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Abstract  

Both heart failure with reduced ejection fraction (HFrEF) and with preserved ejection 

fraction (HFpEF) are associated with high morbidity and mortality. Although many 

established pharmacological interventions exist for HFrEF, hospitalization and death rates 

remain high, and for those with HFpEF (approximately half of all heart failure patients), 

there are no effective therapies.  Recently, the role of impaired cardiac energetic status in 

heart failure has gained increasing recognition with the identification of reduced capacity 

for both fatty acid and carbohydrate oxidation, impaired function of the electron transport 

chain, reduced capacity to transfer ATP to the cytosol, and inefficient utilization of the 

energy produced. These nodes in the genesis of cardiac energetic impairment provide 

potential therapeutic targets, and there is promising data from recent experimental and 

early-phase clinical studies evaluating modulators such as carnitine palmitoyltransferase 1 

inhibitors, partial fatty acid oxidation inhibitors and mitochondrial-targeted antioxidants. 

Metabolic modulation may provide significant symptomatic and prognostic benefit for 

patients suffering from heart failure above and beyond guideline-directed therapy, but 

further clinical trials are needed.  

 

 

 

 

Keywords:  

Cardiac metabolism; Heart failure; Heart failure with reduced ejection fraction (HFrEF); 

Heart failure with preserved ejection fraction (HFpEF); Metabolic modulation 



3 

Table of Contents 

1. Introduction ................................................................................................................... 6 

2. The Pathophysiology of Heart Failure ............................................................................. 8 

3. Cardiac Metabolism and Energetic Status in the Normal Heart and in Heart Failure ..... 15 

4. Metabolic Modulators: Promising Therapeutic Agents ................................................. 30 

5. Conclusion .................................................................................................................... 50 

Conflict of Interest Statement .......................................................................................... 51 

References........................................................................................................................ 54 

 
 

 

 

 

 

 

Figures:  

Figure 1: An Overview of Cardiac Metabolism in the Healthy Heart .................................. 52 

Figure 2: An Overview of Cardiac Metabolism in the Failing Heart and Targets of Metabolic 

Modulators....................................................................................................................... 53 

 

Table 1: Metabolic modulator clinical status …………………………………………………………………56  



4 

Abbreviations 

ACE  Angiotensin converting enzyme 

ADP  Adenosine diphosphate 

ATP  Adenosine triphosphate 

BNP  Brain natriuretic peptide  

cGMP  cyclic guanosine monophosphate 

CK  Creatine kinase 

CO  Cardiac output 

CoA  Coenzyme A 

CoQ10  Coenzyme Q10 

CPT  Carnitine palmitoyltransferase 

DCA  Dichloroacetate 

ETC  Electron transport chain 

FA  Fatty acid 

FADH2  Flavin adenine dinucleotide 

GIK  Glucose-Insulin-Potassium 

HCM  Hypertrophic cardiomyopathy 

HF  Heart failure 

HFpEF  Heart failure with preserved ejection fraction 

HFrEF  Heart failure with reduced ejection fraction 

LVEF  Left ventricular ejection fraction 

MCD  Malonyl-CoA decarboxylase 

NADH  Nicotinamide adenine dinucleotide 

NO  Nitric oxide 
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NYHA  New York Heart Association 

PDH  Pyruvate dehydrogenase 

PDK                   Pyruvate dehydrogenase kinase  

PCr  Phosphocreatine 

PDE  Phosphodiesterase 

RAAS  Renin-angiotensin-aldosterone-system 

ROS  Reactive oxygen species 

SS31  Szeto-Schiller peptide 31 

TAC  Transverse aortic constriction 

TCA  Tricarboxylic acid 
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1. Introduction 

Chronic heart failure (HF) is a highly prevalent, multi-system disorder, which affects over 23 

million people worldwide (Bui, et al., 2011). The cardiovascular system ensures that blood 

supply matches the metabolic demands of the body. In HF, the reserve of the cardiovascular 

system is overwhelmed due to dysfunction of the cardiac muscle, which is characterized by 

defects in ventricular active- and passive-filling, and contraction. In milder cases, this 

impairment may only be present on exertion, when contractile and filling reserve are 

recruited to increase cardiac output (CO), but in more severe cases, CO may be insufficient 

even at rest. The HF syndrome may occur secondary to a range of cardiovascular insults, 

including myocardial infarction and chronic arterial hypertension, and whilst most prevalent 

in the elderly, it may occur at any age (van Riet, et al., 2016).  

 

Patients with HF are grouped into phenotypic variants based on left ventricular ejection 

fraction (LVEF), a measure which is easily obtained via non-invasive transthoracic 

echocardiography that in HFrEF correlates strongly with HF mortality (Solomon, et al., 2005). 

Ejection fraction is not simply a measure of cardiac contractile function, but is influenced by 

ventricular size and by vasculoventricular (V-V) coupling (Borlaug & Kass, 2011). Just over 

half of patients with HF have an EF >50% and are said to have heart failure with preserved 

ejection fraction (HFpEF). Less than half of patients with HF have an EF <40% and are said to 

have heart failure with reduced ejection fraction (HFrEF). Interestingly, 10-20% of patients 

with HF have a mid-range LVEF (HFmEF) between 40 and 50%, some of whom have 

‘recovered’ function, and this syndrome is now becoming increasingly recognized as a 

separate entity to HFrEF and HFpEF, bearing similarities with the latter (Nadruz, et al., 

2016).  
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The HF syndrome may manifest clinically as dyspnea, fatigue, exercise intolerance, and 

peripheral oedema. HFpEF is characterized by raised left ventricular end diastolic pressure 

(LVEDP) due to diastolic dysfunction, however there is also evidence in many patients of 

systolic dysfunction (despite the normal LVEF). Furthermore, as in HFrEF, there is frequently 

chronotropic incompetence, impaired peripheral vascular function and neurohormonal 

activation (Bursi, et al., 2006; Kitzman, et al., 2002; Yancy, et al., 2006). HFrEF and HFpEF 

affect distinct patient groups, and therapies that have been shown to significantly improve 

mortality in HFrEF have failed to show similar benefits in HFpEF, despite many being 

targeted at maladaptive responses common to both (Kitzman, et al., 2010; Massie, et al., 

2008; Yusuf, et al., 2003). The guideline-directed therapies employed in HFrEF have been 

reviewed extensively (Lother & Hein, 2016; Loudon, et al., 2016), and are aimed at reducing 

neurohormonal activation (e.g. β-adrenergic receptor antagonists; angiotensin converting 

enzyme [ACE] inhibitors; angiotensin II receptor blockers [ARB]; mineralocorticoid receptor 

antagonists [MRA]; neprilysin inhibitor-ARB combination drugs) and correcting volume 

overload (diuretics) and altered haemodynamics (vasodilators and inotropic agents; 

Ponikowski, et al., 2016; Yancy, et al., 2013). There are currently no evidence-based 

therapies for HFpEF, and despite the range of therapies available in HFrEF, the prognosis 

remains poor (Owan, et al., 2006), thus demonstrating an urgent need for new therapies in 

both conditions.  

 

There has been increasing interest in the role of energetic impairment in the etiology, 

pathophysiology, and progression of HF (Hunter, et al., 2016; Neubauer, 2007; Pascual & 

Coleman, 2016), and in agents that may correct this, by altering cardiac substrate utilization; 

improving mitochondrial electron transport chain (ETC) function; or increasing energy 
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transfer from the mitochondrion to the cytosol (Siddiqi, et al., 2013). Agents have shown 

promise in HFrEF, include trimetazidine and perhexiline. Intravenous dichloroacetate (DCA) 

has been show to improve cardiac output via improved mechanical efficiency. Other 

metabolic agents are yet to be evaluated, whilst others are yet to show any benefit (Chong, 

et al., 2016). In this review, we will briefly outline the pathophysiology of HF, focusing on 

metabolic disturbances, and discuss the current evidence behind therapeutic agents used to 

correct metabolic dysfunction.  

 

2. The Pathophysiology of Heart Failure 

2.1 Heart Failure with Reduced Ejection Fraction 

HFrEF typically occurs as a result of an acute insult (e.g myocardial infarction), a chronic 

insult (e.g. hypertension, valvular heart disease), or may be a consequence of 

autoimmune/infective causes, genetic mutations, or infiltrations/depositions (e.g 

sarcoidosis, amyloidosis). A severe reduction in EF is representative of a reduction in 

contractile function, maladaptive ventricular remodeling, and dysfunctional 

vasculoventricular and interventricular coupling (Kass, et al., 1987; Ky, et al., 2013). This 

translates to an increase in LVEDP and left ventricular end diastolic volume (LVEDV). 

Recruitment of the intrinsic Frank-Starling mechanism due to increased LVEDV blunts the 

fall in stoke volume (SV) at rest in less severe cases, but there is an inability to increase SV 

on exercise, especially in the presence of coronary artery lesions (Lele, et al., 1996; 

Sumimoto, et al., 1997). In more severe cases SV may also be substantially reduced at rest. 

The force-frequency relation is also flat or even negative in HFrEF (Gwathmey, et al., 1987), 

which contributes to the fall in CO reserve. Deficient cardiovascular reserve culminates in 
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exercise intolerance and in more severe cases severe HF develops at rest resulting in 

hospitalization, which is often recurrent.  

 

End-organ hypoperfusion (e.g. renal hypoperfusion or ischemia of neurons in the 

hypothalamic paraventricular nucleus [PVN]; Sharma, et al., 2016) and baroreflex 

impairment activate neurohormonal compensatory mechanisms. These attempt to retain 

salt and water (increasing preload to recruit the Frank-Starling mechanism), cause 

vasoconstriction to maintain cerebral perfusion pressure, and increase cardiac inotropic, 

chronotropic, and lusitropic function. These mechanisms include sympathetic nervous 

system activation and inhibition of vagal activity (Jackson, et al., 2000), activation of the 

renin-angiotensin-aldosterone system (RAAS), and release of the osmoregulatory hormone 

vasopressin. Angiotensin II has also been shown to activate neurons in the PVN to further 

increase sympathetic tone (Chen, et al., 2011). Chronically however, elevated 

catecholamines are arrhythmogenic and toxic, due to cyclic adenosine monophosphate 

(cAMP)-mediated calcium overload which is pro-apoptotic (Mann, et al., 1992). Sensitivity of 

cardiac muscle to β-adrenergic stimulation is also reduced in HFrEF, with a reduction in β1-

receptor density (Bristow, et al., 1982) and desensitization of receptors (either directly via 

PKA or G protein–coupled receptor kinase dependent phosphorylation, or via eNOS-

coupling; Lohse, 1995) which, coupled with autonomic dysfunction, contributes to 

chronotropic incompetence, further worsening exercise intolerance.  

 

A raised LVEDV causes progressive LV cavity dilatation, which increases wall stress 

(afterload) according to Laplace’s law. Ventricular wall stress/stretch further activates the 

RAAS to compensate, and the local, tissue effects of chronic pro-hypertrophic angiotensin II 
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promotes remodeling by way of increased protein synthesis, interstitial fibrosis, and 

inflammation (Paul, et al., 2006). Pathological remodeling of the electrical system also 

occurs, often leading to left bundle branch block (LBBB) and ventricular dyssynchrony. These 

structural changes contribute to a reduction in left ventricular contractility as represented 

by end systolic elastance (Ees), the slope of the left ventricular end systolic pressure-volume 

relation (ESPVR). The gold-standard for the assessment of V-V coupling is via analysis of 

invasive pressure-volume recordings to create PV loops. If obtained during progressive IVC 

balloon-occlusion, one can plot the end systolic pressure (ESP) for each loop to create the 

linear ESPVR and calculate its slope, the Ees, a relatively load-independent measure of 

systolic function (Gillebert, et al., 1997). Ees may also be estimated from a non-invasive 

single beat method using echocardiography, which correlates well with invasive measures 

(Chen, et al., 2001). Arterial elastance (Ea), a grouped measure of both pulsatile and static 

components of afterload, may also be calculated as the negative slope of a line drawn from 

the ESP to the end diastolic volume (EDV) on the volume (x) axis, representing ESP/SV (Kelly, 

et al., 1992). The ratio of Ea/Ees reflects V-V coupling, which is maximized for mechanical 

efficiency between a range of 0.3 and 1.3 (De Tombe, et al., 1993). In HFrEF, the V-V 

coupling ratio may be raised outside of this range due to a fall in the Ees secondary to the 

inciting cardiac insult, and as a result these patients respond well to afterload reduction 

with vasodilators and diuretics, showing an improvement in SV with relatively small changes 

in systolic blood pressure (Schwartzenberg, et al., 2012). V-V coupling ratio (but not Ees 

alone) and left ventricular size each correlate strongly with prognosis in HFrEF (Ky, et al., 

2013).  
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2.2 Heart Failure with Preserved Ejection Fraction 

HFpEF tends to occur in women more so than men, and in older, hypertensive patients with 

a wide range of cardiovascular comorbidities including the metabolic syndrome, diabetes 

mellitus, obesity, and endothelial dysfunction (Borlaug & Paulus, 2011). The observed 

features of diastolic dysfunction and systemic hypertension were initially taken as evidence 

that HFpEF is primarily caused by static ‘afterload excess’ (Hart, et al., 2001). However, early 

stage HFpEF is instead considered a disorder of depleted cardiovascular reserve, with 

exercise testing required to confirm the diagnosis outside of acute decompensation 

(Borlaug, et al., 2010; Obokata, et al., 2016). Given the diversity of cardiovascular conditions 

associated with HFpEF and the identification of distinct phenotypes of the syndrome, it is 

generally accepted that HFpEF represents a range of diseases rather than a single distinct 

entity (Lindman, et al., 2014;  Shah, et al., 2016), which further complicates the testing of 

new potential therapies. Indeed, it has recently been suggested that treatment of HFpEF 

should be targeted at components of the disease (e.g. statins for systemic inflammation and 

caloric restriction for metabolic syndrome), which would individualize therapy based on 

HFpEF phenotype (Shah, et al., 2016). HFpEF contains many features that are common to 

HFrEF (i.e. common to all HF), due to the limited range of responses available to the 

cardiovascular system. These features of HFpEF include diastolic dysfunction, impairment of 

systolic function and reserve, abnormal V-V coupling, inflammation and endothelial 

dysfunction, chronotropic incompetence and altered β-adrenergic signaling, pulmonary 

hypertension, renal disease, and altered cardiac and skeletal muscle metabolism (Sharma & 

Kass, 2014).   
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Recently, Paulus and Tschope (2013) outlined a novel paradigm for the pathophysiology of 

HFpEF, which centers on cardiovascular comorbidities and systemic inflammation 

culminating in reduced myocardial nitric oxide (NO) and cyclic guanosine monophosphate 

(cGMP) bioavailability due to reactive oxygen species (ROS)-related scavenging of NO 

(Paulus & Tschope, 2013). Outside the myocardium, the effects of systemic inflammation in 

various tissues culminate in the pulmonary hypertension, muscle weakness, and sodium 

retention which contribute to HFpEF phenotypic diversity (Cowley, et al., 2015; Dhakal, et 

al., 2015). This paradigm identifies the subsequent reduction in protein kinase G (PKG) 

activity and uncontrolled inflammation as the basis for disease development and 

progression, leading to increased passive tension of cardiomyocytes second to 

hypophosphorylation of the massive cytoskeletal protein titin (Borbely, et al., 2009), 

uncontrolled hypertrophy, and interstitial collagen deposition (van Heerebeek, et al., 2006; 

van Heerebeek, et al., 2012; Westermann, et al., 2011). ROS-dependent oxidation of titin in 

HFpEF further compounds passive cardiomyocyte tension, despite an observed shift in titin 

isoform expression from predominance of the N2B isoform to the larger and more 

compliant N2BA isoform (Borbely, et al., 2005). In HFrEF, the inflammation occurs at the 

level of the cardiomyocyte, with the development of systemic inflammation being a late 

feature of the disease. This novel paradigm poses many important therapeutic questions, 

such as the potential for increased benefit from cardiovascular therapies with ancillary anti-

inflammatory properties, in terms of disease progression and prognosis. It also goes some 

way to explaining the recent positive results with inorganic nitrate and nitrite to supplement 

myocardial NO in HFpEF (Borlaug, et al., 2015; Borlaug, et al., 2016), and outlines a 

beneficial mechanism for the use of neprilysin inhibitor-ARB combination (ARNI) drugs in 

HFpEF beyond neurohormonal regulation, which has been otherwise unsuccessful in 



13 

treating this disease (Yusuf, et al., 2003). The increased levels of natriuretic peptides 

following ARNI treatment activate myocardial natriuretic peptide receptors, which are 

linked to particulate guanylate cyclases, thus restoring cGMP bioavailability (von Lueder, et 

al., 2013).  

 

As noted, LVEF is a grouped variable which represents a number of components such as 

contractile function, ventricular remodeling, and V-V coupling, and despite preservation of 

LVEF at rest, these components are usually all abnormal in HFpEF compared to healthy 

controls. Following improvements in imaging techniques, such as the development of strain-

gauge echocardiography, evidence of mechanical dyssynchrony and subtle defects in 

longitudinal and radial systolic function have been identified (Tan, et al., 2009).  Compared 

to HFrEF, the LV in HFpEF is typically hypertrophied with a normal LV cavity radius (and 

therefore lower wall stress), with lower serum natriuretic peptide levels and neurohormonal 

activation (Iwanaga, et al., 2006). However, the LV filling pressure, elevated due to reduced 

LV compliance, is therefore reflected back into the left atrium and pulmonary circulation in 

HFpEF, increasing the incidence of atrial fibrillation, pulmonary hypertension and right 

ventricular dysfunction (Guazzi & Borlaug, 2012). This increase in pulmonary capillary wedge 

pressure (PCWP) is markedly worsened on exercise. It is important to note that V-V coupling 

is also abnormal at rest in HFpEF, despite maintenance of the Ea/Ees ratio within the normal 

range (Borlaug, et al., 2009). The grouped measure of afterload stresses, Ea, is significantly 

elevated in these patients, due to calcific arterial stiffening (static component), and 

propagation of reflected waves from arterial impedance mismatch (pulsatile component) 

causing them to arrive in late systole rather than early diastole, further adding to LV 

afterload (Borlaug, et al., 2007; Kelly, et al., 1989). In response, the Ees (or ventricular 
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stiffness) must increase to maintain mechanical efficiency, resulting in a normal Ea/Ees 

ratio. As a result, patients with HFpEF have impaired reserve of V-V coupling, which is best 

demonstrated with invasive exercise testing. On exercise in health, the Ea increases slightly 

with a significantly greater increase in Ees, which causes the V-V coupling ratio to fall (and 

the inversely related LVEF to increase), increasing cardiac efficacy (Najjar, et al., 2004). On 

exercise in HFpEF, due to a loss of Ees reserve and a further increase in the already elevated 

Ea the ratio remains unchanged, reducing cardiac efficacy and increasing the energy cost of 

LV stroke work (Phan, et al., 2009). The increased slope of the ESPVR (Ees) also results in 

large changes in systolic blood pressure for a given change in LV end systolic volume 

(LVESV). As a result, patients with HFpEF are more ‘volume sensitive’ than those with HFrEF, 

with a narrow window observed between the extremes of pulmonary oedema and pre-renal 

failure with diuretic therapy (Gandhi, et al., 2001).  

 

Whether altered metabolic function is a cause of HF or an effect is not always obvious. 

Energetic dysfunction may contribute to the natural histories of both HFrEF and HFpEF 

regardless of etiology.  All HF (and indeed LV hypertrophy even in the absence of HF) has 

been shown to possess a component of altered cardiac and skeletal muscle metabolism, and 

the severity of this alteration correlates with disease progression (Neubauer, et al., 1992). 

Lower PCr/ATP ratios on phosphorous magnetic resonance spectroscopy (31P MRS) 

compared to healthy controls have been demonstrated in patients with LV hypertrophy, 

HFrEF, and HFpEF, manifest as a reduction in the ratio of resting cardiac PCr/ATP and in the 

case of skeletal muscle, a slowing of the rate of recovery of PCr following exercise 

(Neubauer, et al., 1992; Phan, et al., 2009). Several mechanisms contribute to this energetic 

impairment, including decreased efficiency of energy use, mechanical dyssynchrony, 
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microvascular disease, downregulation of key metabolic enzymes, and impaired 

mitochondrial ETC function (Stanley, et al., 2005).  

 

3. Cardiac Metabolism and Energetic Status in the Normal Heart and in Heart Failure 

Under normal physiological conditions, the myocardium relies upon a constant supply of 

ATP to fuel its continuous contractile function and ion channel activity (primarily for 

myocardial calcium [Ca2+] handling), cycling approximately 6 kg per day (Neubauer, 2007; 

see Fig 1). During the fasting state, approximately 70% of cardiac ATP production is achieved 

through free fatty acid (FA) metabolism, with approximately 20% being produced via 

carbohydrate metabolism and the remaining through the oxidation of ketones, lactate, and 

amino acids (Bing, et al., 1954; Lopaschuk, et al., 1994). There is a wealth of evidence 

showing significant shifts in cardiac metabolism and subsequent impairment of energetic 

status in HF; indeed, severe metabolic imbalance is recognized as an integral feature of the 

disease (Doenst, et al., 2013). Explanted failing human hearts, and rat hearts with coronary 

artery ligation induced-HF, have dramatically lower levels of PCr than healthy controls 

(Neubauer, et al., 1999). Smith and colleagues (2006) quantified a 35% decrease in cardiac 

PCr in patients with LV hypertrophy (Smith, et al., 2006). Other models of HF, such as a 

porcine model of pressure-overload-induced HF (Jameel, et al., 2016) and a canine model of 

tachycardia  induced HF (Xiong, et al., 2015), have shown similar results.   

 

PCr/ATP ratio, obtained via in vivo non-invasive 31P MRS, was found to be reduced in 

patients with HFrEF due to dilated cardiomyopathy (DCM) and the magnitude of this 

reduction correlated with New York Heart Association (NYHA) functional class and mortality 

(Neubauer, et al., 1997). Reduced PCr/ATP ratio has been reported in a wide range of 



16 

cardiomyopathies including hypertrophic cardiomyopathy (HCM), the commonest inherited 

cardiac condition worldwide, and these changes preceded hypertrophy in many cases (de 

Roos, et al., 1992). Our group has also demonstrated a significant reduction in cardiac 

PCr/ATP ratio in patients with HFpEF, and this reduced energetic reserve is likely responsible 

for the dynamic slowing of LV active relaxation and inability to improve (reduce) V-V 

coupling ratio during exercise observed in these patients (Phan, et al., 2009). The use of 

dynamic (exercise) 31P MRS allows for quantification of PCr recovery kinetics in skeletal 

muscle, such as PCr recovery rate, which is prolonged in HF (Chance, et al., 2006). Post-

exercise PCr recovery rate (kPCr) represents the replenishment of the cytosolic PCr pool from 

ATP produced at the ETC, which is a marker of mitochondrial oxidative capacity.  

 

Recently, Cunningham and colleagues demonstrated the feasibility of hyperpolarized-

carbon metabolic magnetic resonance spectroscopy (13C MRS) in man, following a 0.1 

mmol.kg-1 dose of hyperpolarized [1-13C]pyruvate in 4 healthy subjects (Cunningham, et al., 

2016). 13C MRS of the heart has the distinct advantage over 31P MRS of providing real-time 

data relating to the in vivo metabolism of pyruvate, upstream of the ETC. This technique 

allows for appreciation of the various fates of pyruvate through anaerobic glycolysis or 

mitochondrial oxidation, by measuring 13C-tagged metabolites (e.g. bicarbonate, lactate, 

and alanine) immediately following intravenous administration (Merritt, et al., 2007). This 

represents an exciting new avenue for expanding our understanding of cardiac metabolism 

and energetic status, and for testing novel therapies.  

 

There are several mechanisms that contribute to the energetic impairment observed in HF. 

These may include microvascular dysfunction or ischemia, energy-wasting mechanisms, 
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impairment of energy transfer to the point of utilization within the cytosol, increased 

oxidative stress, and defective energy extraction from available substrates. 

Ischemia/hypoxia in the failing ventricle (with poor reserve) is worsened by tachycardia 

(such as with exercise or with AF, which has a high prevalence in HF), with a reduction in 

diastolic filling where the majority of coronary flow occurs. In HF, myocardial oxygen supply 

may be further affected by the previously mentioned shift of reflected aortic waves to late 

systole rather than early diastole (due to increased pulse wave velocity in the stiff aorta), 

augmenting systolic blood pressure (afterload) and reducing myocardial perfusion pressure 

during diastole (Borlaug, et al., 2007).  

 

Hypertrophic growth may also be considered an energy ‘sink’, requiring the rerouting of 

glycolytic intermediates and other metabolic by-products to support substantial protein 

synthesis. Other mechanisms that may ‘waste’ energy include intra-ventricular 

dyssynchrony (demonstrated by altered strain gauge imaging; Phan, et al., 2009), inter-

ventricular dyssynchrony e.g diastolic ventricular interaction (Atherton, et al., 1997), and 

detoxification of ROS and nitrosative stress. Energy transfer from the mitochondria to the 

sites of utilization within the cytosol is also impaired in HF due to changes in the CK system 

(Ingwall, 1984), including reduced sodium (Na+)-creatine cotransporter protein content 

(Neubauer, et al., 1999) and impaired cytosolic CK activity due to oxidative stress (Ventura-

Clapier, et al., 2011). Perhaps the most complex mechanism, and one which offers 

numerous potential pharmacological targets for metabolic modulation in HF, is that of 

altered substrate metabolism (Fig 2). Metabolism in advanced HF is thought to revert back 

to the fetal metabolic profile, with a decrease in FA metabolism despite preserved cytosolic 

FA uptake, and a shift towards glucose uptake and glycolysis (Fillmore & Lopaschuk, 2013; 
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Pascual & Coleman, 2016). However, there is evidence to show that terminal oxidation of 

both FA and glucose by the mitochondria is downregulated in HF, with compensatory 

funneling of pyruvate into anaplerotic pathways and increased ketone metabolism (Aubert, 

et al., 2016).  

 

3.1 Fatty acid metabolism  

Free FA enters the myocardium from the bloodstream either passively or through facilitated 

uptake by FA transporters (mainly CD36) and plasma membrane FA binding proteins. Within 

the cardiomyocytes, the short and long chain FAs are esterified into short chain fatty acyl 

coenzyme A (CoA) or long chain fatty acyl-CoA, respectively. The short chain fatty acyl CoA 

diffuses through the inner mitochondrial membrane into the mitochondria, however long 

chain fatty acyl CoA must first enter the ‘carnitine shuttle’ (van der Vusse, et al., 2000). The 

carnitine shuttle involves the addition of carnitine to long chain acyl CoA esters by the 

enzyme carnitine palmitoyltransferase 1 (CPT1) to generate long chain acyl carnitine, which 

is able to cross the outer mitochondrial membrane. CPT1 is thus the rate-limiting enzyme in 

long chain fatty acid metabolism. At the inner mitochondrial membrane, the enzyme CPT2 

cleaves the carnitine off, which is then re-exported across the mitochondrial membrane.  

 

Entry of long chain fatty acyl CoA into the mitochondria via CPT1 is regulated by excess 

tricarboxylic acid (TCA) cycle intermediates in times of energy excess, and by AMP-activated 

protein kinase (AMPK) in times of low cellular energy content. Excess citrate from the TCA 

cycle is transported into the cytosol where it is converted to acetyl CoA and oxaloacetate by 

ATP citrate lyase (Hue & Taegtmeyer, 2009). Cytosolic acetyl CoA is further converted to 

malonyl CoA by the enzyme acetyl CoA carboxylase (ACC), which may be converted back 
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into acetyl CoA by malonyl CoA decarboxylase (MCD). Malonyl CoA is a naturally occurring 

inhibitor of CPT1, thus carefully regulating the entry of free FAs into the mitochondria, as 

excess FA may react with mitochondrial ROS to produce lipid peroxides which damage 

mitochondrial DNA (Schrauwen, et al., 2001). AMPK activation by AMP in low energy states 

inhibits ACC and reduces malonyl CoA levels (thereby relieving inhibition of CPT1) and 

increases FA entry into the mitochondria to be oxidized by the β-oxidation machinery. AMPK 

also recruits CD36 to the sarcolemma, increasing cellular FA uptake (Samovski, et al., 2015).  

 

Once inside the mitochondria, the long chain acyl CoA molecule undergoes a number of 

oxidation steps known as β-oxidation, ultimately generating acetyl CoA, nicotinamide 

adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2). Acetyl CoA then 

enters the TCA cycle. β-oxidation enzymes are regulated by the peroxisome proliferator 

activated receptor (PPAR) family of transcription factors, PPARα and β/δ (Gilde, et al., 2003). 

PPARα also upregulates pyruvate dehydrogenase kinase (PDK) 4 in the myocardium which 

inhibits pyruvate dehydrogenase (PDH) activity, the rate-limiting enzyme for pyruvate 

metabolism, an example of FA-glucose co-regulation (Wu, et al., 2001). A further member of 

the PPAR family, PPARγ, which is expressed in the intestine and at high levels in adipose 

tissue, may also be activated within cardiomyocytes. In the heart, PPARγ activation 

increases free FA and glucose uptake, and glycerolipid biosynthesis (Krishnan, et al., 2009). 

PPARs are regulated by free FA and the transcriptional co-factor, PPARγ cofactor 1α 

(PGC1α), which is a master regulator of mitochondrial biogenesis (Handschin & Spiegelman, 

2008). PGC1α is potently activated by cold and is therefore linked to the ‘browning’ of 

adipose tissue (by activating PPARγ, which upregulates mitochondrial uncoupling protein 1 

(UCP1) expression in adipocytes; Puigserver, et al., 1998). The activities of PGC1α and AMPK 
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are further regulated by the sirtuins (SIRT), a group of histone deacetylases which serve as 

‘anti-aging’ enzymes and metabolic sensors that are activated by high NAD+/NADH ratios in 

states of energy depletion (Nemoto, et al., 2004; Oka, et al., 2015). SIRT-3 has been shown 

to phosphorylate and activate AMPK (Palacios, et al., 2009), and SIRT-1 has been shown to 

activate PGC1α via deacetylation (Rodgers, et al., 2005).  

 

In HF, there is reduced activity of the PPAR transcription-factor pathways, which results in 

downregulation of enzymes from the β-oxidation spiral (Pellieux, et al., 2006). A limitation in 

cardiac O2 supply may also limit FA oxidation, due to the relatively high cost of FA oxidation 

compared to glucose oxidation (Jaswal, et al., 2011). Furthermore, mitochondrial ROS and 

uncoupling of oxidative phosphorylation in HF lead to reduced production of ATP from FA 

oxidation (Tsutsui, et al., 2011). The energetic deficit also activates AMPK, which increases 

sarcolemmal expression of CD36, increasing FA entry into the cytosol. Coupled with lipolysis, 

and the subsequent liberation of FA from adipose tissue secondary to systemic 

neurohormonal activation, there is a resultant over-supply of free FA in the cardiomyocyte, 

which is prevented from entering terminal oxidation. Downregulation of the β-oxidation 

pathway was first identified in 1996 by Sack and colleagues in a study of left ventricular 

biopsies of patients with terminal HF and in rats with progressive LV hypertrophy, which 

demonstrated a >40% decrease and >70% decrease in the expression of β-oxidation 

enzymes, respectively (Sack, et al., 1996). A study by Neglia et al. (2007) also reported that 

in DCM patients with symptoms of HF, FA uptake and oxidation were reduced compared to 

the control group. Barger and colleagues observed a decrease in PPARα gene expression 

and activity in hypertrophic rat cardiomyocytes and hearts from mice subjected to 

transverse aortic constriction (TAC; Barger, et al., 2000). PPARα expression was also reduced 
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in mice with HF induced by chronic angiotensin II stimulation, with a reduction in mRNA 

expression of enzymes involved in FA metabolism such as CPT1 (Pellieux, et al., 2006). 

PPARα has been shown to be downregulated in failing human hearts (Karbowska, et al., 

2003). PGC1β knock-out mice subjected to TAC experienced a rapid progression towards HF, 

extreme mitochondrial dysfunction, markedly reduced cardiac efficiency, and elevated 

levels of oxidative stress when compared to wild-type litter mates also subjected to TAC 

(Riehle, et al., 2011). Identical results have been found in PGC1α deficient TAC-mice (Arany, 

et al., 2006; Lu, et al., 2010). However, Lionetti et al. found in a pacing-induced canine 

model of HF that PPARα and PGC1 protein levels did not significantly differ from the control 

hearts (Lionetti, et al., 2005). SIRT-1 is also down-regulated in HF (Fukushima & Lopaschuk, 

2016). In spontaneously hypertensive rats, compensatory cardiac hypertrophy was 

accompanied by a decrease in SIRT-1 expression (Tang, et al., 2014). Similarly, SIRT-1 

expression was reduced in patients with both compensated and decompensated HF (Akkafa, 

et al., 2015) and in patients with advanced HF (Lu, et al., 2014). In both of these studies, 

SIRT-1 downregulation was associated with an increase in oxidative stress and pro-apoptotic 

signaling. A decrease in SIRT-3 levels in hypertrophied TAC mouse hearts (Chen, et al., 2015) 

and SIRT-6 expression in human failing hearts (Sundaresan, et al., 2012) have also been 

reported; SIRT-6 deficient mice also developed hypertrophy and cardiac failure.  

 

Recently, Shibayama and colleagues (2015) identified significant reductions in carnitine and 

FA levels in the mitochondria of canine hearts with pacing-induced HF (Shibayama, et al., 

2015). Moreover, it has also been found that the expression and/or activity of other 

enzymes required for mitochondrial FA uptake and oxidation, such as muscle CPT1 and acyl-

CoA synthetase are downregulated compared to controls (de Brouwer, et al., 2006; Lionetti, 
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et al., 2005; Pellieux, et al., 2006). A reduction in FA uptake and oxidation was observed in 

HF induced by a high-salt diet in rats (Kato, et al., 2010) and in canines with tachycardia 

induced HF (Osorio, et al., 2002). In addition, FA oxidation rates and enzyme expression 

were reduced in rats subjected to abdominal aortic constriction to induce HF (Akki, et al., 

2008). A reduction in myocardial carnitine has also been previously reported in patients with 

HCM and signs of chronic HF (Regitz, et al., 1990) as well as a decrease in FA oxidation in 

symptomatic DCM patients (Neglia, et al., 2007; Yazaki, et al., 1999). Interestingly, previous 

reports by Paolisso and colleagues demonstrated findings to the contrary, with HF patients 

having a ~40% increase in FA uptake and oxidation despite no change in coronary blood flow 

(Paolisso, et al., 1994). It has therefore been suggested that the way in which HF is induced 

and HF severity in these studies may dictate the changes observed in metabolism (Doenst, 

et al., 2013), and this is also true for the alterations in carbohydrate metabolism.  

 

It has been reported that triacylglycerol (TAG) pool dynamics are also dysregulated in the 

failing heart, with an associated rise in diacylglyceride (DAG) and ceramide, which have been 

implicated in lipotoxicity (Carley & Lewandowski, 2016). The falling levels of long chain free 

FA from this altered TAG turnover lead to reduced signaling via the PPARα pathway (as long 

chain free FA is an important ligand for PPARα activation; Lahey, et al., 2014). O’Donnell et 

al. (2008) observed a significant reduction in TAG content and turnover in rats subjected to 

pressure-overload HF, due to an upregulation in the TAG hydrolase, and adipose triglyceride 

lipase enzyme (O'Donnell, et al., 2008). A reduction in TAG content and increased levels of 

toxic lipid intermediates were also found in patients with chronic HF, and this was 

successfully corrected following mechanical unloading with left ventricular assist device 

(LVAD) therapy (Chokshi, et al., 2012). Levels of toxic lipid intermediates have also been 
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shown to be increased in rats subjected to TAC (Lahey, et al., 2014). The same group also 

identified that TAG turnover rate is also of critical importance in HF, rather than simply 

content, and normalizing TAG turnover rate via supplementation with the dietary FA oleate 

led to improved FA metabolism and contractile function in TAC rats (Lahey, et al., 2014). 

Thus, restoration of TAG dynamics, e.g. through supplementation of natural and dietary 

long-chain FAs, provide an additional therapeutic strategy in HF that warrants further 

investigation.  

 

3.2 Glucose metabolism 

Glucose enters the cardiomyocyte via the glucose transporters (GLUT1 and GLUT4). 

Following uptake, glucose is converted to glucose-6-phosphate (G6P) by hexokinase on the 

inner surface of the cell membrane, and this G6P enters the glycolytic pathway to generate 

pyruvate. G6P may also enter the pentose phosphate pathway (PPP) to produce NAD(P)H, 

which is essential for detoxifying cellular ROS (Ussher, et al., 2012). In addition, enzymes and 

products of the glycolytic pathway play an important role in cellular anabolism, as they may 

enter biosynthetic pathways such as the hexosamine biosynthetic pathway (HBP) to 

increase cellular biomass (Doenst, et al., 2013). Pyruvate from glycolysis is transported 

across the mitochondrial membrane by pyruvate translocase (an active, energy requiring 

process). Mitochondrial pyruvate is decarboxylated by the rate-limiting PDH complex, to 

form acetyl CoA, the common end-product of glucose oxidation and FA β-oxidation. PDH 

activity is regulated positively by PDH phosphatases and negatively by PDH kinases 

(Kolobova, et al., 2001), and is inhibited by its by-products acetyl CoA and NADH (Stanley, et 

al., 2005). A fall in mitochondrial ATP production such as in hypoxia or with mitochondrial 

dysfunction causes a fall in the cytosolic ATP/ADP ratio, which activates glycolysis 
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(Maldonado & Lemasters, 2014). In addition during hypoxia, breakdown of the ubiquitous 

hypoxia inducible factor 1α (HIF1α) by oxygen-dependent cytosolic prolyl hydroxylase is 

inhibited, resulting in HIF1α accumulation and translocation to the nucleus (Lei, et al., 2008). 

HIF1α upregulates the expression of PDK 1, inhibiting glucose oxidation, as well as GLUT4 

and many enzymes involved in glycolysis, thus upregulating the precursors of the HBP and 

PPP (to detoxify hypoxia-generated ROS) and diverting pyruvate towards compensatory 

anaerobic glycolysis (to maintain ATP production), or anaplerosis. Chronic HIF1α 

accumulation in hypertrophied hearts has also been shown to activate PPARγ in 

cardiomyocytes, thus promoting glycerolipid formation via the glycerol-3-phosphate 

pathway, which causes TAG accumulation, apoptosis, and contractile dysfunction (Krishnan, 

et al., 2009). 

 

Insulin resistance frequently occurs in HF (Ashrafian, Frenneaux et al., 2007) and reduces 

insulin-stimulated glucose uptake. However, uptake through insulin-independent GLUT- 

signaling may compensate (e.g. via AMPK signaling or GLUT1 upregulation), and most 

studies suggest that glucose uptake and glycolysis are maintained or increased in HF 

(Tenenbaum & Fisman, 2004). However, in a rat TAC model of HF, despite increased 

glycolysis, there was no parallel increase in flux through the PDH enzyme complex, which led 

to the uncoupling of glycolysis from glucose oxidation (Sorokina, et al., 2007). Furthermore, 

the fall in glucose oxidation was accompanied by a compensatory increase in anaplerosis, to 

replace TCA intermediates which undergo terminal oxidation or are used for biosynthetic 

pathways as a result of hypertrophic remodeling in the failing heart. In combination, these 

mechanisms contribute to impaired energy generation from carbohydrate metabolism, 

despite the ready availability of glucose. Such findings have also been confirmed in a mouse 
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TAC model (Dai, et al., 2012), and it has been suggested that this detrimental uncoupling of 

glycolysis and glucose oxidation can be exacerbated by reduced FA oxidation, due to the 

Randle cycle which further upregulates glycolysis (Fillmore & Lopaschuk, 2013). Elevated 

levels of HIF1α, which occurs secondary to tissue hypoxia as discussed above, also 

contribute to the upregulation of glycolysis in HF (Holscher, et al., 2012).   

 

In another mouse TAC study, cardiac glucose oxidation was found to be decreased by 66% 

(Zhabyeyev, et al., 2013), with a further study demonstrating a reduction in PDH activity and 

gene expression in HF, which may explain these findings (Lei, et al., 2004). Kato and 

colleagues induced chronic HF in Dahl salt-sensitive rats by implementing a high salt diet 

and observed a downregulation in gene expression of PDH, as well as other proteins 

involved in glycolysis such as GLUT4, phosphofructokinase and phosphoglucomutase (Kato, 

et al., 2010). In rats with pressure overload induced HF, a progressive decline in glucose 

oxidation was observed (Doenst, et al., 2010). However, not all HF models demonstrate this. 

Osorio et al reported an increase in glucose oxidation rates in a canine model of rapid 

pacing-induced HF (Osorio, et al., 2002). Cellular glucose oxidation rates and β oxidation 

rates are closely interrelated and closely regulate each other via the aforementioned 

‘Randle cycle’. The Randle cycle (Randle, et al., 1963) is the phenomenon whereby increased 

acetyl CoA from FA β-oxidation directly inhibits the PDH complex, as well as being 

transported to the cytosol and converted to citrate, which subsequently inhibits the rate-

limiting glycolytic enzyme, phosphofructokinase. Conversely, when carbohydrate 

metabolism is increased, citrate from the tricarboxylic acid (TCA) cycle is transported to the 

cytoplasm where it is converted to acetyl CoA, and then into malonyl CoA which blocks 

CPT1, in turn decreasing FA metabolism.  
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3.3 Ketone metabolism 

Ketones are the most energy-efficient fuel available in the body, and are produced in the 

liver from excess acetyl-CoA produced from β-oxidation of FA. Ketone levels in health are 

therefore regulated by lipolysis (liberation of FA from TAG stores), amount of free FA 

reaching the hepatocyte, transport across the mitochondrial membrane (via diffusion or 

CPT1), and FA β-oxidation (Lopaschuk, et al., 2010). In the heart, as in all extrahepatic 

tissues, ketone bodies (acetoacetate, β-hydroxybutyrate, and acetone) undergo terminal 

oxidation following conversion back into acetyl CoA (in a series of reactions catalyzed by β-

hydroxybutyrate dehydrogenase 1 [BHD1], succinyl CoA:3-oxoacid CoA transferase [SCOT], 

and mitochondrial acetyl-CoA acetyltransferase 1 [ACAT1]), or they may be redirected into 

lipogenic pathways, such as de novo lipogenesis via the enzymes ACC or fatty acid synthase 

(FAS), or the mevalonate pathway for cholesterol synthesis (Cotter, et al., 2013).  

 

It has been recently identified that ketone metabolism is altered both in animal models of 

HF and in patients with HF. Aubert and colleagues reported an upregulation in the ketone 

oxidative enzyme BHD1 in TAC HF mice (Aubert, et al., 2016). These changes occurred in 

parallel to the downregulation of proteins involved in FA utilization, thus suggesting that the 

failing heart switches to ketone bodies as an alternative fuel source. Bedi and co-workers 

also observed significant increases in substrates involved in ketone metabolism in non-

diabetic patients with advanced HFrEF (Bedi, et al., 2016). Ketongenic β-hydroxybutyryl-CoA 

levels, and β-hydroxybutyrate myocardial use, were markedly increased alongside decreases 

in myocardial lipid intermediates. The increase in ketone oxidation may have added effects 

on glucose and FA oxidation, as this could reduce the mitochondrial NAD+/NADH ratio and 

further inhibit β-oxidation enzymes such as long-chain 3-ketoacyl-CoA thiolase (LC 3-KAT; 
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Jaswal, et al., 2011). These findings have garnered much attention in the HF metabolic field 

and have highlighted the need for further investigation into the role of altered ketone 

metabolism in order to determine whether the observed changes are beneficial and 

contribute to increased glucose oxidation, or are detrimental to cardiac function (Bedi, et 

al., 2016; Kolwicz, et al., 2016).   

 

3.4 The TCA cycle and oxidative phosphorylation 

Acetyl CoA from FA, glucose, ketone and amino acid metabolism enters the TCA cycle and 

generates NADH and FADH2 (Schwarz, et al., 2014). These donate high energy electrons 

which are transferred between electron acceptors (iron-sulfur subunits, quinone species, 

and flavin mononucleotide) within 4 enzyme complexes, I to IV, located within the 

mitochondrial inner membrane. This electron transfer powers extrusion of protons across 

the inner mitochondrial membrane, termed the electron transport chain (ETC). This 

subsequently activates ATP synthase, located on the inner mitochondrial membrane, which 

produces ATP through phosphorylation of adenosine diphosphate (ADP). There is 

concurrent oxidation of hydrogen ions to form water, and thus oxidation is coupled to 

phosphorylation. Oxidative phosphorylation is responsible for the production of over 95% of 

ATP in the myocardium (Beer, et al., 2002). 

 

Due to the potential for premature electron leakage and subsequent binding with oxygen, 

the ETC is a site for the formation of ROS, which must be closely regulated in health to 

prevent overwhelming oxidative stress. Mitochondrial complexes I and III are well 

established as sites of superoxide production due to post-translational modification 

(Holmstrom & Finkel, 2014), and hyperphosphorylation of complex IV may also contribute 
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to increased ROS generation (Prabu, et al., 2006). At physiological levels, cellular ROS are 

signaling molecules in their own right via oxidation of key cellular proteins including 

enzymes (particularly those containing thiol moieties), either increasing or decreasing their 

activity (Hurd, et al., 2007). Furthermore, ROS produced at mitochondrial complex III at the 

onset of hypoxia inhibits prolyl hydroxylase, and is the primary mechanism for accumulation 

of the HIF1α protein (Chandel, et al., 2000). At elevated levels, superoxide reacts with NO to 

form peroxynitrite. Peroxynitrite reduces tetrahydrobiopterin (BH4) to BH2, which promotes 

uncoupling of endothelial nitric oxide synthase (eNOS; Milstien & Katusic, 1999). Uncoupled 

eNOS becomes a source of further ROS production, rather than ROS-scavenging NO. 

Peroxynitrite and other ROS also directly damage mitochondrial DNA, which activates the 

nuclear enzyme poly ADP-ribose polymerase 1 (PARP-1; Pacher & Szabo, 2007). NAD+ is a 

key substrate of PARP-1, which is subsequently depleted, causing impairment of ATP 

production at the ETC and from glycolysis, leading to metabolic dysfunction, inflammation 

and cell death. Counter-regulatory mechanisms of mitochondrial ROS include uncoupling 

proteins (e.g. UCP2 and 3 in cardiomyocytes) and adenine nucleotide translocase (ANT), 

which balance charges at the mitochondrial intermembrane space to dissipate the 

electrochemical gradient, and mitochondrial superoxide dismutase (SOD) and NAD(P)H 

which detoxify ROS (Azzu & Brand, 2010; Circu & Aw, 2010). The coordinated action of the 

respiratory chain complexes is dependent on their organization into functional units called 

respirasomes by the membrane phospholipid, cardiolipin (Szeto, 2014). Dissociation of the 

respirasomes leads to increased ROS generation and reduced ATP production (Lee & Tian, 

2015; Rosca & Hoppel, 2013).  
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HF culminates in impaired oxidative phosphorylation and ATP generation, both due to 

impaired substrate utilization and direct structural and functional changes in the 

mitochondria (Fillmore & Lopaschuk, 2013). In a rat TAC model of HFrEF, Bugger and 

colleagues identified detrimental changes in mitochondrial morphology and volume density, 

accompanied by a 53% decrease in expression of ETC proteins (Bugger, et al., 2010). In 

addition, the activity of the ETC complexes was found to be reduced in a canine rapid-pacing 

model of HF (Ide, et al., 1999) and in LV biopsies from patients with HF (Scheubel, et al., 

2002). In some models of HF, organization of the ETC complexes into respirasomes appears 

to be impaired which may play an important role in electron slippage with ROS generation. 

This may be due to reduced expression of cardiolipin or altered interaction between 

cardiolipin and the respiratory complexes (Rosca & Hoppel, 2013; Szeto, 2014). Increased 

ROS and oxidative stress increase compensatory UCP expression. Unfortunately, increased 

UCP expression also leads to an increase in heat generation with ATP generation, thereby 

rendering oxidative phosphorylation less efficient (Murray, et al., 2004). Murray and 

colleagues (2004) also identified that the elevated UCP levels were associated with 

increased circulating free FA levels in rats with chronically failing and infarcted hearts. UCP3 

has also been shown to interact with other redox regulating proteins such as thioredoxin 2 

(Trx2; Hirasaka, et al., 2011). It has been shown that Trx2 levels are reduced in the hearts of 

patients with DCM, and that Trx2 knock-out mice have a progressive decline in LV function 

leading to death by HF (Huang, et al., 2015). These effects may be related to the 

upregulation of TXNIP, which inhibits Trx2 (Chong, et al., 2014). In a mouse pressure-

overload model of HF, TXNIP knock-out mice initially had reduced cardiac hypertrophy and 

preserved LV contractile reserve compared to their wild-type litter mates (Yoshioka, et al., 

2012).  
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As discussed, increased ROS in HF leads to compensatory activation of PARP-1 (Pacher & 

Szabo, 2007). In a coronary artery ligation model of HF in rats, PARP-1 activation was 

increased alongside the reduction in LV function (Pacher, et al., 2002). Increased PARP-1 

activity is maladaptive in the setting of HF, as it leads to a reduction in the NAD+/NADH ratio 

by reducing the NAD+ pool, which reduces ATP production from pathways that require NAD+ 

as a substrate (Pillai, et al., 2005). PARP-1 inhibition with an experiment inhibitor L-2286 has 

since been shown to prevent cardiac remodeling, LV systolic dysfunction, and delay 

progression to HF, in rats with spontaneous hypertension (Bartha, et al., 2009). The 

deleterious changes in mitochondrial structure and function in HF are also due to the 

observed shifts in cardiac metabolism themselves. The reduced level of FA oxidation causes 

FA build up within the mitochondria, with lipid peroxide formation, whilst the decrease in 

glucose oxidation results in a build-up of lactate and hydrogen ions within the cell which 

alters cellular pH (Fillmore & Lopaschuk, 2013; Munzel, et al., 2015). The resulting oxidative 

stress and disturbances in cellular pH directly damage both the mitochondrial membrane 

and important mitochondrial proteins (Dai, et al., 2012). As such, targeting the metabolic 

changes of HF may also prevent the downstream perturbations of mitochondrial biogenesis, 

function and energy transfer, as well as improving ATP generation.  

 

4. Metabolic Modulators: Promising Therapeutic Agents 

Over the last decade, metabolic modulation for the treatment and management of HF has 

garnered increasing attention, primarily due to the rather slow-paced development of other 

novel pharmacotherapeutic agents. The debate as to whether the decrease in FA oxidation 

during HF is protective or maladaptive has also been central to the development and use of 

metabolic modulators. It is more or less believed that inhibiting FA metabolism in parallel to 
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enhancing glucose metabolism may be more beneficial (Doehner, et al., 2014). Such 

conclusions draw from evidence demonstrating that FA use is associated with an increase in 

ROS, which contributes to cardiac damage (Schonfeld & Wojtczak, 2007). Furthermore, in 

the presence of low oxygen levels, FA metabolism is a less efficient method for ATP 

production. Taking these considerations into account, many metabolic therapies focus on 

inhibiting FA metabolism and increasing glucose metabolism.  

 

Discussed below are several categories of metabolic modulating therapies, including 1) CPT1 

inhibitors, 2) partial FA oxidation inhibitors, 3) malonyl-CoA decarboxylase inhibitors, 4) 

increased FA utilization, 5) increased glucose utilization, 6) AMPK activators, and 7) 

mitochondrial-targeted antioxidants. The CPT1 inhibitor perhexiline and partial FA inhibitors 

trimetazidine and ranolazine, are also indicated for clinical use in the treatment of 

refractory angina. Table 1 also provides a summary of metabolic modulators that are 

currently under investigation in clinical trials, withdrawn from clinical use, or for which there 

is pre-clinical data only.  

 

4.1 Carnitine palmitoyltransferase 1 (CPT1) inhibition 

CPT1 is an essential enzyme in FA metabolism, being necessary for the uptake of long chain 

FA’s into the mitochondria. CPT1 inhibition, perhaps one of the most well-established and 

investigated forms of metabolic modulation, reduces long chain FA uptake and reciprocally 

increases carbohydrate oxidation via activation of PDH (Chong, et al., 2016). However, a 

recent metabolomics and proteomics study by Yin and colleagues, showed that perhexiline 

also donates protons within mitochondria to alter the redox environment, and increases 

lactate and amino acid uptake, which rebalances flux through the TCA cycle and increases 
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NADH concentrations improving cellular energetics (Yin, Dwyer et al., 2013). By reducing 

mitochondrial FA levels it also potentially reduces mitochondrial toxicity due to lipid 

peroxides. Several agents exist which inhibit CPT1, including: etomoxir, oxfenicine, 

perhexiline and ranolazine (Revenco & Morgan, 2009). Amiodarone (and the closely-related 

Dronedarone), a commonly used anti-arrhythmic drug, also possesses CPT1 inhibitor-

properties (Kennedy, et al., 1996). Although less potent than perhexiline, given the high use 

of this drug in clinical practice for prophylaxis against malignant ventricular 

tachyarrhythmias (common following AMI) and AF, these ancillary effects may be important 

in both the beneficial effects and side effects of this class (Kennedy, et al., 1996). CPT1 

inhibitors exert minimal haemodynamic effects, a clear benefit in comparison to many 

commonly used anti-anginals, avoiding symptomatic hypotension. In a small trial of patients 

with severe congestive HF, amiodarone therapy increased LVEF (19 ± 7% to 29 ± 15%; 

P<0.01), increased exercise tolerance and reduced the presence of non-sustained 

ventricular tachycardia (P=0.06; Hamer, et al., 1989).  These effects may be linked to CPT1 

inhibition, but could also be due to restoration of sinus rhythm from AF. The efficacy of 

amiodarone treatment in reducing ventricular arrhythmias in HF patients has been 

established in multiple large-scale clinical trials (Neri, et al., 1987; Nicklas, et al., 1991). 

 

A side effect of this class of drugs however, is the potential for phospholipidosis in various 

tissues (Ashrafian, Horowitz, et al., 2007). Liver lipidosis causing hepatotoxicity (Le Gall, et 

al., 1980) and neural lipidosis (in Schwann cells) causing neurotoxicity (Meier, et al., 1986) 

have been identified following perhexiline treatment, whilst systemic (Mazue, et al., 1984) 

and ocular lipidosis (Bockhardt, et al., 1978) have been observed with amiodarone. There is 

also the potential for hypoglycemia, which is a class-wide effect, due to the increase in 



33 

plasma glucose uptake. Moreover, in a retrospective analysis of the COMET trial, treatment 

with amiodarone in HF patients was associated with an increased risk of death from 

circulatory failure, independent of NYHA functional class, which may be due to the 

development of AV block in patients with a LVEF <30% (Torp-Pedersen, et al., 2007). Similar 

concerns have arisen for the use of dronedarone in HF, as there was an increase in mortality 

in patients with severe HF in the treatment arm compared to the placebo group (Kober, et 

al., 2008).  

 

Etomoxir is an irreversible inhibitor of CPT1 (Horowitz, et al., 2010). In a rat ascending aortic 

constriction model of HF, etomoxir treatment for 12 weeks increased LV maximal developed 

pressure and contractile performance, and reduced LV wall stress (Turcani & Rupp, 1997). 

Another study by Turcani and Rupp showed, using the same rat pressure overload HF 

model, that etomoxir treatment for 6 weeks enhanced LV function and prevented dilatation 

of the left ventricle (Turcani & Rupp, 1999). A first-in-human study in 10 HF patients 

confirmed these beneficial effects in the myocardium (Schmidt-Schweda & Holubarsch, 

2000). Treated patients showed an increase in EF (21.5 ± 2.6% to 27.0 ± 2.3%; P<0.01) and 

CO following exercise (from 9.7 ± 1.3 L.min-1 to 13.4 ± 1.5 L.min-1; P<0.01). Unfortunately, 

clinical investigations into etomoxir therapy have largely ceased. This is due to the outcome 

of a trial of 260 patients with moderate HF, in which etomoxir therapy led to the 

development of abnormally high levels of liver transaminases in some patients and 

established hepatotoxicity in others (Holubarsch, et al., 2007). Therefore, investigations into 

the safety of this drug are necessary before commencing new clinical trials. 
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Oxfenicine is an effective irreversible CPT1 inhibitor that was originally developed for use in 

patients with chronic stable angina (Revenco & Morgan, 2009). In a canine coronary artery 

occlusion HF model, oxfenicine therapy reduced FA accumulation with a concomitant 

reduction in infarct size (72 ± 2% vs 96 ± 3%; P<0.05; Vik-Mo, et al., 1986). A study by 

Kennedy and colleagues also revealed that oxfenicine attenuated the rise in LVEDP following 

low-flow ischemia in a rat HF model (Kennedy, et al., 2000). Both of these studies highlight 

the beneficial effects of oxfenicine-induced FA oxidation inhibition within the myocardium 

under ischemic conditions. Lionetti and colleagues (2005) also demonstrated, in a canine 

pacing-induced HF model, that oxfenicine treatment reduced LV dilatation and 

hemodynamic alternations (Lionetti, et al., 2005). Furthermore, oxfenicine prevented the 

significant LV wall thinning observed in the placebo group, and delayed progression towards 

end-stage HF. To date, there are no large randomized clinical trials looking at the use of 

oxfenicine in HF patients, and this is perhaps due to the finding by Wang and colleagues that 

identified increases in LV internal resistance and impedance in the LV outflow tract, which 

worsened LV contractile function in oxfenicine-treated diabetic cardiomyopathic rat hearts, 

and increased plasma free FA toxicity (Wang, et al., 2013).  

 

Perhexiline is a potent and reversible inhibitor of CPT1, originally used to treat angina in the 

1970s (Ashrafian, Horowitz et al., 2007). The anti-anginal properties of perhexiline have 

been well-documented in early clinical trials (Cole, et al., 1990; Horowitz, et al., 1986) as 

well as its superior efficacy compared to propranolol (Armstrong, 1973).  Such trials led to 

an increase in the use of perhexiline as an anti-ischemic agent up until the 1980s, when a 

range of adverse effects with perhexiline treatment became apparent, spanning from 

lethargy and nausea to severe neuro- and hepatotoxicity (Shah, et al., 1982). It was later 
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established that perhexiline toxicity is due to prolonged exposure to high plasma levels, and 

was mainly seen in ‘slow hydroxylators’ (due to polymorphic variation of the P450 2D6 

[CYP2D6] enzyme; Morgan, et al., 1984). With this clearer understanding of perhexiline 

pharmacokinetics and pharmacodynamics, it was identified that toxicity could be avoided by 

maintaining perhexiline plasma levels between 0.15 and 0.60 μg/mL (Horowitz, et al., 1986). 

Perhexiline also inhibits the cardiac isoform of CPT1 at a lower plasma concentration than 

the liver isoform, which allows for use of a lower dose to minimize adverse effects 

(Kennedy, et al., 1996). Dose-titration for perhexiline is also necessitated by the potential 

for metabolic drug-drug interactions and ultra-rapid metabolism in some patients (Davies, 

et al., 2004).  

 

Both experimental and clinical investigations into the use of perhexiline as a therapeutic 

agent have since continued, employing close monitoring of plasma levels, and in a recent 

audit of 170 patients who had been on a perhexiline treatment regimen for up to 50 

months, there were no signs of hepatotoxicity (Phuong, et al., 2016). In an open-chest 

canine model, perhexiline treatment was associated with an increase in LV mechanical 

efficiency, increased coronary blood flow, and a reduction in myocardial oxygen 

consumption, all of which were not achieved with GTN infusion alone (Ono, et al., 1982). A 

recent study by Gehmlich and colleagues revealed that perhexiline partially improved 

markers of LV hypertrophy following a 6 week intervention in mice with HCM, and was 

accompanied by a reduction in FA β-oxidation and an increase in glucose utilization 

(Gehmlich, et al., 2015). Yin and colleagues also identified a potentiation of glucose 

oxidation with perhexiline therapy, via an increase in PDH dephosphorylation (signifying an 

increase in PDH activity), in mice fed perhexiline for 4 weeks (Yin, Dwyer et al., 2013). 
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Perhexiline treatment also attenuated cardiac dysfunction caused by energy depletion and 

oxidative stress in mice with induced irreversible HF (Stapel, et al., 2016). 

 

Translational trials in humans have also shown beneficial effects. Unger and co-workers 

demonstrated in a study of elderly patients with inoperable aortic stenosis, that perhexiline 

therapy provided symptomatic relief, improving NYHA functional class (Unger, et al., 1997). 

In a double-blind randomized placebo controlled trial by our group, perhexiline treatment in 

patients with HFrEF significantly improved EF (24% to 34%, P<0.001) and peak exercise 

oxygen consumption (Peak VO2 16.1 ± 0.6 vs 18.8 ± 1.1 ml.kg-1.min-1, P<0.001) (Lee, et al., 

2005). In another clinical study by our group, perhexiline improved myocardial energetic 

status (improved PCr/ATP ratio; from 1.3 to 1.7; P=0.03), NYHA class (P<0.001), and 

corrected diastolic dysfunction in symptomatic non-obstructive HCM patients (Abozguia, et 

al., 2010).  

 

In a recent randomized controlled trial, short-term treatment with perhexiline in patients 

with non-ischemic HFrEF caused a 30% increase in PCr/ATP ratio (from 1.2 to 1.5; P<0.001) 

and an improvement in NYHA status (Beadle, et al., 2015). However, this study found no 

change in cardiac substrate utilization despite these clear beneficial effects on energetic 

status, suggesting an alternative mechanism of action rather than CPT1 inhibition, at least 

with short term administration. Similarly, in the isolated rat heart models by Kennedy et al 

(2000) and Unger et al (2005), perhexiline perfusion did not alter FA oxidation or CPT1 

activity (Kennedy, et al., 2000; Unger, et al., 2005), despite markedly increasing LV 

mechanical efficiency. 
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Additional effects of perhexiline include blockade of the NAD(P)H oxidase 2 (Nox2) complex, 

conveying beneficial anti-inflammatory effects (Gatto, et al., 2013; Kennedy, et al., 2006; 

Liberts, et al., 2007), and reduced expression of TXNIP  (Ngo, et al., 2011). Moreover, a 

recent study reports that perhexiline activates Krüppel-like factor 14 (KLF14), which 

regulates lipid metabolism, reducing atherosclerotic lesion development in a mouse model 

(Guo, et al., 2015). However, perhexiline has also been shown to inhibit the mammalian 

target of rapamycin complex 1 (mTORC1; Balgi, et al., 2009), an effect which is shared by 

amiodarone. The mTOR-signaling pathway relays signals of adequate energy supplies to 

inhibit cardiomyocyte autophagy, which is over-activated (due to AMPK activation, which 

inhibits mTOR; Matsui, et al., 2007) and maladaptive in the hypertrophic failing heart (De 

Meyer, et al., 2010). This ancillary property of perhexiline is likely to affect the careful 

balance of cardiac autophagy and therefore disease progression and prognosis in HF, 

however further investigation is needed to test this.  

 

4.2 Partial fatty acid oxidation inhibition 

Partial FA oxidation inhibitors inhibit FA metabolism via mechanisms other than CPT1 

inhibition and therefore do not completely block the uptake and use of FAs (Chong, et al., 

2016). Well-investigated agents include trimetazidine and ranolazine, both of which have 

been established for use as prophylactic anti-anginal agents (Lee, et al., 2004). Trimetazidine 

works by inhibiting the LC 3-KAT enzyme of the β-oxidation pathway (Kantor, et al., 2000), 

but also has weak inhibitory effects on CPT1 (Lee, et al., 2004). An experimental study in 

mice with diabetic cardiomyopathy demonstrated improvements in both systolic and 

diastolic function following trimetazidine treatment, as well as a reduction in ROS and 

improvement in cardiac energetic status (Li, et al., 2010). Clinical studies in man have also 
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supported the beneficial effects of trimetazidine. Fragasso and colleagues observed a 

significant improvement in NYHA functional class in patients with HF, an increase in EF 

(36±7% vs 43±10%; P=0.002), and a decrease in LV end-systolic volume (98 ± 1.36 ml vs 81 ± 

27 ml; P=0.04) when compared to the untreated group (Fragasso, et al., 2006). Moreover, in 

a clinical study by Tuunanen et al (2008) involving patients with idiopathic DCM and HFrEF, 

trimetazidine increased EF (from 30.9 ± 8.5% to 34.8 ± 12%; P=0.027) with observed 

increases in cardiac glucose oxidation (Tuunanen, et al., 2008). A meta-analysis by Zhang et 

al (2012) confirmed these therapeutic effects by assessing data collected from 16 RCTs 

involving over 800 chronic HF patients (Zhang, et al., 2012). They found that the use of 

trimetazidine reduced hospitalization, improved symptoms and NYHA functional class, 

increased EF, and ameliorated LV remodeling. In patients with coronary ‘slow flow’, 

trimetazidine also significantly improved LV diastolic function (Suner & Cetin, 2016). 

Although adverse effects with trimetazidine are rare, potential side effects include 

Parkinsonian symptoms (tremor, bradykinesia, and hypertonia) and gait disorders (coupled 

with disequilibrium), however the mechanism for these symptoms has not yet been defined 

(Marti Masso, et al., 2005).   

 

Ranolazine is a similar compound to trimetazidine, which has partial LC 3-KAT inhibiting 

properties and can stimulate glucose oxidation (although there is controversy regarding the 

significance of these effects at therapeutic concentrations; Beadle & Frenneaux, 2010). 

Additionally, it is an inhibitor of the slow inward sodium channel that is activated during 

ischemia and in HF, resulting in an increase in intracellular sodium and thereby, via the 

sodium-calcium exchanger, leads to increased intracellular calcium. This results in action 

potential prolongation and improved diastolic filling. However, it is important to note that 
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increased calcium-signaling within the myocardium has a high ATP-cost in the failing heart. 

Rarely, ranolazine (as a cationic amphiphilic drug) may induce renal phospholipidosis in 

some patients (Scheurle, et al., 2014). The drug has significant anti-anginal effects such as 

increasing time to angina, reducing the number of weekly anginal episode and increasing 

exercise duration (Chaitman, et al., 2004). In a recent study by Zou and colleagues (2016) 

ranolazine restored mitochondrial function, prevented oxidative stress, and inhibited 

apoptosis in a rat model of atrial fibrillation (Zou, et al., 2016).  In another recent study, rats 

were subjected to chronic ischemic HF by left anterior descending artery ligation (Feng, et 

al., 2016). Ranolazine treatment in these rats attenuated brain natriuretic peptide (BNP) 

levels and improved LV function. Furthermore, in a study of rats fed a high salt diet to 

induce hypertension, ranolazine therapy reduced oxidative stress and attenuated diastolic 

dysfunction (De Angelis, et al., 2016). Importantly, a 30-minute ranolazine infusion in 

patients with HFpEF reduced LVEDP in the RALI-DHF study (Maier, et al., 2013). In another 

study by Murray and Colombo, up to 70% of patients with HFrEF showed an improvement in 

EF when treated with ranolazine, compared to no improvement in the noradrenaline 

treatment arm (Murray & Colombo, 2014). 

 

4.3 Malonyl-CoA decarboxylase inhibitors 

The MCD enzyme converts malonyl-CoA into acetyl CoA in the cytosol. MCD inhibition 

increases malonyl-CoA which is a natural inhibitor of the CPT1 enzyme and therefore 

reduces long chain free FA transport into the mitochondria (Fillmore & Lopaschuk, 2013).  

MCD inhibition also increases cardiac carbohydrate oxidation by increasing PDH activity (due 

to reduced allosteric inhibition from acetyl-CoA generated from FA oxidation and lower 

cytosolic citrate levels, i.e. the Randle cycle) and increases insulin sensitivity (Cheng, et al., 
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2006). In an experimental study by Wu and colleagues, MCD inhibition was achieved via 

MCD myocardial gene silencing in rats. Cardiac contractile function measured sixteen weeks 

after the induction of myocardial infarction demonstrated attenuation in post-MI 

dysfunction in the treatment group when compared to the control group, with an 8% 

decrease in EF vs. a 16% decrease in EF, respectively (Wu, et al., 2014). High energy 

phosphate (PCr and ATP) levels were also increased in the left ventricle of the group with 

MCD gene silencing, without lipid toxicity. In a porcine ischemic HF model, the use of novel 

MCD inhibitors significantly increased glucose oxidation which was accompanied by 

significant increases in cardiac performance (Dyck, et al., 2004). In a mouse coronary artery 

ligation induced HF model, MCD knockout mice had a 31% higher EF in comparison to their 

wild-type litter mates and a greater rate of ATP production (Masoud, et al., 2014). To date 

there are no clinical studies assessing the use of MCD inhibition in humans, however the 

experimental evidence in animal models of ischemic heart disease and HF have shown 

promise, and in theory, this method of indirect CPT1 inhibition should provide similar 

beneficial effects to direct CPT1 inhibition. MCD inhibition therefore provides a novel and 

useful mechanism by which cardiac metabolism can be improved and requires further 

clinical investigation to determine whether these beneficial effects translate to HF patients.  

 

4.4 Increased fatty acid utilization 

Despite the success of FA metabolic inhibition in HF to increase glucose oxidation, some 

groups have instead focused on increasing FA utilization (oxidation). Kolwicz and colleagues 

subjected mice with cardiac-specific deletion of ACC (the enzyme that produces malonyl 

CoA from acetyl CoA, and which is a target of AMPK), to TAC to induce HF (Kolwicz, et al., 

2012). They reported a preservation of myocardial energetics and a reduction in both 
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cardiac hypertrophy and fibrosis following TAC in the knock-in mice compared to wild-type 

mice. Furthermore, analysis of isolated hearts from these ACC2-TAC mice revealed that 

glycolytic activity was reduced with no indication of changes in glucose oxidation, thereby 

suggesting improved coupling of glycolysis and glucose oxidation. Chess and colleagues 

investigated the effects of a high-fat diet on mice subjected to TAC (Chess, et al., 2009). The 

authors reported that the high-fat diet did not worsen cardiac hypertrophy or LV 

enlargement but did prevent the decline in the activity of mitochondrial oxidative enzymes 

when compared to TAC mice on a low-fat diet.  

 

Increasing FA metabolism via activation of FA transcription regulators, such as PPARα via the 

use of fibrates, has also been used in an attempt to ameliorate HF (Sarma, et al., 2012). 

PPARγ agonists (such as thiazolidinediones) however, are contraindicated in diabetic 

patients with symptoms of advance HF, due to the increased incidence of worsening 

oedema in these patients in both monotherapy and combination therapy trials for glycaemic 

control (Nesto, et al., 2003). The PPARα activator GW7647 prevented the decline in EF and 

increased cardiac FA β-oxidation in rabbits with volume-overload hypertrophy (Lam, et al., 

2015). The PPARα agonist fenofibrate, has also been shown to reduce serum BNP levels and 

mitochondrial ROS production in rats with isoproterenol-induced HF (Li, et al., 2015). In 

canines with LV pacing-induced HF, chronic treatment with fenofibrate prevented the 

reduction in FA oxidation observed in the untreated group whilst also causing modest 

improvements in cardiac function (Labinskyy, et al., 2007). Fenofibrate treatment has also 

been found to have beneficial effects on endothelial function in patients with advanced 

systolic HF (Yin, Chen et al., 2013) and symptomatic chronic HF (Huang, et al., 2009). 

Gemfibrozil has been reported to attenuate cardiac hypertrophy and oxidative stress in rats 
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subjected to abdominal aortic constriction (Singh, et al., 2015). Selective PPARβ/δ agonists 

have also been shown to have beneficial cytoprotective effects in rat cardiomyocytes 

subjected to oxidative stress (Barlaka, et al., 2015). To date there are no clinical trials that 

have studied PPARα agonists as specific metabolic therapies in HF. Activators of the PPAR 

regulator SIRT-1 however, such as resveratrol (which also activates AMPK by inhibiting ATP 

synthase; Price, et al., 2012), have been tested in the pre-clinical setting and were found to 

reduce oxidative stress in failing hamster hearts (Tanno, et al., 2010) and improve cardiac 

function in rats subjected to arterial ligation (Gu, et al., 2014). It has been identified 

however, that overexpression of SIRT-1 can impair diastolic function and in fact may cause 

DCM (Kawashima, et al., 2011). These studies suggest that increasing FA levels and 

metabolism in HF may help to preserve mitochondrial oxidative capacity. 

 

4.5 Glucose-Insulin-Potassium (GIK) infusion 

Infusion of Glucose-Insulin-Potassium (GIK) increases plasma glucose and cellular glucose 

uptake, whilst reducing lipolysis and lowering plasma free FAs, which by the Randle cycle, 

increases carbohydrate oxidation (Beadle & Frenneaux, 2010). Insulin also activates the 

phosphatidylinositol 3-kinase (PI3K)-Akt-eNOS pathway, increasing myocardial NO (which is 

deficient in HF) and has known cytoprotective effects (Yao, et al., 2014). Through these 

mechanisms myocardial oxygen consumption and ROS accumulation are decreased, 

improving overall myocardial energetics (Cave, et al., 2000). Our group has also shown that 

GIK therapy in addition to standard myocardial protection, in >200 patients undergoing 

cardiac surgery for critical aortic stenosis with significant LV hypertrophy, was associated 

with a lower incidence of low cardiac output syndrome (with a reduction in inotrope use in 

the early postoperative period) compared to the control arm (Howell, et al., 2011). 
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Mechanistically, we showed that GIK resulted in increased AMPK and Akt phosphorylation, 

and post-translational O-linked β-N-acetylglucosamination of cytoprotective myocardial 

proteins in LV biopsies from treated patients. A recent study by Worthley et al. (2007), 

demonstrated a mechanistic basis for beneficial effects with intensive insulin administration 

in 76 hyperglycemic diabetic patients following acute coronary syndromes (ACS). The 

authors showed reduced NO bioavailability in these patients (due to consumption of NO by 

superoxide), which led to impaired platelet responsiveness to its anti-aggregatory effects, 

and that this was reversed with the intervention (Worthley, et al., 2007). In a meta-analysis 

conducted by Fath-Ordoubadi and Beatt (1997), 9 randomized trials in which GIK therapy 

was used for the treatment of acute myocardial infarction (AMI) were collated and reviewed 

(Fath-Ordoubadi & Beatt, 1997). This meta-analysis revealed that in-hospital mortality was 

reduced following GIK therapy in these patients, when compared to placebo (16% vs 21%; 

P=0.004). However, in a more recent meta-analysis, no difference in mortality between the 

treated and untreated groups was found (Mamas, et al., 2010). In addition, the large-scale 

clinical trial, CREATE-ECLA, involving 20,201 patients with acute ST-segment elevation 

myocardial infarction (STEMI), revealed that GIK infusion had no significant effects on the 

rate of cardiac arrest, cardiogenic shock or mortality (Mehta, et al., 2005). This lack of effect 

on mortality was consistent between patients with and without HF as well as with and 

without diabetes. It appears therefore, that GIK may be most beneficial in the diabetic 

cohort of patients with ACS, however this may not translate to a reduction in mortality in 

excess of contemporary therapies for ACS.   

 

Recent clinical investigations have been conducted to specifically assess the use of GIK in 

the chronic HF setting (Kalay, et al., 2008; Nicolas-Robin, et al., 2008). Kalay and colleagues 
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(2008) treated 33 patients with HFrEF due to ischemic cardiomyopathy with GIK and 

analysed cardiac function and BNP levels. The authors observed an improvement in EF (from 

29.2 ± 10.3% to 40.8 ± 10.8%; P=0.001) following 1 week in the treatment group, and a 

significantly lower plasma BNP compared to the placebo group. Similarly, Nicolas-Robin and 

colleagues (2008) investigated the effects of GIK infusion in severe HF following brain death. 

They found that GIK treatment was effective at increasing EF (37 ± 8 vs 21 ± 6%, P<0.0001), 

without significantly altering blood pressure or heart rate.  

 

4.6 GLP-1 Analogues 

Glucagon-like peptide-1 (GLP-1) analogues, such as Exenatide, are commonly used for the 

treatment of type 2 diabetes mellitus for glycaemic control, and have also been shown to 

improve β-cell function and reduce body weight in these patients (Madsbad, et al., 2004; 

Zander, et al., 2002). Previous studies have demonstrated that GLP-1 infusion has beneficial 

effects on cardiovascular function in conjunction with its anti-diabetic properties by 

improving EF, NYHA functional status and peak exercise oxygen consumption (Sokos, et al., 

2006; Wroge & Williams, 2016). GLP-1 analogue infusion following AMI has also been shown 

to have cardioprotective benefits, likely from activation of the PI3K-Akt pathway and 

through increasing cytosolic cAMP, which inhibit the mitochondrial permeability transition 

pore (mPTP), and increase myocardial expression of PPAR-β/δ, nuclear factor related factor 

2 (Nrf-2), and haemoxygenase-1 (HO-1; Giblett, et al., 2016). Liraglutide therapy has also 

been shown to increase plasma ANP levels due to atrial GLP-1 receptor activation, which has 

potent natriuretic and antihypertensive effects via increased vascular cGMP (Kim, et al., 

2013). In both rat and mouse models of HF, exenatide treatment delayed the progression 

towards HF and increased survival rates following AMI (Wroge & Williams, 2016). 

https://en.wikipedia.org/wiki/Glucagon-like_peptide-1_agonist
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Furthermore, Nathanson and colleagues demonstrated that intravenous infusion of 

Exenatide, in patients with type 2 diabetes and HF, increased cardiac index (CI) and reduced 

PCWP (Nathanson, et al., 2012).  

 

4.7 Dichloroacetate (DCA)  

The pyruvate analogue DCA is an inhibitor of PDH kinase, which phosphorylates and inhibits 

PDH. Therefore DCA increases PDH activity and carbohydrate oxidation (Fillmore & 

Lopaschuk, 2013). DCA is an effective treatment for lactic acidosis by directing pyruvate 

conversion away from lactate and towards acetyl-CoA. As PDH activity is reduced in HF, DCA 

has been suggested as a potential treatment strategy (Lewis, et al., 1998). In a high salt diet-

induced HF model in rats, DCA treatment was found to increase glucose uptake, improve 

cardiac function by reducing progression to HF, and improve overall survival (Kato, et al., 

2010). Furthermore, in a set of in vitro cardiomyocyte studies, DCA was shown by the same 

group to reduce oxidative stress and prevent cell death (Kato, et al., 2010). DCA treatment 

also enhanced mitochondrial metabolism and suppressed apoptotic cell death in a neonatal 

mouse model of hypoxic ischemia (Sun, et al., 2016). In a clinical study by Bersin et al (1994) 

of patients with chronic HF, a 30-minute infusion of DCA increased LV function (increase in 

stroke volume: +5.3 ml/beat; P<0.02; and LV stroke work: +1.8 g/m2/beat; P<0.02) whilst 

also reducing myocardial oxygen consumption (from 19.3 to 16.3 ml/min; P=0.06). In 

addition, LV mechanical efficiency was improved (from 15.2% to 20.6%; P=0.03; Bersin, et 

al., 1994). Importantly however, long term use of DCA may result in peripheral neuropathy 

and this may limit its potential therapeutic applications (Calcutt, et al., 2009).   
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4.8 AMPK activators 

As a key regulator of cellular energy homeostasis, pharmacological activation of AMPK in the 

setting of metabolic syndromes such as HF has been suggested. In particular, indirect 

activators of AMPK such as 5′-aminoimidazole-4-carboxyamide-ribonucleoside (AICAR) and 

the biguanide metformin have shown promise (Kim & Dyck, 2015). As stated, activated 

AMPK increases insulin-independent glucose uptake via GLUTs 1 & 4, increases 

gluconeogenesis and glycolysis (via SIRT1-PGC1α signaling), increases lipolysis and FA 

synthesis, and increases free FA uptake and oxidation (by reducing malonyl CoA levels;   

(Zaha & Young, 2012). AICAR treatment reduced LV hypertrophy in rat cardiomyocytes 

(Chan, et al., 2004) and in pressure-overload mice (Li, et al., 2014). Oxidative stress-induced 

apoptosis and progression of HF were attenuated by metformin therapy in a canine model 

of rapid pacing-induced HF (Sasaki, et al., 2009). The authors observed a reduction in LVEDP, 

attenuated oxidative stress, and slower progression of HF in the treatment arm when 

compared to controls. In mice subjected to left coronary artery occlusion, metformin 

therapy improved survival by 47%, preserved LV structure and EF, and improved 

mitochondrial respiration and ATP production (Gundewar, et al., 2009). In a non-diabetic 

post-infarct rat model of HF, animals treated with metformin had significantly smaller 

infarct sizes, reduced LV cavity dilation, and a preserved EF when compared to untreated 

rats (Yin, et al., 2011). In addition, Xiao and colleagues found that metformin inhibited 

cardiac fibrosis in TAC mice (Xiao, et al., 2010). A retrospective analysis by Eurich et al (2005) 

of patients with HF and type 2 diabetes, demonstrated lower morbidity and mortality 

following metformin treatment (Eurich, et al., 2005). However, a randomized controlled trial 

by the same group in 2009 was abandoned due to significant issues with patient 

recruitment, stemming from the very high rates of metformin prescribing in clinical practice, 
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including those patients in whom metformin is contraindicated (Eurich, et al., 2009). 

However, others have shown that metformin is quite safe in advanced HFrEF (Shah, et al., 

2010), and further clinical studies are warranted.  

 

4.9 Mitochondrial-targeted antioxidants  

Coenzyme Q10 (CoQ10), also known as ubiquinone, plays an essential role in oxidative 

phosphorylation as it forms part of the ETC within the mitochondria. Although an 

endogenous substance, CoQ10 can also be given as a non-prescription nutritional 

supplement, and therefore the use of CoQ10 as a therapeutic treatment for cardiovascular 

disease has been investigated by a broad range of clinical studies (Sharma, Fonarow et al., 

2016).  Levels of CoQ10 tend to decline with age, and deficiency has been associated with 

diseases such as HF. In fact, a close positive correlation between HF severity and severity of 

CoQ10 deficiency has been identified (Oleck & Ventura, 2016). It has been proposed that 

the antioxidant and free radical scavenging properties of CoQ10 are important in 

combatting harmful effects from the high ROS observed in HF patients (Sharma, Fonarow et 

al., 2016). Furthermore, the vital role of CoQ10 in oxidative phosphorylation suggests that 

ATP generation may be directly enhanced via CoQ10 supplementation (Oleck & Ventura, 

2016). 

 

One of the first clinical trials of CoQ10 therapy in patients with HF was carried out in the 

1980s (Langsjoen, et al., 1985). Langsjoen and colleagues (1985) demonstrated, in a study of 

143 patients, an improvement in stroke volume and EF following CQ10 treatment over a 12-

week period. Further studies have confirmed these improvements in cardiac function in HF 

patients, but these have translated to only minimal improvements in mortality (Morisco, et 
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al., 1994; Munkholm, et al., 1999). Many of these trials however, were underpowered to 

assess this end-point, and were performed at a time that coincided with the advent of ACE-

inhibitor and β-blocker therapies, which revolutionized HF treatment and drastically 

improved survival in their own right. A meta-analysis by Sanders and colleagues reviewed 

the data collected from 11 randomized trials dated between 1966 and 2005 (Sander, et al., 

2006). They reported that isolated CoQ10 therapy caused a net 3.7% improvement in EF and 

an increase in CO, thereby improving systolic function in chronic HF, however the 

heterogeneity in ‘standard treatment’ over the course of these studies makes direct 

comparison difficult. The meta-analysis carried out by Fotino et al (2013), also 

demonstrated similar findings, reporting an increase in cardiac performance and 

improvement in NYHA functional class. However the effects on mortality still remain unclear 

(Fotino, et al., 2013). More recently, a randomized controlled trial (Q-SYMBIO), conducted 

with 420 patients with moderate to severe HF, has been completed (Mortensen, et al., 

2014). Patients were given 100 mg CoQ10 three times daily in addition to standard therapy 

for 2 years. The results of the study revealed an improvement in cardiovascular mortality 

(9% vs 16%, P=0.026), and reduced hospital admissions for HF (P=0.033) when compared to 

the placebo group. Furthermore, this study confirmed that long-term treatment with CoQ10 

is safe for use in HF in the context of modern therapies, however larger contemporary RCTs 

assessing the efficacy of CoQ10 in HF are still necessary. 

 

Most ‘conventional’ antioxidants that have been studied in clinical trials achieve low 

mitochondrial concentrations, which may limit their efficacy. However, a number of novel 

antioxidants have been developed that are selectively concentrated in the mitochondria 

because they are lipophilic and negatively charged (Munzel, et al., 2015). Most notable of 
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these are MitoQ and SS31. Developed in the late 1990s, MitoQ consists of CoQ10 

conjugated with the lipophilic compound triphenylphosphonium. This allows it to 

accumulate extensively and selectively within the mitochondria (Bayeva, et al., 2013). MitoQ 

therapy was found to protect cardiac function in a spontaneously hypertensive rat model of 

HF (Graham, et al., 2009) and to reduce mitochondrial oxidative stress and ROS levels in an 

anthracycline-induced model of cardiac failure (Chandran, et al., 2009). A limitation of 

MitoQ therapy and other triphenylphosphonium-conjugated antioxidants however, is that 

their uptake relies upon preservation of the mitochondrial membrane-potential, which may 

be altered in HF (Bayeva, et al., 2013). 

 

SS31 is a tyrosine-containing Szeto-Schiller peptide which selectively accumulates within the 

mitochondria, and is unaffected by membrane potential (Bayeva, et al., 2013). Within the 

mitochondria, SS31 binds to cardiolipin and protects the structure and organization of 

respirasomes, facilitating electron transfer and promoting oxidative phosphorylation (Szeto, 

2014). In a hypertensive mouse model of HF, SS31 treatment attenuated cardiac 

hypertrophy, cardiac fibrosis and diastolic dysfunction (Dai, et al., 2011). Furthermore, in a 

mouse TAC model, SS31 therapy ameliorated cardiac hypertrophy, cardiac fibrosis and 

systolic dysfunction and also abolished mitochondrial oxidative damage (Dai, et al., 2013).  

 

Elamipretide is a tetrapeptide that crosses the outer mitochondrial membrane and, like 

SS31, associates with cardiolipin in the inner mitochondrial membrane, stabilizing it and 

facilitating the maintenance of respirasome organization (Szeto, 2014). A first-in-human 

RCT, involving 118 first-time anterior STEMI patients undergoing successful angioplasty, 

investigated the additive effect of Elamipretide (MTP-131) vs placebo on infarct size, as 
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assessed by the creatine kinase myocardial band (CK-MB) area under the curve over 72h 

(Gibson, et al., 2016). The drug was well tolerated, however the results did not reach 

significance compared to the placebo group. In a recent study using a canine micro-

embolization model of HF, elamipretide administered for 3 months was associated with 

higher LVEF and reduced plasma BNP when compared to placebo (Sabbah, et al., 2016). 

Furthermore, elamipretide increased mitochondrial membrane potential, rate of ATP 

synthesis, and reduced mitochondrial ROS generation. Phase 2 studies investigating the 

effects of Elamipretide in patients with HF are ongoing (NCT02788747; NCT02814097).  

 

As previously stated, increased ROS in HF inhibits cytosolic CK activity and thereby impairs 

energy transfer from the mitochondria to the site of utilization in the cytosol (Rosca & 

Hoppel, 2013). As such, increasing CK flux via the inhibition of superoxide generation by the 

xanthine oxidoreductase enzyme (an important source of mitochondrial ROS) has been 

suggested as a potential therapeutic strategy in HF (Gavin & Struthers, 2005). A small and 

recent randomized trial, of 16 non-ischemic HFrEF patients, demonstrated increased 

myocardial CK flux following intravenous allopurinol therapy in parallel with increased 

cytosolic CK activity (Hirsch, et al., 2012).  

 

5. Conclusion  

Cardiac energetic impairment plays an important role in the pathophysiology of both HFrEF 

and HFpEF. Pharmacotherapeutic agents that reduce FA oxidation and increase glucose 

oxidation improve energy generation and show promise for the treatment of HF. Other 

agents that target mitochondrial oxidative stress are also being investigated. With this in 

mind, shifting the focus of new pharmacotherapies away from neurohormonal treatments 
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and towards metabolic modulation may help us to re-energize our efforts to improve 

mortality and quality of life for sufferers of this malignant disease.  
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Fig 1:  

 

Fig 1: An Overview of Cardiac Metabolism in the Healthy Heart 

Fatty acids and glucose are both key substrates of cardiac metabolism. Through various 

enzymatic pathways these substrates generate high levels of adenosine triphosphate (ATP) 

within the mitochondria of a heathy heart. ATP generation is essential in order to fuel 

continuous cardiac function. 

ADP, adenosine diphosphate; ATP, adenosine triphosphate; CoA, coenzyme A; CPT, carnitine 

palmitoyltransferase; ETC, electron transport chain; FADH2, flavin adenine dinucleotide; 

FAT, fatty acid translocase; GLUT, glucose transporter; H+, hydrogen ion; PCr, 

phosphocreatine; Pi, inorganic phosphate; PDH, pyruvate dehydrogenase; TCA, tricarboxylic 

acid; ROS, reactive oxygen species. 
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Fig 2:  

 

Fig 2: An Overview of Cardiac Metabolism in the Failing Heart and Targets of Metabolic 
Modulators 

Severe disturbances in cardiac metabolism decrease adenosine triphosphate (ATP) 

production in heart failure, including decreased fatty acid (FA) and glucose oxidation, and 

high reactive oxygen species (ROS) levels. Many drugs that modulate cardiac metabolism 

have been identified and differ in their mechanisms to restore cardiac energetic production. 

ADP, adenosine diphosphate; ATP, adenosine triphosphate; CoA, coenzyme A; CoQ10, 

coenzyme Q10; CPT, carnitine palmitoyltransferase; DCA, dichloroacetate; ETC, electron 

transport chain; FADH2, flavin adenine dinucleotide; FAT, fatty acid translocase; GIK, 

Glucose-Insulin-Potassium; GLUT, glucose transporter; H+, hydrogen ion; MCD, malonyl-CoA 

decarboxylase; PCr, phosphocreatine; Pi, inorganic phosphate; PDH, pyruvate 

dehydrogenase; TCA, tricarboxylic acid; ROS, reactive oxygen species.  
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Table 1: Metabolic modulator clinical status 
 
 
Key metabolic modulators that have been proposed for use as novel treatments for heart 
failure and their associated metabolic action and clinical status. 
 
AMPK, adenosine monophosphate-activated protein kinase; ATP, adenosine triphosphate; 
BNP, brain natriuretic peptide; CPT1, carnitine palmitoyltransferase 1; ETC, electron 
transport chain; GLP-1, glucagon-like-peptide-1; HPAECs, human pulmonary artery 
endothelial cells; LC 3-KAT, long-chain 3-ketoacyl-CoA thiolase; LV, left ventricular; LVEF, left 
ventricular ejection fraction; NYHA, New York Heart Association; PBMCs, peripheral blood 
mononuclear cells; PCWP, pulmonary capillary wedge pressure; PDK, pyruvate 
dehydrogenase kinase; PPARα, peroxisome proliferator-activated receptor α; ROS, reactive 
oxygen species; SIRT1, Sirtuin 1. 
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Metabolic agent Drug class 
Key metabolic 

mechanism 
FDA status 

Stage of development as 
metabolic modulator in HF 

Key results Key references 

Etomoxir 
Irreversible CPT1 
inhibitor 

Fatty acid oxidation 
inhibition  

Withdrawn from clinical use due to severe 
hepatotoxicity 

Increase in LVEF and CO following 
exercise vs placebo (P<0.01) 

Schmidt-Schweda and 
Holubarsch, 2000, 
Holubarsch et al., 2007 

Oxfenicine 
Irreversible CPT1 
inhibitor 

Fatty acid oxidation 
inhibition 

Pre-clinical data only 

Canine rapid pacing HF: 
Reduction in LV dilatation and 
hemodynamic alternations vs placebo 
(P<0.05) 

Lionetti et al., 2005 

Amiodarone 
Class III anti-
arrhythmic;  
CPT1 inhibitor 

Fatty acid oxidation 
inhibition 

FDA approved 
Ventricular 
arrhythmias 

Phase II 

Reduction in non-sustained ventricular 
tachycardia (P=0.06)and increase in LVEF 
(P<0.01) 
 
Suppressed ventricular arrhythmias and 
increased LVEF vs placebo (P<0.001) 

Hammer et al., 1989 
 
 
 
Singh et al., 1995 

Perhexiline 
Reversible CPT1 
inhibitor 

Fatty acid oxidation 
inhibition 

FDA approved 
Refractory angina 

Phase II 

30% increase in PCr/ATP ratio (P<0.01) 
Improvement in NYHA functional class vs 
placebo (P=0.036) 
 
Improvement in peak exercise oxygen 
consumption (P<0.001), quality of life 
(P=0.04) and LVEF (P<0.001) 

Beadle et al., 2015 
 
 
 
Lee et al., 2005 

Trimetazidine 
LC 3-KAT inhibitor 
Weak CPT1 inhibitor 

Fatty acid oxidation 
inhibition 

FDA approved 
Angina 

Phase II 
Increase in LVEF (P=0.002), improvement 
in NYHA functional class (P<0.0001) 

Fragasso et al., 2006 

Ranolazine 
Partial LC 3-KAT 
inhibitor 

Fatty acid oxidation 
inhibition 

FDA approved 
Angina 

Phase II 

Reduced LV end-diastolic pressure and 
PCWP vs placebo (P=0.04) 
 
Increase in LVEF in HFrEF patients 
(P=0.001) and HFpEF patients (P=0.003) 
vs placebo 

Maier et al., 2013 
 
 
Murray and Colombo, 
2014 

Malonyl-CoA 
decarboxylase 
gene silencer 

Malonyl-CoA 
decarboxylase 
inhibitor  

Fatty acid oxidation 
inhibition 

Pre-clinical data only 

Coronary artery ligated mice: 
31% higher LVEF in MCD knock-out vs 
wild-type mice 
Increase in ATP production (P<0.05) 

Masoud et al., 2014 

Fenofibrate PPARα agonist 
Fatty acid oxidation 
stimulation 

FDA approved 
hypercholesterolemia 

Pre-clinical data only 

Cultured HPAECs from HFrEF patients: 
Improved endothelial function vs control 
(P<0.05) 
 
Isolated PBMCs from HF patients: 
Improved endothelial function vs control 

Yin, Chen et al., 2013 
 
 
 
Huang et al., 2009 
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(P=0.0121) 

Gemfibrozil PPARα agonist 
Fatty acid oxidation 
stimulation 

FDA approved 
hypercholesterolemia 

Pre-clinical data only 
Abdominal aortic constricted rats: 
Reduced oxidative stress and 
hypertrophy (P<0.05) 

Singh et al., 2014a 
 

Resveratrol SIRT1 activator 

Fatty acid oxidation 
stimulation; 
Mitochondrial ROS 
scavenging 

FDA approved 
As dietary supplement 

Pre-clinical data only 

Mouse myoblast cell-line: 
Increased resistance to oxidative stress 
(P<0.05) 
 
Cardiomyocytes from failing hamster 
hearts: 
Suppressed fibrosis, preserved cardiac 
function, and improved survival (P<0.05) 

Tanno et al., 2010 
 
 
 
Gu et al., 2014 

GIK infusion Glucose and insulin  
Increases glucose 
oxidation 

FDA approved 
Type 2 diabetes 

mellitus 
Ischemic heart disease 

Phase II 

Increase in LVEF 1 week (P=0.001) and 1  
month (P=0.01) post-treatment, reduced 
BNP (P=0.01) vs placebo 
 
Increase in LVEF (P<0.0001) 

Kalay et al., 2008 
 
 
 
Nicolas-Robin et al., 2008 

Exenatide GLP-1 agonist 

Increases insulin 
release;  
Glucose oxidation 
stimulation 

FDA approved 
Type 2 diabetes 

mellitus 
Phase II 

Increased cardiac index (P=0.003) and 
improved PCWP (P=0.001) 

Nathanson et al., 2012 

Dichloroacetate 
PDK inhibitor 
(pyruvate analogue) 

Glucose oxidation 
stimulation 

/ Phase II 

Improved left ventricular mechanical 
efficiency  (P=0.03) and reduction in 
myocardial oxygen consumption 
(P=0.06) 

Bersin et al., 1994 

Metformin 

Biguanide oral 
hypoglycaemic agent; 
Indirect AMPK 
activation 

Glucose oxidation 
stimulation 

FDA approved 
Type 2 diabetes 

mellitus 

Pre-clinical data only  
Phase II trial aborted 

Canine rapid pacing HF: 
Reduced LV end-diastolic pressure and 
PCWP, reduced BNP expression (P<0.05) 
 
Reduced cardiac fibrosis (P<0.01)and 
improved LV end-diastolic pressure 
(P<0.05) 
 
Trial aborted due to patient recruitment  
as they were on therapies that were 
contraindicated 

Sasaki et al., 2009 
 
 
 
Xiao et al., 2010 
 
 
 
Eurich et al., 2009 
 
 
 

Coenzyme Q10 
Important component 
of ETC; Antioxidant 

Mitochondrial ROS 
scavenging 

FDA approved 
As dietary supplement 

Phase II 
Reduced cardiovascular mortality 
(P=0.026), all-cause mortality (P=0.018) 
and hospital stay (P=0.033) vs placebo. 

Mortensen et al., 2014 
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Improvement in NYHA functional class ( 
P=0.028) after 2 years 

MitoQ 
Selective 
mitochondria-targeted 
antioxidant 

Mitochondrial ROS 
scavenging 

FDA approved 
As dietary supplement 

Pre-clinical data only 

Spontaneously hypertensive rats: 
Reduced hypertrophy (P=0.002) and 
reduced systolic blood pressure 
(P=0.0001)and improved endothelial 
function vs control 

Graham et al., 2009 

SS31 
Selective 
mitochondria-targeted 
antioxidant 

Cardiolipin 
stabilization; 
Mitochondrial ROS 
scavenging 

/ Pre-clinical data only 

Transverse aortic constricted mice: 
Reduced hypertrophy (P<0.05), fibrosis 
(P=0.005) and abolished mitochondrial 
oxidative damage (P<0.05) vs control 

Dai et al., 2013 

Elamipretide 
Selective 
mitochondria-targeted 
antioxidant 

Cardiolipin 
stabilization; 
Cardiolipin peroxidase 
inhibition 

/ 
Pre-clinical data only – 

Phase II trials commenced 

Canine microembolization-induced HF: 
Increase in LVEF (P<0.05), reduced 
plasma BNP (P<0.001)and increased 
ATP/ADP ratio (P<0.001) vs placebo 

Sabbah et al., 2016 
 
NCT02788747 
NCT02814097 

Allopurinol 
Xanthine oxidase 
inhibitor 
 

Mitochondrial ROS 
scavenging 

FDA approved 
For hyperuricemia 

Phase II 
Increased cardiac PCr/ATP ratio (P<0.02) 
and mean CK flux (P<0.007) vs placebo 

Hirsch et al., 2012 
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