
 
 

University of Birmingham

Luck versus skill over time
Ercolani, Marco; Pouliot, William; Ercolani, Joanne

DOI:
10.1080/00036846.2018.1436154

Document Version
Peer reviewed version

Citation for published version (Harvard):
Ercolani, M, Pouliot, W & Ercolani, J 2018, 'Luck versus skill over time: time-varying performance in the cross-
section of mutual fund returns', Applied Economics, vol. 50, no. 34-35, pp. 3686-3701.
https://doi.org/10.1080/00036846.2018.1436154

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is an Accepted Manuscript of an article published by Taylor & Francis in Applied Economics on 12/02/2018, available online:
http://www.tandfonline.com/doi/full/10.1080/00036846.2018.1436154

Luck versus skill over time: time-varying performance in the cross-section of mutual fund returns. Marco G. Ercolani, William Pouliot &
Joanne S. Ercolani Applied Economics 2018

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 23. Apr. 2024

https://doi.org/10.1080/00036846.2018.1436154
https://doi.org/10.1080/00036846.2018.1436154
https://birmingham.elsevierpure.com/en/publications/a266b013-af5d-47bc-aaee-4321a7c739d8


Luck versus skill over time:
Time Varying Performance in

the Cross-Section of Mutual Fund Returns

Marco G. Ercolani∗ William Pouliot∗† Joanne S. Ercolani∗‡

Abstract

Using returns histories spanning 1/1984 to 10/2014 of 5,785 actively managed US
closed-end equity mutual funds, we address the “thorny problems” highlighted by Fama
and French (2010, p.1925) that arise due to their resampling procedure. This prevents
them from capturing time variation in the parameters of equilibrium asset pricing models.
These problems are addressed by combining innovative procedures of Pouliot (2016) that
allow for testing of multiple break dates on fund-specific parameters along with cross-
section bootstraps that remain valid in the presence of time-varying parameters. We
find substantial proportion - 8%- of the estimated versions of the asset pricing model
have significant changes in their parameters. The effects of this time variation on the
cross-section distribution of the risk adjusted performance measure is significant and
substantially increases centiles of the right tail of this distribution when compared to
those produced without time-varying parameters. Our evidence regarding the lack of
actively managed US equity mutual funds that generate excess returns is significantly
weaker than those of Fama and French but our results do not overturn their pessimistic
conclusion regarding the lack of skilled managers. We do find, unlike Fama and French,
that managers generating negative returns are just unlucky but have no skill.
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1 Introduction

There are three recurring themes in the literature on mutual fund performance: whether aver-

age risk adjusted abnormal fund performance is negative, positive or zero; whether abnormal

performance can be identified ex-ante; and for how long it persists. Assessing fund perfor-

mance is further complicated by the fact that there is more than one measure of performance:

conditional or unconditional. Choice of measure has an important effect on the inference

made. For example Elton et al (1992), using unconditional measures, find that they indicate

poor average fund performance. Ferson and Schadt (1996), however, using conditional mea-

sures, conclude that funds performance is neutral. More recently, Fama and French (2010),

hereafter FF, look at fund performance using unconditional measures obtained by estimating

different versions of equilibrium asset pricing models and conclude that few funds produce

benchmark-adjusted net returns sufficient to cover transaction costs and management fees.

However, when returns are measured gross of management fees but net of transaction costs,

FF find evidence of superior fund performance.

FF point out that capturing time variation in the regression slopes of the capital asset

pricing model poses problems for their analysis and this is

because FF randomly sample months, they also lose any effects of variation through

time in the regression slopes ... . Capturing time variation in the regression slopes

poses thorny problems, and we leave this potentially important issue for future

research. FF (p.1925)

Because they leave these questions unanswered, this research addresses these “thorny prob-

lems” left unanswered by FF using novel tests developed by Pouliot (2016). Using his pro-

cedure, we test for time-varying parameters in the Four Factor Capital Asset Pricing Model,

hereafter 4F-CAPM. These tests also provide information on which parameters, slope or in-

tercept, have changed over time as well as on the timing of these changes. Information on

the timing allows us to develop a bootstrap procedure that remains valid even in the pres-

ence of time-varying parameters. Using returns on 5,785 actively managed US equity mutual

funds, we document that there is much time variation in these parameters (8% of the funds

analysed have significant parameter changes), a result which contrasts sharply with research

of Cuthbertson et al. (2008, 2012) and Baras et al. (2010) who find little time variation in

these parameters and that it has little affect on their simulations.

We show that time-variation in the estimated parameters of the 4F-CAPM is important.

In particular, time variation in parameters leads to much larger estimates of alpha, the mea-

sure of mutual fund performance generally employed, than without time variation. This is not

without consequence for our analysis as it significantly affects the upper tail of the cross-section
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distribution of alpha and indicates better manager performance than the cross-sectional distri-

bution estimated by FF. Consequently, it can greatly alter the conclusion about the existence

of superior performing mutual funds. We also use fixed-design bootstrap simulations, as these

remain valid in the presence of this time variation, to search for the existence of superior

performance. Even though there is substantial time-variation in the parameters, simulations

undertaken in later sections continue to show that the evidence for superior performing funds

remains weak, but much less weak to bootstrap simulations carried out without time variation.

The paper is structured as follows: Section 2 discusses the methodology implemented

here; Section 3 discusses time varying mutual fund performance and the returns data used

in the simulations; and Section 4 discusses a recently developed testing procedure. Section 5

discusses the bootstrap simulations devised and implemented here; and Section 6 concludes.

The Appendix reports the distribution table needed for the three statistics developed in Section

4.

2 Our methodology

Our contribution here is to answer the two thorny problems highlighted by FF. Regarding

their first question that concerns time-varying parameters in the 4F-CAPM, we test for mul-

tiple structural breaks in these parameters. For the second question, we conduct bootstrap

simulations without randomly sampling months. To find systematic changes in fund perfor-

mance, we identify them as structural breaks in the parameters of the 4F-CAPM. This is

a difficult problem because we wish to use a testing procedure capable of identifying more

than one break and also breaks in subsets of the intercept α or slope β parameters. We are

particularly interested in allowing for changes in the α performance parameter. To this end,

we use a testing procedure recently developed by Pouliot (2016).

The tests in Pouliot (2016) are developments on traditional CUSUM tests for structural

breaks. Viewing time variation of the parameters of the 4F-CAPM as structural breaks is a

non-parametric means of modelling time variation in fund performance. Traditional CUSUM

tests, like other tests for structural change that are popular in the statistical/econometrics

literature, are not designed to distinguish changes in intercept from changes in slope parame-

ters. Devising tests that are informative on the nature of the break in parameters allows us to

incorporate time variation into the bootstrapping procedure developed here. In doing so, we

are better able to address the issue of time variation than previous attempts. CUSUM tests

have been around for many years and a large number of such tests are now widely available.

For example, Kuan and Hornick (1995) develop generalized fluctuation tests, Andrews (1993)

and Andrews and Ploberger (1994) construct a class of tests based on Wald, Lagrange Multi-
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plier and Likelihood Ratio statistics. More recent contributions have been made by Bai and

Perron (1998), Altissimo and Corradi (2003) and Kristensen (2012). These tests, however, are

not devised to distinguish changes in intercept from slope in regression models and as such

are ill suited for our purposes.

The second problem is how to carry out the bootstrap simulations in a situation where we

cannot randomly sample observations across time. FF can bootstrap by randomly sampling

monthly observations because their 4F-CAPM estimates does not allow for time variation

of the parameters and, hence, the time-sequence does not matter. We cannot bootstrap by

randomly sampling monthly observations because we find that some parameters of the 4F-

CAPM change over time. To allow for this variation the time sequence of the data cannot

be ignored. We therefore carry out fixed design bootstraps where the simulated fund returns

are constructed by using in-sequence fitted 4F-CAPM predictions and adding randomly se-

lected out-of sequence residuals. We assume that the regression residuals respect the classical

assumptions of white noise. In all other respects our bootstrap simulations replicate the ap-

proach of FF by using 10,000 replications and by generating a distribution of t(α) estimates,

the risk adjusted performance measure, where any differences due to superior or inferior skill

are eliminated. This is done by subtracting each fund’s estimated α from their actual net or

gross returns and then reestimating the CAPM using these adjusted returns. Like FF, we also

base our analysis of fund performance on the distribution of t(α).

3 Time varying mutual fund performance

The tests developed in Section 5 indicate that 8% of the parameters, in the 4F-CAPMs

estimated on the 5,785 time-series on mutual fund returns, exhibited significant time variation.

8% represents a large proportion of funds used in this study. 2% of these parameter changes are

due to time variation in the intercept only, 5% due to slope only changes and a further 1% due

to both slope and intercept changes. When these tests were applied to detect additional time

variation in these parameters, it was found that a further 1% of the mutual funds displayed

two changes in intercept only or slope only. Applying this testing procedure a third time

indicated no further time variation in these parameters.

Early research into fund performance did not allow for time variation (cf. Jensen (1968)).

By the 1980s this began to change. Admati and Ross (1985), assume fund managers maximize

expected utility where utility takes a Constant Absolute Risk Aversion (CARA) form and all

random variables are normally distributed. Under these assumptions, portfolio weights are

linear functions of these random variables and the portfolio market risk β is also a linear

function of these variables. Empirical research has to some extent found time-varying β in the
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4F-CAPM. Studies examining the historical stability of the βs include Blume (1971), Levy

(1971), Sharpe and Cooper (1972), and Black, Jensen & Scholes (1972). Brendt (1990, p.35)

summarizes these studies as finding that the βs in these models are relatively stable:

Quite frequently, monthly data are employed that are based on returns from the

New York Stock Exchange. Econometrics studies based on such data have found

that in many studies, βs [in the 4F-CAPM] have tended to be relatively stable

over a five-year time span.

He lists a couple of reasons for this variation: conditions in an industry may change abruptly

causing risks to change. Such was the case for Oil company stocks, they had a market risk β

below unity before the 1973 Oil price shock. Since then, however, they have typically been

above one. A similar result occurred in 1978 when the US deregulated the airline industry,

market risk βs for most major US airline companies rose.

Financial theory also suggests that βs should be time varying. For example Foster (1986)

and Mandelker and Rhee (1984) point out that these parameters may change due to changing

financial characteristics of companies: i.e. gearing, earnings variability and dividend policy.

As these variables change, the βs will also change. As a last comment along these lines,

actively managed funds may alter portfolio weights within their fund or may employ dynamic

trading strategies. Both of these will alter the β associated with a fund.

More recent research evaluating fund performance has developed a conditional version of

the 4F-CAPM. For example Ferson and Schadt (1996) advocate use of conditional performance

measures when evaluating fund performance and to do so they extend a multiple-factor asset

pricing model to accommodate time-varying risk parameters. Their model, a reduced form,

expresses slope parameters, only, as a linear function of observed variables whilst the intercept

remains time invariant. Interestingly, their assumption of linearity is made for illustrative

purposes only. According to Ferson and Schadt (1996, p.429),

They use a linear specification to illustrate the conditional approach, the correct

specification of this relationship is left as an empirical issue.

In a recent paper, Baras et al. (2010) estimate conditional four factor models that allow slope

parameters in the 4F-CAPM to be linearly related to a set of conditioning variables. These

variables consist of yields on different securities. They, however, assume no variation in the

intercept parameter, the parameter used to assess fund performance. After estimating both

conditional and unconditional versions of the CAPM, Baras et al. (2010 p.195-196) conclude

that
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introducing time-varying market betas provides similar results. In further tests

shown in the Internet Appendix, we find that using the unconditional or condi-

tional version of the four-factor model has no material impact on our main results.

For brevity ... we present only results from the unconditional four-factor model.

Other important research on this topic echo this finding. For example Cuthbertson et al.

(2008) and (2012 p. 452) in their study of UK investment trusts also come to same conclusion.

They report

in the conditional alpha-beta model we find that none of the conditional alphas

has a significant t-statistic greater than 1.1 but some of the conditional betas are

bordering on statistical significance.

Continuing along these lines, Cuthbertson et al. (2012 p.452) also report that

the above results suggest that the unconditional model of Fame and French 3F-

model explains UK equity mutual funds returns data reasonably well.

A similar statement is also repeated in Cuthbertson et al. (2008, cf. last paragraph of page

619). This conclusion regarding the unsuitability of conditional models may well hold for UK

trusts. They do, however, make an interesting observation regarding their estimates of fund

alphas. They find

relatively large cross-sectional standard deviations of the alpha estimates which

is around 0.26% p.m. for the unconditional and conditional-beta models and

somewhat larger at 0.75% for the conditional alpha-beta model.1

One possible explanation for the relatively large standard deviations of the estimated alphas

is they are time-varying which is reflected in these large standard errors.

Notwithstanding these findings, they seem to be at odds with the above statement of

Brendt (1990) and the theory that underlies Ferson and Schadt (1996). Tests developed in

Section 4, when applied to fund returns, indicate a significant proportion - 8% - of funds have

changes in at least one of the parameters of the 4F-CAPM. Results produced in Section 5 detail

the impact this has on the cross-section distribution of risk adjusted measure of performance

as well as in the bootstrap simulation.

Ferson and Schadt’s conditional-beta model as well as the conditional alpha-beta model

of Christopherson et al. (1998) are parametric: both intercept and slope parameters are

linearly related to predetermined variables. Linear specification can only be justified under

1Cuthbertson et al. (2008) p. 618.
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very simple assumptions: investors maximize a CARA expected utility function defined over

normally distributed random variables (cf. Admati and Ross (1985)). Linearity may not hold

or, if it does, it may do so for a different set of conditioning variables then those used in these

papers. As a result of these issues, it seems better to avoid a linear specification. For the

purposes of this paper, we remain agnostic on the precise nature of this relationship and opt

for a non-parametric specification. Allowing for time variation without imposing restrictions

on this relation is an added novelty of our approach and is consistent with Ferson and Schadt

(1996).

3.1 The data

Following FF, the closed-end mutual funds used here must invest primarily in US common

stocks. To focus on actively managed funds, as in FF, we include funds in our analysis only

if they fall into one of three categories: aggressive, growth and value. Even though FF use a

somewhat different process to categorize funds than ours, the funds FF used fall into one of

these three categories listed above. Index funds are excluded, as they are in FF, because they

do not advertise generating returns superior to benchmark portfolios. With these restrictions

noted, the mutual fund data used here consists of time-series on adjusted-closed 2 prices for

6,178 US equity funds collected from January 1984 to October 2014. FF exclude from their

analysis funds with less than 8 months of data a practice we follow here as well. After these

deletions, the final number of funds totalled 5,785.

There are two important issues regarding the data that need to be addressed: survivor

bias and incubation bias. Since the data used here consists of surviving funds only, it does not

adjust for survivor bias; the use of t(α) in our analysis helps mitigate, but does not eliminate

this problem (cf. Brown et al. 1992). Use of t(α) only partially offsets this bias, its impact

on our analysis will be to skew the cross-section distribution of t(α) towards larger values.

Results reported in Table 2 of Section 5, on the cross-section distribution of t(α) that does not

allow for time-varying parameters follows closely the distribution produced by FF. As such,

this issue seems to have limited affect on the results produced in later sections.

FF raise the issue of incubation bias. Incubation bias occurs when funds include pre-release

returns in the mutual fund database only if these returns turn out to be positive. According

to Evans (2010), this can bias performance measures. To lessen its effect on their results, FF

exclude funds that have not reached 5 million 2006 US dollars in assets under management.

To analyse the effects of incubation bias on their simulations, they use NASDAQ ticker symbol

start dates to replicate their tests on this data and then compare them to results produced

using CRSP start dates for new funds. They report that switching to ticker start dates has

2Adjust-closed price includes adjustments for splits, rights offers and dividend payments
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only trivial effects on their results and conclude incubation bias is probably unimportant for

their results (cf. FF p.1924). As there is little evidence suggesting that by limiting their

analysis to funds that have reached an AUM of $5 million by 2006 has little affect on their

results, there seems no obvious reason to exclude funds with less than $5 million from our

data. Support for our position can be found in two recent publications, Baras et al. (2010)

and Cuthbertson et al. (2008), in which neither mention this issue and therefore make no

special adjustment for it.

3.2 Regression framework

The benchmark model that will be used to evaluate fund performance is Carhart’s (1997)

4F-CAPM. We will, however, allow all parameters of this model to change over time. This is

all represented in the following regression model:

Rit −Rft = αi(t) + β1i(t)(RMt −Rft) + β2i(t)SMBt + β3i(t)HMLt + β4i(t)MOMt + εit. (1)

Following the notation used by FF, we define Rit as the return on fund i for month t, Rft

as the risk-free rate and RMt as the market return (the return on the value-weight portfolio

of NYSE, Amex, and NASDAQ stocks). SMBt and HMLt are the size returns and value-

growth returns of Fama and French (1993), while MOMt is the momentum return of Carhart

(1997). Times series for all four factors can be obtained from Kenneth French’s web site. The

parameter αi(t) is the average return left unexplained by the benchmark model. The αi(t),

along with the β (this is a 4 × 1 vector of parameters) are now time varying.

The more interesting aspect of equation (1), at least from an investment perspective,

is that the β on the returns describes a diversified portfolio of passive benchmarks that

replicates exposure to common factors in returns. This implies that α measures the average

return provided by a fund in excess of the return on passive benchmarks. Justification for

our interpretation that a positive α indicates superior fund performance lies in Theorem 5

of Dybvig and Roth (1985). When α > 0, or in Dybvig and Roth’s terminology, a portfolio

plots above the CAPM equation, a mean-variance superior portfolio can be constructed that

is superior to the benchmark portfolio.

What can be concluded from equation (1)? This depends on whether returns are net of

costs or gross. Any test for superior performance depends on whether managers have skill that

causes expected returns to differ from those of the passive benchmark. For this, according to

FF (2010, p.1921)

one would like fund returns measured before all non-return revenues. This would

put funds on the same pure return basis as the benchmark portfolio and the re-
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gression in (1) and allow for a proper test of manager’s skill.

The returns calculated for the purpose of this analysis are gross which allows us to test whether

managers have skill to generate returns in excess of returns on a passive benchmark portfolio

that is represented in the equation (1). For FF, returns are net of trading costs and as such

they are restricted to testing whether managers have sufficient skill to cover trading costs not

whether they have skill to better the returns on passive benchmark portfolios.

To estimate the β based on time-series data of individual mutual fund returns, it must be

assumed that, for a particular mutual fund, β is stable over time. When monthly data are

used, as they are here, it has been noted that the β is stable over a five-year time span. Since

our data have a span of 30 years, there is scope for many structural breaks. To address this

issue, we use some novel tests specifically for this purpose. More specifically, we construct

tests for simultaneous as well as for joint changes in the parameters of linear regression models.

These tests have the novelty of allowing one to distinguish a change in β from a change in

α. Distinguishing a change in β from a change in α is important for the coming analysis

because α is the measure employed here to evaluate fund performance. Hence it is important

to determine when these parameters change and to incorporate this additional variation into

the analysis. Our tests were applied three times to detect more than one change: we find no

changes beyond two in any one of the α or β parameters.

3.3 Regression results for the equal weight portfolio

Table 1: 4F-CAPM estimates for Equal Weight Portfolio of Gross Returns

Our results
Variable 12 ∗ α̂ RMt−Rft SMBt HMLt MOMt

Coef -0.50 0.95 0.17 0.06 -0.02
t-stat† -0.42 52.63 6.37 1.87 -1.05
t-stat‡ -2.77

Fama and French (2010, Table II EW returns)
Variable 12 ∗ α̂ RMt−Rft SMBt HMLt MOMt

Coef -0.39 0.98 0.18 -0.00 -0.00
t-stat† -0.90 87.22§ 16.01 -0.25 -0.14
t-stat‡ -1.78
† Standard t-statistics for coefficient being equal to zero.
‡ Test of whether parameter β1 = 1 on the variable RMt−Rft.
§ This value is not reported in Fama and French (2010, Table II).
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Table 1 reports parameter estimates for equation (1) using gross returns of the equal

weight (EW) portfolio as the dependent variable. The equal weight portfolio weights equally

individual monthly fund returns by averaging across funds’ gross monthly returns over the

period 1984 to 2014. EW fund returns are informative on whether funds on average produce

returns different from those implied by their exposures to common factors in returns. Table 1

also lists results from FF (cf. Table II) for the same four-factor model. The results produced

here bear a strong resemblance to those of FF. Whilst our estimate of α is larger in absolute

value that the α estimate of FF, it is statistically insignificant as it is in FF. The difference

in value is not unusual given that FF use returns net of trading costs while we use gross

returns. Our estimate of market risk is similar to that produced by FF (0.95 compared to

0.98 respectively) and FF find marginal support for the market risk parameter being equal to

one (p-value of 0.08), whereas our test rejects this hypothesis. Our parameter estimates on

the remaining three factors are similar in magnitude to those reported by FF.

We interpret Table 1 in same way FF as interpret it. They find that, on average, there

is little evidence that active mutual funds produce gross returns (gross returns for FF deduct

trading costs) above or below that of passive benchmarks. We also find, on average, no

evidence to suggest active mutual funds produce gross returns better than passive benchmarks.

We argue, along the lines of FF, that this result indicates how active fund managers who are

able to outperform the benchmark portfolio are more than offset by inferior managers who

under-perform the benchmark. This similarity between conclusions is reassuring.

4 A novel test for structural breaks in regressions

To test for structural breaks in the 4F-CAPM we use the test of Pouliot (2016). This test has

some superior properties over other break tests that are useful to us here. Firstly, within a

linear regression model, such as the one in equation (1), it can distinguish between a change

in intercept from a change in slope. This is because the test statistic is constructed from two

other statistics in which one is only capable of detecting a change in intercept and the other

is only capable of detecting a change in slope. Secondly, the test has power against parameter

changes that occur early or late in the sample period. In this regard, the test complements

and improves upon the approaches of Andrews (1993) and Andrews and Ploberger (1994),

which do not have this property. Hence, this section provides sufficient detail for readers to

understand why the test is useful and how it can be implemented. For those interested in the

technical details, please refer to the original Pouliot (2016).

Pouliot constructs his test by assuming a random sample {(Yt,Xt)}T
t=1 that satisfies equa-
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tion (2) with an unknown break parameter at time t∗:

Yt =

{
α(1) + Xtβ

(1) + σεt, 1 ≤ t ≤ t∗,

α(2) + Xtβ
(2) + σεt, t∗ < t ≤ T,

(2)

where the εts are independent and identically distributed (iid) random variables satisfying the

following moment conditions:

IIEεt = 0, IIEε2
t = 1 and IIE|εt|

4 < ∞, t = 1, . . . , T. (3)

Note that equation (1) can be expressed in this way. The terms β(1) and β(2) are K × 1

parameter vectors, Xt is a 1 × K vector of explanatory variables. It is assumed that all

components of Xt and the dependent variable Yt are stationary3. This assumption is required

to establish weak convergence results regarding the processes considered here.

The issue of detecting parameter instability can be represented by the hypothesis

H0 : t∗ ≥ T

versus the alternative hypothesis of at-most-one change in intercept or slope

H1 : 1 ≤ t∗ < T.

The null hypothesis does not rule out structural breaks occurring at some point in time, but

it does rule them out for the period covered by the sample of data. So if a break occurs, it

happens beyond the sample. Under the alternative hypothesis of a break in either intercept

or slope parameters, we assume that at least α(1) 6= α(2) or β(1) 6= β(2).

As in the original Pouliot paper, discussion of the test is now divided into two cases: i) when

parameters in (2) are known and ii) when parameters are unknown and must be estimated.

Of course, the more realistic setting is the latter, however, the asymptotic distributions of our

test statistics are easier to establish under assumption i). Nevertheless, it can be shown that

the statistics derived under assumption i) are asymptotically equivalent to the statistics when

under assumption ii). This equivalence permits us to apply any results established under

assumption i) to the tests statistics while under assumption ii).

3We can allow for non-stationary Yt and Xt as long as (2) represents a cointegrating relationship among the
non-stationary variables.
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4.1 Parameters Known

To illustrate the roots of his proposed statistic, Pouliot constructs a process that has its origins

on a U -statistic. They define process MT (τ) to be a function of τ where τ ∈ (0, 1), such that

MT (τ) := T−1/2






[(T+1)τ ]∑

t=1

(Yt − α(1) − Xtβ
(1))2 − τ

T∑

t=1

(Yt − α(1) − Xtβ
(1))2





. (4)

This process can be interpreted as comparing the variance before a change in parameters to

the variance after a change in parameters. Interest centres on how large this process is across

the τ range, with a large value suggesting that the variance has changed. A suitable functional

that captures this is the supremum, leading to the test statistic

sup
0<τ<1

|MT (τ)|. (5)

A useful by-product of this statistic is that it also indirectly yields an estimator of the break

point τ ∗. Gombay et al. (1996) show that this statistic converges to the supremum of a

Brownian bridge. As it is, this statistic cannot distinguish between rejections in the intercept

or the slope. Therefore Pouliot constructs two auxiliary U -statistic type processes defined as

M
(A)
T (τ) := T−1/2






[(T+1)τ ]∑

t=1

(Yt − α − Xtβ
(1))2 − τ

T∑

t=1

(Yt − α − Xtβ
(1))2





(6)

M
(B)
T (τ) := T−1/2






[(T+1)τ ]∑

t=1

(Yt − Xtβ) − τ
T∑

t=1

(Yt − Xtβ)





, (7)

where in M
(A)
T (τ) set

α =

{
α(1), t ≤ t∗

α(2), t > t∗

and in M
(B)
T (τ) set

β =

{
β(1), t ≤ t∗

β(2), t > t∗.

The first statistic is sensitive to a one-time change in the β(1) that is robust to a change in

the intercept, should it occur. The second is sensitive to a one-time change in the intercept

that is robust to a one-time change in slope, if one should occur. In order to maximize the
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power of this test to detect a break, Pouliot constructs the test statistics

sup
0<τ<1

|M (i)
T (τ)|
q(τ)

, (8)

for i = A, B, in which q(τ) is a weight function devised to improve the power of the tests for

detecting changes in parameters that occur in sample. Other similar structural break tests

have power only in a compact interval within (0, 1) but the interest here is to develop weight

functions that can be used to improve the power of the test over the whole (0 , 1) range, in

particular close to the points 0 and 1 such that they are sensitive to change points that are

early and late in the evaluation period. In order to do this, q(τ) must to satisfy the following

two assumptions:

A.1: The function q(∙) defined on (0,1) is such that inf δ≤τ≤1−δ q(τ) > 0 for all τ ∈ (0, 1) and

δ ∈ (0, 1/2).

A.2: I(q, c) =
∫ 1

0
1

τ(1−τ)
exp− cq2(τ)

(τ(1−τ)) dτ < ∞ for some constant c > 0.

One family of weight functions that has received some attention, see Gombay et al. (1996),

depends on a tuning parameter ν, and is given by

q(τ) = q(τ ; ν) := {(τ(1 − τ))ν ; 0 ≤ ν < 1/2}. (9)

This class of functions satisfies A.1 and A.2 for all c > 0, and is sensitive to a change in

parameters of linear regression models that occurs both early and late in the sample.

Pouliot goes on to derive the asymptotic distribution of the processes in (8). He shows

that, under H0, if we let the process (2) satisfy the conditions detailed in (3) and let q(τ)

satisfy A.1 and A.2 then as T → ∞, we can make the following two statements:

(i) If in A.2 the integral holds for all c > 0 rather than for some c > 0, a sequence of Brownian

bridges {BT (τ)} can be constructed such that the following result holds:

sup
0<τ<1

∣
∣
∣ 1

Δ(i)
M

(i)
T (τ)−BT (τ)

∣
∣
∣

q(τ)
= oP (1);

(ii) and if in A.2 the integral holds for some c > 0 rather than for all c > 0, then a sequence

of Brownian bridges {BT (τ)} can be constructed such that the following result holds:

sup
0<τ<1

| 1
Δ(i) M

(i)
T (τ)|

q(τ)

D
−→ sup

0<τ<1

|B(τ)|
q(τ)

,
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where Δ(A) = σ2
√

V ar(ε2
1), Δ(B) = σ and BT (t) := W (Tτ)√

T
− τ W (T )√

T
. The proof of this

can be found in Pouliot.

As the interest here is with a bivariate process formed out of the two processes given in (6)

and (7), Pouliot goes on to show that, under H0, if we let the process (2) satisfy conditions

detailed in (3) and let q(τ) satisfy A.2 for all c > 0, then as T → ∞,






sup
0<τ<1

1
Δ(A)

|M (A)
T (τ)|
q(τ)

sup
0<τ<1

1
Δ(B)

|M (B)
T (τ)|
q(τ)






D
−→






sup
0<τ<1

|B(A)(τ)|
q(τ)

sup
0<τ<1

|ρB(A)(τ) + (1−ρ2)1/2B(B)(τ)|
q(τ)




 , (10)

with
D

−→ denoting convergence in distribution and B(A)(τ) and B(B)(τ) representing two inde-

pendent copies of Brownian bridges and ρ =
IIE[ε3

1]√
V ar(ε2

1)
. Again proof can be found in Pouliot.

These distributions depend on unknown parameters, i.e. the variance, skewness and kur-

tosis of the error term. Under symmetry of the distribution of the errors of the regression

model, when ρ = 0,4 then the bivariate process in (10) converges in distribution to two

independent copies of a weighted Brownian bridge. In this case the testing framework for

parameter changes in intercept or slope consists in comparing the test statistics in (6) and (7)

to the critical value at a γ significance level bγ , obtained from the corresponding tabulated

asymptotic distribution located in the Appendix. For example, if

1
Δ(A) sup

0<τ<1

|M(A)
T (τ)|
q(τ)

> bγ > sup
0<τ<1

1
Δ(B)

|M(B)
T (τ)|
q(τ)

,

the test detects a break only in the slope parameter. If

1
Δ(A) sup

0<τ<1

|M (A)
T (τ)|
q(τ)

> bγ and 1
Δ(B)

|M(B)
T (τ)|
q(τ)

> bγ

both intercept and slope parameters have changed. Finally, if the critical value, at a γ signif-

icance level is greater than each of the two statistics then there is no evidence to reject the

null hypothesis of no structural break in the model that underlies the sample.

Pouliot considers the case when the error has an asymmetric distribution and this is useful

for our analysis of mutual funds. Given the dependence of the two processes under study, it

is not clear how to construct the relevant asymptotic critical values. To solve this problem

Pouliot shows that by reformulating the statistics such that, under the same assumptions as

before, as T → ∞, 




sup
0<τ<1

1
Δ(A)

|M (A)
T (τ)|
q(τ)

sup
0<τ<1

|M(τ)|
q(τ)






D
−→






sup
0<τ<1

|B(A)(τ)|
q(τ)

sup
0<τ<1

|B(B)(τ)|
q(τ)




 (11)

4ρ = 0 if and only if the distribution of the errors in our equation (2) is symmetrically distributed about 0.
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where M(τ) = −ρ((1 − ρ2)σ4V ar(ε2
1))

− 1
2 M

(A)
T (τ) + ((1 − ρ2)σ2)−

1
2 M

(B)
T (τ). This bivariate

process and the corresponding asymptotic theory enable the construction of two different test

statistics for the null hypothesis of no change in parameters of the linear regression model

given in equation (2). The statistic in the first row of the bivariate process detailed in (11)

remains unchanged by a change in α, i.e. it is robust to a change in α of our regression model.

The second test statistic, however, will be sensitive to a change in either intercept or slope of

our regression and is therefore used to define a joint hypothesis

H0 : α(1) = α(2) and β(1) = β(2). (12)

The alternative hypothesis in our joint test corresponds to a change in at least one parameter,

either α or β, of the regression model. A value of the test statistic greater than bγ implies

the rejection of H0. This test statistic will be referred to as a simultaneous test because it

runs simultaneously the two test statistics in equation (11). The element in the first row of

this vector tests the null hypothesis H0,slope : β(1) = β(2), while the test statistic in the second

row tests the null hypothesis H0. This simultaneous test is more informative than traditional

tests for changes in parameters. It can provide information on which parameter has changed:

whether it is α or β. As a test for changes in the parameters, it has one failure. If there is

a change in β, it is no longer informative on a possible change in α. This, however, is easily

circumvented and more will be said regarding this.

Let us explore further possible outcomes of this test. It is possible, though unlikely, that

sup
0<τ<1

|M(τ)|
q(τ)

< bγ < sup
0<τ<1

1

Δ(A)

|M (A)
T (τ)|
q(τ)

. (13)

In this situation, we can conclude that no change has occurred and as such H0 is accepted. If

the more likely situation, given below, should occur,

bγ < sup
0<τ<1

|M(τ)|
q(τ)

bγ > sup
0<τ<1

1

Δ(A)

|M (A)
T (τ)|
q(τ)

then we reject H0 and conclude that there has been a change in α. If, on the other hand

bγ < sup
0<τ<1

|M(τ)|
q(τ)

bγ < sup
0<τ<1

1

Δ(A)

|M (A)
T (τ)|
q(τ)

.
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then we can conclude only that a change in β has occurred. Here, the test is not informative

about a change in α. It is necessary to run an auxiliary test based on the statistic M
(B)
T (τ)/q(τ)

to determine whether α has changed as well.

4.2 Parameters Unknown

The processes defined in (6) and (7) depend on unknown parameters. Ordinary Least Squares

(OLS) will produce consistent estimators of αi and βi for i = 1, 2 under H0 and H1. Let

these sequences of estimators be denoted {α̂(i)
T }∞T=1 and {β̂(i)

T }∞T=1 for i = 1, 2. When these

sample estimates are substituted for the population parameters, this produces the following

slightly altered sequence of partial sum processes:

M̂
(A)
T (τ) := T−1/2






[(T+1)τ ]∑

t=1

(Yt − α̂T − Xtβ̂T )2 − τ
T∑

t=1

(Yt − α̂T − Xt)
2β̂T





(14)

M̂
(B)
T (τ) := T−1/2






[(T+1)τ ]∑

t=1

(Yt − Xtβ̂T ) − τ
T∑

t=1

(Yt − Xtβ̂T )





. (15)

In M̂
(A)
T (τ) set

α̂T =

{
α̂

(1)
T , t ≤ t̂∗

α̂
(2)
T , t > t̂∗,

and β̂T = β̂
(1)
T and in process M̂

(B)
T (τ) set

β̂T =

{
β̂

(1)
T , t ≤ t̂∗

β̂
(2)
T , t > t̂∗,

where t̂∗ is some estimator of t∗. One estimator of t∗ that has been widely studied in the

literature is defined as follows:

t̂∗ :=
1

T
min

{

k :
|M̂T ( k

T
)|

q( k
T
)

= max
1≤i<T

|M̂T ( i
T
)|

q( i
T
)

}

(16)

M̂T (t) = T−1/2






[(T+1)τ ]∑

t=1

(Yt − α̂LS − β̂
′

LSXt)
2 − τ

T∑

t=1

(Yt − α̂LS − β̂
′

LSXt)
2





,

where the subscript LS refers to the least squares estimator of α and β using all T observations.

The asymptotic properties of this estimator have been studied by Antoch et al. (1995). They
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also show that the bootstrap approximation to this distribution is asymptotically valid. For

more on this, we refer those interested to their paper.

Pouliot establishes the asymptotic equivalence between test statistics based on M
(i)
T (τ) and

test statistics based on M̂
(i)
T (τ), for i = A,B. They show that by substituting estimators for

the population parameters in the regression models, all properties established regarding the

processes M
(i)
T (τ) continue to hold for M̂

(i)
T (τ), for i = A,B. They also continue to hold when

parameters ρ, σ and V ar(ε2
1) are replaced by any sequence of consistent estimators. Hence

they show that if we assume {α̂T}∞T=1 and {β̂T}∞T=1 are sequences of consistent estimators of

the parameters in (2), then under the same conditions as before

sup
0<τ<1

|M (i)
T (τ) − M̂

(i)
T (τ)|

q(τ)
= oP (1),

for i = A,B, as T → ∞, where proof can be found in Pouliot, Lemma 2.1.

5 Simulation

The purpose of this section is to see whether inferences made regarding the cross-section of true

α for funds that advertise superior performance, change when the cross-section distribution

t(α) is adjusted for time-variation in the parameters of equation (1) and this affects our

bootstrap simulations. Incorporating time variation allows for more accurate estimation of the

cross-section distribution of t(α) for actively managed US funds, and to determine whether this

distribution suggests a world where true α is zero for all funds or whether some funds possess

nonzero true α. The test used here to answer this question follows closely that employed

by FF with adjustments made for time variation in parameters. Their test compares long

histories of individual fund returns to bootstrap simulations of these returns. Returns used

in the simulations have the same properties as actual fund returns except the true α is set to

zero in the return population form which the bootstrap samples are drawn. This is achieved

by subtracting a fund’s estimated α from its monthly returns. When FF estimate equation

(1) on returns for each fund, they obtain a cross-section of t(α) that can be ordered into a

cumulative distribution function (CDF) of t(α) for actual fund returns. A simulation run also

involves estimating equation (1) but produces a cross-section distribution of t(α) for a world

in which true α is zero.

To alter their method to account for time variation in parameters of equation (1), we begin

by estimating this equation on each of the 5,785 funds and obtaining the residuals from each

estimated model. Next, the simultaneous test detailed in Section 4 is applied to the residuals

to determine whether there has been changes in one of the parameters of equation (1). If the
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simultaneous test does not reject the H0 of no change in α or βs then equation (1) is estimated

assuming β(1) = β(2) and α(1) = α(2), i.e. one model is estimated:

Rit − Rft = αi + β1i(RMt − Rft) + β2iSMBt + β3iHMLt + β4iMOMt + εit. (17)

If, however, it rejects H0 then we engage in further tests, as outlined in Section 4, to

determine which parameters have changed: only α, only β or both. If a change in one

parameter is detected, equation (1) is separated into two equations and the first is estimated

on returns before the change and the second equation is estimated on returns after the change.

To be more specific, suppose a change in α is detected by our tests at some unknown time, the

return series originally modelled as equation (1) is now separated into two regressions models.

The second model departs from the first only to the extent that α is allowed to change at t̂∗,

our estimator of the unknown time of change detailed in equation (16). As there is a change

in α only, we estimate the equations described in (18) which are given below:

Rit − Rft =






α
(1)
i + β1i(RMt − Rfg) + β2iSMBt + β3iHMLt + β4iMOMt + εit

1984 ≤ t ≤ t̂∗

α
(2)
i + β1i(RMt − Rfg) + β2iSMBt + β3iHMLt + β4iMOMt + εit

t̂∗ + 1 ≤ t ≤ 2014.

(18)

If, instead of a change in α, our specially designed tests indicate a change in β only, then

the equations described in (19) are estimated:

Rit −Rft =






α
(1)
i + β

(1)
1i (RMt − Rfg) + β

(1)
2i SMBt + β

(1)
3i HMLt + β

(1)
4i MOMt + εit

1984 ≤ t ≤ t̂∗

α
(1)
i + β

(2)
1i (RMt − Rfg) + β

(2)
2i SMBt + β

(2)
3i HMLt + β

(2)
4i MOMt + εit

t̂∗ + 1 ≤ t ≤ 2014.

(19)

Our second model allows only β to change should our tests detect a change in these parameters

at time t̂∗.

For the last possibility, suppose there is a change to α as well as to β at t̂∗1 and t̂∗2 respec-

tively, we then estimate the following version of equation (1):
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Rit − Rft =






α
(1)
i + β

(1)
1i (RMt − Rfg) + β

(1)
2i SMBt + β

(1)
3i HMLt + β

(1)
4i MOMt + εit

1984 ≤ t ≤ t̂∗1

α
(2)
i + β

(1)
1i (RMt − Rfg) + β

(1)
2i SMBt + β

(1)
3i HMLt + β

(1)
4i MOMt + εit

t̂∗1 + 1 ≤ t ≤ t̂∗2

α(2) + β
(2)
1i (RMt − Rfg) + β

(2)
2i SMBt + β

(2)
3i HMLt + β

(2)
4i MOMt + εit

t̂∗2 + 1 ≤ t ≤ 2014

(20)

A similar process is followed when we encounter two changes in a parameter. As it is more

difficult to describe, for brevity we leave out listing five possible cases that would need to

be accounted for. Lastly, if an estimated location of change in one of the parameters should

occur very near to the start or end of the sample, such that it prevents reliable estimation of

one of the models detailed in equations (18) to (20), then we assume no change has occurred

and estimate one model.

For FF, a simulation run consists of a sample drawn randomly from the 273 months of

returns. Rather than using this method, we employ a fixed-design bootstrap. This requires

estimating the 4F-CAPM model on each of the bootstrapped adjusted returns series allowing

for time-varying parameters. The returns series used in the simulation were generated by

randomly sampling residuals produced from estimating one of many versions of equation (1),

some of which are detailed in equations (17) to (20) on the original returns series. We find this

method easier to implement than the bootstrap method implemented by FF. This method

is well described in Chapter 9 of Efron and Tibshirani (1993); we refer those interested in

more information on this method to this chapter. Following FF, we also use 10,000 simulation

runs to produce two distributions of t-statistics generated from estimating α: one distribution

corresponding to estimating equation (1) assuming no time variation in parameters, the other

distribution is generated allowing for time variation to the parameters of equation (1). As in

FF, the focus of this simulation is on the t-statistic associated with the estimate of α, which is

referred to as t(α), rather than estimates of α. This allows control for differences in precision

in which α is estimated.

5.1 Results

Table 2 reports results on the centiles of the cross-section distribution of t(α), the centiles

associated with the bootstrap simulations of a world of no skill and the %<Actuals. The

results under the heading ‘Without variation in α or βs’ are those for the 4F-CAPM where

the parameters are kept constant throughout the sample period and those under the heading
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‘With variation in α or βs’ are those for the 4F-CAPM where the parameters are allowed to

change if the testing procedure has detected a break.

First, equation (1) was estimated on each of the 5,785 funds’ return series assuming no

change in the parameters of the 4F-CAPM. This results in a cross-section of t(α) were then

ordered and percentiles for this distribution reported in the first of the two columns labelled

‘Actual t(α)’ of Table 2 - reported on the next page - under the general heading ‘Without

variation in α or βs’. The second column labelled ‘Actual t(α)’, under the general heading

‘With variation in α or βs’, reports the CDF after applying the test statistics developed in

Section (4) that allow for one or more changes in the parameters. The results of these test

statistics being used to decide which version of equation (1), detailed in equations (18) to

(20), was estimated taking into account changes in parameters.

Table 2 also lists percentiles for the simulated distribution of t(α) associated with the

simulated α under the two sub-headings ‘Bootstrapped t(α)’. Our procedure for achieving

this is that described in the Section 2. Again, this is carried out separately for the estimates

with and without time variation in the estimated parameters. Lastly, Table 2 also reports

fractions of the 10,000 simulated bootstrap αs that produce lower values of the percentiles

of the CDF from the t(α) in the columns with the headings ‘%<Actual’. Note that we only

analyse gross fund returns, i.e. costs associated with trading were not deducted, whereas

FF report results based on gross returns (gross returns for FF include trading costs but

exclude management expenses) and net returns (net returns deduct both trading costs and

management expenses).

To develop some perspective of the results produced by our simulation, it is useful first to

make qualitative comparisons of the centiles of the cross-section of t(α) estimates from actual

fund returns to average values of the percentiles from the simulations. This is carried out

by comparing the values of t(α) at selected centiles of the CDF of the t(α) estimates from

actual fund returns to percentiles formed by averaging across the 10,000 simulation runs of

t(α) estimates. In the world of the simulation, true α is set to zero. As such, the CDF formed

by averaging centiles across the simulations correspond to a world where the true α is zero and

comparisons of the actual CDF to the corresponding bootstrapped CDF are informative on

whether managers have skill to generate returns that beat returns on the passive benchmark.

We then move onto more detailed analysis of these results via comparison of the likelihoods.

Comparing likelihoods allows us to judge whether the tails of the cross-section of t(α) estimates

for actual fund returns are extreme relative the simulated results where true α is zero. This

provides information on whether some managers lack sufficient skill to beat the benchmark
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Table 2: Distribution of t-statistics on α estimates in 4F-CAPM for US domestic funds

Without time variation With time variation
in α or βs in α or βs

Actual Bootstrap %< Actual Bootstrap %<
Centile t(α) t(α) Actual t(α) t(α) Actual

1 -3.90 -27.54 24.70 -4.15 -25.73 24.61
2 -3.41 -21.45 26.78 -3.67 -20.50 26.86
3 -3.15 -18.07 27.94 -3.32 -17.51 28.62
4 -2.99 -15.76 28.73 -3.11 -15.53 29.70
5 -2.85 -13.86 29.41 -2.95 -13.79 30.54

10 -2.34 -9.47 32.11 -2.39 -9.43 33.75
20 -1.74 -5.25 35.58 -1.78 -5.35 37.74
30 -1.37 -2.74 37.99 -1.39 -3.05 40.62
40 -1.05 -1.08 40.23 -1.04 -1.47 43.31
50 -0.71 0.24 42.66 -0.70 -0.22 45.96
60 -0.40 1.60 45.10 -0.36 1.03 48.83
70 -0.08 3.25 47.53 -0.03 2.48 51.59
80 0.31 5.67 50.48 0.40 4.37 55.05
90 0.90 10.23 54.90 1.17 8.21 61.10

95 1.39 15.11 58.47 1.94 12.85 66.58
96 1.52 17.05 59.44 2.21 14.26 68.31
97 1.70 19.51 60.67 2.57 16.87 70.54
98 2.00 22.76 62.58 3.12 20.30 73.98
99 2.30 27.58 64.47 4.21 26.02 79.35

and whether some managers have skill. For example, if low fractions of simulated values of t(α)

are less than centiles in the extreme left tail of the cross-section distribution of t(α) estimates,

we conclude that some managers are truly unskilled to such an extent that they generate

negative returns. Similarly, we conclude a few managers have sufficient skill to beat returns

on the passive benchmark if large fractions of the simulation runs produce t(α) values below

those centiles in the extreme right tail of cross-section distribution of actual t(α) estimates.

If this fraction is sufficiently large, it may suggest the existence of a few superior performing

funds: a small number of funds may produce large returns.

5.2 Comparing the CDFs of actual t(α) estimates

Here, we compare CDFs of actual t(α) estimates with CDFs from our simulated bootstrapped

t(α) estimates reported in Table 2. We first compare centiles produced for actual t(α) estimates
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listed in both sections. When time variation is allowed for, the 95th centile in the upper tail

(large centiles) is 1.94 but only 1.39 when no time variation is allowed. The disparity between

corresponding centiles of the CDFs increases: the 99th with-time-variation centile is 4.21

which is substantially larger than 99th without time-variation centile of 2.30. Next, comparing

centiles on the lower tails (small centiles), we do not see a similar effect of time variation on

these centiles as we did for the upper tail. The 1st centile of the CDF with time variation

is -4.15 which is slightly smaller than the corresponding 1st centile of -3.90 without changes.

Comparing centiles from the 10th to 80th, we note that they are similar in magnitude. It

is clear from Table 2 and the results contained therein allowing for time variation has had a

dramatic effect on the upper tails of the actual t(α) estimates than on the lower tail. Allowing

for time variation in the parameters of the 4F-CAPM has had a significant impact on CDFs

of actual t(α) estimates. This can have significant effects on conclusions made regarding the

existence of superior funds.

Now we compare centiles from the CDF of actual t(α) estimates to centiles of simulated

bootstrapped t(α)s. Centiles in the lower tail of simulated t(α)s CDF are much smaller in

magnitude when compared to the centiles of actual t(α) estimates. For example, the 3rd, 4th

and 5th centiles of the simulated CDF (recorded in the Bootstrapped t column located in

the ‘Without time variation in α or βs’ section of the Table 2) are -18.07, -15.76 and -13.86,

while the corresponding centiles of the CDF of actual t(α) estimates are -3.15, -2.99 and -2.85.

We can see that simulated centiles are much smaller. Comparing centiles in the upper tail of

simulated and actual CDFs, we find simulated centiles are much larger than actual centiles

detailed in the ‘With time variation in α or βs’ section of Table 2. This indicates that the

bootstrap simulated t-distribution is much more dispersed than the actual t-distribution, both

with and without time varying parameters.

Another interesting consequence of time variation in parameters can be observed when

comparing simulated CDFs (see information contained in Bootstrap t columns of Table 2) with

and without time varying parameters: simulated CDF that includes time variation produces

larger centiles in the lower tail (e.g. 1st centiles of -25.73 is less than -27.54) and smaller

centiles in the upper tail (e.g. 99th centile of 26.02 compared to 27.58). This result again

confirms the significant influence time variation can have on simulated t(α) estimates.

The simulation suggests that, after adjusting for time varying parameters, relatively few

managers generate returns above passive benchmark portfolios. Nevertheless, there appear to

be more occurrences of skilled managers after accounting for time variation than when not

accounting for it. Analysis via likelihoods will enable us to say much more on the presence of

skilled and unskilled managers.
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5.3 Likelihoods (i.e. %<Actual)

As mentioned in Section 5.2, comparing CDFs based on centiles of t(α) estimates of actual

fund returns with centiles from the simulation CDFs can be only suggestive of how manager

skill affects expected returns. FF rely more on results from the analysis of %<Actual (FF

call them likelihoods) than comparing centiles of actual and simulated t(α) estimates. Table

2 also records the likelihoods in the column header titled %<Actual. This column records the

proportion of the 10,000 simulation runs that produce values of t(α)s lower than the centiles

from the CDF of actual t(α) estimates. The likelihoods allow one to assess more formally

whether the tails of the cross-section of t(α) estimates for actual fund returns are extreme

relative to what is observed from a CDF where the true α is set to zero. We follow FF and

infer that some managers lack skill sufficient to cover costs if low fractions of the simulation

runs produce left tail centiles of t(α) estimates below those from actual net fund returns.

Likewise, FF infer some managers produce benchmark-adjusted expected returns that cover

costs if large fractions of the simulation runs produce right tail centiles of t(α) estimates below

those from actual fund returns.

Turning now to interpreting results in the %<Actual column. Comparing the two columns

of %<Actual, we see that the percentages are similar for both CDFs at percentiles in the lower

tail of this distribution but these percentages begin to differ after the 50th centile. At the 60th

centile 48.83% of the simulations produced centiles of t(α) estimates smaller then this actual

t(α) estimates centile (cf. with the ‘With time variation’ section of Table 2) which is larger

than 45.1%, the corresponding percent when no time variation is allowed. At the 90th centile,

the percentage of simulated t(α) centiles less than the corresponding centiles for the actual

t(α) estimates differ substantially (61.10% when time variation is allowed and only 54.90%

without variation). By the 99th centiles, the percentage of simulated t(α) centiles less then the

centiles from the actual t(α) estimates differ by 15% (79.35% when time variation is allowed

for and 64.47% when no time variation is allowed). Time variation in parameters of the 4F-

CAPM has had a dramatic effect. The fraction of simulated t(α) centiles that are less then

centiles of actual t(α) estimates in the upper tail increase significantly relative to the lower

tail. This result is not surprising. Time variation has served to increase the magnitude of the

centiles in the upper tail of the CDF of actual t(α) estimates which reduces the frequency at

which simulated t(α)s exceed them. This result also indicates that allowing for time-varying

parameters in our bootstrap simulation t(α) estimates does not increase the variability of our

t(α) estimates. Indeed, it has reduced their variability.

What does this imply about the presence of skilled managers? For centiles in the lower tail

of the CDF of actual t(α) estimates, the fraction of simulated t(α) centiles that are less than

the actual t(α) centiles is large. From this result, we find that managers generate returns
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that match the passive benchmark portfolio and do not systematically underperform the

benchmark portfolio. We conclude from this that mangers in the lower tail are just unlucky

but on average they have no stock selecting skills as they fail to beat passive bench mark

portfolios. Turning to centiles in the upper tail of actual t(α) estimates, the conclusions we

draw from the %<Actual column is that there maybe a few managers who generate returns

that beat the passive benchmark. We do so based on the percentage of simulated t(α) centiles

which are now higher when time variation is allowed than when it is not. The percentage,

however, is not sufficiently large to conclude that these few managers are sufficiently skilled to

outperform the benchmark portfolio. We are left to conclude that are a few lucky managers

that have no stock selecting ability.

6 Conclusions

Much of the literature on mutual fund performance has found that the conditional models

of Ferson and Schadt (1996) and Christopherson et al. (1998) are no better at estimating

performance than the three and four capital asset pricing models of Fama and French (1993)

and Carhart (1997). For example, Baras et al. (2010) find using conditional versions of

the four factor CAPM has little effect on their simulations and produces results, and hence

conclusions, similar to those produced using unconditional version of the four factor CAPM.

An explanation for the poor performance of conditional versions of the CAPM lies in their

parametric representation. These conditional versions exploit a reduced form representation

which posits a linear relationship between alpha and beta and macro-economic variables.

There is little guidance on the appropriate set of conditioning variables and the relationship

may not be linear. These leaves much unknown when implementing conditional versions of

the CAPM. An alternative method is developed here that uses the novel procedures of Pouliot

(2016) to revaluate the conclusions of Fama and French (2010).

Fama and French (2010, p.1925) report that time variation is a “thorny problem” for

their analysis and leave the issue to future research. Using tests developed by Pouliot (2016),

we adapt their method to allow for any type of time-variation in parameters of equilibrium

asset pricing models and adjust their bootstrap simulation to accommodate time varying

parameters. Using gross returns on 5,785 actively managed US equity mutual funds over the

period from January 1984 to October 2014, we find significant evidence of time-variation in the

parameters of the 4F-CAPM. This time-variation has substantial effects on the cross-section

distribution of the estimated risk adjusted performance measure. Even though there is much

time variation in the unconditional versions of the CAPM, we find less evidence in support of

Fama and French (2010) and their conclusion of no evidence of actively managed US equity
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mutual funds generating returns beyond those that cover management fees and transaction

costs. We do find, unlike Fama and French (2010) that those managers generating negative

returns are just unlucky and have no stock selecting abilities because they cannot beat passive

benchmarks.

Appendix

Table 3: Distribution table for structural break tests

G(x) = IIP

{

sup
0<τ<1

|B(τ)|
q(τ,ν= 15

128
)<x

}

x G(x) x G(x) x G(x) x G(x)
0.53 0.01 0.83 0.26 1.01 0.51 1.23 0.76
0.57 0.02 0.83 0.27 1.01 0.52 1.24 0.77
0.60 0.03 0.84 0.28 1.02 0.53 1.25 0.78
0.62 0.04 0.85 0.29 1.03 0.54 1.26 0.79
0.63 0.05 0.85 0.30 1.04 0.55 1.28 0.80
0.65 0.06 0.86 0.31 1.05 0.56 1.29 0.81
0.66 0.07 0.87 0.32 1.05 0.57 1.30 0.82
0.67 0.08 0.88 0.33 1.06 0.58 1.32 0.83
0.68 0.09 0.88 0.34 1.07 0.59 1.33 0.84
0.70 0.10 0.89 0.35 1.08 0.60 1.35 0.85
0.71 0.11 0.90 0.36 1.09 0.61 1.37 0.86
0.72 0.12 0.90 0.37 1.10 0.62 1.39 0.87
0.73 0.13 0.91 0.38 1.10 0.63 1.40 0.88
0.74 0.14 0.92 0.39 1.11 0.64 1.42 0.89
0.75 0.15 0.93 0.40 1.12 0.65 1.45 0.90
0.75 0.16 0.93 0.41 1.13 0.66 1.47 0.91
0.76 0.17 0.94 0.42 1.14 0.67 1.50 0.92
0.77 0.18 0.95 0.43 1.14 0.68 1.53 0.93
0.78 0.19 0.96 0.44 1.15 0.69 1.56 0.94
0.79 0.20 0.97 0.45 1.16 0.70 1.61 0.95
0.79 0.21 0.97 0.46 1.18 0.71 1.67 0.96
0.80 0.22 0.98 0.47 1.19 0.72 1.72 0.97
0.81 0.23 0.99 0.48 1.20 0.73 1.80 0.98
0.81 0.24 0.99 0.49 1.21 0.74 1.92 0.99
0.82 0.25 1.00 0.50 1.22 0.75 2.04 1.00
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