UNIVERSITYOF
 BIRMINGHAM
 University of Birmingham Research at Birmingham

Predicting Out-Of-Office Blood Pressure (Proof-BP) in the clinic for the diagnosis of hypertension in primary care

Monahan, Mark; Jowett, Sue; Lovibond, Kate; Gill, Paramjit; Godwin, Marshall; Greenfield, Sheila; Hanley, Janet; Hobbs, FDR; Mant, Jonathan; Martin, Una; McKinstry, Brian; Williams, Bryan; Sheppard, James; McManus, Richard
DOI:
10.1161/HYPERTENSIONAHA.117.10244

License:
None: All rights reserved

Document Version
Peer reviewed version
Citation for published version (Harvard):
Monahan, M, Jowett, S, Lovibond, K, Gill, P, Godwin, M, Greenfield, S, Hanley, J, Hobbs, FDR, Mant, J, Martin, U, McKinstry, B, Williams, B, Sheppard, J \& McManus, R 2018, 'Predicting Out-Of-Office Blood Pressure (ProofBP) in the clinic for the diagnosis of hypertension in primary care: an economic evaluation', Hypertension, vol. 71, no. 2, pp. 250-261. https://doi.org/10.1161/HYPERTENSIONAHA.117.10244

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
- Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
-User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
-Users may not further distribute the material nor use it for the purposes of commercial gain.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

ONLINE SUPPLEMENT

PREDICTING OUT-OF-OFFICE BLOOD PRESSURE (PROOF-BP) IN THE CLINIC FOR THE DIAGNOSIS OF HYPERTENSION IN PRIMARY CARE: AN ECONOMIC EVALUATION

Mark Monahan, ${ }^{1}$ Sue Jowett, ${ }^{1}$ Kate Lovibond, ${ }^{2}$ Paramjit Gill, ${ }^{3}$ Marshall Godwin, ${ }^{4}$ Sheila Greenfield, ${ }^{1}$ Janet Hanley, ${ }^{5}$ F.D. Richard Hobbs, ${ }^{6}$ Una Martin, ${ }^{1}$ Jonathan Mant, ${ }^{7}$ Brian McKinstry, ${ }^{8}$ Bryan Williams, ${ }^{9}$ James P Sheppard, ${ }^{6}$ Richard J. McManus, ${ }^{6}$ on behalf of the PROOF-BP investigators
${ }^{1}$ University of Birmingham, Birmingham, UK
${ }^{2}$ Royal College of Physicians, London, UK
${ }^{3}$ University of Warwick, Warwick, UK
${ }^{4}$ University of Newfoundland, St John's, Canada
${ }^{5}$ Edinburgh Napier University, Edinburgh, UK
${ }^{6}$ University of Oxford, Oxford, UK
${ }^{7}$ University of Cambridge, Cambridge, UK
${ }^{8}$ University of Edinburgh, Edinburgh, UK
${ }^{9}$ University College London, London, UK

Corresponding author: James P Sheppard
Address: Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Primary Care, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG

Telephone: +441865617192
Fax: n/a
Email: james.sheppard@phc.ox.ac.uk

Supplemental Material

Contents

1. Extended methods on costs
2. References
3. Table S1. Factors included the PROOF-BP diagnostic algorithm
4. Table S2 PROOF-BP risk algorithm test characteristics
5. Table $S 3$. Cohort split of 1000 patients with a clinic $B P \geq 130 / 80 \mathrm{~mm} \mathrm{Hg}$
6. Table S4. Cohort split of 1000 patients with a clinic $B P \geq 120 / 70 \mathrm{~mm} \mathrm{Hg}$
7. Table $S 5$ Cohort split of 1000 patients with a clinic $B P \geq 140 / 90 \mathrm{~mm} \mathrm{Hg}$
8. Table S6: Initial misdiagnosis (including those with Masked Hypertension) per 1000 people with a clinic BP of $130 / 80 \mathrm{~mm} \mathrm{Hg}$ and above
9. Table S7 Detailed breakdown of costs and events for Male Cohorts
10. Table S8 Detailed breakdown of costs and events for Female Cohorts
11. Table S9 Number of Ambulatory Monitoring Investigations by PROOF-BP algorithm vs standard NICE ABPM strategy
12. Table S10 Sensitivity Analysis: Model entry restricted to clinic BP $\geq 120 / 70 \mathrm{~mm} \mathrm{Hg}$ results
13. Table S11 Sensitivity Analysis: Model entry restricted to clinic BP $\geq 140 / 90 \mathrm{~mm} \mathrm{Hg}$ results

Extended methods on costs

Depreciation of equipment costs was addressed by assuming a five year lifetime with no salvage value, and the standard 3.5% annual discount rate. Antihypertensive treatment comprised drug costs and an annual clinical review. Drug therapy costs were calculated using the British National Formulary prices ${ }^{1}$ of the commonest generic drugs in each class (Ramipril, Amlodipine, Indapamide) weighted by the number of antihypertensive drugs individuals were on from the Health Survey for England. ${ }^{2}$

An individual surviving an acute cardiovascular event entailed permanent quality of life reduction, increased costs and higher mortality risk with respect to the cardiovascular event experienced. The acute cost of a myocardial infarction (MI) is taken from a modelling study by Palmer and colleagues. Post MI costs were based on an updated cost taken from Taylor and colleagues. ${ }^{3}$ The cost of an unstable angina event and costs post event were assumed to be 60% of the costs of MI. The cost of a stable angina event was assumed to consist of an outpatient cardiology assessment plus non-invasive imaging as a typical package of care. ${ }^{4}$ Post stable angina costs comprised drugs based on relevant NICE guidance. ${ }^{1,5,6}$

The cost of a Transient Ischaemic Attack (TIA) event is taken from a Lipids Health Technology Assessment report and consisted of tests and procedures from patients being assessed in outpatient clinics. ${ }^{7}$ Drug costs were included in the acute event based on recommended treatments based on NICE guidelines. ${ }^{1,6,8}$ Post-TIA only the cost of drugs was applied. The initial cost of stroke and post-event costs applied in the model was based on a UK study that looked at the cost of stroke over five years. ${ }^{9}$

The costs and consequences of individuals with an earlier diagnosis and treatment in the HBPM, ABPM and PROOF-BP compared to CBPM were taken into account.

References

1. Joint Formulary Committee. British National Formulary 69th Ed. London: BMJ Group and Pharmaceutical Press; 2015.
2. NatCen Social Research and University College London. Department of Epidemiology and Public Health, Health Survey for England,2013 [computer file]. Colchester,Essex: UK Data Archive; 2015.
3. Taylor M, Scuffham PA, Chaplin S, Papo NL. An Economic Evaluation of Valsartan for Post-MI Patients in the UK Who Are Not Suitable for Treatment with ACE Inhibitors. Value in health. 2009;12:459-465.
4. Department of Health. NHS reference costs 2013/2014. 2014; https://www.gov.uk/government/publications/nhs-reference-costs-2013-to-2014, 2015.
5. National Institute for Health and Care Excellence. Management of Stable Angina London: NICE; 2011.
6. National Institute for Health and Care Excellence. Lipid Modification: Cardiovascular Risk Assessment and the Modification of Blood Lipids for the Primary and Secondary Prevention of Cardiovascular Disease. London: NICE; 2014.
7. Ward S, Lloyd Jones M, Pandor A, Holmes M, Ara R, Ryan A, Yeo W, Payne N. A systematic review and economic evaluation of statins for the prevention of coronary events. Health technology assessment (Winchester, England). 2007;11:1-160, iii-iv.
8. National Institute for Health and Clinical Excellence. Clopidogrel and Modified-Release Dipyridamole for the Prevention of Occlusive Vascular Events: Review of NICE Technology Appraisal Guidance 90. London: NICE; 2010.
9. Luengo-Fernandez R, Gray AM, Rothwell PM. A population-based study of hospital care costs during 5 years after transient ischemic attack and stroke. Stroke. 2012;43:3343-3351.

Table S1. Factors included the PROOF-BP diagnostic algorithm

Factors	Definition	Algorithm	
		Out-ofoffice sBP	Out-ofoffice dBP
Age	Years since birth	\checkmark	\checkmark
Sex	Male or female	\checkmark	\checkmark
Clinic sBP	$1^{\text {st }}$ clinic reading	\checkmark	\checkmark
sBP change	Difference between the $1^{\text {st }}$ and third consecutive clinic readings	\checkmark	\checkmark
Pulse pressure	Difference between systolic and diastolic pressure ($1^{\text {st }}$ clinic reading)	\checkmark	\checkmark
BMI	Weight divided by height (squared)	\checkmark	\checkmark
Diagnosis of hypertension	Previously recorded as hypertensive	\checkmark	\checkmark
Duration of hypertension	Time since first diagnosis in years	\checkmark	
Antihypertensive prescription	Any currently prescribed antihypertensive medication	\checkmark	\checkmark
History of Cardiovascular disease	Cerebrovascular disease, MI, coronary heart disease, peripheral vascular disease or heart failure		\checkmark
sBP= systolic Blood Pressure. $\mathrm{dBP}=$ diastolic Blood Pressure. $\mathrm{BMI}=$ Body MI=Myocardial Infarction. The full algorithm is available online as an interactive calculator here: https://sentry.phc.ox.ac.uk/proof-bp		Mass Index	

Table S2 PROOF-BP risk algorithm test characteristics			
Test Characteristics	Adjusted clinic BP $<130 / 80 \mathrm{~mm} \mathrm{Hg}$	Adjusted clinic BP between $130 / 80 \mathrm{~mm} \mathrm{Hg} \& 144 / 89 \mathrm{~mm} \mathrm{Hg}$	Adjusted clinic BP $\geq 145 / 90 \mathrm{~mm} \mathrm{Hg}$
Screening Clinic BP $\geq 140 / 90 \mathrm{~mm} \mathrm{Hg}$			
False Negative (masked hypertension)	0	0	0
False Positive (white coat hypertension)	0	0	40
True Negative (normotension)	0	76	0
True Positive (sustained hypertension)	0	209	304
Screening Clinic BP between $130 / 80 \mathrm{~mm} \mathrm{Hg} \& 140 / 90 \mathrm{~mm}$ Hg			
False Negative (masked hypertension)	5	0	0
False Positive (white coat hypertension)	0	0	5
True Negative (normotension)	17	108	0
True Positive (sustained hypertension)	0	165	13
Screening Clinic BP between $120 / 70 \mathrm{~mm} \mathrm{Hg} \& 140 / 90 \mathrm{~mm}$ Hg			
False Negative (masked hypertension)	24	0	0
False Positive (white coat hypertension)	0	0	5
True Negative (normotension)	42	158	0
True Positive (sustained hypertension)	0	191	13

Table S3. Cohort split of 1000 patients with a clinic BP $\geq 130 / 80 \mathrm{~mm} \mathrm{Hg}$

Patients screening clinic BP by age and gender				PROOF-BP risk algorithm		
Age	Sex	$\begin{gathered} \hline \text { Clinic BP } \\ \geq 140 / 90 \\ \mathrm{~mm} \mathrm{Hg} \end{gathered}$	Clinic BP between $130 / 80 \mathrm{~mm} \mathrm{Hg} \& 140 / 90$ mm Hg	Ignored (adjusted clinic $\begin{gathered} \mathrm{BP}<130 / 80 \\ \mathrm{~mm} \mathrm{Hg}) \end{gathered}$	Put on ABPM (adjusted clinic BP between 130/80 mm Hg \& $144 / 89 \mathrm{~mm} \mathrm{Hg}$)	Offered Treatment (adjusted clinic $B P \geq 145 / 90 \mathrm{~mm}$ Hg)
40	Male	586	414	38	695	267
50	Male	680	320	32	637	331
60	Male	763	237	24	596	380
70	Male	849	151	16	564	420
75	Male	895	105	11	534	455
40	Female	620	380	44	699	257
50	Female	659	341	39	669	292
60	Female	847	153	16	596	388
70	Female	821	179	19	572	409
75	Female	943	57	6	528	466

PROOF-BP=Predicting out-of-office blood pressure; ABPM=Ambulatory BP monitoring

Table S4. Cohort split of 1000 patients with a clinic BP $\geq 120 / 70 \mathrm{~mm} \mathrm{Hg}$

Patients screening clinic BP by age and gender				PROOF-BP risk algorithm		
Age	Sex	$\begin{gathered} \text { Clinic BP } \\ \geq 140 / 90 \mathrm{~mm} \\ \mathrm{Hg} \end{gathered}$	Clinic BP between $130 / 80 \mathrm{~mm} \mathrm{Hg} \&$ $140 / 90 \mathrm{~mm} \mathrm{Hg}$	Ignored (adjusted clinic BP <130/80mm Hg)	Put on ABPM (adjusted clinic BP between 130/80mm Hg \& $144 / 89 \mathrm{~mm} \mathrm{Hg}$)	Offered Treatment (adjusted clinic BP $\geq 145 / 90 \mathrm{~mm} \mathrm{Hg}$)
40	Male	167	833	77	811	112
50	Male	115	885	93	793	114
60	Male	281	719	76	744	179
70	Male	186	814	90	754	156
75	Male	358	642	69	707	224
40	Female	267	733	83	788	129
50	Female	391	609	66	757	177
60	Female	398	602	59	746	194
70	Female	449	551	56	706	238
75	Female	391	609	64	716	220
PROOF-BP=Predicting out-of-office blood pressure; ABPM=Ambulatory BP monitoring						

Table S5. Cohort split of 1000 patients with a clinic BP $\geq 140 / 90 \mathrm{~mm} \mathrm{Hg}$						
Patients screening clinic BP by age and gender				PROOF-BP risk algorithm		
Age	Sex	$\begin{gathered} \text { Clinic BP } \\ \geq 140 / 90 \mathrm{~mm} \\ \mathrm{Hg} \end{gathered}$	$\begin{gathered} \text { Clinic BP } \\ <140 / 90 \mathrm{~mm} \\ \mathrm{Hg} \end{gathered}$	```Ignored (adjusted clinic BP <130/80mm Hg)```	Put on ABPM (adjusted clinic BP between $130 / 80 \mathrm{~mm} \mathrm{Hg} \&$ $144 / 89 \mathrm{~mm} \mathrm{Hg}$)	Offered Treatment (adjusted clinic BP $\geq 145 / 90 \mathrm{~mm} \mathrm{Hg}$)
40	Male	1000	0	0	580	420
50	Male	1000	0	0	536	464
60	Male	1000	0	0	517	483
70	Male	1000	0	0	513	487
75	Male	1000	0	0	497	503
40	Female	1000	0	0	612	388
50	Female	1000	0	0	580	420
60	Female	1000	0	0	551	449
70	Female	1000	0	0	512	488
75	Female	1000	0	0	509	491

PROOF-BP=Predicting out-of-office blood pressure; ABPM=Ambulatory BP monitoring

Table S6: Initial misdiagnosis (including those with Masked Hypertension) per 1000 people with a clinic BP of $130 / 80 \mathrm{~mm} \mathrm{Hg}$ and above

	False negatives		False positives			False negatives		False positives	
Strategy	$\begin{gathered} \text { Clinic BP between } \\ 130 / 80- \\ 140 / 90 \mathrm{~mm} \mathrm{Hg} \end{gathered}$	$\begin{gathered} \text { Clinic BP } \\ >140 / 90 \mathrm{~mm} \mathrm{Hg} \end{gathered}$	$\begin{gathered} \hline \text { Clinic BP between } \\ 130 / 80- \\ 140 / 90 \mathrm{~mm} \mathrm{Hg} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Clinic BP } \\ >140 / 90 \mathrm{~mm} \mathrm{Hg} \end{gathered}$	Strategy	$\begin{gathered} \hline \text { Clinic BP between } \\ 130 / 80- \\ 140 / 90 \mathrm{~mm} \mathrm{Hg} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Clinic BP } \\ >140 / 90 \mathrm{~mm} \mathrm{Hg} \end{gathered}$	$\begin{gathered} \hline \text { Clinic BP between } \\ 130 / 80- \\ 140 / 90 \mathrm{~mm} \mathrm{Hg} \end{gathered}$	$\begin{gathered} \hline \text { Clinic BP } \\ >140 / 90 \mathrm{~mm} \mathrm{Hg} \end{gathered}$
40 years, Male	years, Female								
CBPM	151	26	0	220	CBPM	52	15	0	277
HBPM	151	25	0	153	HBPM	52	15	0	192
ABPM	151	1	0	11	ABPM	52	1	0	14
PROOF-BP	7	1	2	56	PROOF-BP	3	0	2	70
50 years, Male	50 years, Female								
CBPM	96	47	0	191	CBPM	54	29	0	247
HBPM	96	46	0	133	HBPM	54	29	0	172
ABPM	96	2	0	10	ABPM	54	1	0	12
PROOF-BP	5	1	1	48	PROOF-BP	3	1	2	62
60 years, Male	60 years, Female								
CBPM	63	61	0	183	CBPM	39	51	0	265
HBPM	63	60	0	127	HBPM	39	51	0	184
ABPM	63	3	0	9	ABPM	39	3	0	13
PROOF-BP	3	1	1	46	PROOF-BP	2	1	1	67
70 years, Male	70 years, Female								
CBPM	39	69	0	195	CBPM	45	68	0	186
HBPM	39	69	0	135	HBPM	45	68	0	129
ABPM	39	3	0	10	ABPM	45	3	0	9
PROOF-BP	2	1	1	49	PROOF-BP	2	1	1	47
75 years, Male	75 years, Female								
CBPM	27	81	0	174	CBPM	79	14	0	208
HBPM	27	80	0	121	HBPM	79	14	0	144
ABPM	27	4	0	9	ABPM	4	14	0	10
PROOF-BP	1	2	1	44	PROOF-BP	2	1	0	52
CBPM= Clinic Blood Pressure Monitoring. HBPM= Home Blood Pressure monitoring. ABPM= Ambulatory Blood Pressure Monitoring. PROOF-BP=Predicting out-of-office blood pressure.									

Strategy	QALYs (95\% CI)	Costs (95\% CI)	ICER	Most CE strategy probability	Strategy	QALYs (95\% CI)	Costs (95\% CI)	ICER	Most CE strategy probability
40 years, Male					40 years, Fema				
ABPM	18.084 (17.843 to 18.316)	£3214 (£3119 to £3312)		0\%	ABPM	17.986 (17.789 to 18.186)	£1822 (£1742 to £1917)		0\%
HBPM	18.079 (17.839 to 18.312)	£3246 (£3154 to £3342)	Dominated	0\%	HBPM	17.984 (17.788 to 18.184)	£1846 (£1765 to £1938)	Dominated	0\%
CBPM	18.078 (17.836 to 18.311)	£3255 (£3161 to £3349)	Dominated	0\%	CBPM	17.983 (17.787 to 18.184)	£1852 (£1773 to £1943)	Dominated	0\%
PROOF-BP	18.155 (17.925 to 18.381)	£3395 (£3309 to £3488)	£2521	100\%	PROOF-BP	18.016 (17.822 to 18.215)	£2117 (£2031 to £2206)	£9604	100\%
50 years, Male					50 years, Fema				
ABPM	15.568 (15.309 to 15.805)	£3300 (£3179 to £3432)		0\%	ABPM	15.408 (15.180 to 15.629)	£2106 (£1991 to £2239)		0\%
HBPM	15.564 (15.304 to 15.801)	£3339 (£3224 to £3462)	Dominated	0\%	HBPM	15.406 (15.177 to 15.627)	£2135 (£2025 to £2261)	Dominated	0\%
CBPM	15.562 (15.302 to 15.800)	£3350 (£3235 to £3471)	Dominated	0\%	CBPM	15.405 (15.177 to 15.627)	£2143 (£2036 to £2267)	Dominated	0\%
PROOF-BP	15.632 (15.381 to 15.866)	£3417 (£3311 to £3534)	£1836	100\%	PROOF-BP	15.444 (15.217 to 15.661)	£2308 (£2206 to £2421)	£5553	100\%
60 years, Male					60 years, Femal				
ABPM	12.817 (12.585 to 13.044)	£3046 (£2880 to £3226)		0\%	ABPM	12.509 (12.295 to 12.735)	£2173 (£1993 to £2366)		0\%
HBPM	12.811 (12.579 to 13.037)	£3085 (£2924 to £3256)	Dominated	0\%	HBPM	12.506 (12.291 to 12.733)	£2205 (£2034 to £2394)	Dominated	0\%
CBPM	12.810 (12.577 to 13.036)	£3097 (£2941 to £3269)	Dominated	0\%	CBPM	12.505 (12.290 to 12.731)	£2214 (£2048 to £2397)	Dominated	0\%
PROOF-BP	12.866 (12.640 to 13.091)	£3128 (£2986 to £3290)	£1669	100\%	PROOF-BP	12.549 (12.339 to 12.773)	£2299 (£2145 to £2472)	£3184	100\%
70 years, Male					70 years, Fema				
ABPM	9.809 (9.580 to 10.005)	£2509 (£2281 to £2748)		0\%	ABPM	9.352 (9.110 to 9.577)	£1838 (£1608 to £2068)		0\%
HBPM	9.804 (9.573 to 10.000)	£2544 (£2323 to £2773)	Dominated	0\%	HBPM	9.349 (9.108 to 9.574)	£1868 (£1644 to £2101)	Dominated	0\%
CBPM	9.802 (9.571 to 9.999)	£2556 (£2342 to £2785)	Dominated	0\%	CBPM	9.348 (9.106 to 9.571)	£1878 (£1655 to £2108)	Dominated	0\%
PROOF-BP	9.843 (9.614 to 10.039)	£2563 (£2361 to £2776)	£1582	100\%	PROOF-BP	9.374 (9.133 to 9.597)	£1919 (£1711 to £2129)	£3674	100\%
75 years, Male					75 years, Fema				
ABPM	8.229 (7.964 to 8.468)	£2226 (£1989 to £2481)		0\%	ABPM	7.692 (7.411 to 7.939)	£1579 (£1359 to £1840)		0\%
HBPM	8.225 (7.958 to 8.464)	£2255 (£2028 to £2511)	Dominated	0\%	HBPM	7.690 (7.409 to 7.936)	£1602 (£1389 to £1852)	Dominated	0\%
PROOF-BP	8.253 (7.987 to 8.487)	£2264 (£2048 to £2494)	£1674	100\%	CBPM	7.689 (7.409 to 7.936)	£1611 (£1399 to £1859)	Dominated	0\%
CBPM	8.223 (7.956 to 8.462)	£2265 (£2037 to £2517)	Dominated	0\%	PROOF-BP	7.708 (7.425 to 7.956)	£1653 (£1454 to £1895)	£4737	100\%

CI=Confidence Interval. CBPM= Clinic Blood Pressure Monitoring. HBPM= Home Blood Pressure monitoring. ABPM=Ambulatory Blood Pressure Monitoring. CE= cost-effective at $£ 20,000$ threshold. QALYs= qualityadjusted life years. ICER= Incremental Cost Effectiveness Ratio

Strategy	QALYs (95\% CI)	Costs (95\% CI)	ICER	Most CE strategy probability	Strategy	QALYs (95\% CI)	Costs (95\% CI)	ICER	Most CE strategy probability
40 years, Male					40 years, Fe				
ABPM	18.146 (17.907 to 18.378)	£3365 (£3226 to £3583)		0\%	ABPM	18.016 (17.813 to 18.207)	£2140 (£2018 to £2337)		89\%
PROOF-BP	18.148 (17.909 to 18.381)	£3407 ($£ 3276$ to £3598)	£16551	76\%	PROOF-BP	18.019 (17.815 to 18.209)	£2202 (£2082 to £2372)	£29771	11\%
HBPM	18.147 (17.910 to 18.378)	£3563 (£3440 to £3696)	Dominated	24\%	HBPM	18.019 (17.816 to 18.210)	£2389 (£2264 to £2521)	Dominated	0\%
CBPM	18.148 (17.910 to 18.380)	£3613 (£3515 to £3727)	Dominated	0\%	CBPM	18.020 (17.817 to 18.210)	£2452 (£2351 to £2567)	Dominated	0\%
50 years, Male					50 years, Fe				
ABPM	15.628 (15.381 to 15.861)	£3524 (£3339 to £3750)		7\%	ABPM	15.435 (15.224 to 15.656)	£2422 (£2254 to £2654)		18\%
PROOF-BP	15.630 (15.383 to 15.863)	£3539 ($£ 3373$ to $£ 3740$)	£8269	93\%	PROOF-BP	15.437 (15.226 to 15.658)	£2449 (£2290 to £2658)	£14314	82\%
HBPM	15.623 (15.378 to 15.857)	£3661 ($£ 3508$ to $£ 3825$)	Dominated	0\%	HBPM	15.436 (15.224 to 15.654)	£2586 (£2438 to £2756)	Dominated	0\%
CBPM	15.622 (15.378 to 15.857)	£3696 (£3559 to £3838)	Dominated	0\%	CBPM	15.437 (15.224 to 15.658)	£2632 (£2500 to £2785)	Dominated	0\%
60 years, Male					60 years, Fe				
ABPM	12.850 (12.640 to 13.079)	£3307 ($£ 3077$ to £3567)		10\%	ABPM	12.527 (12.304 to 12.745)	£2425 (£2204 to £2714)		16\%
PROOF-BP	12.852 (12.641 to 13.080)	£3311 (£3110 to £3558)	£3265	90\%	PROOF-BP	12.529 (12.305 to 12.746)	£2435 (£2222 to £2707)	£8265	84\%
HBPM	12.841 (12.628 to 13.072)	£3417 ($£ 3233$ to $£ 3624$)	Dominated	0\%	HBPM	12.524 (12.304 to 12.739)	£2548 (£2358 to £2788)	Dominated	0\%
CBPM	12.839 (12.628 to 13.068)	£3448 ($£ 3279$ to £3650)	Dominated	0\%	CBPM	12.524 (12.301 to 12.740)	£2586 (£2414 to £2804)	Dominated	0\%
70 years, Male					70 years, Fe				
PROOF-BP	9.820 (9.592 to 10.043)	£2771 (£2530 to £3064)	Dominant	93\%	PROOF-BP	9.349 (9.115 to 9.579)	£2117 (£1870 to £2415)	Dominant	94\%
ABPM	9.819 (9.591 to 10.043)	£2777 ($£ 2520$ to $£ 3090$)	Dominated	7\%	ABPM	9.348 (9.114 to 9.578)	£2125 ($£ 1866$ to £2434)	Dominated	6\%
HBPM	9.809 (9.580 to 10.033)	£2866 (£2638 to £3134)	Dominated	0\%	HBPM	9.341 (9.109 to 9.575)	£2204 (£1977 to £2483)	Dominated	0\%
CBPM	9.806 (9.577 to 10.027)	£2895 (£2682 to £3154)	Dominated	0\%	CBPM	9.340 (9.106 to 9.570)	£2230 ($£ 2003$ to $£ 2501$)	Dominated	0\%
75 years, Male					75 years, Fe				
PROOF-BP	8.227 (7.968 to 8.456)	£2498 (£2213 to £2857)	Dominant	98\%	PROOF-BP	7.684 (7.424 to 7.931)	£1864 (£1595 to £2206)	Dominant	98\%
ABPM	8.227 (7.967 to 8.455)	£2513 (£2224 to £2884)	Dominated	2\%	ABPM	7.684 (7.424 to 7.930)	£1877 ($£ 1601$ to £2230)	Dominated	2\%
HBPM	8.217 (7.955 to 8.446)	£2577 ($£ 2301$ to £2921)	Dominated	0\%	HBPM	7.679 (7.418 to 7.926)	£1939 ($£ 1685$ to £2272)	Dominated	0\%
CBPM	8.214 (7.955 to 8.442)	£2599 (£2333 to £2945)	Dominated	0\%	CBPM	7.678 (7.418 to 7.925)	£1961 (£1709 to £2280)	Dominated	0\%

CI=Confidence Interval. CBPM= Clinic Blood Pressure Monitoring. $\mathrm{HBPM}=$ Home Blood Pressure monitoring. $\mathrm{ABPM}=$ Ambulatory Blood Pressure Monitoring. $\mathrm{CE}=$ cost-effective at $£ 20,000$ threshold. QALYs= qualityadjusted life years. ICER= Incremental Cost Effectiveness Ratio.

