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Tremendous efforts have been made to elucidate the basis of cancer biology with the aim of 20 

promoting anticancer drug development. Especially in the past twenty years, anticancer drug 21 

development has developed from conventional cytotoxic agents to target-based and immune-22 

related therapies. Consequently, more than 200 anticancer drugs are available on the market. 23 

However, anticancer drug development still suffers high attrition in the later phases of clinical 24 

development   and is considered to be a difficult and risky therapeutic category within the drug 25 

development arena. The disappointing performance of investigational anticancer candidates 26 

implies that there are some shortcomings in the translation of preclinical in vitro and in vivo 27 

models to humans, and that heterogeneity in the patient population presents a significant 28 

challenge. Here, we summarize both successful and failed experiences in anticancer 29 

development during the past 20 years and help identify why the paradigm may be suboptimal. 30 

We also offer potential strategies for improvement.  31 

 32 

Current progress of anticancer drug development 33 

Cancer, which is characterized by uncontrolled growth of cells in the body, is one of the most 34 

difficult and complex diseases to treat [1-3]. Cancer patients suffer high mortality rates, which 35 

range from 1.1% for prostate cancer to 92.3% for pancreatic cancer within five years after 36 

cancer diagnosis. Therefore, anticancer drug research and development (R&D) is a challenging 37 

and daunting activity, and the likelihood of failure is high [4]. Fewer than 5% of developed 38 

anticancer compounds reach the market [5]. Furthermore, compared to other therapeutic 39 

categories such as cardiovascular disease and arthritis, an anticancer drug has approximately 40 

one-third to one-half greater failure rate per attempt [5, 6]. Although there are a lot of 41 

difficulties and barriers in anticancer drug development, drug makers are still pursuing 42 

opportunities for anticancer drug candidates due to their high cost-benefit rate [7, 8]. For 43 

example, oncology is ranked in the top therapeutic class by global sales which amounted to 44 

78.94 billion US dollars in 2015.  45 
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Approved anticancer drugs  46 

The ultimate task for an anticancer drug is to kill the tumor cells and/or control proliferation of 47 

tumor cells to prolong patient survival and improve their quality of life. However, there are 48 

many different mechanisms by which this can be achieved.  Based on the key biochemical 49 

mechanism of anticancer action, anticancer drugs can be are categorized as: (i) nucleic acid 50 

biosynthesis blocker; (ii) the structure and function of DNA interferer; (iii) transcription interferer 51 

and RNA synthesis blocker;(iv) protein synthesis and function interferer; (v) hormone 52 

homeostasis influencer; (vi) immune system modulators. Consequently, drug makers have 53 

produced four major groups of anticancer drugs including cytotoxic drugs (alkylating agents, 54 

antimetabolites, antibiotics, plant extracts, and miscellaneous cytotoxic drugs), targeted-based 55 

agents (e.g. bevacizumab), hormones and hormones antagonists (e.g. tamoxifen), and 56 

immunomodulators (e.g. nivolumab). From the classic “Seed and soil hypothesis” that first 57 

described metastasis  [9] to the first description of “immune-based cancer therapy” [10], every 58 

milestone made in the cancer field has driven a wave of anticancer drug development [11] 59 

(Figure 1). In the past two decades, anticancer drug development has moved on from 60 

conventional non-specific cytotoxic agents which often kill proliferating normal cells as well as 61 

tumor cells [12, 13]. In the place of cytotoxic agents, there is a  focus on specific target-based 62 

cancer therapy [14] designed to hit tumor cells only, and on immune-related modulators that 63 

help the patient’s immune system to defeat tumor cells [10, 15, 16]. Furthermore, a series of 64 

regulations, initiatives, and guidance have been developed to facilitate anticancer drug 65 

development [17, 18].  66 

According to the USA National Cancer Institute drug repository, there are a total of 227 67 

approved anticancer drugs (Supplementary Table S1) to treat about 40 different types of 68 

cancers. There are multiple drug options developed for leukemia, non-Hodgkin lymphoma and 69 

breast cancers. In contrast, for some cancer types such as penile or liver cancer, there is only 70 

one drug treatment available. On average, available anticancer drugs are used to treat 3.44 71 

cancer types. For example, nivolumab (Opdivo®) is a monoclonal antibody that works as a 72 

checkpoint inhibitor by inhibiting the programmed cell death receptor 1 (PD-1), which is 73 
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overexpressed on diverse of tumor cells and is in charge of down-regulating the immune 74 

system and suppressing T cell inflammatory activity. Activated PD-1 blocks T-cell activation and 75 

aids the tumor in escaping immune detection. By blocking this PD-1 activation, nivolumab aids 76 

the immune system in attacking the tumor cells [19, 20]. Nivolumab was initially approved as a 77 

first-line anticancer drug to treat advanced melanoma in 2014. In 2015, the indication of 78 

nivolumab was expanded to squamous cell lung cancer and as a second line anticancer drug to 79 

treat renal cell carcinoma . In addition, nivolumab was also approved in 2016 to treat classical 80 

Hodgkin lymphoma (cHL) in patients who have relapsed or progressed after post-81 

transplantation brentuximab vedotin and autologous hematopoietic stem cell transplantation 82 

(auto-HSCT) . In contrast, approximately 45% of rare diseases are rare oncological diseases [21], 83 

some of which have no treatment options available on the market [22]. There is no obvious 84 

correlation between the number of drugs to treat a particular cancer and the five-year survival 85 

rate/estimated new cases  for different cancer types, which may imply that developments in 86 

treatment is mainly based on the understanding of cancer nature history and on our 87 

accumulated knowledge on pathogenesis and etiology of cancer (Figure 2). 88 

Clinical trials related cancers and other neoplasms  89 

Anticancer drug development remains a major focus of clinical trials and approximately 40% of 90 

studies in clinicaltrial.gov are relevant to the condition “Cancers and Other Neoplasms” [23]. 91 

These clinical studies are widely sponsored by drug makers, academic researchers, and federal 92 

governments. For example, the NCI has supported or sponsored a total of more than 5000 93 

cancer-related clinical trials. Among 5154 cancer-related clinical trials, about 73% (3735/5114) 94 

of clinical studies are aimed at developing treatment options for cancers. These cancer 95 

treatment-related studies are in different clinical phases with 45% in phase I, 53% in Phase II, 96 

8.6% in Phase III and only 0.6% in Phase IV. This shows that although many compounds enter 97 

the early phases (I & II), relatively few make it to Phase III or beyond. 98 

High failure rate of anticancer drugs  99 
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Ongoing efforts have uncovered cancer genetics, novel therapeutic targets, and clinical 100 

biomarkers related to survival rate, which have led to better understanding of the molecular 101 

basis of cancer. However, it seems that our ability to translate these research findings into 102 

more effective clinical cancer treatments is still remarkably limited [24, 25]. Many factors are 103 

responsible for a high attrition rate of anticancer drug development at each phase from 104 

preclinical to post-marketing of drug development.  105 

In vitro assay approaches 106 

The key challenge for preclinical in vitro and in vivo tools such as cancer-cell-lines and animal 107 

models is whether they can be used to make reliable “go/no go” decisions on which candidates 108 

to progress into the clinical phases. Concerns have been raised as to whether cancer-cell-line 109 

based assay systems can meaningfully reproduce the tumor cell behaviors in cancer patients. 110 

High-throughput screening (HTS) based In vitro assays have a lot of advantages since they can 111 

be used to conduct a rapid screen of anticancer drug candidates against different endpoints 112 

using different cancer cells [26, 27]. In the current preclinical setting of anticancer discovery, 113 

HTS in vitro assays together with combinatorial chemistry have become a standard tool to 114 

readily identify agents with clinical potential. In vitro assays have been widely applied in various 115 

cancer preclinical studies and diverse platforms such as NCI60 [28], LINCS project led by NIH 116 

[29], and anticancer drug sensitivity studies from both the Broad Institute [30] and the 117 

Wellcome Trust Sanger Institute [31].  118 

There are two major types of in vitro assay approaches for anticancer drug discovery – 119 

phenotypic screening and target-based screening. Unlike the target-based approaches based on 120 

engineered cloned genes either in cell-based or biochemical in vitro assays, phenotypic 121 

screening assays have relatively straightforward endpoints for ameliorating the cancer 122 

phenotype, which are exemplified by selectively killing cancer cells, eliminating cancer cell 123 

proliferation or decreasing the cancer cell size [32]. There is some debate on which technology 124 

contributes more to discovery of first-in-class drugs [33, 34]. Based on FDA approved drugs 125 

statistics (1999 ~ 2008), phenotypic screening took more first-in-class drugs to the market than 126 
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target-based approaches. However, another much larger scale of studies based on from 1999 to 127 

2013 drew an opposite conclusion that 78 of 113 FDA-approved first-in-class drugs are based on 128 

target-based approaches. In the anticancer drug area, target-based approaches introduced 129 

more anticancer drugs to the market [35], but both types of screening have their own values 130 

and can lead to viable drugs [37, 41]. The target-based screening approach is hypothesis-driven, 131 

in which cancer disease modeling and pathway analysis leads to a candidate protein or 132 

proteins. Compounds that perturb or interfere with the candidate protein are considered as 133 

lead compounds. The target-based approaches have had a lot of success, especially in kinase 134 

inhibitors [36]. Between 1999 and 2013, 21 of 31 oncology new molecule entities (NMEs) 135 

discovered by target-based approaches are kinase inhibitors [32]. However, the target 136 

identification and validation for anticancer drug development is of great challenge. First, 137 

validated anticancer drug targets are far more difficult to identify than we expected. Candidate 138 

anticancer targets are initially identified from different biological based HTS efforts, which is 139 

mainly hypothesis-driven. Therefore, further in-depth validation experiments are needed to 140 

establish that the proposed candidate targets have desired therapeutic effects and low risk 141 

[37]. There are fewer than 100 anticancer targets implicated in FDA-approved anticancer drugs, 142 

which is still a small proportion compared to the 20,000 human genes that encode 143 

approximately 500,000 proteins in the human genome [38, 39]. Furthermore, due to the limited 144 

and incomplete knowledge of cancer-related proteins involved in specific human malignancies, 145 

even drug candidates with high potency identified in the screening process may have little or no 146 

value. For example, colorectal tumors harboring a KRAS mutation that activate the EGFR 147 

protein signaling pathway fail to respond to EGFR inhibitors such as cetuximab (Erbitux) in 148 

mutated KRAS-related colorectal patients [40]. Also, some cancer-related tumor-suppressor 149 

genes such as RAS are not directly “druggable”, which creates another hurdle to apply target-150 

based screen approaches [41, 42]. For example, the GTPases were identified as the key 151 

enzymes to activate RAS protein. Therefore, efforts were made to inhibit GTPases to control 152 

RAS activation. However, the low molar affinity between small molecules and GTPases made 153 

inhibiting GTPases untenable. Furthermore, RAS protein function is highly associated with the 154 

inner face of the plasma membrane, further complicating controlling RAS activation, since small 155 
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molecules could not reach the RAS protein. [43]. Some advanced cell-based assay technologies 156 

including 3D in vitro assay models [44], organ-on-a-chip systems [45-47], cellular imaging [48, 157 

49], and iPSC stem cells [50] may improve the performance of target-based in vitro assay 158 

performance. For instance, the multicellular co-culture system mimics the tumor 159 

microenvironment by migrating tumor cells to adjunct microenvironment cell types such as 160 

endothelial cells and fibroblasts, thereby modeling the complex pathological features of 161 

different cancer types. This strategy has been applied for drug efficacy screening for breast 162 

cancer [51].  163 

Meanwhile, phenotypic based screening seems to be experiencing a resurgence in anticancer 164 

drug discovery [52, 53]. Phenotypic in vitro screening is considered as a semi-empirical 165 

approach that does not require knowledge of the underlying mode of action and molecular 166 

mechanisms of the compounds being evaluated. Cancer phenotypes can be observed in cell 167 

lines, and thus compounds that disrupt that phenotype may be viable drugs.  In particular, 168 

human primary cells, immortalized primary cells, and iSPCs have been widely applied to the 169 

phenotypic screening assays, which has provided a lot of success in anticancer drug discovery 170 

[34]. One example is carfilzomib, which is a selective proteasome inhibitor used to treat 171 

multiple myeloma after the patients received prior therapies such as bortezomib and 172 

lenalidomide. Proteasome inhibitors could induce apoptosis and inhibited tumor growth. 173 

Carfilzomib could reversibly bind to the chymotrypsin-like (ChT-L) active sites in the 20S 174 

proteasome, which potently control the cell growth and proliferation. The efficacy of 175 

carfilzomib was originally discovered by using a cytotoxicity screen [54]. One difficulty of the 176 

phenotypic screening approach is dosage optimation since there is no clear target for the 177 

cancer types. Other challenges include optimising chemistry against an unknown target and 178 

prediction of unwanted toxicities that may normally be elucidated from target distribution.  179 

Besides considerations regarding the biological nature of cell-based assays for anticancer drug 180 

discovery, the quality of HTS assays and how to interpret the results also play a role in better 181 

harnessing the technology. One example is the inconsistency in two large drug response data 182 

sets from the Cancer Cell line Encyclopedia (CCLE) [30] and the Genomics of Drug Sensitivity in 183 
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Cancer [31] based on cell-based HTS assays [55]. There are 15 common drugs characterized in 184 

431 cancer cell lines between the two studies, which showed a substantial divergence in drug 185 

response, although the gene expression similarity is well-established [55, 56]. There are a lot of 186 

underlying reasons contributing to the divergence. The batch effect of fetal bovine serum used 187 

in the different studies, the mathematical equation employed in curve-fitting of concentration-188 

response curves, and even the coating on plastic wells may be influential. Another potential 189 

influence on this divergence is which measure, quantitative or qualitative, should be used as 190 

the assay endpoint.  For example, the method employed to measure the metabolic activity by 191 

assessing levels of the energy transfer molecule ATP, could influence the assay’s endpoint, 192 

contributing to the observed divergence.  Due to these concerns, in vitro assay results should 193 

not be interpreted as a pure statistical measurement, but rather interpreted in the context of 194 

the generated hypotheses that each drug was tested under. [57]. Undoubtedly, the 195 

reproducibility of cell-based screening assays for anticancer drug development is of great 196 

importance [58, 59]. Considering cell-based assays are plagued with the concerns of false 197 

positive and false negatives [60], the statistical practices [61] and application domain of assays 198 

[62] need to be standardized and defined [63]. Wassermann et. al. [64] revisited the screening 199 

collection that never showed biological activity based on HTS techniques, and therefore 200 

became defined as 'dark chemical matter' (DCM). It was found that some of the false negative 201 

compounds based on HTS screening did show biological relevance under the quality control 202 

assays such as prospective reporter-gene assay gene expression experiments. Therefore, critical 203 

data quality control and wise design of  experiments is a “must” to ensure reproducible and 204 

reliable results generated from cell-based assays [65].  205 

Animal models 206 

Animal models are widely used to verify the biological relevance of the identified target for 207 

tumor response, to predict the first-in-human (FIH) dose and maximum tolerated dose (MTD), 208 

to determine the potency of anticancer drug exposure target, and to detect the qualified pre-209 

clinical prognosis, diagnosis and predictive biomarkers [66, 67]. The principle behind animal 210 
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models is that the physiological features of animals closely resemble humans in genetic, 211 

epigenetic, and environmental factors, which is open to debate. 212 

The lessons learned from animal models in anticancer drug development are mainly related to 213 

how animal models could better resemble cancer pathophysiology in humans. The challenges in 214 

extrapolation from animal studies to humans for anticancer drug development may be not only 215 

attributed to the technical and biological transferability of the animal model itself but may also 216 

involve the design, execution, and interpretation of the results from animal models [68]. Below 217 

we explore lessons learned on how to improve the animal model performance such as animal 218 

model application, and PK/PD model optimization (Figure 3).  219 

Application domain of animal models  220 

Various cancer animal models have been developed to mimic patient tumors, including human 221 

cancer cell-line based xenograft models [69], patient-derived xenografts (PDXs) [70-72], 222 

immune-competent models [73], and genetically engineered mice (GEM) [74]. The pros and 223 

cons of different kinds of animal models for anticancer drug development have been intensively 224 

discussed [66, 75-77]. The human cell-line based xenograft model was established by using the 225 

mouse as an immune-deficient host for transplanted human cancer cell-line growth. The classic 226 

example of human cancer cell-line based xenograft model is so called athymic ‘nude 227 

mouse'[69]. The transplanted human cancer cell-line model is easily tractable, controlled and 228 

experimentally convenient. However, there are also some shortcomings of this cell-line based 229 

xenograft models. First, the nude animal is immune-deficient, which does not resemble the 230 

immune environment of human tumors. Therefore, the human cell-line based xenograft models 231 

are not applicable for immune-related anticancer drug development. Second, because cell lines 232 

adapt through the clonal selection process as they grow on plastic, they do not repeat the 233 

genetic diversity seen in human tumors, nor do the cell lines reflect intratumoral heterogeneity. 234 

Additionally, the human cancer cell line is typically extracted from early-stage cancer patients.  235 

Finally, the subcutaneous location may not foster important tissue-specific stromal infiltration, 236 

which means the model is a poor fit for soft tissue sarcomas with typical tumor growth. Due to 237 
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these limitations, some reports suggest combining the different human cell line types in 238 

xenograft models may improve the performance, which has been successfully for ER+ and 239 

triple-negative breast cancers[78]. The human PDX model, which directly implants the human 240 

tumors into a mouse, has been widely applied in both academia and industry for anticancer 241 

drug development [79, 80]. The PDXs suffer similar concerns as the human cancer cell-line 242 

based xenografts regarding to lack of immune features and difficulty of tumor growth in 243 

subcutaneous regions. However, the PDXs could better replicate the mutational heterogeneity 244 

and reflect the intricacies of tumor subpopulations [81]. For example, some mutation-related 245 

cancer subtypes such as mutated ESR1 related ER+ breast cancer could be identified only in the 246 

PDX model but did not show any signal in cell-based xenograft [82]. One of the big concerns of 247 

animal models is how to mimic the immune-comprised systems of cancer patients in the mice. 248 

The immune-competent models and genetically engineered mice (GEM) successfully reproduce 249 

the immune features and tumor interaction in animals by employing different bioengineering 250 

techniques [83]. The immune-competent model is established by transplanting mouse cell line 251 

and tumor tissues to the immune-competent host with immune cells and fibroblast 252 

incorporated. The immune-competent models provide interactive immune system features and 253 

mimic tumor microenvironment, thus more closely approximating human cancers. However, 254 

the limited available cell lines for immune-component models coupled with rapid and 255 

uncontrolled cell growth limit its wide application[66]. The GEM model aims to manipulate the 256 

mouse genome to introduce the germline mutation or conditional mutations for different 257 

tumor types. Especially with the rapid development of gene editing technology, the GEM model 258 

has a promising future for cancer etiology, epigenomics and personalized cancer treatment 259 

[74]. One promising example of application of the GEM model for anticancer development is 260 

selumetinib (clinical Phase I/II/III), which is designed for multiple cancer types including triple-261 

negative breast cancer [84], non-squamous cell lung cancer [85], pancreatic cancer [86], and 262 

neurofibroma [87, 88]. One of the indications is KRAS-mutant non-small cell lung cancer 263 

(NSCLC). A co-clinical trial that combines preclinical and clinical models was employed to 264 

observe the drug response (selumetinib and docetaxel) for NSCLC in humans and in genetically 265 

engineered mice and found the selumetinib could significantly increase the efficacy of 266 
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docetaxel, a standard chemotherapy [85]. Meanwhile, there are also many cases of failure of 267 

animal models in anticancer drug development (Table 1).  268 

No single animal model will fit all purposes. For example, the cell-based xenografts and human 269 

PDXs models are more suitable for tumor-cell-derived signal detection such as cell death and 270 

proliferation but not fit for immune-related anticancer drug discovery. GEM models and 271 

immune-component models may not be useful for intratumoral subclonal identification due to 272 

limited types of mutations and technical hurdles for monitoring internal organs[89]. A 273 

combination of animal models and cell based in vitro assays could provide more robust results. 274 

Furthermore, some novel animal models such as the 3D organoids based cell-line xenografts 275 

may also offer alternative means to further update and improve animal model 276 

performances[90].  277 

PK/PD model optimization  278 

Anticancer drugs are considered as one of the most toxic drug classes in the therapeutic 279 

spectrum [12, 91, 92]. Associated adverse drug reactions cover almost every organ system and 280 

are known to cause multiple organ toxicities, which could be explained by the nature of 281 

anticancer drugs which are intended to kill cells together with their tendency to off-target 282 

promiscuity [93]. A major difficulty is the unexpected side effects observed in the clinical phase 283 

that could not be detected in animal models, and vice versa. Dose is the key factor to balance 284 

the efficacy and safety profiles for anticancer drugs [94-96]. Due to the anticipated toxicities, 285 

Phase I clinical trials are often conducted in cancer patients under The International Council for 286 

Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH)S9 . 287 

However, for some less toxic anticancer therapies such as targeted therapies, Phase 1 trials may 288 

be conducted in volunteers under ICH M3.  For these latter trials, one of the most important 289 

tasks for animal models is to establish the maximum recommended starting dose (MRSD) for 290 

clinical Phase I study for healthy human volunteers. The FDA has developed guidelines for the 291 

industry such as “Guidance for Industry Estimating the Maximum Safe Starting Dose in Initial 292 

Clinical Trials for Therapeutics in Adult Healthy Volunteers”. The conventional MRSD dose 293 
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prediction strategies are based on no observed adverse effect level (NOAEL) [97] and the 294 

minimum anticipated biological effect level (MABEL) [98] approaches and have been widely 295 

applied to first-in-human (FIH) dose estimation. Currently, the FIH dose is typically calculated by 296 

using one tenth of the toxic dose in 10% of the animals (STD10), which is the dose that causes 297 

severe toxicity in 10% of rodents [99]. Typically, at least two species are required in 298 

toxicological studies: one rodent such as the rat or mouse) and one nonrodent such as the dog, 299 

minipig or monkey.  300 

PK/PD models play an increasingly important role in preclinical studies [100]. Since anticancer 301 

drugs often have a very narrow therapeutic index (TI), a more precise PK/PD model is required 302 

to estimate the FIH dose.  Novel PK/PD models tends to combine diverse properties including 303 

pharmacology ( potency, selectivity), preclinical safety profiles (doses and exposure related to 304 

toxicity), risk assessment (target and chemical assessment) and surrogate biomarkers such as 305 

those related to clinical and toxicity endpoints into the same framework to better predict the 306 

FIH dose [101-104]. One recent example added a pharmacogenomics dimension to the PK/PD 307 

model to define equivalent PK/PD dosing regimens for different genetically distinct tumor 308 

models [105]. Such a concept has been successfully used to define the FIH dose of epidermal 309 

growth factor receptor (EGFR) inhibitors such as gefitinib for different EGFR mutation carrier 310 

groups [106]. 311 

Preclinical models may perform well and effectively, but only when the context is well -defined 312 

and data are interpreted with care. To reproduce successful cases and apply valuable 313 

experience into anticancer drug preclinical practice, the comprehensive and critical re-314 

evaluation of cell-based and animal models is essential. Some of the large-scale consortium 315 

efforts and available public datasets make it possible to conduct meaningful retrospective 316 

analyses of quality control  suitability of the disease context and the utility of preclinical 317 

anticancer tools [107-109]. Furthermore, some alternative approaches such as the Phase 0 318 

clinical trial may be a promising complementary tool in pre-clinical anticancer models [110-319 

112]. A phase 0 clinical trial is conducted prior to the conventional clinical phase I dose 320 

escalation, tolerability assessment, and safety evaluation with limited human expose (usually 321 



 

13 

 

10-15 patients) and short period (typically with one week) and aims to optimize the PK/PD 322 

features especially oral bioavailability and half-life of anticancer drugs. 323 

 324 

Divergence between Clinical Phase II and Phase III 325 

According to statistics of Clinical Development Success Rates between 2006-2015 326 

(https://www.bio.org/sites/default/files/Clinical%20Development%20Success%20Rates%20200327 

6-2015%20-%20BIO,%20Biomedtracker,%20Amplion%202016.pdf), anticancer drug 328 

development suffers a higher failure rate  (75.4%) from clinical Phase II to Phase III when 329 

compared to non-oncology drugs (65.7%). The FDA recently published a report entitled “22 330 

Case Studies Where Phase 2 and Phase 3 Trials Had Divergent Results” 331 

(http://www.fda.gov/aboutfda/reportsmanualsforms/reports/ucm535541.htm). Among the 22 332 

cases, five drugs (5/22=22.7%) are oncological agents (see Table 2). The major reason for 333 

anticancer drug failure from clinical Phase II to Phase III is lack of efficacy [113, 114]. 334 

Improvement of survival rate in patients is considered as the gold standard for anticancer drugs 335 

in clinical trial. Clinical endpoints such as overall survival (OS), disease-free survival (DFS), 336 

progress-free (PFS), time to progression (TTP) are also widely applied in cancer clinical studies.  337 

One of the difficult lessons from the past few decades of anticancer drug development is that 338 

positive results in Phase II do not guarantee a subsequent success in Phase III. This could be 339 

because the limited patient population in Phase II trials may not accurately reflect the broader 340 

patient population in Phase III trials. Furthermore, clinical endpoints in Phase II may be related 341 

to controlling signs of disease over the short-term such as PFS  which is easier to achieve than 342 

the desired clinical endpoint for success in Phase III, which is lengthening lifespan . Thus, these 343 

two endpoints may not correlate. In addition, the statistical measure in the smaller Phase II 344 

population may suffer from over-fitting, in which the benefits ascribed to the drug treatment 345 

are actually the result of random noise, and thus do not translate into larger populations. 346 

Specifically, the statistical model may outperform within the context of Phase II but not within 347 

https://www.bio.org/sites/default/files/Clinical%20Development%20Success%20Rates%202006-2015%20-%20BIO,%20Biomedtracker,%20Amplion%202016.pdf
https://www.bio.org/sites/default/files/Clinical%20Development%20Success%20Rates%202006-2015%20-%20BIO,%20Biomedtracker,%20Amplion%202016.pdf
http://www.fda.gov/aboutfda/reportsmanualsforms/reports/ucm535541.htm
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the extended patient population in the clinical Phase III.  Alternatively, there may be simple bias 348 

which is less likely to occur in the larger patient population in Phase III.  349 

Elimination of the divergence between Phase II (“therapeutic exploratory”) and Phase III 350 

(“therapeutic confirmatory”) is the key to improving successful rates for anticancer drug 351 

development.  Patient recruitment in the late-stage clinical trials has been a great stumbling 352 

block. Around 20% of cancer clinical trials were never finished due to insufficient patient 353 

enrollment, which is largely attributed to uncertain benefit to the cancer patients participating 354 

in the trials [115] n addition, more sensitive surrogate biomarkers are needed for use in the 355 

clinical trials. Patient recruitment in a clinical trial is mainly based on the pathology and 356 

morphology of diseases, which aims to collect homogeneous populations. However, patients 357 

collected in Phase III are substantially genetically heterogeneous [116]. For instance, the 358 

patients may carry different genetic mutations that are related to wholly different cancer 359 

subtypes, and therefore the compound under evaluation may have widely varied effects on 360 

these diverse tumors. With the advances in high-throughput “omics” techniques, it is possible 361 

to collect more information on patients such as genetic background and epigenetic properties 362 

to facilitate patient recruitment in Phase III.  363 

The divergence among the population does not just exist in different clinical trial phases but 364 

also manifests in the post-marketing stage. One example is bevacizumab (Avastin®). 365 

Bevacizumab  a vascular endothelial growth factor (VEGF) inhibitor, is the best-selling 366 

anticancer drug in the world, which was approved to treat multiple cancers such as colon 367 

cancer, lung cancer, and glioblastoma. In 2008, bevacizumab was approved by the FDA to treat 368 

metastatic breast cancer. However, this approval was revoked by FDA due to hypertension and 369 

kidney toxicity and poor progression-free survival profiles from post-marketing studies [117]. 370 

Another example is ponatinib, a BCR-ABL tyrosine kinase inhibitor (TKI). In clinical Phase II 371 

studies of ponatinib, there were a total of 449 patients involved. Among the 449 patients, only 372 

the 128 patients carrying the T351l mutations in BCR-ABL had a positive response to the 373 

treatment. However, ponatinib was given fast-track approval by the FDA on the basis of these 374 

Phase II results, and as such, was approved for chronic myeloid leukemia (CML) for the general 375 
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population in December 2012. Then, some published results the following year reported 376 

incidents of severe cardiovascular toxicity in patients taking ponatinib, causing the FDA to 377 

suspend approval of the drug. Just seven weeks later, the FDA provided guidance to 378 

reintroduce ponatinib back to the U.S. market for a more specific patient group (T351I mutation 379 

carriers) with CML [118]. These two examples highlight the divergence between the clinical 380 

study and general population groups and its consequence to the anticancer drug approval 381 

process, which also stimulates us to rethink the current clinical design of anticancer drug trials. 382 

First, the current clinical endpoints for anticancer drugs are focused on the time-to-event type, 383 

which creates a lot of problems when translated from one clinical phase to another due to both 384 

unclear biological meaning and statistical measures.   More effective biomarkers relevant to 385 

cancer pathology and drug pharmacology are urgently needed to improve the translation from 386 

one clinical trial to the next. Biomarkers that  more accurately reflect the efficacy and clinical 387 

benefits of anticancer treatment may improve performance of the compounds in clinical trials. 388 

Examples of possible biomarkers include circulating tumor DNA, concentration of antigen KI67 389 

in the serum level, and circulating tumor cell (CTC) counts [117]. Secondly, the clear endpoints 390 

and desired target population should be fully taken into consideration in the design of clinical 391 

trials and patient recruitments. Specifically, the genetic background of recruited patients could 392 

be helpful to identify patients with specific genetic mutations most likely to benefit from the 393 

study drug. With the decreased cost (less than $1,000) of sequencing techniques and advanced 394 

PCR assays, it is more possible to implement genetic testing as part of  clinical trials. 395 

Anticancer drug resistance  396 

One of the chief lessons that has emerged in the past two decades of anticancer drug 397 

development is that the promise of targeted therapy is tempered by the realities of drug 398 

resistance. Cancer drug resistance, in which the tumor cells are either inherently unresponsive 399 

to the treatment drug or develop changes that allow them to tolerate the drug, is one of the 400 

biggest challenges in anticancer drug development. Some known mechanisms that promote or 401 

induce anticancer drug resistance include drug transport and metabolism such as drug efflux 402 

and drug activation/inactivation, drug target alterations, DNA damage repair and downstream 403 
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resistance mechanisms such as deregulation of apoptosis and autophagy [119]. These 404 

mechanisms are divided into two categories: intrinsic and acquired. Intrinsic resistance means 405 

the resistant is pre-existing in the tumor cells before the chemotherapy. Acquired resistance 406 

occurs in the cancer development process, which can involve sub-cloning of tumor somatic 407 

mutations, increased target expression level and recruitment of alternative compensatory 408 

signaling pathways [120]. Moreover, molecular and genetic heterogeneity present in tumors 409 

contributes substantially to drug resistance [121].  410 

Although diverse underlying mechanisms of anticancer drug resistance have been deciphered in 411 

the past two decades, we still have a long road ahead before we have sufficient knowledge to 412 

overcome this issue.  [119]. Often tumors display multiple drug resistance (MDR), which is one 413 

of the major reasons for ineffectiveness and toxicity of chemotherapeutic agents [122]. The 414 

ATP-binding cassette (ABC) transporter family was identified as one of the causal factors for 415 

MDR. There are a total of 49 ABC transporters. However, very few proteins such as MDR1, 416 

MPR1, and BCRP have has been studied and identified in relation to MDR [123]. Initial efforts to 417 

develop ABC transporter inhibitors such as MDR1 inhibitors to overcome tumor resistance have 418 

yielded disappointing clinical outcomes. The first generation of MDR inhibitors had low affinity 419 

for ABC transporters, and increased dosing caused unexpected side effects [124]. The second 420 

and third generation MDR inhibitors had improved pharmacological profiles with higher affinity 421 

to ABC transporter. However, the clinical effectiveness is still suboptimal. For instance, the 422 

MDR1 inhibitor tariquidar was proposed as an adjuvant against multidrug resistance in late-423 

stage breast cancer. However, the clinical trial (phase II) showed no benefit for patients’ 424 

survival[125]. The possible reason may be the functional redundancy within the ABC 425 

transporter family or that other contributors, beyond ABC transporters, affect tumor resistance. 426 

Some preclinical cell-based HTS screening panels has been developed for ABC transporter 427 

screening, which could be important reference information in monitoring potential MDR [126]. 428 

Furthermore, rational drug combinations have been proposed to conquer MDR by targeting 429 

multiple components of the cancer process to improve the efficacy and overcome tumor 430 

resistance [127]. Research increasingly indicates that drug combinations that target multiple 431 



 

17 

 

pathways are more effective than targeting multiple targets within the same cancer-related 432 

pathway [119]. Tumors evolve over time in terms of their epigenetics, genetics and gene 433 

expression levels, which causes tumor initiation, metastasis, and drug resistance. Mutations 434 

that arise in the early stage tumors could further evolve into very different mutation types, 435 

which may cause the tumor to adapt and develop resistance to treatment. One example of 436 

evolving mutations is provided by gefitinib, which is an epidermal growth factor receptor 437 

(EGFR) inhibitor designed for non-small-cell lung cancer (NSCLC) treatment. Gefitinib is effective 438 

in patients with specific activating mutations in EGFR such as L858R in exon 21 but these 439 

benefits often last only for the first year of treatment. However, the evolving tumor acquires a 440 

new gatekeeper mutation named EGFR-T790M to maintain the genetic information and control  441 

the tumor growth, which cause 50% of patients to experience drug resistance and ultimately 442 

treatment failure [128]. In some cases, researchers have designed second-generation drugs that 443 

overcome the initial resistance. One example is the BCR-ABL1 oncogenic kinase inhibitors for 444 

chronic myeloid leukemia (CML). The first BCR-ABL1 inhibitor was effective but patients 445 

relapsed due to sub-cloning of the T315I mutation of BCR-ABL1. Drug makers developed the 446 

second generation of BCR-ABL1 inhibitors such as dasatinib and bosutinib against the T351I 447 

mutation in BCR-ABL1 [129].  448 

With the wide spectrum of cancer drug resistance mechanisms, it seems unlikely that the 449 

dream of a “magic bullet” to cure  cancer will ever be realized [119]. However, we should not 450 

lose sight of significant progress being made as anticancer drugs have become more precise 451 

and have prolonged and improved patients’ lives. With the assistance of modern omics 452 

techniques, we are experiencing a substantial increase in our ability to identify the molecular 453 

mechanisms for cancer drug resistance. Thus, the cumulative experience of cancer drug 454 

resistance research, from conventional chemotherapy to target-based therapies, can serve as 455 

the foundation to drive further research and to increase the number and effectiveness of 456 

anticancer drugs. 457 

New trends for anticancer drug development 458 
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As novel technology is increasingly applied to the challenge of cancer, new opportunities are 459 

emerging to innovate in anticancer drug development. Here is a glimpse at some of the great 460 

strides including precision medicine, cancer stem cells, and drug repositioning (more in Figure 461 

4). 462 

Precision medicine 463 

Precision medicine is an approach to integrate molecular and clinical information to better 464 

understand of disease by using novel genomics techniques such as next generation sequencing 465 

[18, 130]. Precision medicine aims to utilize the unique genetic profiles of patients to look for 466 

better treatment solution, which provides the right drug, the right dose to the right patients 467 

with reduced safety concern.  468 

Targeted cancer therapy as an important practice of precision medicine is considered as an 469 

indispensable components of current anticancer drugs development [131]. Unlike the 470 

conventional chemotherapy, targeted cancer therapy works on the specific target in cancer-471 

related molecular pathways to treat cancer. Targeted cancer agents are broadly divided into 472 

small molecules and monoclonal antibodies. The small molecule based targeted cancer agent is 473 

able to interact with the target inside the cell by penetrating the cell membrane, and 474 

monoclonal antibodies are designed to target specific antigen on the cell surface. For example, 475 

trastuzumab as a monoclonal antibody is designed to treat HER2 related breast cancer, which is 476 

only beneficial to the patients with HER2 protein overexpressed [132]. The precision medicine 477 

provides more deep resolution of genetic feature of cancer patients, which makes the patients 478 

with different genetic mutation as a group to receive the specific treatment option possible. 479 

The successful examples include imatinib for patients with chronic myeloid leukemia carrying a 480 

BCR-ABL mutation [133] and vemurafenib for those with melanoma or thyroid cancer who have 481 

the BRAF V600E variant [134]. The implementation of precision medicine requires the 482 

integration of molecular diagnosis into the anticancer drug discovery process [135]. Currently, 483 

there are approximately 35% (71/203) established pharmacogenomics biomarkers for approved 484 

anticancer drugs and incorporated into FDA-approved drug labeling .  485 
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The qualified biomarker or “fit-for-purpose” biomarker is the key to precision medicine practice 486 

[136]. Rich resources on genetic variants and their relationship in human cancers are available 487 

[137, 138]; however, understanding of how to leverage these findings into clinical practice 488 

(from the relationship, correlation to translation) is still suboptimal. Furthermore, there are 489 

some concerns over how many patients could actually benefit from precision medicine [139, 490 

140]. One disappointing report on personalized cancer treatment based on genetic biomarkers 491 

found only 30% patients had a positive response to personalized cancer treatment strategy and 492 

this amounted to an average two-month improvement of progression-free survival [141]. As 493 

highlighted recently, in ‘precision medicine’ the word ‘precision’ is being used in a colloquial 494 

sense, to mean both ‘accurate’ and ‘precise’. Precision implies a high degree of certainty of an 495 

outcome but in fact, the opposite will probably result. The new tools for tailoring treatment will 496 

demand a greater tolerance of uncertainty, a greater ability to interpret ‘omics’ data and a 497 

greater facility for calculating and interpreting probabilities than we have been used to as 498 

physicians and patients [142, 143]. Furthermore, although the price of next generation 499 

sequencing for diagnosis is continually decreased, the expanse for development personalized 500 

medicine based on individual genetic characteristics is still huge. Therefore, more efforts should 501 

be encouraged to standardize precision medicine practice in both clinical translation and the 502 

regulatory setting [144, 145].  503 

Cancer stem cells 504 

The discovery of cancer stem cells (CSCs) in the late 1990s triggered intense research efforts 505 

into this specialized subpopulation of tumor cells. CSCs, also referred to as tumor-initiating cells 506 

(TICs) can self-renew and drive tumorigenesis [146, 147]. CSCs play an important role in cancer 507 

initiation [148, 149], maintenance [150, 151], metastasis [152] and recurrence[153-155]. 508 

Therefore, a lot of efforts have been made to decipher CSC function in cancer pathogenesis, 509 

and to apply these findings in anticancer drug development [156].  510 

To date, CSCs have been discovered in multiple types of solid tumors such as breast cancer 511 

[157], lung cancer [158], and brain cancer [159]. Some targeting cellular surface markers 512 
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including CD133 [160], CD90 [161], CD33 [162] and PKA [163], key pathways such as Norch, 513 

Hedgehog, Wnt, and NF-κB signaling pathways [164], and transporters including ATP-binding 514 

cassette (ABC) transporters [165] have been detected in CSCs. Studies have sought ways to 515 

specifically target CSCs. Fang et. al. [166] performed HTS screening of small molecules and 516 

found LF3 (a 4-thioureido-benzenesulfonamide derivative) could effectively block the self-517 

renewal of cancer stem cells and suppresses tumorigenesis. The finding was also verified by 518 

using a mouse xenograft model of colon cancer. Masuda et. al. [167] found that small-molecule 519 

Traf2- and Nck-interacting kinase (TNIK) inhibitor, NCB-0846 could downregulate Wnt/β-catenin 520 

signaling by using Tnik−/−/Apcmin/+ mutant mice, which is essential to maintain the function of 521 

CSCs.  522 

Translation of  CSC research findings into anticancer drug development is still in the early stages 523 

[168]. The underlying mechanisms of how CSCs contribute to cancer progression are still not 524 

fully uncovered, and so efforts continue to unravel the biology [169-171]. However, CSCs 525 

remain a promising tool in anticancer drug development. Novel strategies such as 526 

nanomedicine targeting the CSC microenvironment are also being explored [172, 173].  527 

Drug repositioning  528 

Drug repositioning, an approach of finding new uses for existing drugs, has been attracting a lot 529 

of attention [22, 174]. By integrating different biological, chemical and genomics data profiles, 530 

drug repositioning can provide a rapid method to verify hypotheses and generate candidates 531 

for clinical validation. With the successful clinical application of non-cancer drugs for cancer 532 

treatment, drug repositioning becomes a powerful tool for anticancer development. 533 

Considering cancer often involves multiple pathologies [175], drug repositioning for 534 

combination therapy may be a promising direction [176]. 535 

Various drug repositioning approaches have been developed and could be potentially applied 536 

to anticancer drug development with initial evidence coming from preclinical models or 537 

controlled population studies (Table 3). The classic story is thalidomide, which was first 538 

marketed in 1957 in West Germany as a sedative and hypnotic. Afterward, it was also used 539 
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against nausea or alleviating morning sickness in pregnant women. However, severe adverse 540 

reactions characterized by birth defects occurred and 60% of affected children died. Later, 541 

researchers found thalidomide could inhibit NF-ƙB and STAT3, and it was approved by the FDA 542 

for treating multiple myeloma in 2006 Another example is metformin. Metformin, as a first-line 543 

drug for type II diabetes, has been demonstrated to be an alternative therapy for multiple 544 

cancers with both chemopreventive and chemotherapeutic functions by single or combination 545 

therapy with other drugs [177-179]. The cancer prevention and anticancer activity of metformin 546 

have been demonstrated in cell-based assays[180, 181], animal models [181, 182] and 547 

controlled population studies [183]. Furthermore, aspirin as a nonsteroidal anti-inflammatory 548 

drug (NSAID) has been reported to reduce cancer risk with regular intake. Currently, the world-549 

largest clinical Phase III trial is underway in the UK to evaluate aspirin for its potential 550 

effectiveness to treat cancers such as  breast, colorectal, and prostate [184]. 551 

The increasing interest in drug repositioning for anticancer treatment development is mainly 552 

driven by the desire to use discontinued drugs and further exploit existing drugs with known 553 

PK/PD properties and safety profiles [176]. Some promising directions for anticancer 554 

repositioning include treating cancer by targeting the microenvironment, triggering immune 555 

systems by approved drugs [185]. Brian et. al. [185] mapped 1309 drugs onto 221 immune cell 556 

types based on their transcriptomic signature and predicted ~70,000 interactions. In addition, 557 

the authors experimentally validated the influence of one candidate drug (clioquinol) on 558 

neutrophil migration from the bone marrow to the blood in 6- to 12-week-old female C57Bl/c 559 

mice to investigate how the drug perturbs the immune systems.  The proposed methodology 560 

may be useful for immune-related anticancer drug candidate profiling. However, attention 561 

should be paid to the complex pathological and etiological features of cancers, which are very 562 

different from other common diseases. For example, cancer patients are a vulnerable 563 

population and a drug that does not have safety issues in healthier patients might trigger 564 

problems for them, especially if used in novel combinations [186]. Furthermore, the rationale 565 

behind non-cancer drugs treating cancer is that off-target effects driven by the 566 

polypharmacology of non-cancer drugs could be beneficial to the cancer patents’ survival. Since 567 
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the known PK/PD properties of non-cancer drugs are derived from data in the original 568 

indication, it is not guaranteed that the PK/PD features are still the same. Accordingly, the 569 

safety profiles should be also evaluated.  570 

Concluding Remarks 571 

By revisiting the anticancer drug development in the past two decades, we observe that a lot of 572 

encouraging progress has been made to improve cancer patients’ survival and quality of life. 573 

Meanwhile, there are still a lot of hurdles and unsolved difficulties in anticancer drug 574 

development (see the Outstanding Questions). Furthermore, anticancer drugs tend to 575 

command extremely high prices due to unmet and urgent needs of the market and patients 576 

[187]. We have highlighted here some successes from the past twenty years, along with the 577 

challenges posed by translational from preclinical to clinical trials, from a small population to 578 

the larger population, and limited qualified biomarkers in the anticancer drug paradigm. All 579 

three of these issues draw attention to the need to reevaluate our current anticancer drug 580 

development tools and redefine clinical context for their implementation. With the advantage 581 

of biology, genetic engineering, and emerging techniques, more and more novel concepts such 582 

as precision oncology and animal models such as PDXs have been successfully applied to drive 583 

innovation in the anticancer drug discovery pipeline. However, utilization to truly harness these 584 

advances to facilitate and accelerate anticancer development is still suboptimal. Some 585 

uncertainties still exist with novel techniques, providing a barrier to robust and reliable results. 586 

It is suggested that more perspective-retrospective studies should be conducted to build the 587 

standards and guidance for application of novel anticancer development tools with 588 

multidisciplinary efforts from regulatory agencies, drugmakers, and academic researchers. We 589 

are delighted that a lot of activities have been advocated and promoted such as Cancer 590 

Moonshot [188], Patient-Reported Outcomes (PROs) [189, 190], FDA Biomarker Qualification 591 

Program , and PrecisionFDA , which build the communication bridges among the patients, drug-592 

makers and regulatory agencies to move this field forward.  593 
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Anticancer drug development covers a wide spectrum of multidisciplinary fields. Some points 594 

not touched on and covered in depth here also hold promise in anticancer drug development. 595 

For example, genetic elements such as miRNAs also provide a new avenue for looking for 596 

cancer treatment options [191]. In addition, one of the gene therapies approach aims to add 597 

new genes to a patient's cells to replace missing or malfunctioning genes [192, 193], which may 598 

play an important role in future cancer treatment development with precise gene editing 599 

technologies such as CRISPR/Cas9 gene editing now available [194, 195]. Furthermore, cancer-600 

derived induced pluripotent stem cells (iPSCs) also provide a tremendous opportunity to model 601 

the effects of the cancer genome back to animal models for anticancer drug discovery [50, 196, 602 

197].  603 

Anticancer drug development has shifted from conventional cytotoxics agents to targeted-604 

based therapy and immunotherapy in the past two decades. Whether the new concepts and 605 

models truly fit within the established anticancer drug development paradigm is still an open 606 

question. A rethink of the existing anticancer drug discovery pipeline could refresh our minds to 607 

define pitfalls and further improve successful rates.  Furthermore, cancer drug development is a 608 

collaborative activity that requires drug makers, researchers, patients and regulatory agencies 609 

to form a cohesive strategy to accelerate and improve drug development to improve the life 610 

quality of cancer patients.  611 

Resources 612 

The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for 613 

Human Use (ICH) S9: https://www.fda.gov/downloads/Drugs/Guidances/ucm085389.pdf). 614 

NCI cancer-related clinical trials: https://www.cancer.gov/about-cancer/treatment/clinical-615 

trials/advanced-search 616 

The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for 617 

Human Use (ICH) M3: 618 

https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances619 

/UCM292340.pdf 620 

https://www.fda.gov/downloads/Drugs/Guidances/ucm085389.pdf
https://www.cancer.gov/about-cancer/treatment/clinical-trials/advanced-search
https://www.cancer.gov/about-cancer/treatment/clinical-trials/advanced-search
https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292340.pdf
https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292340.pdf
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Guidance for Industry Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for 621 

Therapeutics in Adult Healthy Volunteers: 622 

http://www.fda.gov/downloads/drugs/guidances/ucm078932.pdf 623 

Table of Pharmacogenomic Biomarkers in Drug Labeling: 624 

https://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378.ht625 

m 626 

FDA Biomarker Qualification Program: 627 

https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificatio628 

nProgram/BiomarkerQualificationProgram/default.htm) 629 

PrecisionFDA: https://precision.fda.gov/ 630 

Seed and soil hypothesis:  631 

http://www.nature.com/milestones/milecancer/full/milecancer01.html 632 

NCI Cancer Statistics: https://www.cancer.gov/about-cancer/understanding/statistics 633 

NCI drug repository: https://www.cancer.gov/about-cancer/treatment/drugs 634 
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Table 1 Examples of Divergency in anticancer drug candidates between Phase II-III* 1038 

Drug names Sponsor Therapeutic target Indication Notes 

Brivanib 
Bristol-Myers 

Squibb 

VEGFR and 

fibroblast growth 

factor receptors 

(FGFR) 

hepatocellular 

cancer 

Lack of efficiency. Brivanib failed to 

improve overall survival of patients 

compared to approved drug (i.e. 

sorafenib) and also demonstrated 

identified unexpected side effects. 

Iniparib Sanofi 

Poly(adenosine 

diphosphate–

ribose) polymerase 

1 (PARP1) 

Triple negative  

breast cancer 

Lack of efficiency. It was 

demonstrated that Inspired with 

standard chemotherapy regimen 

(gemcitabine and carboplatin) could 

not improve survival 

MAGE-A3 

vaccine 
GlaxoSmithKline 

Antigen for immune 

responses 

non-small cell 

lung cancer 

(NSCLC) 

Lack of efficiency. The clinical 

benefit could be proved when 

compared to a placebo 

Velimogene A 

liplasmid 

(Allovectin-7) 

Vical 

Antigen for 

cytotoxic T-cell and 

innate immune 

responses 

metastatic 

melanoma 

Lack of efficiency. Allovectin-7 

reduced tumor size significantly 

fewer patients than another two 

market drugs (i.e. dacarbazine and 

temozolomide) for late-stage 

melanoma patients. 

Figitumumab Pfizer 

insulin-like growth 

factor-1 receptor  

(IGF-1R) 

non-small cell 

lung cancer 

(NSCLC) 

Figitumumab with the standard 

regimen (paclitaxel and carboplatin) 

fails to improve the survival. 

Furthermore, severe adverse events 

(SAEs) such as pneumonia, 

dehydration and even death were 

observed  



 

35 

 

* The data is from “22 Case Studies Where Phase 2 and Phase 3 Trials Had Divergent Results” and curated from 1039 

https://www.fda.gov/aboutfda/reportsmanualsforms/reports/ucm535541.htm 1040 

https://www.fda.gov/aboutfda/reportsmanualsforms/reports/ucm535541.htm
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Table 2 Failed and on-going examples of animal models in anticancer drug development 

Animal model Tumor type Involved drug candidates Notes References 

Failed examples 

Cynomolgus and rhesus 

monkeys 

B-cell chronic lymphocytic 

leukemia (B-CLL) 

TGN1412 (agonistic anti-

CD28 antibody) 

Severe inflammatory 

reactions to immune system 

in Phase I 

[198, 199] 

Mouse medulloblastoma 

model 

Malignant solid brain tumor 

(medulloblastoma)/ 

Pancreatic Cancer 

Saridegib (Hedgehog 

pathway antagonist) 

Lack of efficiency when 

compared to placebo in 

clinical phase II  

[200, 201] 

Mouse-derived portion of the 

scFv on the CAR T cell 

Acute lymphoblastic 

leukemia (ALL) as well as 

relapsed or refractory (r/r) 

chronic lymphocytic 

leukemia and non-Hodgkin 

lymphoma (NHL) 

JCAR014 (a chimeric antigen 

receptor (CAR) T-cell 

receptor, targeting CD22) 

Patients Death due to in 

Phase I dose-escalation trial 
[202] 
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Table 3 Examples of drug repositioning for cancer therapy 

Drug  Original indication Suggested 

cancer 

mechanism 

Models  Notes References 

pioglitazone Type 2 diabetes  Multiple 

types 

 Pioglitazone could stabilize the elevated 

expression of the iron–sulfur (Fe-S) protein 

nutrient-deprivation autophagy factor-1 

(NAF-1), which is a key factor to cancer cell 

progression. 

[203] 

Flavopiridol Under clinical development 

of acute myeloid leukemia 

Glioblastoma Human 

glioblastoma 

cell lines 

Flavopiridol is a synthetic flavonoid that 

inhibits a wide range of Cyclin-dependent 

kinase, that has demonstrated to inactivate 

glycogen phosphorylase, decreasing glucose 

availability for glycolysis. It is suggested 

flavopiridol could combine with anti-

proliferative agents to treat glioblastoma. 

[204] 

rapamycin lymphangioleiomyomatosis pancreatic 

cancer 

Genetically 

engineered 

Targeted anti-mTOR therapies may offer 

clinical benefit in subsets of human 

[205] 
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mouse 

models 

pancreatic ductal adenocarcinoma (PDAC) 

selected based on genotype 

diflunisal Anti-inflammatory drug  leukemia leukemia cell 

lines and 

mouse model 

Diflunisal can suppress the growth of p300-

dependent leukemia cell lines expressing 

AML1-ETO fusion protein in vitro and in vivo 

[206] 

chloroquine antimalarial drug Multiple 

cancers 

normal cells 

in mice and 

cancer 

patients 

chloroquine (CQ), is a robust inducer of Par-

4 secretion from normal cells in mice and 

cancer patients in a clinical trial. CQ-

inducible Par-4 secretion triggers paracrine 

apoptosis of cancer cells and inhibits 

metastatic tumor growth. 

[207] 

JQ1 in 

combination 

with 

romidepsin 

romidepsin is used to 

cutaneous T-cell 

lymphoma (CTCL) and 

other peripheral T-cell 

lymphomas (PTCLs) 

Type II 

testicular 

germ cell 

cancers 

(TGCT) 

TGCT cell 

lines and 

Embryonal 

carcinoma 

(EC) 

xenografted 

mice models 

JQ1 in combination with romidepsin could 

reduce tumor size, proliferation rate, and 

angiogenesis 

[208] 
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metformin Type 2 diabetes  Multiple 

types 

Cancer cell 

line and 

mouse/rat 

models 

Metformin can inhibit mTORC1 pathway, 

which plays a pivotal role in metabolism, 

growth, and proliferation of cancer cell. 

[177, 178, 

180, 181, 

183] 
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Figure Captions  

Figure 1 Milestones in anticancer drug development in the past two decades 

Figure 2 The correlation between number of approved drugs and (A) percentage of 

survival in five years (2006~2012); (B) estimated newly added cases for each 

cancer type: the statistics for each cancer type were based on the Surveillance, 

Epidemiology, and End Results (SEER) Program of the National Cancer Institute 

(https://seer.cancer.gov/statfacts/) 

Figure 3 The key factors for translation of animal results to humans in anticancer drug 

development: species selection, applicability of animal models, toxicity profiles, 

and PK/PD model optimization. FIH dose = first-in-human dose; MTD = maximum 

tolerated dose 

Figure 4 New trends in anticancer drug development 

  

https://seer.cancer.gov/statfacts/
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Figure 2(A) 
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Figure 2(B) 
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