the brain. Representative T1 weighed MRI images of a 

participant brain illustrating the voxel placement at the region of interest in the anterior 

cingulate cortex with volume of interest (VOI) 30×30 × 20 mm. Boxes representing the 

VOI at the axial, frontal and sagittal view from left to right. (B) Editing of brain GSH 

signal in spectra acquired using the optimised sequence parameters: i) spectrum 

acquired without editing GSH (edit-off spectrum), ii) spectrum acquired with editing of 

GSH with MEGA-suppression (edit-on spectrum), iii) edited spectrum obtained on 

subtraction of spectrum ii from i, and iv) spectrum iii multiplied by a factor of three. Ch, 

choline; Cr, creatine; and NAA, N-aceylaspartate (C) Optimistion of method in vivo. 

Graph showing the detection of GSH at various excitation frequency position of the 

selective 180° pulse for cysteine residue while keeping other experimental parameters 

the same. Closed circles data were collected on the same day, while open circle was 

collected on a different day 

 

  



 

 

Figure 4. Brain GSH response to the two exercise bouts (n=4 participants). Pairwise 

comparisons showed GSH level post-moderate exercise was lower to control level (p = 

0.04). 

 

 



 

 

Figure 5. Acute oxidative stress responses to the two exercise bouts (HII and moderate 

exercise). Bars represent mean values of GSH (A), protein carbonyl (B), antioxidant 

potential (C), MDA (D) and 8-isoprostane (E) in response to the two exercise bouts at 

the 3 different time points (pre-, immediately post- and post (~1 hour)- exercise). Error 

bars are standard deviation. Two-way ANOVA: # indicates significant interaction effect 

between the type of exercise and the time. Further analysis of individual exercise trial- 

for HII exercise, * indicates significant difference to pre-exercise level and § to 

immediately post-exercise level; and for moderate exercise, ∂ indicates significant 

difference to pre-exercise level. 



 

 

Figure 6. Mean BDNF levels in responses to the two exercise bouts, with standard 

deviation as error bars. Pairwise comparisons: * indicates significant difference 

compared to pre-exercise levels in response to the HII trial.   

  



 

 

 

Figure 7. Graph. Mean MCAv changes during the high intensity phase of the HII bout 

(n=4 participants). MCAv changes during high intensity phases (grey box) (10s 

increments) were compared with warm up/ recovery before the high intensity phases (1 

minute average) and after the high intensity phases (10 s increments for 1 minute after 

the high intensity phase).  Pairwise comparisons: * indicates significant difference from 

1
st
 10 s of high intensity phase (p<0.01). Box. Raw time series of MCAv is shown 

during one of the high intensity phases in one of the participants. The first, second and 

third arrows indicate pre 5 seconds before the high intensity phase, start of the high 

intensity phase and end of the high intensity phase respectively.  
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