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An Improved and More Scalable Evolutionary
Approach to Multiobjective Clustering

Mario Garza-Fabre, Julia Handl, and Joshua Knowles

Abstract—The multiobjective realisation of the data clustering
problem has shown great promise in recent years, yielding
clear conceptual advantages over the more conventional, single-
objective approach. Evolutionary algorithms have largely con-
tributed to the development of this increasingly active research
area on multiobjective clustering. Nevertheless, the unprece-
dented volumes of data seen widely today pose significant
challenges and highlight the need for more effective and scalable
tools for exploratory data analysis. This paper proposes an
improved version of the multiobjective clustering with automatic
k-determination algorithm. Our new algorithm improves its pre-
decessor in several respects, but the key changes are related to the
use of an efficient, specialised initialisation routine and two alter-
native reduced-length representations. These design components
exploit information from the minimum spanning tree and redefine
the problem in terms of the most relevant subset of its edges.
Our study reveals that both the new initialisation routine and the
new solution representations not only contribute to decrease the
computational overhead, but also entail a significant reduction of
the search space, enhancing therefore the convergence capabilities
and overall effectiveness of the method. These results suggest that
the new algorithm proposed here will offer significant advantages
in the realm of ‘big data’ analytics and applications.

Index Terms—Evolutionary Computation, Data Analysis, Clus-
tering Methods, Data Mining, Pareto Optimization.

I. INTRODUCTION

DATA, whether generated e.g. by customer transactions,
through communications on social media, or as a by-

product of manufacturing processes, are generally meaningless
unless suitable techniques are employed to select, analyse,
and transform these raw data into tangible information and
insight. Data clustering is one of the most fundamental tools
in exploratory data analysis, being concerned with finding
homogeneous groups of data entities according to ‘measured
or perceived intrinsic characteristics’ [1]. Clustering has found
important applications in many different areas such as market-
ing [2], [3], bioinformatics [4]–[6], and medicine [7], [8].

Crisp clustering (by far the main type of cluster analysis)
requires that each datum be assigned to exactly one cluster,
thus creating a partitioning of the input data [9], [10]. It is
known that this crisp clustering is ill-posed in some strict
sense [11]. More practically, there is often a trade-off between
inter-cluster separation and intra-cluster homogeneity, as well
as trade-offs related to the choice of the number of clusters
to partition into, and the ability to optimise the other two cri-
teria. It was against this background that Handl and Knowles
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developed a multiobjective approach to clustering [12]–[15],
although some earlier independent work existed [16].

In this paper, we revisit the multiobjective clustering with
automatic k-determination (MOCK) algorithm [15]. The orig-
inal version of MOCK was described in [14], with further
adjustments to its initialisation, mutation, and solution selec-
tion schemes formalised in [15], [17]. In its standard form,
MOCK is limited to the application to numerical data, but a
more flexible version, MOCK around medoids, was described
in [18]. Here, we suggest modifications to the version of
MOCK introduced in [15] with a view to improving its scala-
bility, which is essential given the unprecedented volumes of
data that require processing in current clustering applications.
In particular, the methodology described in this paper is based
on a thorough analysis of the core mechanisms of MOCK,
specifically the interplay of its representation, initialisation
routine, optimiser and evaluation functions, and the associated
identification of possible efficiencies in the process. Our work
can be seen as complementary to adjustments such as those
introduced in [19], which achieve improved scalability by
using a sub-sample of the data to guide the clustering process.

Our new algorithm version, ∆-MOCK, presents extensive
changes, including changes to the multiobjective optimisation
engine and evaluation criteria, but, more fundamentally, to the
initialisation and representation schemes; despite these sig-
nificant adaptations, the core principles of ∆-MOCK remain
the same as in MOCK. This study conducts a comprehensive
investigation and comparison of ∆-MOCK with respect to
MOCK. Our findings demonstrate that the changes introduced
impact positively not only on computational efficiency but also
on clustering accuracy for complex data sets.

A. Scope of this Study

The ultimate goal of this study is to investigate and illustrate
the advantages of ∆-MOCK. This is achieved by evaluating
this method, specifically, with respect to MOCK [15]. MOCK
is not only a mandatory baseline (being the starting point
for the development of ∆-MOCK), but is also representative
of the state-of-the-art. In addition, two clustering algorithms
from the specialised literature have been included in our
comparative analysis as a reference; this includes the well-
known k-means method [20] and a multiobjective genetic
algorithm for clustering [21]. Our analysis focuses only on the
ability (and efficiency) of these methods to produce candidate
solution sets which contain high-quality partitions. Hence, our
study centres on the so-called clustering (or model generation)
phase of MOCK and ∆-MOCK, and is not concerned with
the subsequent model selection phase of these methods (see
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Section II-A). Finally, the versions of MOCK and ∆-MOCK
studied here assume that input data entities are represented
by vectors of numerical attributes; adaptations (such as those
studied in [18]) to scenarios where data can be described
by non-numerical attributes, or where only dissimilarity (or
similarity) data describing the relationships between entities
is available, are considered beyond the scope of this study.

B. Organisation of this Paper

The remainder of this paper is organised as follows. First,
Section II introduces the necessary background, sets the
notation, and discusses relevant related works. Section III
provides a detailed description of our ∆-MOCK algorithm,
contrasting its differences with respect to MOCK. In Sec-
tion IV, we describe the specific configuration and settings
of the approaches evaluated and compared in this study,
the benchmarks considered, and the performance assessment
methodology adopted. The results of our experimental eval-
uation are presented in Section V. Then, the main findings
of this evaluation are further discussed in Section VI along
with some open questions that are expected to trigger future
research efforts. Finally, Section VII concludes.

II. BACKGROUND CONCEPTS AND RELATED WORK

This section presents a more formal definition of the prob-
lem addressed in this paper. Also, this section introduces
some basic concepts which are essential for the sake of self-
containedness and provides a discussion of relevant literature.

A. Single-Objective and Multiobjective Clustering

Data clustering is the unsupervised task concerned with
classifying a collection of data entities (or points), based
on some notion of similarity, into a finite number of dis-
joint subsets called clusters.1 When posed as an optimisation
problem, this task usually relies on the optimisation of a
single (internal2) clustering criterion, commonly referred to as
validity index [22], which serves as a proxy for the unknown
correct classification of the data. Formally, this task can be
stated as the problem of determining C∗ such that:

C∗ = arg min
C∈Ω

f(C) , (1)

where C ∈ Ω is a clustering solution; more specifically, C is
a partition of the collection of N input data entities into k
clusters which represent our approximation to the set of k∗

true natural clusters (or classes) in the data. Ω is the space
of all feasible clusterings (in this case, all proper, non-fuzzy
partitions of the data), and f : Ω→ R is a clustering criterion
which, without loss of generality, is to be minimised.

In practice, however, a single criterion is generally unable to
capture all desirable aspects of a clustering solution. This fact
has motivated the consideration of alternative multiobjective
formulations of the problem, relying on the simultaneous

1This task is more specifically known as crisp clustering, in contrast to
fuzzy clustering in which a single data point may belong to multiple clusters.

2Clustering algorithms, being unsupervised methods, do not use any kind
of external knowledge about the correct (real) partition of the data.

optimisation of multiple clustering criteria [15], [16], [23].
With such formulations, thus, we aim to find C∗ such that:

C∗ = arg min
C∈Ω

f(C) , (2)

where f(C) = [f1(C), . . . , fm(C)]T is a vector function
and fi : Ω→ R is the i-th clustering optimisation criterion,
i ∈ {1, . . . ,m}. Rather than searching for a single optimal
partition, in the multiobjective context the task now becomes
that of identifying a set of partitions yielding different trade-
offs between the (usually conflicting) clustering criteria. More
formally, the goal is to find a set of Pareto-optimal solutions
P∗, such that P∗ = {C∗ ∈ Ω | @C ∈ Ω : C ≺ C∗}. The sym-
bol ‘≺’ denotes the Pareto-dominance relation [24]:

C ≺ C ′ ⇔ ∀i : fi(C) ≤ fi(C ′) ∧
∃j : fj(C) < fj(C

′) , (3)
i, j ∈ {1, . . . ,m} .

If C ≺ C ′, then C is said to dominate C ′. Otherwise, C ′ is said
to be nondominated with respect to C (C ⊀ C ′). The image
of P∗ in objective space is the so-called Pareto-optimal front.

Note that P∗ always comprises the optimal solutions for
the m individual optimisation criteria. Therefore, a clustering
method relying on a multiobjective formulation has the poten-
tial to produce the same optimal partitions that can be reached
through the independent (single-objective) optimisation of
these criteria. More interestingly, though, the multiobjective
formulation enables the discovery of trade-offs which are
otherwise difficult to obtain using single-objective strategies.

Let P be the solution set obtained by a given multiobjective
clustering method. Since we cannot ensure that P = P∗, we
say that P is an approximation set and its image in objective
space is a Pareto front approximation (PFA). We will refer to
the process of generating this set of candidate partitions as the
clustering (model generation) phase of the clustering method.
The process of choosing one or a subset of the most promising
candidates from this set (the ultimate goal in many practical
applications) will be referred to as the model selection phase.

B. Evolutionary Multiobjective Clustering

Owing to their well-known flexibility and effectiveness
at solving difficult optimisation problems, evolutionary al-
gorithms and other nature-inspired metaheuristics have been
a popular choice for the design of data clustering tech-
niques [25]–[28]. The suitability of these approaches is even
more evident in the specific context of multiobjective clus-
tering, as they are able to generate the target PFA within a
single execution. Early works have clearly illustrated the con-
ceptual advantages of evolutionary multiobjective clustering
(EMC) [14], [15], [21], and have motivated intensive research
in this area during the last decade [25], [29], [30].

In particular, the MOCK algorithm [15] exploits the benefits
of EMC to a large extent. By optimising clustering criteria
which present conflicting biases with respect to the value of
k (see details in Section III-C), a single run of this method
produces a PFA which not only comprises interesting trade-
offs between the criteria optimised, but also can include
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partitions with a wide range of numbers of clusters. This
removes the need for predefining this parameter, which is
especially relevant given that we generally have little (or poor)
information about how to choose k so it corresponds to k∗.

MOCK has been shown to produce solutions which signif-
icantly improve upon the quality of those obtained by single-
objective and ensemble clustering approaches [15]. Despite the
promising results that MOCK has shown in practice, we have
identified concrete opportunities for increasing its performance
and efficiency. Such opportunities have led to the development
of the ∆-MOCK algorithm proposed in this paper.

We refer the reader to [15] for a comprehensive, self-
contained description of MOCK. In Section III, we provide a
brief description of this algorithm, with a particular emphasis
on those aspects of MOCK which have been improved, high-
lighting the motivation and contrasting the differences with
respect to the new design choices in our ∆-MOCK algorithm.

C. Representations for Evolutionary Clustering

A variety of solution representations for data clustering have
been proposed in the literature [25], [30], with a comparison
of the heuristic of four of them provided in [31]. Possible
approaches range from the direct encoding of cluster mem-
berships to the specialised encodings used in Falkenauer’s
grouping genetic algorithm [32]. Challenges of a direct encod-
ing include the design of appropriate operators and the fact
that these representations are non-synonymously redundant
(see [33] for a definition and discussion of non-synonymous
redundancy), problems that are overcome only partially in
Falkenauer’s approach. Moreover, both types of encodings
require a priori decisions on the expected number of clusters.

An alternative, and increasingly popular, encoding has been
based on the use of (continuous) cluster centroids, an approach
that is thought to provide better scalability to large data
sets: in particular, the length of the encoding depends on
the dimension of the data and the number of clusters, but
not on N . On the other hand, limitations of this approach
are the assumption of spherical clusters that is implicit to a
centroid-based approach, as well as the continuing requirement
to specify the desired number of clusters.

MOCK [15] uses the locus-based adjacency representation
originally proposed by Park and Song [35]. This encoding is
illustrated in Fig. 1. Strengths of this approach include the
straightforward definition of meaningful genetic operators, the
capacity to capture arbitrary cluster shapes, and the ability to
naturally encode partitions of varying k. This latter charac-
teristic is of utmost importance in EMC, and particularly in
the context of MOCK as discussed in Section II-B. Moreover,
this representation has been found to be less redundant than
other encodings and has been observed to contribute to the
heritability and locality [36] of MOCK’s operators [31].

Nevertheless, the locus-based adjacency representation has
also been criticised for the fact that genome length increases
linearly with the problem size N [29], [30]. This paper
makes concrete why, due to specific strategies adopted during
initialisation and genetic variation (see discussion in Sec-
tions III-G and V-E), this linear growth in the encoding (and
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Fig. 1. Locus-based adjacency representation scheme used by MOCK. In
this example, a data set consisting of N = 12 data points is considered. Data
points are seen as the nodes of a graph. The genotype of an individual x
consists of N genes, x1, . . . , xN , where xi = j denotes a link i→ j from
data point i to data point j, j ∈ {1, . . . , N}. A partition is derived by
identifying all connected components in the resulting graph (which can be
performed in linear time [34]), where each connected component is interpreted
as a different cluster. Thus, the genotype of this example encodes a partition
with k = 4 clusters. The graph in this figure is shown as a directed graph to
aid in understanding how it originates from its corresponding genotype.

the resulting size of the search space) has not represented a
major bottleneck to scalability (as is evident from MOCK’s
existing performance on large data sets with N ≈ 4,000 [15]).
Our recent preliminary work has revealed, however, that a
reduced-length genetic representation can further improve the
scalability of MOCK, providing clear benefits in terms of both
clustering performance and computational efficiency [37].

The reduced-length encoding studied in [37] is revisited
and further evaluated in this paper. Such an approach is
here referred to as the ∆-locus encoding, and is one of the
two alternative reduced-length representations implemented by
our new algorithm ∆-MOCK, see Section III-B. The second
approach, explored for the first time in this paper, is called the
∆-binary encoding. It has been found that a full-length version
of our ∆-binary encoding is equivalent to the representation
used by the independent work of Casillas et al. [38]. Such
a representation proposed in [38] is in turn inspired by the
early work of Caliński and Harabasz [39], where the space of
possible clustering solutions is reduced to the set of partitions
which can be obtained by splitting the minimum spanning tree
(MST). To the best of our knowledge, these are the works more
closely related to the representations studied in this paper.

D. Use of Concepts from Graph Partitioning in Clustering

There is a close relationship between the problems of data
clustering and graph partitioning. In particular, graphs may be
used to directly represent a data set: a given data set with N
elements is described as a fully connected weighted graph with
each of the N nodes representing a data element and the edge
weights representing all pairwise dissimilarities. A partitioning
of this graph may then directly be interpreted as a clustering of
the data set (as illustrated in Fig. 1). This is best exemplified
e.g. through the single-link hierarchical clustering algorithm:
for a given number of clusters k, the results of this method
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are equivalent to those from removing the k − 1 longest links
in an MST of the associated graph [40]. Alternative partitions
may be obtained by adjusting the criterion that is guiding the
successive removal of links from the MST [41]–[43].

As stated by Zahn, we can therefore address the ‘problem
of deleting edges from an MST so that the resulting connected
subtrees correspond to the observable clusters’ [44]. This
specific idea has been followed in [15], where a measure of
interestingness and partitions initially obtained with k-means
have been the criteria adopted to guide the removal of MST
links during the generation of MOCK’s initial solution set.
Our ∆-MOCK algorithm explores this further: we propose an
improved criterion for the identification of relevant MST links,
and we exploit this notion not only to guide initialisation but
also within the design of ∆-MOCK’s representations.

III. ∆-MOCK

This section introduces ∆-MOCK and contrasts its differ-
ences with respect to its predecessor MOCK reported in [15].

The (clustering phase of) ∆-MOCK is outlined in Algo-
rithm 1.3 The algorithm starts by loading the input data set
and by precomputing information and data structures which
are exploited during subsequent stages (lines 1 and 2 in
Algorithm 1). This involves the dissimilarity matrix, the ranked
lists of nearest neighbours for all data points, and the MST
upon which ∆-MOCK so heavily relies (Prim’s algorithm is
used for the MST computation). Then, the search strategy of
∆-MOCK is applied (lines 3 to 9 in Algorithm 1) in order
to generate a PFA. This search strategy and all other design
components of ∆-MOCK are separately described below.

Algorithm 1 ∆-MOCK (clustering phase).
1: data loading()
2: initial precomputations()
3: P ← initialisation(P )†

4: for generation← 1 to Gmax do
5: P̂ ← mating selection(P)
6: P ′ ← genetic operators(P̂)
7: P ← survival selection(P ∪ P ′)
8: end for
9: P ← Pareto nondominated(P) †|P| = P

A. Optimisation Engine

The original MOCK [15] is based on the Pareto envelope-
based selection algorithm version 2 (PESA-II), a represen-
tative approach from the evolutionary multiobjective optimi-
sation (EMO) literature [45]. However, PESA-II is strongly
elitist: it is observed that the high selection pressure induced
by this method prevents a fraction of the genetic material
introduced during initialisation from being exploited and dis-

3∆-MOCK uses the same model selection strategy as MOCK. This study
focuses only on the clustering phase as stated in Section I-A. Refer to [15]
for a comprehensive description and evaluation of the model selection phase.

seminated throughout the evolutionary process.4 As detailed
in Section III-E, ∆-MOCK uses a specialised initialisation
routine which generates high-quality base partitions. In such
a scenario, it becomes essential to capitalise on all of the
genetic material that these highly optimised initial solutions
may comprise. Accordingly, and although the choice of search
algorithm should not be a matter of concern in the absence
of these special optimisation conditions, ∆-MOCK adopts a
different method as its underlying search engine: the nondomi-
nated sorting genetic algorithm version 2 (NSGA-II) [46]. It is
worth noting that the core ideas of MOCK/∆-MOCK are not
linked to a specific search algorithm. In principle, therefore, a
variety of existing algorithms from the EMO literature can be
used. Both PESA-II and NSGA-II have proven to be highly
effective optimisers, particularly in scenarios like this where a
reduced number of optimisation criteria are considered.

In ∆-MOCK’s search strategy based on NSGA-II, all the
genetic material obtained through our specialised initialisation
routine forms the basis of the initial parent population. Once
the initial parent population P is constructed, |P| = P , the
evolutionary process consists of a total of Gmax generations.
Broadly, at each generation an offspring population P ′ is
created by mating selection and the genetic operators. Then,
offspring compete against parent individuals in order to survive
from one generation to the next. In this study, binary tourna-
ment selection is used as the mating selection strategy. The
specifics of ∆-MOCK’s initialisation and genetic operators are
respectively discussed in Sections III-E and III-F.

The distinctive characteristic of NSGA-II is the use of the
nondominated sorting procedure to drive selection, as well
as the crowding distance (a secondary selection criterion) to
promote the diversity and distribution of the solutions along
the PFA obtained. This is exploited in ∆-MOCK with the
aim of producing a range of different trade-offs between the
clustering criteria considered, as well as a set of candidate
partitions presenting potentially different numbers of clusters.

B. Genetic Representations

The length of the genotype in the locus-based adjacency rep-
resentation (Fig. 1), given by the size of the problem, N , pin-
points one of the main limiting factors regarding the scalability
of MOCK. Not only can the encoding length impact on the
computational efficiency during the processing of candidate
individuals, but, more importantly, the search space grows very
rapidly as a function of N . This can affect convergence and
might therefore compromise the ability of MOCK to reliably
solve large problem instances. Although MOCK’s initialisation
routine and genetic operators adopt specific strategies which,
implicitly, help overcome these difficulties (see discussion in
Section III-G), ∆-MOCK additionally implements reduced-
length encodings in order to, explicitly, cope with these issues.

4PESA-II [45] uses an elitist external population (EP) to store the current
PFA. An internal population (IP) is constructed anew each generation based
on EP and the genetic operators. In MOCK [15], all the partitions generated
during initialisation are candidates to become the initial members of EP. Since
EP admits only nondominated solutions, all dominated candidates are filtered
and discarded (prematurely) at this early stage of the search process.
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Fig. 2. Identification of the sets Γ and ∆ of MST links. The MST is seen as a single-cluster (one connected component) solution, and the relevance of every
MST link is computed on the basis of criterion DI. All the MST links are ranked in descending order of DI and then split into two disjoint sets based on
parameter δ (0 ≤ δ ≤ 100). The non-relevant (fixed) set ∆ is formed by (approximately) the δ% least interesting links, and the relevant set Γ is formed by
the remaining, most interesting (top-ranked) links. In this example, a value of δ = 80 is adopted, which produces a fixed set ∆ and a relevant set Γ with nine
and three MST links, respectively. The nine links in ∆, and their corresponding genes in the full-length genotype, are assumed fixed and lead to a partial
clustering (with k = 4 clusters) which forms the basis for all candidate clustering solutions that ∆-MOCK explores during the evolutionary process.

∆-MOCK introduces two alternative representations: the ∆-
locus encoding and the ∆-binary encoding. Both the new en-
codings are based on the original representation of MOCK, but
can significantly reduce the length of the genotype through the
exploitation of information from the MST. More specifically,
the ∆-locus and ∆-binary encodings rely on the identification
of the most relevant subset of MST links whose removal, in
an ideal scenario, can split the MST into a set of connected
components that corresponds to the real cluster structure. The
task of identifying such relevant links is not straightforward;
different criteria have been used in the literature for these
purposes as discussed in Section II-D, and success of a given
criterion will certainly depend on the specific characteristics of
the data. We propose here to use the degree of interestingness
(DI) as a means to discriminate between the MST links; this
criterion has been observed to provide better results than other
criteria in this particular context (see Section V of our supple-
mentary material). The concept of DI was previously explored
in [15] with the aim of guiding part of the initialisation process
of MOCK. Here, a more fine-grained version of this approach
is considered. Formally, the DI of a link i→ j is given by:

di(i→ j) = min
{
nni(j), nnj(i)

}
+
σ(i, j)

σmax
, (4)

where nna(b) refers to the ranking of data point b in the
list of nearest neighbours of data point a; in other words,
l = nna(b) indicates that b is the l-th nearest neighbour of
a, also denoted as b = nnal. By itself, the first term in (4)
corresponds to DI as defined in [15]. The second term in
this equation enables a better discrimination of MST links
by explicitly considering the dissimilarity (distance) between
points i and j, σ(i, j). Note that dissimilarities are scaled to the
range [0, 1] by dividing by the maximum dissimilarity found
in the data set, σmax = max{ σ(a, b) | a, b ∈ {1, . . . , N} }.

Having defined DI, this criterion is used to rank and classify
the MST links either into the set of relevant links, Γ, or
into the set of non-relevant, fixed links, ∆. As exemplified
in Fig. 2, such a classification depends not only on criterion
DI, but on the setting of a user-defined parameter, namely δ.
Parameter δ takes values from the range [0, 100] and plays a
decisive role in ∆-MOCK. As can be seen from the figure, Γ

comprises the |Γ| = d (100−δ)
100 Ne most prominent (highest DI)

links, whereas ∆ consists of the |∆| = b δ
100Nc links with

the lowest DI values. Furthermore, parameter δ determines
the length of the genotype in the ∆-locus and ∆-binary
encodings, which, as illustrated in Fig. 3, corresponds to
the cardinality of the relevant set Γ. As explained in detail
in the figure, the new encodings of ∆-MOCK redefine the
problem in terms of the relevant MST links only, while all
other non-relevant MST links (i.e. the set ∆) are considered
to be a fixed, common characteristic of all candidate clustering
solutions. By excluding all non-relevant MST links from the
genotype, hence, only the removal (or replacement) of relevant
links is optimised throughout the search process; as discussed
before, this divides the MST into connected components which
potentially translate into promising candidate partitions.

Therefore, the reduced-length encodings allow ∆-MOCK
to concentrate its efforts on a (potentially small) relevant
region of the solution space. Note that the ∆-locus encoding is
equivalent to the locus-based adjacency representation when
δ = 0. Note also that the ∆-locus encoding has been previ-
ously explored in the context of MOCK [37], showing very
encouraging results (although the approach studied in [37]
used the original definition of DI provided in [15]). Finally, the
full-length version (δ = 0) of the ∆-binary encoding is similar
to the representation used in [38], as discussed in Section II-C.

C. Optimisation Criteria

Aiming at the multiobjective essence of the problem of data
clustering, MOCK relies on the optimisation of two comple-
mentary clustering criteria [15]: overall deviation (ODV) and
connectivity (CNN). Whereas ∆-MOCK preserves the latter
criterion as in MOCK, the former, ODV, is replaced with the
intra-cluster variance (VAR) criterion. Although conceptually
similar criteria, VAR is chosen to replace ODV in ∆-MOCK
as it facilitates delta-evaluation. As discussed in Section III-D,
this carries additional advantages in computational efficiency.

VAR and CNN evaluate fundamentally different but equally
desirable properties of a clustering solution. Similarly to ODV,
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Fig. 3. The ∆-locus and ∆-binary reduced-length encodings, and the process of reconstructing the full-length genotype which is a first step towards decoding.
The new encodings operate on genotypes of length |Γ|, where Γ is the set of relevant MST links as shown in Fig. 2. The partial clustering defined by the set
of fixed MST links ∆ plays an important role during the reconstruction of the full-length genotype. Using such a partial clustering as the starting point, the
|Γ|-length genotypes of the new representations are used to define the missing pieces of information in the full-length genotype, which is then decoded into
a complete clustering solution. In the ∆-locus encoding, genes x∆

1 , . . . , x
∆
|Γ| of an individual x∆ may assume any allele value from the set {1, . . . , N}. In

contrast, only allele values from the set {1, 0} are considered when using the ∆-binary encoding. Thus, while the ∆-locus encoding is able to explore the
replacement of the original MST links with other alternative links between data points, the ∆-binary encoding explores only whether the original MST links
are preserved (allele value 1) or removed (allele value 0); removal of an MST link i→ j is achieved by replacing this link with a self-connecting link i→ i.

VAR accounts for cluster compactness (also referred to as
homogeneity of clusters), and is formally defined as follows:

var(C) =
1

N

∑
c∈C

v(c) , (5)

where C is a candidate partition and v(c) represents the
individual contribution of a cluster c ∈ C to this measure:

v(c) =
∑
i∈c

σ(i, µc)
2 . (6)

In (6), µc denotes the centroid of cluster c, and σ(i, µc) refers
to the dissimilarity between data point i and µc (the Euclidean
distance is used as the dissimilarity measure in this study).

CNN captures cluster connectedness, reflecting the degree
to which neighbouring points are identified as members of the
same cluster. More formally, this measure is given by:

cnn(C) =
N∑
i=1

L∑
l=1

ρ(i, l) , (7)

where L is a user-defined parameter specifying the size of the
neighbourhood to consider, and ρ(i, l) penalises the clustering
solution whenever data point i and its l-th nearest neighbour
(denoted by nnil) are not assigned to the same cluster:

ρ(i, l) =

{
1
l , if @c ∈ C | i ∈ c ∧ nnil ∈ c ;
0, otherwise .

(8)

As objectives, both VAR and CNN are to be minimised. The
independent optimisation of VAR tends to increase the number
of clusters k. The best value for this measure can be achieved
by making k = N , i.e. by isolating each datum in a different
cluster. Oppositely, CNN presents the tendency of decreasing
k, reaching its lowest value when all data points are clustered

together, i.e. k = 1.5 Therefore, the simultaneous optimisation
of VAR and CNN in ∆-MOCK is expected to compensate
for the individual biases of these criteria, producing a PFA of
trade-off partitions with a diversity of values for k.

D. Delta-Evaluation

The reformulation of the clustering problem as a function of
the relevant MST links only, makes it possible to precompute
information regarding all other non-relevant MST links which
are assumed invariant for all candidate solutions. Such non-
relevant, fixed links, as illustrated in Fig. 2, define a partial
clustering which represents the starting point for the con-
struction of all partitions ∆-MOCK explores throughout the
search. Therefore, the decoding and evaluation of this partial
solution can be precomputed and exploited for the purpose of
expediting the processing of individuals during optimisation.

Having completed the precomputations step, the decoding
and evaluation of a new candidate individual requires pro-
cessing the missing pieces of information only, i.e. the links
not yet defined in the partial solution, which are encoded in
the |Γ|-length genotype of the new representations. Processing
of a |Γ|-length genotype creates new links which can merge
originally separate clusters of the partial solution (Fig. 3).
Such a change in the phenotype implies an amendment to the
initially precomputed values of the VAR and CNN criteria.

Adjusting VAR in response to the combination of two clus-
ters ci and cj requires computing the individual contribution of
the new joint cluster ch = ci ∪ cj to this measure. Rather than
using (6), which becomes more computationally expensive as

5Notice that different clustering solutions may yield the same optimal value
for the CNN criterion depending on the value chosen for parameter L.
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larger and higher-dimensional problems are considered, the
contribution of ch to VAR is derived from v(ci) and v(cj),
the initially precomputed contributions of ci and cj [47]:

v(ch) = v(ci) + |ci| × σ(µci , µch)2 (9)
+ v(cj) + |cj | × σ(µcj , µch)2 ,

where µch denotes the centroid of ch and is computed as the
weighted average of the original centroids µci and µcj :

µch =
(|ci| × µci) +

(
|cj | × µcj

)
|ch|

. (10)

Adhering to its definition in (5), VAR is recomputed by
averaging the individual contributions of all the final clusters
to this measure (note that (9) and (10) are generalisable and
can be used when combining an arbitrary number of clusters).

Amendments to the evaluation of CNN require keeping
track of the total contribution that each pair of clusters in
the partial solution has made to the precomputed value for
this measure. That is, a given pair of clusters ci and cj has
contributed to the CNN criterion if and only if there exists a
pair of points a and b such that: (i) at least one of these points
is within the set of L nearest neighbours of the other; and (ii)
one of these points belongs to ci while the other belongs to
cj . In this way, the combination of ci and cj implies updating
CNN by subtracting all contributions made to this measure as
a consequence of the original separation of ci and cj .

E. Initialisation

MOCK and ∆-MOCK implement specialised initialisation
routines which aim to provide these methods with a starting
pool of good-quality genetic material and a close initial
approximation to the Pareto front. This is sought in both cases
through the generation of an initial population comprising
MST-derived partitions with a range of numbers of clusters.

The original initialisation of MOCK consists of two phases.
The first phase follows a DI-based strategy, similar to
∆-MOCK’s approach (described below) but using a coarser-
grained definition of DI [15]. The bulk of the initial population
is generated during the second phase, where partitions are
created by removing all MST links crossing cluster bound-
aries given solutions initially produced by k-means [20]. The
analysis of MOCK’s two-phase initialisation reveals, however,
that the largest contributions to performance are achieved by
the first phase, while the second phase is responsible for a
significant computational overhead. It is also found that the
number of clusters in the initial set of solutions is a matter
which notably affects performance (the main results of this
analysis are summarised in our supplementary material).

In light of this, the initialisation process is redesigned
(largely drawing upon the first phase of MOCK’s initialisation)
as a means to improve both performance and efficiency. The
precise and full new routine is sketched in Algorithm 2. It
starts by including the (single-cluster) MST solution in the
population (Fig. 2). All remaining individuals are iteratively
created by removing the n = k − 1 most relevant links from
the MST, endeavouring to use a different target k value at each
iteration. Relevance of the MST links is determined on the
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Fig. 4. Construction of an MST-derived solution by removing the n = 2 top-
ranked MST links based on DI. This removes 2 of the 3 relevant links in set Γ
(Fig. 2) and splits the MST into k = 3 clusters. As indicated in Section III-E,
every removed MST link is replaced with a new link during the generation
of MST-derived solutions. This process of link replacement is not illustrated
in this figure in order to emphasise the process of link removal.

basis of criterion DI (defined in Section III-B). This strategy
is illustrated in Fig. 4 (with examples provided in Section V
of our supplementary material).

Algorithm 2 Initialisation routine of ∆-MOCK.
1: P ← {MST solution}
2: while |P| < P do
3: kall ← {2, 3, . . . , kmax}
4: while |P| < P and |kall| > 0 do
5: choose k ∈ kall uniformly at random
6: x∆ ←MST derived partition(n← k − 1)
7: P ← P ∪ {x∆}
8: kall ← kall \ {k}
9: end while

10: end while

Removal of MST links is only permitted for those links
classified into the relevant set Γ (an example of a non-
permitted link removal is provided in Fig. 4). Also, a different
treatment is given to the links removed depending on the
particular encoding scheme under consideration. Using the ∆-
locus encoding, each MST link i→ j removed is replaced
with a new link i→ h, where h is chosen uniformly such
that h ∈ {i, nni1, . . . , nniL} \ {j}; i.e. the new link is either
a self-connecting link i→ i or a link from i to one of its
L nearest neighbours (excluding the reintroduction of the
original link i→ j).6 The ∆-binary encoding does not enable
the exploration of alternative links (other than the original
MST links). Consequently, a link removed, emanating from
i, is always replaced with a loop i→ i (interpreted simply
as the ‘absence’ of the MST link, see Fig. 3). Once the con-
struction of an MST-derived partition is completed by means
of the deletion and replacement of MST links, the resulting
phenotype is translated and encoded into the corresponding
|Γ|-length genotype (as explained in Fig. 3).

Parameter kmax defines an upper bound on the set of target
k values considered during initialisation.7 Preliminary exper-
iments suggest that a value of about kmax = 2k∗ provides

6This same approach was adopted in this study when using the original
(full-length) locus-based adjacency representation for comparative purposes.

7Notice from Algorithm 2 that if kmax > P , only a subset of k values
from the set kall would be required to complete the initial parent population.
On the contrary, if kmax < P , multiple rounds considering the full set kall
are applied until completing the desired number of individuals.
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the best performance, where k∗ is the real (or estimated)
number of clusters in the data set (refer to our supplementary
material for results of these experiments). It is noteworthy that
the actual number of clusters in the MST-derived solutions
obtained may differ from the specific target k values employed.
This is particularly the case for the ∆-locus encoding due to
the above-described link replacement process. Moreover, the
length of the genotype in the new encodings imposes a limit
on the number of clusters a partition may involve (a partition
can have, at most, as many clusters as in the partial solution
defined by the fixed links in set ∆, see Fig. 2).

F. Genetic Operators

∆-MOCK implements the same set of genetic operators as
its predecessor [15]. Uniform crossover is employed as the
genetic recombination strategy [48]. This operator takes the
genotype of two parent individuals as input, and produces
two offspring as output. Offspring solutions are first created
as identical copies of the parents. Then, mixing of genetic
material occurs based on a given recombination probability
pr. When recombination occurs, the allele of each gene can
be either preserved or interchanged between the two offspring
with equal probability. Thus, this operator has the ability of
exploring any possible combination of genetic material from
the given parents.

The neighbourhood-biased mutation operator is
utilised [15]. When mutation is applied to a given candidate
genotype, this operator determines the mutation probability
individually for every gene according to the specific link
that this gene currently encodes. Formally, the probability of
mutating a gene encoding a link i→ j is computed as:

pm(i→ j) =
1

|Γ|
+

(
nni(j)

|Γ|

)2

, (11)

where |Γ| is the length of the encoding under the new
∆-MOCK’s representations (in this equation, |Γ| is replaced
with N when using the original full-length representation
for comparative purposes). Computing individual mutation
probabilities in this way increases the chances of discarding
unfavourable links. Using the ∆-locus encoding (and simi-
larly for the original full-length locus encoding), mutation
of a link i→ j implies replacing this link with a new
link i→ h, and h will be randomly chosen from the set
{i, nni1, . . . , nniL} \ {j} (as in the link replacement strategy
adopted during initialisation, see Section III-E). The ∆-binary
encoding captures the presence or absence of the original MST
links only. As such, we know that a current allele value of
1 in the gene being mutated indicates that the encoded link
i→ j is one of the links of the MST, so that the probability
of removing this link (and changing the gene’s allele value to
0) is computed in the same manner as defined in (11). On the
other hand, an allele value of 0 indicates that i→ j is actually
a self-connecting link (i.e. i = j), so that the probability of
reintroducing the original MST link (and changing the gene’s
allele value to 1) is simply given by the first term in (11).

G. Effective Search Space

In the (full-length) locus-based adjacency representation,
as originally proposed [35], every gene xi of the genotype
can conceptually encode any link i→ j, connecting point i
to whichever point j in the data set, i, j ∈ {1, . . . , N}. This
results in a huge search space of size NN . When implementing
this encoding scheme in MOCK [15], however, the creation of
MST-derived solutions during the initialisation process, as well
as the link replacement strategy applied both during initiali-
sation and genetic variation (the same strategy implemented
in ∆-MOCK, which is described in Sections III-E and III-F),
allows the algorithm to focus on a much reduced search space
whose size is bounded by the following expression:

(L+ 2)
N
. (12)

This is because each original MST link i→ j can either
be preserved, be replaced with a self-connecting link i→ i,
or be replaced with a link from i to one of its L nearest
neighbours. Therefore, a gene xi only takes values from the set
H = {i, nni1, . . . , nniL} ∪ {j} throughout the evolutionary
process, where |H| = L+ 1 if point j (to which point i is
originally connected in the MST) is one of i’s L nearest
neighbours, and |H| = L+ 2 otherwise. This is a notable
reduction of the search space, as typically L� N . In this
study, we use L = 10, the same setting adopted in [15].

The new ∆-locus encoding can further reduce significantly
the size of the search space. This depends on the setting of
parameter δ, which determines the set Γ and, therefore, the
length of the genotype. From the above analysis of the full-
length encoding, it follows that the size of the effective search
space for the (|Γ|-length) ∆-locus representation is at most:

(L+ 2)
|Γ|

. (13)

Finally, the ∆-binary encoding presents the most remarkable
improvement in search space reduction. By exploring only the
inclusion or exclusion of the relevant MST links, the resulting
size of the search space for this representation is given by:

2|Γ| . (14)

The above expressions describe the accessible search space
(i.e. the space that is reachable by the search method) under the
three different representations and given the specific strategies
adopted as part of the initialisation and mutation schemes.
Nonetheless, the use of specialised initialisation routines in
both MOCK and ∆-MOCK has important biasing effects and
significantly contributes to narrowing the extent of this avail-
able search space that is actually reached during optimisation.
Section V-E elaborates further on this matter.

H. Availability of ∆-MOCK

The source code of the implementations of MOCK and
∆-MOCK studied in this paper, as well as our collection of test
data sets described in Section IV-C, is made available through
our repository at: https://github.com/garzafabre/Delta-MOCK.
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TABLE I
COMPONENTS USED IN DIFFERENT VERSIONS OF MOCK AND ∆-MOCK

EVALUATED IN THIS STUDY. METHOD CONFIGURATION IS DEFINED IN
TERMS OF FOUR DIFFERENT DESIGN CHOICES: (I) OPTIMISATION

STRATEGY; (II) OBJECTIVE FUNCTIONS; (III) INITIALISATION ROUTINE;
AND (IV) ENCODING SCHEME. THE FOUR LEFTMOST APPROACHES HAVE
BEEN HIGHLIGHTED IN THIS TABLE AS THEY ARE THE MAIN FOCUS OF

THE ANALYSES OF THIS PAPER. A DIFFERENT ACRONYM HAS BEEN
ASSIGNED WHICH WILL BE USED TO REFER TO EACH PARTICULAR

METHOD CONFIGURATION THROUGHOUT THIS STUDY. WHEN REFERRING
TO APPROACHES USING THE ∆-LOCUS AND ∆-BINARY ENCODINGS,

SYMBOL δ IN THEIR ACRONYMS WILL BE REPLACED BY THE SPECIFIC
SETTING USED FOR THIS PARAMETER; e.g. IF δ = 80, APPROACHES ∆L

δ
AND ∆B

δ WILL BE REFERRED TO AS ∆L
80 AND ∆B

80 , RESPECTIVELY.

MOCK or ∆-MOCK version

Components M
H

0
7

M
∗ V

∆
L δ

∆
B δ

L
δ

B
δ

R
L δ

R
B δ

Optimisation:
PESA-II •
NSGA-II • • • • • • •
Objectives:
ODV •
VAR • • • • • • •
CNN • • • • • • • •
Initialisation:
MOCK • • • •
∆-MOCK • •
Random • •
Encoding:
Locus (full-length) • •
∆-locus • • •
∆-binary • • •

IV. EXPERIMENTAL SETUP

This section summarises the approaches evaluated and com-
pared later in Section V, and describes the data sets, settings
and experimental conditions adopted during this study.

A. MOCK and ∆-MOCK

Table I outlines the configuration of different variants of
MOCK and ∆-MOCK studied in this paper. These variants
present specific choices regarding the implemented search
strategy, optimisation criteria, initialisation routine, and ge-
netic representation. Approaches MH07, M∗V , ∆L

δ , and ∆B
δ

are our main subjects of analysis, while the remaining con-
figurations have been considered with the aim of evaluating
specific algorithmic decisions and behaviours.

MH07 corresponds to the original version of MOCK re-
ported in [15]. M∗V incorporates changes to the search strategy
and optimisation criteria, but preserves the original initialisa-
tion routine and (full-length) representation as in MH07. In
this study, M∗V serves as the primary baseline for investigating
the suitability of ∆-MOCK approaches ∆L

δ and ∆B
δ (using

the new ∆-locus and ∆-binary reduced-length encodings,
respectively). This is because M∗V uses the same search
strategy, optimisation criteria, and is implemented within the
same framework as ∆L

δ and ∆B
δ . As such, the use of M∗V as

the baseline (instead of MH07) enables a fair analysis of the
computational efficiency of the methods and makes it possible

TABLE II
SUMMARY OF THE MAIN PARAMETER SETTINGS USED IN THIS STUDY.

Population size P = 100

Number of generations Gmax = 100

Recombination probability pr = 1.0

Mutation probability pm(i → j) = 1
|Γ| +

(
nni(j)

|Γ|

)2

Maximum k (initialisation)† kmax = 2k∗

Neighbourhood parameter L = 10

Encoding-length parameter‡ δ ∈ {0, 50, 80, sr5, sr2, sr1}
† Where k∗ denotes the real number of clusters in our test data sets.
‡ Where srη = 100−

(
100× η/

√
N
)

, for η ∈ {5, 2, 1}.

to compare the characteristics of the PFAs obtained. Moreover,
evaluation with respect to M∗V allows us to assess the impact
of the new initialisation and representation schemes which are
the main innovative elements of ∆-MOCK.

Finally, approaches Lδ , Bδ , RLδ , and RBδ are included in
this study to evaluate the relevance of the new reduced-length
representations without relying on the specialised initialisation
used by ∆L

δ and ∆B
δ . On the one hand, configurations Lδ

and Bδ use the original initialisation routine of MOCK [15],
see Section III-E. On the other hand, approaches RLδ and RBδ
implement a random initialisation as follows: the allele of a
given gene, which will encode a link emanating from data
point i, is selected uniformly from the set {i, nni1, . . . , nniL}
if using RLδ , or from the set {0, 1} if using RBδ .

The parameter settings adopted for all the above-described
variants of MOCK and ∆-MOCK, except MH07, are sum-
marised in Table II. For MH07, we use the same settings
as reported in [15]. Note from Table II the use of a setting
of kmax = 2k∗ for ∆-MOCK’s initialisation strategy; this
setting was determined based on preliminary testing (results
are included in our supplementary material). To perform a fair
comparative analysis, an equivalent range of target k values
is used for all approaches based on the original initialisation
routine of MOCK (MH07, M∗V , Lδ , and Bδ). Also, note from
the table that we explore six different settings for parameter δ,
which achieve different genotype lengths for the ∆-locus and
∆-binary encodings. Three of such settings, namely sr5, sr2,
and sr1, set the value of δ individually for each given problem
instance so that the resulting length of the encoding is defined
as a function of

√
N ; more specifically, settings sr5, sr2, and

sr1 (as defined in Table II) lead to encoding lengths of∼5
√
N ,

∼2
√
N , and ∼

√
N , respectively. Through the consideration of

such settings, this study investigates the extent to which we
can employ encoding lengths that do not grow linearly with
the size of the problem N , thus providing highly significant
reductions in the size of the search space and considerable
improvements in terms of computational efficiency.

B. Reference Methods

While the primary goal of this paper is to investigate
the advantages of ∆-MOCK with respect to its predecessor,
MOCK, results for additional clustering methods from the
literature are also reported as a reference.
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1) k-Means: The well-known partitioning method
k-means [20] is run for a diverse set of values of k. This
results in candidate solution sets which are more comparable
to those produced by MOCK and ∆-MOCK. A single run
of ∆-MOCK can generate a solution set with as many
different numbers of clusters k as the population size, P .
Given the setting adopted P = 100 (see Table II), a total of
100 different k values around k∗ is considered during the
experiments with k-means. More specifically, for a data set
with k∗ clusters, k-means is run for all k values from the set
{ max {2, k∗ − 50}, . . . , k∗, . . . ,max {2, k∗ − 50}+ 99 }.

For each target k considered, k-means is run repeatedly
(a total of 50 times), each time starting from a randomly
generated initial partition. From the set of all repetitions, the
solution with the best performance, based on the intra-cluster
variance criterion, is selected and included in the final solution
set. This is done as a means of accounting for suboptimality. In
all the cases, a maximum number of 100 iterations is used as
the stopping criterion for the k-means procedure (the iterative
process is stopped earlier if the algorithm converges).

2) Multiobjective Genetic Algorithm for Clustering: This
method, referred to as MGA in our comparative analysis, was
proposed in [21] and further investigated in [49]–[51]. MGA is
based on NSGA-II [46], uses a centroid-based representation,
and optimises simultaneously the Xie-Beni (XB) index [52]
and the fuzzy C-means (Jm) [53] measure.8 Two additional
variants of this method are explored: MGAV L and MGA∗V L.
MGAV L implements a variable-length encoding which en-
ables the generation of partitions with varying k. This variable-
length encoding has been utilised in other studies by the same
authors [54], [55]. MGA∗V L is our own extension of MGAV L
that uses the same optimisation criteria and an MST-based
initialisation scheme as in ∆-MOCK. We include this as an
additional comparison, as it enables a more direct comparison
of the centroid-based and graph-based representations, the
main conceptual difference between MGA∗V L and ∆-MOCK.

In all the cases, a population of size P = 100 and
Gmax = 100 generations are considered (this is consistent
with the number of solution evaluations performed by MOCK
and ∆-MOCK). The recombination and mutation probabilities
are respectively set to pr = 0.8 and pm = 1/l (l being the
encoding length) as used in [21]. In MGAV L and MGA∗V L, the
maximum number of clusters is set to 2k∗, which also sets the
maximum possible length of the encoding. Finally, the initial-
isation scheme of MGA∗V L generates MST-derived solutions
following the same strategy as in ∆-MOCK (Section III-E).
In order to construct the initial population of centroid-based
genotypes, cluster centres are initialised to the coordinates
of randomly selected points from the connected components
(clusters) in the corresponding MST-derived partitions.

C. Experimental Data

A total of 358 data sets are considered for the experiments
of this study. Eight large two-dimensional data sets have been
constructed using real, open data about street-level crime in

8The XB and Jm criteria are originally defined for fuzzy clustering. The
corresponding adaptations for crisp clustering are considered here.

the United Kingdom (UK).9 Attributes in these data sets cor-
respond to the geographic coordinates (latitude and longitude)
of crime reports, and crimes are clustered according to the
individual police forces in the UK. The size of these problems
is ∼30,000 data points (see Table III in Appendix A). Data sets
were constructed by selecting different subsets of the police
forces, presenting varying levels of difficulty. These data sets
will be denoted by UKC1, UKC2, . . . , UKC8.

The remaining 350 problems are synthetic data sets gen-
erated using the ellipsoidal generator previously used during
the evaluation of MOCK [15]. This generator creates clus-
ters with arbitrary elongation and orientation, whose posi-
tions are then optimised using a genetic algorithm in or-
der to arrange the clusters in a compact configuration. As
shown in Table III (Appendix A), these data sets present
varying sizes, ranging from ∼2,500 (in average) to over
9,000 data points. Data sets are organised into 35 problem
configurations based on the dimensionality of the data (d)
and number of clusters (k∗): d ∈ {20, 50, 100, 150, 200} and
k∗ ∈ {10, 20, 40, 60, 80, 100, 120}. A set of 10 random in-
stances were generated for each problem configuration. A
specific problem configuration will be referred to as xd-yc
throughout this study, where x = d and y = k∗.

The reader is referred to our supplementary material for
further information about the data sets employed in this paper.

D. Performance Assessment

For all the clustering methods analysed and compared in this
study, a total of 21 independent executions for each problem
instance were performed. Different performance indicators and
tools are employed to evaluate the results of these methods
from different perspectives, as described below.

1) Clustering Performance: The Adjusted Rand Index
(ARI) measure is used as the main indicator of clustering
performance [56]. Given two partitions A and B for a col-
lection of data points, this measure determines the similarity
of A and B by analysing the pairwise co-assignment of points
between the two partitions. ARI is defined in the range [∼0, 1];
the larger the value for ARI, the better the correspondence
between A and B. If we let A be a candidate partition
generated by a given clustering method, and we let B be the
true partition (ground truth) of the data (which is known for
our test data sets), ARI can thus provide an objective estimate
of the method’s ability to identify the inherent cluster structure
of the data.10 Each independent execution of the clustering
methods studied here produces a set of candidate partitions.
In all the cases, only the best solution from this set, according
to the ARI measure, is selected and considered in the results
reported in Section V; hence, we report statistics of the best
solution qualities produced by (i.e. contained in the candidate
solution sets of) the different methods analysed.

9This data is available at: https://data.police.uk/
10We say that this is an objective assessment of clustering performance

since the methods evaluated in this study, as unsupervised approaches, do
not exploit this external knowledge of the true partition during optimisation.
Furthermore, ARI is not biased towards algorithms employing a particular
type of clustering objective (as would be the case for measures of cluster
validity that consider the intrinsic structure of the data set).
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2) Quality of the Pareto Front Approximations: Such as for
any multiobjective optimiser, it is essential to investigate the
characteristics of the PFAs obtained as a means to understand
the performance and behaviour of MOCK and ∆-MOCK.
Our analysis in this respect focuses on the visualisation of
the differences between the (first-order) empirical attainment
functions (EAFs) of different method configurations [57], [58].
An EAF represents an estimate of the probability that an ar-
bitrary objective vector is attained11 during a single execution
of a given method. Such an estimate is computed from the
frequency with which the vector is attained by the method
in the set of all independent executions performed. EAFs
thus provide a pictorial representation which captures an al-
gorithm’s behaviour based on its outcomes. By visualising the
differences between the EAFs of two method configurations it
becomes possible to identify whether, and in which particular
regions of the objective space, a configuration performs better
than the other. The plots of the EAFs included in this paper
are generated using the tools reported in [58]. In all the cases,
objective values are normalised to the range [0, 1] and then, for
visualisation purposes, replaced with their square roots in order
to amplify the differences between the approaches compared.

In addition, two performance indicators from the EMO
literature are adopted in this study: the hypervolume indicator
(HV) [59], [60] and the inverted generational distance indi-
cator with modified distance calculation (IGD+) [61]. Both
HV and IGD+ are capable of expressing the quality of a
PFA with regard to both extent and proximity to the true
Pareto front. These indicators are computed in this study
after normalising objective values to the range [0, 1]. HV is
a Pareto-compliant indicator that measures the portion of the
objective space (bounded by a reference objective vector r)
which is dominated by a given PFA. Here, the reference point
is set to r = [1.01, 1.01]T in all the cases given the use of
normalised objective vectors. Higher HV values are always
preferred. The IGD+ indicator is weakly Pareto-compliant;
broadly, this indicator uses a reference set to represent the
true Pareto front, and is computed as the average (modified)
distance from each point in this set to the closest point in the
PFA obtained. In this study, the reference set comprises the
overall best known PFA for each individual problem instance,
and is computed by merging the PFAs obtained by all of the
method configurations analysed here and then removing all
dominated vectors. Contrary to HV, IGD+ is to be minimised.

3) Computational Efficiency: The suitability of ∆-MOCK
is also explored from the standpoint of its computational
efficiency. This is evaluated specifically with respect to
MOCK configuration M∗V , which is used as the baseline
as stated in Section IV-A. Both M∗V and ∆-MOCK are
implemented within the same framework, sharing most of
the code which define their functionality. This enables a
fair comparative analysis in this context. These approaches
are implemented in C++11, and are compiled with Clang
using the ‘-O3’ optimisation flag for the experiments of this
study. Execution times are measured (internally) using class

11A vector w in objective space is said to be attained by the method if and
only if the PFA produced includes either w or any vector z such that z ≺ w.

‘std::chrono::steady clock’. All the experiments of this study
are run on a (exclusively dedicated) computer with a 3.5 GHz
6-Core Intel Xeon E5 processor and 32GB of RAM.

4) Statistical Significance Analysis: Hypothesis testing is
conducted to investigate whether the differences observed
between the performance of specific method configurations
are statistically significant or not. Method configurations are
analysed pairwise using the (non-parametric) Mann-Whitney
U test, considering a significance level of α = 0.05 in all the
cases. Only a certain subset of the method configurations are
considered in order to minimise the number of inferences that
are made based on the same samples. In addition, Bonferroni
correction is applied to account for multiple testing issues.

V. RESULTS

This section presents the results of a series of experiments
conducted to investigate the suitability and understand the
functioning and behaviour of ∆-MOCK. The analysis of these
results is organised as follows. First, the overall evaluation of
specific ∆-MOCK configurations in terms of clustering per-
formance is presented in Section V-A. Then, Section V-B com-
plements this evaluation by analysing and comparing the con-
vergence behaviours of ∆-MOCK and MOCK. Section V-C
contrasts the characteristics of the PFAs obtained by these
approaches. ∆-MOCK’s advantages from the perspective of
computational efficiency are illustrated in Section V-D. Finally,
the role of the new reduced-length encodings of ∆-MOCK, as
well as the setting of parameter δ and its interaction with the
initialisation strategy, is studied in Section V-E.

A. Clustering Performance

This section investigates the ability of ∆-MOCK to produce
high-quality clustering solutions. ∆-MOCK configurations
∆L
sr5 and ∆B

sr5, which result from the use of a setting of
δ = sr5 (alternative settings are explored later in Section V-E),
are evaluated and compared with respect to the baseline
MOCK configuration M∗V . In addition, the original imple-
mentation of MOCK (denoted by MH07) and the k-means
and MGA∗V L methods are included in this comparison as a
reference. The results of this analysis are summarised in Fig. 5,
with more detailed results and the corresponding statistical
significance analysis presented in Table III (Appendix A).

As expected, all of the methods evaluated scored very com-
petitive results for most of the UKC data sets. The particular
characteristics of these problems (refer to our supplementary
material for a visualisation of these two-dimensional data sets)
allowed the centroid-based methods k-means and MGA∗V L to
closely approximate the correct cluster structure of the data
in most of the cases. Also, the use of k-means as part of the
initialisation routine of MOCK (MH07 and M∗V ) is seen to
provide an advantage over ∆-MOCK (∆L

sr5 and ∆B
sr5) under

these conditions. It is evident, however, that as the difficulty
of the problem increases, and particularly when considering
the synthetic data sets which involve elongated clusters, the
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Fig. 5. Summary of the results from the perspective of clustering performance.
Curves show the average ARI scored by MOCK/∆-MOCK approaches
MH07, M∗

V , ∆L
sr5, and ∆B

sr5, and the contestant methods k-means and
MGA∗

V L. Results are shown for all UKC data sets and a subset of the synthetic
problem configurations. Refer to Table III in Appendix A for detailed results.

inability of centroid-based approaches to capture arbitrary
cluster shapes provokes an important drop in performance.12

Methods using a graph-based representation (MH07, M∗V ,
∆L
sr5, and ∆B

sr5) consistently report better results than the
centroid-based approaches in all of the synthetic problem
configurations (and in the most difficult UKC problems).
Approach M∗V presents a notable improvement with respect to
the original version of MOCK, MH07. Such an improvement
stems mainly from the change in the underlying search engine
of MOCK.13 M∗V uses NSGA-II as a means of account-
ing for the high selection pressure observed in the original
implementation based on the strongly elitist PESA-II (see
Section III-A). The fact that the new implementation based
on NSGA-II shows an increased overall performance confirms
that a strategy with less selection pressure is advantageous in
this specific scenario and allows us to better exploit the highly-
optimised genetic material introduced during initialisation.

The use of the new initialisation scheme and the new
reduced-length representations, which gives rise to ∆-MOCK
approaches ∆L

sr5 and ∆B
sr5, leads to a further boost in clus-

tering performance. Approaches ∆L
sr5 and ∆B

sr5 are found to
outperform the baseline M∗V , achieving statistically significant
improvements in the ARI measure for all of the synthetic prob-
lem configurations. Using the ∆-locus encoding, ∆L

sr5 tends
to produce better results than ∆B

sr5 which uses the ∆-binary
encoding (see Table III). The performance differences between
the two encodings are found to be statistically significant for
most of the synthetic problems with k∗ ≥ 40 clusters.

It is worth remarking that, given the setting adopted
δ = sr5, ∆L

sr5 and ∆B
sr5 operate on genotypes of a substan-

tially reduced length in comparison to M∗V . This, together

12It is interesting to see from Table III that, despite its low overall per-
formance, MGA∗

V L is found to provide much better results than approaches
MGA and MGAV L in most of the cases. This highlights the benefits of
using a representation which can encode partitions with different numbers of
clusters, as well as the advantages of employing a specialised initialisation
routine and a more appropriate selection of optimisation criteria.

13Besides using a different search method, M∗
V changes one of MOCK’s

optimisation criteria, replacing ODV with VAR. This change, however, is not
found to affect (neither positively nor negatively) the algorithm’s performance
(results not shown). As stated in Section III-C, this adaptation does not seek
to alter the algorithm’s behaviour, but seeks to exploit the advantages of the
VAR criterion in the context of the delta-evaluation feature of ∆-MOCK.

Fig. 6. Convergence plots indicating the highest ARI in the population at every
generation of the evolutionary process. Plots contrast the convergence curves
of approaches M∗

V , ∆L
sr5, and ∆B

sr5 in two UKC problems and two synthetic
data set configurations (average results for all instances and repetitions).

with the use of a more efficient initialisation routine, brings
additional benefits by decreasing the computational effort as
evaluated in Section V-D. The remaining subsections com-
plement the analysis presented here, and attempt to illustrate
the specific roles of the new initialisation and representation
schemes and how they contribute, individually and collectively,
to ∆-MOCK’s performance and computational efficiency.

B. Convergence Behaviour

This section delves into the convergence behaviour of
MOCK and ∆-MOCK, aiming to generate a better understand-
ing of the differences observed in Section V-A between the
clustering performance of approaches M∗V , ∆L

sr5, and ∆B
sr5.

Fig. 6 illustrates the ability of approaches M∗V , ∆L
sr5, and

∆B
sr5 to discover good-quality partitions (as captured by the

ARI measure) throughout the evolutionary process. It is inter-
esting to observe that, for all the three approaches analysed,
the simultaneous optimisation of the VAR and CNN criteria
implicitly and effectively leads to the optimisation of cluster-
ing quality (ARI gradually increases with the progress of the
search process). Note that ARI is computed for performance
assessment only, and is never exploited to guide optimisation
as indicated in Section IV-D. This provides corroborating
evidence of the suitability of the clustering criteria adopted
as objective functions and of the conceptual advantages of the
multiobjective approach to data clustering in general.

Fig. 6 exhibits marked differences in the clustering quality
that the three approaches report for the initial population
(generation 0 in the plots). On the one hand, the plots for
the UKC data sets confirm that, as discussed in Section V-A,
the use of k-means within the initialisation strategy of M∗V
offers a competitive advantage over ∆L

sr5 and ∆B
sr5 given

the characteristics of these problems. Note, however, that
this is rapidly compensated by the ability of ∆L

sr5 and ∆B
sr5

to perform a more-focused exploration in the substantially
smaller solution space of their reduced-length representations.
On the other hand, the results for the synthetic problems
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also confirm that such a competitive advantage of MOCK’s
initialisation based on k-means does not hold in scenarios
with more challenging (e.g. elongated) cluster shapes. In these
scenarios, the new initialisation of ∆-MOCK is shown to
achieve a remarkable increase in clustering quality, thus being
a major contributor to the method’s performance.

The plots for the synthetic data sets illustrate clear dif-
ferences between the convergence behaviour of ∆-MOCK
configurations ∆L

sr5 and ∆B
sr5. Whilst ∆B

sr5 shows better
results at the beginning of the search, ∆L

sr5 tends to reach
higher ARI values in the end.14 This reflects the key concep-
tual differences between the representations used by the two
approaches. The ∆-binary encoding (used by ∆B

sr5) works
by specifying whether each of the (relevant) MST links is
retained or removed; as such, this approach explores more
explicitly the separation of the MST into connected compo-
nents. During initialisation, thus, the ∆-binary encoding is
able to produce partitions with every given target k value
considered (see Section III-E). This results in a high diversity
of good-quality initial individuals which may explain the
better ARI values observed for this approach at the initial
stages of the search process. In contrast, the ∆-locus encoding
(used by ∆L

sr5) permits the replacement of the MST links
with other alternative links between data points; not only can
these alternative links reconnect the same MST components
originally separated through the removal of the MST link, but
also can connect components which are not directly linkable
by any of the MST links. In this way, and despite yielding
a lower initial performance, such a link replacement strategy
grants the ∆-locus encoding access to (potentially relevant)
areas of the solution space, which are not available to the
∆-binary encoding. This offers an explanation for the better
performance shown by ∆L

sr5 at the end of the search process.

C. Pareto Front Approximations

Whereas the suitability of ∆-MOCK has hitherto been
demonstrated from the perspective of clustering performance
(see Sections V-A and V-B), this section seeks to further
investigate and explain the advantages of this method from
the perspective of the characteristics of the PFAs obtained.

Fig. 7 exemplifies the contrasting characteristics found in
the PFAs of MOCK (M∗V ) and ∆-MOCK (∆L

sr5 and ∆B
sr5).

By analysing the differences between the EAFs of these ap-
proaches, it is clear that M∗V presents the tendency of reaching
more deeply into the low-VAR (high-CNN) regions of the
objective space; this behaviour seems to be more evident as k∗

increases, and especially in comparison to ∆L
sr5. This result

can be explained by the fact that VAR is relatively simple
to optimise, as the value of this criterion naturally decreases
with the increase in the number of clusters (k) in the partition
evaluated (see Section III-C). The full-length representation of
M∗V is able to encode partitions with high k (indeed, as high as
N ), in contrast to the reduced-length representations of ∆L

sr5

and ∆B
sr5 which are only capable of encoding partitions with

14The different slopes in the convergence curves of ∆L
sr5 and ∆B

sr5 (see
Fig. 6) suggest that even more meaningful performance differences (in favour
of ∆L

sr5) might be observed if longer runs of these methods are considered.
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Fig. 7. Comparison of the EAFs computed from the PFAs obtained from
all independent executions of MOCK/∆-MOCK approaches M∗

V , ∆L
sr5,

and ∆B
sr5. Approaches are compared pairwise, and results are illustrated

for problems UKC7, UKC8, and individual instances of synthetic problem
configurations 100d-80c and 200d-120c. In the plots, the x-axis and y-
axis denote respectively the (normalised) CNN and VAR criteria. Each plot
highlights the differences in the point attainment probabilities which are
in favour of each individual approach in the pairwise comparison. The
magnitudes of such differences are encoded using different intensities of
blue colour: the darker the blue, the larger the difference (see legend at the
top). Solid lines represent the grand best (lower line) and grand worst (upper
line) attainment surfaces (common to the two methods compared), and the
dashed line denotes the median attainment surface (specific to each individual
approach). In addition, each plot includes a marker to illustrate the location
of the optimum (real clustering of the test data set) in the objective space.

a limited k (and with a certain minimum reachable value for
VAR).15 Accordingly, Fig. 8 confirms that the PFAs obtained

15Depending on the setting of δ, a potentially large subset of the MST
links are fixed for all phenotypes, and the partial solution defined by such
fixed links (Fig. 2) sets the maximum k and the minimum VAR that can be
reached. During optimisation, the clusters defined by the partial solution are
combined, which can only lead to the decrease of k and the increase of VAR.
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Fig. 8. Number of clusters (k) in the partitions contained in the PFAs
produced by M∗

V , ∆L
sr5, and ∆B

sr5. Curves show the arithmetic mean and
shaded areas show the full range of k values covered. Results are shown for
all UKC data sets and a subset of the synthetic problem configurations.

by M∗V tend to contain partitions with higher k values than
those of the ∆L

sr5 and ∆B
sr5 approaches (including k values

substantially exceeding k∗ and which, in some cases, might
be considered beyond practical relevance). Correlating Figs. 7
and 8, it is interesting to note that the higher the maximum
k values produced by a method, the better is found to be this
method with regard to the optimisation of VAR.

The EAFs of approaches ∆L
sr5 and ∆B

sr5 indicate that the
improvements in the initialisation routine and the reduction in
the length of the encoding (and corresponding search space) al-
low ∆-MOCK to produce approximations sets of much greater
quality. In comparison to M∗V , both ∆L

sr5 and ∆B
sr5 exhibit

an increased convergence ability towards the central regions
of the Pareto frontier. Such central regions, presenting better
compromises between the VAR and CNN criteria, are not only
more challenging to reach, but can also be assumed of primary
interest since they usually correlate with the location of the
optimal clustering solution (see Fig. 7). Improved convergence
towards these regions of the objective space consequently
translates into an increased clustering performance in most
cases as observed in Sections V-A and V-B. The enhanced
convergence capabilities of ∆-MOCK are further highlighted
by the HV and IGD+ performance indicators; as shown in
Table IV (Appendix A), ∆L

sr5 and ∆B
sr5 perform significantly

better than M∗V under these indicators in most of the cases.
Finally, the comparison of the EAF of ∆L

sr5 and ∆B
sr5

emphasises the conceptual differences between the two en-
codings of ∆-MOCK. As discussed in Section V-B, the ∆-
binary encoding used by ∆B

sr5 is more effective at exploring
the separation of the MST into connected components. This
produces PFAs involving partitions with higher k values in all
the problems considered (see Fig. 8), which helps explain the
fact that ∆B

sr5 surpasses ∆L
sr5 with respect to the optimisation

of the VAR criterion. This fact is also evidenced by the better
scores that ∆B

sr5 obtains for the HV indicator in most of the
cases, see Table IV. On the other hand, the link replacement
strategy used for the ∆-locus encoding allows ∆L

sr5 to achieve
a slight convergence improvement towards central regions of
the Pareto front. These slight but still important differences
are reflected in better results for the IGD+ indicator in the
majority of the cases and account for the superiority that ∆L

sr5

has shown in terms of clustering performance.

D. Computational Effort

Initial analyses of the computational efficiency of MOCK
revealed that, in average for the clustering problems considered
here, about 80% of the total computational costs of this method
are derived from the optimisation process.16 This comprises
the costs of initialisation (generation of the initial population)
and the costs of the main optimisation cycle which are mostly
related to the decoding, evaluation, and general handling of
candidate individuals. In light of this, ∆-MOCK’s initialisation
and encoding schemes are designed to target the computational
overhead caused by these processes. This section aims to
illustrate the accomplishments of ∆-MOCK in this respect.

Fig. 9 summarises the execution times reported by
∆-MOCK approach ∆L

sr5 during the optimisation process and
contrasts them with respect to those of the baseline MOCK
configuration M∗V .17 It is important to remark at this point
that, in all the cases, both ∆L

sr5 and M∗V have been run using
the same population size and number of generations (refer to
Section IV-A and Table II for details). Therefore, ∆L

sr5 and
M∗V performed the same number of solution evaluations, and
the differences in the execution times observed in Fig. 9 are
due to the benefits of the new initialisation, representation, and
preprocessing schemes of ∆-MOCK.

According to Fig. 9, ∆L
sr5 is able to reduce ∼96.3% of

the total optimisation time, in average, with respect to M∗V .
∆-MOCK’s gains in terms of computational performance
become more evident with the increase in problem size and
dimensionality. The new initialisation routine certainly con-
tributes to computational efficiency in an important manner.
As can be seen from the figure, ∆-MOCK almost completely
removes (∼99.4% savings in average) the expenses involved
with the original initialisation mechanism of MOCK (partic-
ularly related to the use of k-means, which becomes more
expensive for larger and higher-dimensional problems).

Finally, by turning our attention to the times of the main
optimisation cycle it is possible to isolate the advantages that
the new reduced-length encodings provide in this context.
Evidently, these advantages are dependent on the setting of
parameter δ. As Fig. 9 indicates, ∆-MOCK removes over
93% (in average) of the computational effort during the main
optimisation cycle, given the value of δ = sr5 chosen for this
experiment. Such a setting of parameter δ allows ∆-MOCK to
use significantly shorter (more efficient to handle) genotypes
(see Section V-E). Moreover, this allows the precomputation of
a substantial amount of information which is later exploited to
speed up the decoding and evaluation of all candidate solutions
during the search process.18 Section V-E complements this
analysis by exploring alternative settings for parameter δ.

16The remaining ∼20% of the costs are related to the tasks of data loading
and initial precomputations (distance matrix, nearest neighbours, MST).

17Both ∆L
sr5 and ∆B

sr5 report comparable execution times. Hence, only
the results for ∆L

sr5 are analysed here for convenience.
18Such precomputations involve the decoding and evaluation of a (single)

partial solution, see Section III-D, the computational cost of which is already
considered as part of the costs of the initialisation reported in Fig. 9.
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Fig. 9. Execution times scored by ∆L
sr5 and the baseline M∗

V . Results are
shown regarding the total time of the optimisation (top), the time of the
initialisation routine (middle), and the time of the main optimisation cycle
(bottom). In the plots, curves show the average time in milliseconds (left y-
axis, which is shown in logarithmic scale) for ∆L

sr5 and M∗
V . In addition, bars

show the average time savings achieved by ∆L
sr5 (right y-axis) with respect

to M∗
V : letting a be the time of ∆L

sr5 and b be the time of M∗
V , savings are

computed as 100× (b− a)/b. Results are shown for all UKC data sets and
a subset of the synthetic problem configurations. The average time savings
achieved across all problems are indicated in the top-right corner of each plot.

E. Encoding Length and its Interplay with Initialisation

This section investigates more thoroughly the relevance of
the reduced-length representations of ∆-MOCK, and the role
of parameter δ in determining the advantages they provide in
terms of computational efficiency and clustering performance.
Furthermore, preliminary analyses have pinpointed a clear in-
teraction between the representation and initialisation schemes.
This section aims to explore and illustrate this interaction.

Six different settings for parameter δ are considered in this
analysis: δ ∈ {0, 50, 80, sr5, sr2, sr1}. Settings sr5, sr2, and
sr1, which set the value of δ and define the length of the
encoding as a function of

√
N (see Section IV-A), are included

in this study in order to address the important question of
how far we can go in reducing the length of the encoding
without compromising the method’s effectiveness. As shown
in Fig. 10, these settings use only a fraction of the encoding

Fig. 10. Encoding length resulting from the use of different settings for
parameter δ. Settings considered: δ ∈ {0, 50, 80, sr5, sr2, sr1}. Results are
shown for all UKC data sets and a subset of the synthetic problem configu-
rations. For the synthetic problems, the average encoding length considering
all 10 instances is shown. Note that results are presented in logarithmic scale.

Fig. 11. Impact of parameter δ in computational efficiency. Average time
savings achieved by ∆L

δ in all UKC data sets and a subset of the synthetic
problem configurations. Total time of the optimisation process is considered
(lines 3 to 9 in Algorithm 1), and savings are computed with respect to
the baseline MOCK configuration M∗

V as in Fig. 9. Settings explored:
δ ∈ {80, sr5, sr2, sr1}. For each of these settings, the legend at the top
of the figure shows the average savings across all problems considered.

length used by the original representation (or, equivalently,
δ = 0). More specifically, the resulting encoding length for
settings sr5, sr2, and sr1 is found to be, respectively, only
about 7.1%, 2.8%, and 1.4% (in average) of the original
encoding length for our collection of test data sets. Intuitively,
the shorter the length of the encoding, the more meaningful the
benefits we can obtain in terms of computational efficiency as
indicated in Fig. 11. It is possible to observe from Fig. 11 that
the increase in the value of δ reliably translates into an increase
in the computational efficiency of ∆-MOCK. In average, time
reductions range from ∼84%, when using δ = 80, to ∼99%,
when using δ = sr1, with respect to the baseline MOCK
configuration M∗V (which uses a full-length representation).

Despite these indisputable advantages from the standpoint
of computational efficiency, it is not yet clear whether the
significant pruning of the search space achieved by the
reduced-length encodings can also have a determining effect
on clustering performance. This is especially true given that, so
far in this paper, the new reduced-length representations have
not been investigated in isolation, without using ∆-MOCK’s
specialised initialisation routine. We hereby extend our study
and evaluate these representations in combination with three
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Fig. 12. Impact of the reduced-length encodings and parameter δ in
terms of clustering performance. Results for the ∆-locus and ∆-binary
encodings (top and bottom, respectively) consider the following settings:
δ ∈ {0, 50, 80, sr5, sr2, sr1}. The figure contrasts the results obtained when
using: (i) a random initialisation, RLδ and RBδ ; (ii) the original initialisation
of MOCK [15], Lδ and Bδ ; and (iii) the new specialised initialisation, ∆L

δ
and ∆B

δ . Box plots summarise the results (average ARI) obtained across all
instances and runs performed for all 35 synthetic problem configurations.

different initialisation schemes: (i) a random initialisation
scheme; (ii) the initialisation scheme originally used by
MOCK [15]; and (iii) the new initialisation scheme proposed
in this paper. Due to the use of many method configurations
and settings, this analysis focuses on our collection of 350
synthetic problems only. The results are summarised in Fig. 12.

By exploring different settings for parameter δ, it is possible
to appreciate from Fig. 12 the extent to which different
encoding lengths, and therefore sizes of the resulting search
spaces, can affect clustering performance to varying degrees
depending on the initialisation scheme under consideration.19

It is interesting to observe that as better-quality genetic mate-
rial is introduced in the initial population (through the use of a
more effective initialisation scheme), less evident becomes the
impact that parameter δ has on performance. The use of the
random initialisation strategy, i.e. RLδ and RBδ in the figure,
exhibits a clear trend of improvement as δ increases (except
for the drop in performance observed when using δ = sr1,
see discussion below). The performance of these approaches
goes from being notably poor when using low values for δ, to
being considerably more competitive when using high values
for δ. These stepped enhancements in clustering performance
are the result of the increasingly significant reduction of the
search space which is achieved in response to the rise in
δ. Similar tendencies (though not as pronounced as for the
random initialisation) can be seen for approaches Lδ and Bδ
using the original initialisation of MOCK.

On the other hand, a different trend is shown by ∆-MOCK
configurations ∆L

δ and ∆B
δ , which present the most remark-

able overall results in Fig. 12. The steady behaviour of these

19Note that, when δ = 0, Lδ is equivalent to the baseline approach M∗
V .

approaches in most cases suggests that the setting of δ does
not seem to (seriously) affect performance if using ∆-MOCK’s
initialisation. As expected, however, there is a point at which
the excessive reduction in the encoding length causes an
inevitable drop in performance (which is observed for all
approaches analysed here). Setting δ = sr1, in particular,
results in encodings of length |Γ| ≈

√
N , which prevents the

method from producing partitions with the correct number of
clusters for many of the clustering problems considered in
this study. For instance, Fig. 10 indicates that for problem
configurations with k∗ = 120 clusters, |Γ| < 100 in all the
cases; thus, the reduced-length representations are clearly
unable to encode partitions for which k is close to k∗ under
this setting.20 In fact, for all the 150 problem instances with
k∗ ∈ {80, 100, 120}, the encoding length using δ = sr1 is
found to be |Γ| < k∗ − 1, which explains the low ARI values
scored using this setting. Nevertheless, these numbers of clus-
ters k∗ ≥ 80 are particularly large and are not representative of
most practical clustering problems (in spite of this, these large
values of k∗ are considered in this study with the purpose of
evaluating ∆-MOCK in a wide range of clustering conditions).
Moreover, there are many clustering applications for which k∗

grows slowly (or even has a fixed small value), while N is
considerably large and grows at a much faster rate. In such
clustering scenarios, setting δ = sr1 (as well as other settings
which can achieve even further reductions in the length of the
encoding) might still offer a competitive advantage.

The absence of perceptible differences in ∆-MOCK’s clus-
tering performance, in spite of the use of representations of
considerably different lengths due to the changing value of
δ, can be explained by two facts. First, the new initialisation
routine of ∆-MOCK is significantly more effective and sub-
stantially narrows the gap between the starting performance
(initial population) and the best performance that can be
reached by the search method for a given data set (see
Section V-B). In other words, this initialisation routine reduces
the margin of potential improvement, which certainly renders
the contributions of the reduced-length encodings less evident.

Second, the use of a specialised initialisation routine signif-
icantly biases exploration. ∆-MOCK’s initialisation achieves
a comparable (and, to a certain extent, redundant) effect to
that of the reduced-length encodings, implicitly constraining
the portion of the solution space which is effectively reached
and exploited by the method. This is because in a method
like ∆-MOCK (and MOCK), where the generation of new
candidate individuals during optimisation mainly relies on
recombination (given the low mutation rates used), the genetic
material introduced during initialisation plays a key role in
delimiting the region of the solution space where the efforts
are concentrated. It also seems naturally appropriate to argue
that the length of the encoding becomes less influential if,
regardless of the total encoding length, only a small subset
of the encoding positions become the primary target of the

20The maximum number of clusters that can be encoded is |Γ|+ 1 (as in
the partial solution defined by the set of fixed MST links ∆, see Fig. 2).
Note, however, that the vast majority of the genotypes for the reduced-length
representations encode partitions with k < |Γ|+ 1, especially in the case of
the ∆-locus encoding due to the link replacement strategy adopted.
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optimisation due to the bias induced by the initialisation.
This behaviour is accentuated in this scenario given that the
same criterion (based on the ranking of the MST links) used
to reduce the length of the encoding is exploited to guide
initialisation. Hence, both ∆-MOCK’s initialisation and repre-
sentation schemes are able to independently provide, implicitly
and explicitly, respectively, an advantageous reduction of the
accessible solution space, and therefore an important boost in
performance as evidenced by the experiments of this paper.
The combined use of these strategies in ∆-MOCK, however,
preserves these performance advantages while exploiting the
benefits that these strategies individually entail in terms of
computational efficiency (as evaluated in Section V-D).

VI. DISCUSSION

∆-MOCK presents significant improvements with respect
to its predecessor MOCK. The change in the search strategy,
replacing (the strongly elitist) PESA-II with (the less elitist)
NSGA-II, has been found to provide a competitive advantage
in this particular optimisation scenario, as it increases the
method’s ability to exploit the high-quality partitions generated
during initialisation (Section V-A). Although this change in the
underlying search engine is not seen as one of ∆-MOCK’s
main original contributions, it is seen as an important first
step in the interest of capitalising on the benefits that the new
initialisation scheme proposed in this paper can provide.

The new initialisation routine of ∆-MOCK was found to
substantially heighten the quality of the initial populations,
particularly when dealing with problems which involve chal-
lenging, elongated cluster shapes (Section V-B). Moreover,
this specialised initialisation strategy introduces a strong bias
and, implicitly, helps to overcome the difficulties related to the
size of the search space in an effective manner (Section V-E).
The new reduced-length representations of ∆-MOCK further
contribute in this respect, explicitly pruning large portions of
the search space so that exploration can focus on its most
promising regions only (Section III-G). Consequently, the
boost achieved in the starting performance and the (implicit
and explicit) reductions of the search space allow ∆-MOCK
to produce PFAs with notably better characteristics than those
produced by MOCK (Section V-C). This was observed to
reliably translate into an increased proficiency at finding high-
quality clustering solutions (Section V-A).

Besides these meaningful advantages in terms of clustering
performance, the new initialisation and representation schemes
address the primary sources of computational overhead iden-
tified in the original implementation (Section V-D). On the
one hand, the new initialisation routine removes the use of
the k-means algorithm, which is a computationally intensive
design component of MOCK’s initialisation strategy. On the
other hand, the new representations allow ∆-MOCK to operate
on genotypes of a significantly reduced length, which are
thus more efficient to handle. Furthermore, these represen-
tations enable delta-evaluation, which helps to alleviate the
computational burden derived from the decoding and eval-
uation of candidate individuals during the search process.
Overall, therefore, it can be said with certainty that both

the new initialisation routine and the new reduced-length
genetic representations are valuable contributors that account
for ∆-MOCK’s clustering and computational performance.

Focusing on the new genetic representations, our experi-
ments have shown that it is actually possible to use encoding
lengths that grow at a much slower (non-linear) rate with
respect to the increase in the problem size N (Section V-E).
More specifically, very encouraging results (as discussed
above) were obtained in this study when using encoding
lengths defined as a function of

√
N , which redefine the

problem as one of clearly decreased complexity. Nevertheless,
it was also found that excessive reductions in the length of
the encoding can discard key regions of the search space
and therefore prevent the discovery of good-quality, globally
optimal clustering solutions (a risk that does not exist when
using the full-length representation of MOCK). Our results
also suggest, however, that such encoding length reductions
(and even more significant reductions than the ones studied
here), considered excessive for our collection of test data sets,
might find their applicability in clustering scenarios with a
considerably large N ; and, particularly, in scenarios where N
grows at a much faster rate in comparison to the number of
clusters k. These characteristics are common to many practical
clustering applications. In market (customer) segmentation [2],
[3], for instance, there is usually a finite number of segments
(clusters) but the density of customers (N ) could increase at
an extremely high rate (especially in a growing market) and
only be constrained by factors such as, e.g., population size.
The investigation of our reduced-length representations (and
of the ∆-MOCK algorithm in general) in the context of such
type of practically relevant applications will constitute one of
the main directions for our future work.

Evidently, a key factor around this topic is the effectiveness
of the mechanism through which encoding length reduction is
accomplished. The more effective this mechanism, the more
we should be able to reduce the length of the encoding (and
corresponding search space) without sacrificing performance
(there exist, however, obvious restrictions: the encoding length
imposes a limit in the maximum k that a partition may have
under the new representations, and the encoding needs to allow
the search method to explore a diversity of candidate partitions
with a range of interesting values of k). In ∆-MOCK, we
adopted a mechanism that relies on the ranking of the MST
links on the basis of their degree of interestingness. Such a
criterion has been found to be more effective than other criteria
in discriminating between the MST links (results of such an
assessment are included in our supplementary material). Due
to the critical role that this strategy plays, a more thorough
analysis of its effectiveness, as well as the design of new
alternative strategies (not necessarily relying on the MST), is
seen as a promising avenue for further research.

Both the two reduced-length representations of ∆-MOCK
reported very competitive (and to some extent comparable)
clustering performances. Nonetheless, our experiments indi-
cate that the ∆-locus encoding tends to produce better results
than the ∆-binary encoding. On the other hand, the ∆-binary
encoding was found to reach a better performance than the
∆-locus encoding during initial stages of the search process
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in many problems (in most cases being outperformed by the
∆-locus encoding at later stages though), and also scored
the best results for some of our low-dimensional problems.
These representations need to be further investigated in a
wider range of clustering scenarios in order to draw more
general conclusions. It seems especially necessary to identify
and characterise the conditions under which one particular
encoding scheme can be more advantageous than the other.

Finally, an essential research direction is that concerned with
the process of model selection. This study was devoted to the
development and investigation of our new algorithm ∆-MOCK
which, in comparison to the original algorithm MOCK, is
capable of producing higher-quality PFAs containing more
promising candidate partitions (also achieving important sav-
ings in the computational costs as discusses above). These
approximation sets not only comprise different trade-offs be-
tween ∆-MOCK’s optimisation criteria, but the partitions may
also present a wide diversity of k values (Section V-C, Fig. 8).
This enables the exploration of the hierarchical structure of
the data (where this exists) [15]. Furthermore, having the
opportunity to analyse multiple alternative solutions facilitates
the exploitation of any specialised domain expertise available,
which can certainly boost the effectiveness of exploratory data
analysis. However, the ultimate goal in many applications
requires the (automated) selection of only one (or a small
subset) of the candidate partitions generated as the problem
solution. MOCK’s approach to model selection is based on
the assumption that the structure of the data is reflected in the
shape of the PFA; in this way, MOCK exploits information
about the shape of the PFAs obtained as a means to guide
the selection of the most promising candidate partitions.
∆-MOCK’s improvements to the characteristics of the PFAs,
and the changes that this algorithm involves in the optimisation
criteria, are not expected to compromise the effectiveness of
the original model selection strategy. We ought to dedicate
future research efforts to verify this and to identify potential
opportunities for further development in this context.

A. Contributions

In summary, we see the key contribution of this work
as follows. Firstly, we provide new insight regarding the
heuristic bias intrinsic to MOCK’s original encoding, and
the implications that this has for the algorithm’s scalability.
This is of particular importance as MOCK’s linkage-based
encoding has been previously criticised in the literature, as
it increases linearly with data set size, while a centroid-based
encoding remains constant. Our experiments shed new light
on this issue and show that the effective combination of our
flexible encoding with a suitable seeding mechanism ensures
a consistent advantage over a centroid-based encoding, even
for large data sets. Secondly, we use the insight regarding
MOCK’s search space to propose two reduced-length en-
codings and provide an analysis of the impact of encoding
length on search performance, and how this links to problem
difficulty. Finally, we revisit the key modelling choices in
MOCK’s cluster generation phase, and introduce an improved
algorithm, ∆-MOCK, that shows a highly significant decrease

in computational expense and improvements in clustering
accuracy for the majority of the data sets considered.

VII. CONCLUSION

Clustering is a fundamental tool in exploratory data analysis,
but the unprecedented volumes of data generated nowadays
can represent a major bottleneck and compromise the ef-
fectiveness and limit the applicability of current techniques.
In light of this, we described and studied a new clustering
algorithm in this paper: ∆-MOCK. Our ∆-MOCK algorithm
implements an evolutionary multiobjective approach to the
problem of data clustering, and seeks to improve upon the
overall scalability of its predecessor algorithm MOCK [15].

The most significant adaptations introduced by ∆-MOCK
are the redesign of its specialised initialisation routine and the
use of novel compact representations (additional adaptations
include changes to the underlying search engine and optimi-
sation criteria). In this study, we have investigated, analysed,
and discussed the relevance of each individual adaptation.
In general, these changes exert a strong influence in the
size of the search space that is effectively reached by the
method and enable a more computationally efficient generation
and processing of candidate clustering solutions. A rigorous
empirical evaluation has shown that ∆-MOCK outperformed
MOCK across a diverse set of clustering scenarios, achieving
significant increases in both performance and efficiency. These
findings confirm that our new algorithm can provide mean-
ingful advantages in practice, and should lead to a tangible
improvement in our ability to address the larger and more
challenging clustering problems that the ‘big data’ era poses.

APPENDIX A
TABLES OF RESULTS

This appendix includes tables complementing the results of
the experiments presented in Section V. Regarding clustering
performance, Table III details the results of the ARI measure
for the different methods studied in this paper. In terms of the
PFAs obtained, Table IV, presents the results for the HV and
IGD+ performance indicators.
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TABLE III
DETAILED RESULTS FOR THE ARI MEASURE ON ALL UKC DATA SETS AND SYNTHETIC PROBLEM CONFIGURATIONS. THE PERFORMANCE OF ∆-MOCK

APPROACHES ∆L
sr5 AND ∆B

sr5 IS COMPARED WITH RESPECT TO THE BASELINE MOCK CONFIGURATION M∗
V . RESULTS FOR THE ORIGINAL MOCK

(MH07) AND REFERENCE METHODS k-MEANS, MGA, MGAV L , AND MGA∗
V L ARE ALSO INCLUDED AS A REFERENCE. IN ALL THE CASES, THE

AVERAGE k OF THE SOLUTIONS SELECTED DURING THE MEASURE COMPUTATION (SEE SECTION IV-D) IS INDICATED IN PARENTHESIS. THE BEST
(HIGHEST) ARI SCORED FOR EVERY PROBLEM HAS BEEN SHADED AND HIGHLIGHTED IN BOLD. THE FINDINGS OF THE STATISTICAL SIGNIFICANCE

ANALYSIS ARE REPORTED AS FOLLOWS. RESULTS FOR ∆L
sr5 AND ∆B

sr5 ARE MARKED • IF THERE IS A STATISTICALLY SIGNIFICANT DIFFERENCE WITH
RESPECT TO M∗

V . IN ADDITION, RESULTS OF ∆B
sr5 ARE MARKED ? IF THERE IS A STATISTICALLY SIGNIFICANT DIFFERENCE WITH RESPECT TO ∆L

sr5 .

Problem N k-means MGA MGAV L MGA∗
V L MH07 M∗

V ∆L
sr5 ∆B

sr5

UKC1 29463 0.991 (11.0) 0.994 (11.0) 0.915 (16.0) 0.992 (13.5) 0.999 (11.3) 0.997 (12.0) 0.996 (13.4) • 0.996 (13.0) •
UKC2 26739 0.969 (10.0) 0.969 (10.0) 0.926 (15.1) 0.985 (11.3) 0.978 (11.0) 0.977 (12.0) 0.977 (12.0) 0.977 (12.0)
UKC3 31929 0.961 (11.9) 0.890 (11.0) 0.948 (13.4) 0.968 (13.9) 0.998 (11.2) 0.999 (11.9) 0.992 (16.0) • 0.993 (14.0) •
UKC4 29149 0.997 (10.0) 0.998 (10.0) 0.998 (10.4) 0.976 (12.5) 0.998 (11.0) 0.997 (11.9) 0.989 (15.0) • 0.991 (14.2) •
UKC5 30688 0.935 (11.3) 0.941 (11.0) 0.835 (16.9) 0.900 (16.4) 0.985 (12.0) 0.990 (12.5) 0.989 (13.9) • 0.990 (13.0) •
UKC6 31191 0.911 (12.0) 0.842 (11.0) 0.854 (17.4) 0.925 (12.2) 0.936 (14.4) 0.960 (14.0) 0.948 (15.7) 0.945 (15.1) •
UKC7 31666 0.889 (16.0) 0.931 (11.0) 0.868 (15.3) 0.911 (14.2) 0.971 (12.6) 0.976 (13.6) 0.987 (15.0) • 0.983 (14.7)
UKC8 34654 0.846 (12.6) 0.849 (12.0) 0.809 (13.9) 0.838 (14.1) 0.942 (16.7) 0.950 (16.4) 0.932 (18.1) • 0.933 (17.4) •
20d-10c 2768 0.508 (17.4) 0.440 (10.0) 0.500 (18.3) 0.585 (16.8) 0.996 (10.1) 0.998 (10.0) 1.000 (10.0) • 1.000 (10.0) •
50d-10c 2747 0.470 (18.7) 0.419 (10.0) 0.469 (18.1) 0.617 (15.9) 0.998 (10.0) 0.999 (10.0) 1.000 (10.0) • 1.000 (10.0) •
100d-10c 2664 0.495 (16.9) 0.443 (10.0) 0.491 (18.5) 0.670 (14.6) 0.998 (10.1) 0.999 (10.0) 1.000 (10.0) • 1.000 (10.0) •
150d-10c 2859 0.485 (18.0) 0.448 (10.0) 0.479 (18.4) 0.667 (13.7) 0.998 (10.0) 0.999 (10.0) 1.000 (10.0) • 1.000 (10.0) •
200d-10c 2724 0.508 (17.0) 0.454 (10.0) 0.509 (18.5) 0.715 (13.6) 0.999 (10.0) 1.000 (10.0) 1.000 (10.0) • 1.000 (10.0) •
20d-20c 5587 0.515 (35.6) 0.382 (20.0) 0.485 (39.8) 0.538 (37.3) 0.983 (19.9) 0.993 (20.1) 0.997 (20.1) • 0.996 (20.1) •
50d-20c 5398 0.490 (39.4) 0.362 (20.0) 0.467 (39.7) 0.534 (37.3) 0.990 (19.9) 0.996 (19.9) 1.000 (20.0) • 1.000 (20.0) •
100d-20c 5393 0.500 (38.5) 0.365 (20.0) 0.479 (39.3) 0.548 (36.7) 0.993 (20.0) 0.997 (20.0) 1.000 (20.0) • 1.000 (20.0) •
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[25] E. Hruschka, R. Campello, A. Freitas, and A. de Carvalho, “A

survey of evolutionary algorithms for clustering,” IEEE Transactions
on Systems Man and Cybernetics Part C (Applications and Reviews),
vol. 39, no. 2, pp. 133–155, Mar 2009. [Online]. Available:
http://ieeexplore.ieee.org/document/4783080/

[26] S. Rana, S. Jasola, and R. Kumar, “A review on particle swarm opti-
mization algorithms and their applications to data clustering,” Artificial
Intelligence Review, vol. 35, no. 3, pp. 211–222, Mar 2011. [Online].
Available: http://link.springer.com/10.1007/s10462-010-9191-9

[27] S. J. Nanda and G. Panda, “A survey on nature inspired metaheuristic
algorithms for partitional clustering,” Swarm and Evolutionary
Computation, vol. 16, pp. 1–18, Jun 2014. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S221065021300076X

[28] A. A. A. Esmin, R. A. Coelho, and S. Matwin, “A review
on particle swarm optimization algorithm and its variants to
clustering high-dimensional data,” Artificial Intelligence Review,
vol. 44, no. 1, pp. 23–45, Jun 2015. [Online]. Available: http:
//link.springer.com/10.1007/s10462-013-9400-4

[29] A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, and C. A. C.
Coello, “Survey of multiobjective evolutionary algorithms for data
mining: Part ii,” IEEE Transactions on Evolutionary Computation,
vol. 18, no. 1, pp. 20–35, Feb 2014. [Online]. Available: http:
//ieeexplore.ieee.org/document/6658840/

[30] A. Mukhopadhyay, U. Maulik, and S. Bandyopadhyay, “A survey
of multiobjective evolutionary clustering,” ACM Computing Surveys,
vol. 47, no. 4, pp. 1–46, May 2015. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2775083.2742642

[31] J. Handl and J. Knowles, “An Investigation of Representations and
Operators for Evolutionary Data Clustering with a Variable Number of
Clusters,” in Parallel Problem Solving from Nature. Springer, 2006,
pp. 839–849.

[32] E. Falkenauer, “A hybrid grouping genetic algorithm for bin packing,”
J. Heuristics, vol. 2, pp. 5–30, 1996.

[33] F. Rothlauf and D. E. Goldberg, “Redundant representations in evolu-
tionary computation,” Evol. Comput., vol. 11, no. 4, pp. 381–415, 2003.

[34] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[35] Y. J. Park and M. S. Song, “A Genetic Algorithm for Clustering
Problems,” in Genetic Programming. Madison, WI, USA: Morgan
Kaufmann, July 1998, pp. 568–575.

[36] G. Raidl and J. Gottlieb, “Empirical analysis of locality, heritability
and heuristic bias in evolutionary algorithms: A case study for the
multidimensional knapsack problem,” Evol. Comput., vol. 13, no. 4, pp.
441–475, 2005.

[37] M. Garza-Fabre, J. Handl, and J. Knowles, “A New Reduced-Length
Genetic Representation for Evolutionary Multiobjective Clustering,” in
Evolutionary Multi-Criterion Optimization: 9th International Confer-
ence, EMO 2017. Münster, Germany: Springer International Publishing,
2017, pp. 236–251.

[38] A. Casillas, M. T. G. de Lena, and R. Martnez, Document Clustering
into an Unknown Number of Clusters Using a Genetic Algorithm,
ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2003, vol. 2807, ch. chapter 7, pp. 43–49. [Online]. Available:
http://link.springer.com/10.1007/978-3-540-39398-6 7

[39] R. B. Calinski and J. Harabasz, “A dendrite method for cluster analysis,”
Psychometrika, vol. 3, pp. 1–27, 1974.

[40] J. Gower and G. Ross, “Minimum Spanning Trees and Single Linkage
Cluster Analysis,” Journal of the Royal Statistical Society. Series C
(Applied Statistics), vol. 18, no. 1, pp. 54–64, 1969.

[41] M. Laszlo and S. Mukherjee, “Minimum spanning tree partitioning
algorithm for microaggregation,” IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 7, pp. 902–911, Jul 2005. [Online].
Available: http://ieeexplore.ieee.org/document/1432700/

[42] C. Zhong, D. Miao, and R. Wang, “A graph-theoretical clustering
method based on two rounds of minimum spanning trees,” Pattern



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2726341, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. VOL, NO. NUM, MONTH 2016 21

Recognition, vol. 43, no. 3, pp. 752–766, Mar 2010. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0031320309002945

[43] Y. Zhou, O. Grygorash, and T. F. Hain, “Clustering with minimum
spanning trees,” International Journal on Artificial Intelligence Tools,
vol. 20, no. 01, pp. 139–177, Feb 2011. [Online]. Available:
http://www.worldscientific.com/doi/abs/10.1142/S0218213011000061

[44] C. Zahn, “Graph-Theoretical Methods for Detecting and Describing
Gestalt Clusters,” IEEE Transactions on Computers, vol. C-20, no. 1,
pp. 68–86, 1971.

[45] D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates, “Pesa-
ii: Region-based selection in evolutionary multiobjective optimization,”
2001, pp. 283–290.

[46] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr 2002.

[47] T. Chan, G. Golub, and R. LeVeque, “Algorithms for Computing
the Sample Variance: Analysis and Recommendations,” The American
Statistician, vol. 37, no. 3, pp. 242–247, 1983.

[48] G. Syswerda, “Uniform Crossover in Genetic Algorithms,” in Interna-
tional Conference on Genetic Algorithms. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1989, pp. 2–9.

[49] S. Bandyopadhyay, A. Mukhopadhyay, and U. Maulik, “An improved
algorithm for clustering gene expression data,” Bioinformatics, vol. 23,
no. 21, p. 2859, 2007. [Online]. Available: +http://dx.doi.org/10.1093/
bioinformatics/btm418

[50] U. Maulik, A. Mukhopadhyay, and S. Bandyopadhyay, “Combining
pareto-optimal clusters using supervised learning for identifying co-
expressed genes,” BMC Bioinformatics, vol. 10, no. 1, p. 27, 2009.
[Online]. Available: http://dx.doi.org/10.1186/1471-2105-10-27

[51] A. Mukhopadhyay and U. Maulik, “Unsupervised pixel classification in
satellite imagery using multiobjective fuzzy clustering combined with
svm classifier,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 47, no. 4, pp. 1132–1138, April 2009.

[52] X. L. Xie and G. Beni, “A validity measure for fuzzy clustering,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 13, no. 8, pp. 841–847, Aug
1991.

[53] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algo-
rithms. Norwell, MA, USA: Kluwer Academic Publishers, 1981.

[54] A. Mukhopadhyay, S. Bandyopadhyay, and U. Maulik, “Analysis of
microarray data using multiobjective variable string length genetic fuzzy
clustering,” in 2009 IEEE Congress on Evolutionary Computation, May
2009, pp. 1313–1319.

[55] A. Mukhopadhyay and U. Maulik, “A multiobjective approach to mr
brain image segmentation,” Applied Soft Computing, vol. 11, no. 1, pp.
872–880, 2011.

[56] W. M. Rand, “Objective criteria for the evaluation of clustering meth-
ods,” J. Amer. Stat. Assoc., vol. 66, pp. 846–850, 1971.

[57] V. Grunert da Fonseca, C. M. Fonseca, and A. O. Hall, Inferential
Performance Assessment of Stochastic Optimisers and the Attainment
Function, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2001, vol. 1993, ch. chapter 15, pp. 213–225. [Online].
Available: http://link.springer.com/10.1007/3-540-44719-9 15
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