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ABSTRACT 

 

Bacterial biofilms cause a considerable amount of prosthetic joint infections every year, 

resulting in morbidity and expensive revision surgery. To address this problem, surface 

modifications of implant materials such as carbon nanotube (CNT) coatings have been 

investigated in the past years. CNTs are biologically compatible and can be utilized as drug 

delivery systems. In this study, multi-walled carbon nanotube (MWCNT) coated TiAl6V4 

titanium alloy discs were fabricated and impregnated with Rifampicin, and tested for their 

ability to prevent biofilm formation over a period of ten days. Agar plate-based assays were 

employed to assess the antimicrobial activity of these sufaces against Staphylococcus 

epidermidis. It was shown that vertically aligned MWCNTs were more stable against attrition 

on rough surfaces than on polished TiAl6V4 surfaces. Discs with coated surfaces caused a 

significant inhibition of biofilm formation for up to five days. Therefore, MWCNT-modified 

surfaces may be effective against pathogenic biofilm formation on endoprostheses.  

 

 

KEYWORDS  

Multi-walled carbon nanotubes, drug delivery system, biofilm, S. epidermidis, antibiotics, 

prosthetic joint infection 

 

 

ABBREVIATIONS 

AB, antibiotic; PJI, prosthetic joint infection; CNT, carbon nanotube; MWCNT, multi-walled 

carbon nanotubes; PECVD, plasma enhanced chemical vapor deposition; VLS, vapor-liquid-

solid 
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BACKGROUND 

 

Bacteria commonly attach to natural and artificial surfaces within the host organism to form 

biofilms consisting of extracellular polysaccharides. Microbial adhesion to gut epithelium, 

teeth or skin is a physiological process that is strictly controlled by host defense mechanisms. 

These are, for example, epithelial shedding or bacterial killing by antimicrobial peptides, thus, 

preventing overgrowth or a shift towards pathogenicity (1, 2). Artificial surfaces such as 

prosthetic implants, however, are not well protected against colonization by biofilms and their 

overgrowth. One of the most frequently isolated bacteria from prosthetic devices is Gram-

positive coagulase-negative Staphylococcus epidermidis (S. epidermidis), a prevalent 

microorganism inhabiting the skin and mucosal surfaces (3).  

 

Bacteria gain access to prosthetic devices either during the surgery procedure, for instance 

after incomplete skin disinfection or via the blood stream, which they may enter through 

micro-injuries, a process termed bacteremia (4, 5). Importantly, microorganisms within 

biofilms are resistant to antibiotics (AB) and more difficult to eliminate (6). Prosthetic joint 

infection (PJI) is a relevant and serious complication of prosthetic joint implantation being 

associated with pain, loss of mobility and a mortality rate up to 2.5% (7). The relative 

incidence of PJI in the United States from 2001 to 2009 ranged between 2.0% and 2.4% of 

total hip arthroplasties and total knee arthroplasties. The annual cost of surgical revisions to 

US hospitals increased from $320 million to $566 million during this time range and was 

projected to exceed $1.62 billion by 2020. As the demand for joint arthroplasty is expected to 

increase by up to 673% until 2030, the economic burden of PJI may equally increase (8, 9).  

 

A possible approach to target PJI is the functional redesign of implant surfaces using nano 

technologies or antimicrobial coatings. Surfaces should simultaneously respond to various 
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biological and mechanical requirements and minimize bacterial adhesion and biofilm 

formation (10). In the past years, a range of nanocarriers has been proposed for the delivery of 

bioactive agents and for the inhibition of bacterial growth (11).  Carbon nanotubes (CNT) 

were shown to be suitable structures for prolonged drug delivery, e.g. of anti-inflammatory 

drugs or growth factors (12, 13). They demonstrably can limit biofilm formation when 

anchored to a surface (14, 15), in suspension (16) or embedded in polymer nanocomposites 

(17). Furthermore, CNT structures were found to bind a range of antibiotics (18-22). 

Previously, our own experiments have shown that multi-walled carbon nanotubes (MWCNTs) 

are capable of stimulating the growth of stem cells and their differentiation into osteoblasts 

(23), whilst other groups have demonstrated an overall enhancement of osteoblast function by 

MWNT (24, 25). These effects were achieved by the MWCNTs alone without the addition of 

growth-promoting drugs. 

 

Although AB have very limited effects against existing biofilms, they can successfully 

prevent their formation, when a continuous supply of AB is provided. Here, we present a 

method to reduce in vitro biofilm formation by S. epidermidids using AB impregnated 

MWCNT-modified TiAl6V4 titanium alloy surfaces. The novelty of this approach is the 

assessment of the liquid holding capacity and effectiveness against biofilm formation of these 

surfaces over time, thus providing further insight into medically relevant features of 

MWCNT-modified surfaces. 

 

METHODS 

 

MWCNT-coating of titanium alloy discs and scanning electron microscopy (SEM) 

Vertically aligned MWCNTs were grown on roughened TiAl6V4 titanium alloy disc surfaces 

via plasma enhanced chemical vapor deposition (PECVD) (23). The roughness of the surfaces 
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is specified with Rz = 10 µm. Prior to the MWCNT growth, a 10 nm thin layer of nickel was 

deposited via electron beam evaporations that forms Ni droplets upon melting at the PECVD 

process temperature of approximately 750°C. These liquid Ni droplets act as catalysts in a tip 

growth type vapor-liquid-solid (VLS) mechanism where NH3 and C2H2 are the gaseous 

precursors and the resulting vertically aligned MWCNTs the solid product. For details on the 

synthesis of MWCNTs via PECVD see reference (26). The majority of the utilized MWCNTs 

had an approximate length of 700 nm with closed tube ends encapsulating nickel catalyst 

particles. The tube diameters ranged from approximately 10 nm to 200 nm and inter-MWCNT 

distances were in the same range.  

 

Bacterial culture 

As a model bacterium and biofilm forming microbe, S. epidermidis (ATCC 35984) was used 

in this study. S. epidermidis was maintained on tryptic soy agar (TSA) (BD, Heidelberg, 

Germany). Before each experiment, overnight cultures were prepared in tryptic soy broth 

(TSB) (BD, Heidelberg, Germany) at 37°C on an orbital shaker. Next, the overnight culture 

was diluted 100x and grown to late logarithmic phase as monitored by optical density 

measurement (OD600=0.9-1.0). 

 

Preparation of titanium alloy discs 

As a rule, discs were handled using forceps to avoid damages of the MWCNT surface. Discs 

were immersed in 10 μg/mL Rifampicin (Sigma Aldrich, Seelze, Germany), which was 

assessed as the minimal inhibitory concentration (MIC), for 4 h at 4°C. Moreover, MIC50, at 

which 50% of bacteria are inhibited, was measured at 5 μg/mL. No bacterial inhibition was 

observed at 1 μg/mL. Rifampicin was shown to be effective against Staphylococcus species 

(27). Next, discs were washed in sterile PBS for 30 s using a squirt bottle in order to fully 

remove excess Rifampicin solution. Immediately after washing and shaking off excess liquid, 
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the discs were placed into 1 mL of sterile PBS in 24-well plates for 1, 3, 5 or 10 days and kept 

at 4°C. By these means, the AB diffused into the PBS for various amounts of time (AB 

diffusion time) and the retention time for the liquid containing the AB could be assessed. As 

controls, rough discs without MWCNT modification as well as MWCNT discs were prepared 

in the same manner. From the geometric dimensions of the MWCNT coating the loading of 

the Rifampicin samples can be approximated to 250 pg/disc. This was calculated using the 

following parameters: MWCNT had an approximate length of 700 nm, closed tube ends and 

an average tube diameter and inter-MWCNT distance of 10 nm to 200 nm (arithmetic 

average=105 nm). Each disc had a MWCNT-coated surface of 60 mm
2
,
 
where approximately 

4.5x10
7
 nanotubes were present per mm

2
. The total volume of MWCNTs (0.018 mm

3
) was 

substracted from the total volume of the surface (0.042 mm
3
). Therefore, the average volume 

of all MWCNT inter-spaces was 0.024 mm
3 

and the approximate liquid absorption capacity 

25 nL/disc. 

 

Assay procedure 

After the appropriate AB diffusion time, excess PBS was shaken off the discs. They were then 

placed into 1 mL of fresh TSB containing a total of 1-2 x 10
5
 bacteria and incubated for 24 h 

at 37°C. The next day, each disc was removed from its well and washed three times in sterile 

PBS. The back surface of each disc was carefully wiped using a sterile ethanol-wetted cotton 

swab in order to only assess the biofilm that had grown on the surface of the discs. 

Subsequently, discs were placed into 0.5 mL of sterile PBS within 48-well plates. By 

vigorously pipetting up and down for 1 min biofilms were removed from the discs. The 

suspensions were either measured for optical density at 490 nm (OD490) or diluted 50,000 

times, plated on TSA in triplicate and incubated at 37°C. Colony forming unites (CFU) were 

counted the following day. After detaching the biofilms, each disc was stained with a crystal 

violet solution to visually confirm that no bacteria were present on the disc surfaces. Our own 
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previously performed experiments along with a published method conducted under similar 

conditions (28) had shown that this approach was suitable for developing an appropriate 

washing protocol and to verify the absence of remnant bacteria on the discs. In these previous 

experiments, after crystal violet staining, the discs were further washed in ethanol over 24h, 

which led to detachment of remaining bacteria. OD490 reading values were obtained and 

compared with negative controls.  

 

In another experimental setup, the discs were placed upside-down on TSA inoculated with S. 

epidermidis in order to assess inhibition zones after 24 h of incubation at 37°C. In order to 

reveal possible differences between this method and the widely used method of agar diffusion 

using filter paper discs, both were compared regarding the diameter of inhibition zones. This 

was accomplished by using filter paper discs of the same size as the titanium discs. Rough 

and MWCNT-coated discs as well as filter paper discs were treated with 250 pg of 

Rifampicin and placed onto agar immediately, and inhibition zones were assessed after 24h. 

 

Statistical analysis 

Two-sided unpaired Student’s t-test was applied to calculate significant differences between 

the discs in terms of biofilm formation and inhibition zones. 

 

 

RESULTS 

 

A major problem of current anti-microbial coatings (e.g. silver) is the massive cytotoxic effect, 

which impairs biofilm formation but also prevents bone regeneration (29). Therefore, anti-

microbial nanostructures have to be capable of preventing biofilm formation for prolonged 

periods of time. At the same time, they must allow for, or even stimulate, differentiation of 
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stem cells into bone. Based on our previous work showing that MWCNT are ideal substrates 

for differentiation of osteoblasts from mesenchymal stem cells (23), we aimed to combine 

these characteristics with anti-biofilm properties, as a result of the prolonged release of AB. 

 

CNT-coating of titanium alloy discs 

For this study, MWCNTs with the length of 700 nm were used throughout all samples to 

ensure comparability. Scanning electron microscopy images of the multi-walled carbon 

nanotube on the sample discs are shown in Figure 1. A low magnification image of the rough 

TiAl6V4 titanium alloy disc covered homogenously with the MWCNTs is shown in Figure 

1A. A higher magnification of the area encircled in a red square is shown in Figure 1B in tow 

view and Figure 1C in 45° tilt perspective, respectively. The individual dots in Figure 1B 

correspond to MWCNTs where their diameter ranges from about 10-200 nm. The projection 

of the MWCNTs into this 45° image plane shows the length of the MWCNTs which is 

approximately 700 nm where few individual MWCNTs are longer. The darker shadows on 

the tips of the MWCNTs correspond to the encapsulated nickel particles from which the 

MWCNTs grew during the VLS mechanism during the PECVD growth. It is apparent, that 

the TiAl6V4 titanium alloy surface is roughened on a scale much larger than the dimensions 

of the MWCNTs. This attribute showed beneficial properties: a better stability of MWCNTs 

was observed on roughened compared to polished TiAl6V4 titanium alloy surfaces against 

shear forces that may occur during handling and sterilization of the discs. This is of 

significant importance when such coatings are to be applied to implants that are subject to 

surgery and the thereby accompanied handling. 

 

Anti-biofilm and antibacterial properties 

Interestingly, CNT by themselves were shown to be toxic towards several bacteria and can 

inhibit biofilm formation. Nevertheless, bacteria can quickly adapt to this challenge by 
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modifying their cell walls (30-32), requiring further efforts to create antibacterial surfaces. 

MWCNT-coated discs impregnated with quantities of Rifampicin as low as < 250 pg/disc, 

showed significant anti-biofilm effects. After a diffusion time of 1 d, biofilm growth was 

completely inhibited compared to rough discs pretreated with the AB. After 5 d, there was 

still a reduction by half, whereas at day 10, biofilm levels were equal to controls (rough discs), 

suggesting that Rifampicin had fully diffused into the buffer. Rough discs were able to retain 

the AB for only 1 d as assessed by comparison against controls without AB (Figure 2A). 

These results could be confirmed by optical density measurements of detached biofilm 

suspensions (Figure 2B). Moreover, visible inhibition zones occurred at 1 – 5 d  of diffusion 

time (Figure 2C).  After a diffusion time of 5 d, the inhibition zone was half in diameter 

compared to 1 and 3 d, implying that that the concentration of Rifampicin had decreased to 5 

μg/mL (MIC50), and to ≤ 1 μg/mL after 10 d. No differences were seen in the antimicrobial 

effects of titanium alloy and filter paper discs when placed onto agar immediately after AB 

impregnation. 

 

 

 

DISCUSSION 

 

CNTs and materials based on nanotubes have several potential applications in medicine and 

biomedicine. They can act as growth substrates, tissue scaffolds or as carriers for various 

therapeutic and diagnostic agents (33-35). In the literature, loading of CNT and other 

nanotubular structures with osteogenic substances and growth factors has been described (36-

38). Data on loading of CNTs with AB for prolonged drug delivery in this context, however, 

is limited (39, 40). The present study is, to our knowledge, the first to demonstrate biofilm 

inhibition over more than 5 days, indicating that vertically aligned MWCNT-structures can 
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serve as a reservoir for extended periods of time. The duration of AB delivery is crucial, as a 

considerable amount of bacterial PJI occur within the first months after surgery (41). Bacterial 

adherence to implanted prosthetic devices and subsequent pathologic inflammation can hinder 

initial implant healing and result in morbidity and costly revision surgery. Most 

advantageously, local delivery of AB can yield higher concentrations at the site of bacterial 

adhesion compared to systemic administration. Thus, common side effects such as 

impairment of the digestive system can be minimized (42). In the present study, the effect of 

MWCNT-coating on prolongation of AB release was assessed and quantified.  

 

Interestingly, Malek et al. demonstrated the inhibition of biofilm growth by MWCNT alone, 

anchored to a silicon surface (15). The authors propose that the anti-biofilm effect was 

based on slight oscillations of the thin (6–20 nm) and less rigid MWCNT, preventing 

bacterial settlement on this unstable substrate. The diameters of the MWCNT used in 

our study was at 10–200 nm, leading to a higher surface rigidity and therefore providing 

an explanation for the undisturbed biofilm formation on control discs. Stability of surface 

coatings is of major importance, as they are subject to shear stress during surgery and wear 

(43, 44). Even though MWCNTs themselves are robust, their adhesion forces onto a substrate 

are orders of magnitude lower than macroscopic mechanical forces during handling, which is 

especially true for vertically aligned MWCNTs that are only attached with one of their tips to 

the support material. This obstacle can be overcome utilizing roughened surfaces, where the 

majority of the surface area is protected against shear forces as the peaks of the surface 

shadow the valleys of the morphology. A desirable side effect is, that the total surface area is 

increased compared to flat surfaces and the fact that implant materials are commonly 

designed to be roughened makes this approach very appealing.  
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Another way to design surfaces that allow for storage of a bioactive agent is the formation of 

nanopores. There is a large multitude of drug release studies using nanoporous aluminium 

oxide templates (Al2O3) (45). These were shown to be successful in delivering bioactive 

agents over prolonged periods of time. TiAl6V4 titanium alloy, however, is currently the 

material of choice for implantable devices, due to its better biocompatibility and bone-

conductivity (46). Only few studies have assessed the release of drugs from nanoporous 

surfaces based on titanium. Ayon et al. demonstrated release of dexamethasone from 5 nm 

wide pores on titanium dioxide (TiO2) films, but no time-dependent release was assessed in 

this study (47). Similarly,  Ketabchi et al. monitored the release of albumin and vancomycin 

from nanoporous titanium surfaces, but this release was not evaluated over time (48). Lopez 

et al. showed that a porous TiO2-silica xerogel was able to release an anticonvulsant drug over 

a period of 500 h and that a slower release rate occurred at higher loading concentrations (49). 

The formation of nanopores on TiAl6V4 titanium alloys may be a promising approach for 

constructing antimicrobial implant surfaces. As these pores can be designed to have similar 

dimensions as the inter-tubular spaces in our study, they could also feature long-term liquid 

holding capacities. Moreover, in contrast to nanotubes, a nanoporous surface does not depend 

on adhesion onto a substrate and may therefore be mechanically more stable. 

 

In the present study, our goal was to explore the possibility of MWCNT loading by capillary 

forces and to assess the liquid retention over time thereafter. Therefore, the discs were not 

dried after AB impregnation and washing. Regarding the possibility of future in vivo 

application, it is desirable to coat MWCNT surfaces of implanted devices immediately before 

implantation, according to the patient’s medical needs. This can potentially be realized by 

immersing the MWCNT textured devices into a liquid carrier substance containing AB for 

drug loading. Importantly, dissolved AB may be more effective than when in a dried state 

(50), as they do not depend on liquid such as body fluids entering the nanotubular structures 
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to solubilize the AB.  An improvement of our findings may be obtained by optimizing the 

geometric dimensions of the utilized MWCNT array to maximize the liquid loading volume. 

By increasing the AB concentration, the inhibition of biofilm formation may be further 

prolonged, however, our research was aimed at assessing the long-term effect of the specific 

MIC measured after 1 d. Another approach may be the utilization of MWCNTs with open 

ends to additionally store liquid media within a hollow tube, which is a common method to 

load CNT with low-density liquids (51). Moreover, a vacuum-assisted loading of the surfaces 

with a liquid of higher density/viscosity could be applied in order to decelerate substance 

release (52, 53). Notably, the surfaces roughness in our study was at Rz = 10-12 µm, whereas 

commercially available implants feature a roughness of approximately Rz = 50 µm (54), 

indicating that an approximation of this value could further enhance AB holding and long-

term release capacity. 

 

A desirable goal of this translational approach is a slow release of AB from the implant 

surface within the vulnerable timeframe of initial healing. In the present study, very low 

concentrations of Rifampicin caused notable inhibition zones and inhibition of biofilm 

formation even after 5 days. In our experimental setup, discs were placed into physiological 

buffer for one to several days in order to assess the ability of MWCNT surfaces to retain the 

AB against efflux and diffusion. Significant and long-lasting bactericidal effects could be 

achieved by immersing the discs in Rifampicin solution for 4h. Thus, it can be concluded that 

short-term capillary forces can be applied to load MWCNT-modified surfaces where the 

liquid is stored in the volume between MWCNTs. Hence, loading and retention should be 

strongly dependent on the average MWCNT length, widths and inter-MWCNT distance and 

was approximated to 250 pg Rifampicin per sample disc. The diffusion of the Rifampicin can 

be assumed to follow one-dimensional Fick's law as a consequence of the coating geometry. 
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Similar diffusion rates may occur in vivo, therefore, MWCNT structures on an implanted 

device could be a successful vehicle for such long-term delivery of antimicrobial agents.  

Successful osseointegration is a crucial process after prosthetic joint implantation. The fact 

that osteoblasts readily grow on nanotube structures renders CNTs a suitable biomaterial 

coating (23, 55, 56). At the same time, it is undesirable that bacterial cells attach to CNTs 

more than to uncoated surfaces. Our experiments showed that MWCNT-coated TiAl6V4 

titanium alloy discs did not lead to increased bacterial adhesion compared to non-coated discs, 

confirming previous findings (57) and reinforcing MWCNTs as a suitable surface 

modification. MWCNTs are mechanically robust and chemically inert, making them very 

promising tools for biological surface engineering. Good biocompatibility with host cells has 

been reported for MWCNTs with > 200 nm in length and > 20 nm in diameter (58).  

 

Importantly, the approach of coating TiAl6V4 titanium alloy surfaces with CNTs can be very 

helpful in the context of individualized medicine. Here, microbial resistance profiles as well 

as AB allergies of susceptible individuals can be taken into account and the implanted device 

may be loaded with the appropriate antimicrobial agent prior to surgery. Preliminary 

experiments have been conducted by our group previously, using the biofilm-forming strains 

Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis and Staphylococcus 

aureus. MWCNT-coated discs impregnated with the appropriate antibiotic led to results 

similar to those shown in the present study regarding inhibition biofilm formation over time. 

Therefore, we believe that such MWCNT surfaces treated with antibiotics could be applied in 

various bacterial infections and using different antibiotics. Future work should be 

implemented to optimize the MWCNT coatings towards a maximum loading capacity and 

optimal drug release properties. Subsequently, animal studies should be conducted in order to 

confirm the in vitro effects of prolonged biofilm inhibition found in this study under in vivo 

conditions. Also, it is important to assess their biological degradation and possible cytotoxic 
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effects (59-61). Advancing research of nanostructured surfaces as antimicrobial drug delivery 

systems may be an important step towards decreasing PJI events in the coming decades. 
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FIGURE LEGENDS 

 

Figure 1: Scanning electron microscopy images of multi-walled carbon nanotube (MWCNT) 

coating on titanium alloy discs. A) shows a low magnification image of the rough titanium 

alloy disc covered homogenously with the MWCNT coating. B) shows a higher magnification 

of the area encircled in A) with a red square. The individual dots are the MWCNTs in top 

view and their size ranges from about 10-200 nm. (C) shows the same area in 45° tilt 

perspective and the corresponding projection of the MWCNTs into this image plane. The 

length of the MWCNTs is approximately 700 nm where few individual MWCNTs are longer. 

The darker shadows on the tips of the MWCNTs correspond to the encapsulated nickel 

particles from which the MWCNTs grew. 

 

 

 Figure 2: Antibacterial properties of Rifampicin-pretreated titanium alloy discs with or 

without MWCNT-coating or AB impregnation. A) S. epidermidis biofilms were grown on 

TiAl6V4 titanium alloy discs (n=3) for 24h after AB diffusion time periods of 1d to 10d. Next, 

biofilms were suspended, diluted and plated onto agar in triplicate. CFU were counted and 

mean values, SD and p-values were calculated. Bars are shown as mean values ± SD. ***p ≤ 

0.001, n.s. = not significant. B) S. epidermidis suspensions from detached 24h-biofilms were 

measured for OD490 absorbance in triplicate. Bars represent mean values ± SD. *p = 0.04, **p 

< 0.01, n.s. = not significant. C) Inhibition zones were determined by placing discs onto agar 

plates invertedly in triplicate. Horizontal bars are shown as mean values ± SD. ***p ≤ 0.001.  

All data represent the mean ± SD of three independent experiments.                  


