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DECIM:

Detecting Endpoint Compromise In Messaging
Jiangshan Yu, Mark Ryan, and Cas Cremers

Abstract—We present DECIM, an approach to solve the chal-
lenge of detecting endpoint compromise in messaging. DECIM
manages and refreshes encryption/decryption keys in an auto-
matic and transparent way: it makes it necessary for uses of the
key to be inserted in an append-only log, which the device owner
can interrogate in order to detect misuse.

We propose a multi-device messaging protocol that exploits our
concept to allow users to detect unauthorised usage of their device
keys. It is co-designed with a formal model, and we verify its core
security property using the Tamarin prover. We present a proof-
of-concept implementation providing the main features required
for deployment. We find that DECIM messaging is efficient even
for millions of users.

The methods we introduce are not intended to replace existing
methods used to keep keys safe (such as hardware devices, careful
procedures, or key refreshment techniques). Rather, our methods
provide a useful and effective additional layer of security.

Index Terms—Key usage detection, transparency, secure mes-
saging, key management, formal analysis.

I. INTRODUCTION

Spurred by government surveillance [1]–[3] and users’

desire for strong security [4], a new trend of using end-

to-end secure communication has spread. Large companies

and security communities have started to deploy and provide

message services with end-to-end encryption, which include

Apple iMessage, Facebook WhatsApp, Google End-to-End

email encryption, and Telegram Messenger, to millions of

users.

One challenge in providing end-to-end encrypted messag-

ing concerns how to authenticate public keys. Even though

methods based on the CA-model (e.g. S/MIME) and the web-

of-trust (e.g. OpenPGP) have been available for decades, they

have failed to be widely deployed because of the security and

usability concerns [5]. Recently, CIRT [6] and CONIKS [7]

have been proposed to solve the key authentication problem for

messaging, by making all issued key bindings transparent to

end-users. Both CIRT and CONIKS support multiple devices,

and detect misbehaviours or compromise of the key certifica-

tion authority. However, while these services provide a good

level of protection on users’ communication, they still rely on

the assumption that the end-device cannot be compromised.

Yet, this assumption is rather hard to justify in practice: new

software vulnerabilities [8]–[10] are discovered every day, and
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malware is common on mobile devices such as phones and

tablets [11] as well as on traditional platforms like desktop

PCs.

Signal [12] (formerly TextSecure) moves a step towards han-

dling device compromise. It rotates keys through a ratcheting

process (a.k.a. Axolotl protocol), which generates three types

of keys, namely root key, chain key, and message key. The

root key is a relatively long-term key generated from users’

public keys and updated through the ratchet process. The chain

key and message key are ephemeral keys derived from the

associated root key. Each chain key is a session key, and the

associated message keys are used to encrypt/decrypt messages

exchanged in that session. (We refer the reader to [13] for more

detail.)

An attacker who learns the chain keys and message keys

will not be able to learn messages that have been exchanged

in other sessions. However, if the root key has also been

compromised, then the attacker is able to perform a man-

in-the-middle (MITM) attack to intercept future messages.

Additionally, the ratcheting process can lock the attacker out

from the point that the attacker discontinued being the MITM.

The ratcheting process has been built into several systems

including WhatsApp, one of the most popular messaging

platforms.

Whilst Signal is an important contribution to message

security, it leaves open the question of how to defend against

an attacker (e.g., a platform operator or an internet service

provider) who is in a unique position to act as a persistent

MITM, and has previously compromised a victim’s device.

This paper explores a different part of the complex design

space inhabited by CIRT/CONIKS and Signal. We develop

DECIM, a method to Detect Endpoint Compromise in Mes-

saging applications.

Contribution Our first contribution is to develop an attacker

model in which platforms may be periodically compromised.

That means that they can be compromised by an attacker at any

time, but we assume that the victim periodically takes steps to

remove malware and eliminate vulnerabilities. Unfortunately,

the compromise could have revealed long-term keys. We thus

propose security goals that aim to detect the subsequent usage

of such keys by the attacker.

Second, we propose an approach for detecting endpoint

compromise in messaging (DECIM), to transparently manage

ephemeral encryption/decryption keys. It enables users to

detect subsequent usage of compromised long-term keys by

the attacker even against a persistent MITM attacker, while

avoiding the use of expensive and inconvenient manual pro-
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cess for re-authenticating and distributing keys through the

underlying PKIs (e.g. applying for a new certificate from a

CA), unless attacks are actually detected.

We develop two DECIM protocols. The first is a basic

protocol that makes strong assumptions about the participants

being simultaneously online, and serves mostly to explain

the concepts. The second protocol is a more fully developed

messaging application, supporting multiple devices per user

and allowing the receiver to be offline at the time the sender

sends a message.

We provide a proof-of-concept implementation of the de-

tailed messaging application, and conduct a performance eval-

uation on the system. It shows that the protocol is efficient and

scalable: even in an extreme case, i.e. the messaging system

has been operating for 100 years with 109 users (each with 3

devices), clients only need to download 2.2 KB extra data for

the compromise detection. The memory usage on the server

side for enrolling 105 new devices of distinct users is only

410 MB, and it takes roughly 5.7 milliseconds on average for

each request.

Our third contribution is the security analysis which shows

that the protocols satisfy precise properties expressing software

damage containment. Informally, if an attacker controlled de-

vice has been recovered from a compromised state to a secure

state, then our system can automatically detect a (persistent)

MITM attacker. Therefore the victim will be prompted to

manually revoke the key and generate a new one. We use

the TAMARIN prover to prove several core properties of our

protocol.

We proceed in the following way. In Section II, we present

the background and related work. We detail our attacker model

in Section III and present the main idea of our DECIM

protocols in Section IV. The implementation of our messaging

protocol is presented in Section V in full detail. We analyse the

security of our proposal in Section VI, present the performance

evaluations in Section VII, and conclude in Section VIII.

II. RELATED WORK

Axolotl protocol As mentioned previously, the Axolotl

protocol implemented in Signal [12] uses a ratchet process

to handle device compromise against a non-persistent MITM

attacker. Similar security guarantees are also provided by other

messaging protocols; see [14] for a detailed survey.

FlipIt FLIPIT is an abstract game-theoretic framework for

modelling security scenarios similar to the attacker model of

our paper. In the FLIPIT game [15], the attacker player moves

by compromising a system, and the defender player moves by

recovering it into a secure state. The FLIPIT paper explores

strategies for defender and attacker, based on an abstract notion

of costs associated with moves.

Drifting keys Drifting keys [16] is an approach for detecting

device impersonation when an attacker has obtained a copy

of pre-shared secret keys stored in constrained devices (such

as sensors). Roughly speaking, each key is updated by the

sender by appending a random bit. If two inconsistent keys

of the same device are detected by the receiver, then it learns

that the pre-shared keys at the sender side (i.e. the constrained

devices) has been compromised and used by an attacker to

impersonate the device.

Funkspiel schemes Funkspiel schemes [17] is another ap-

proach to provide some security guarantee when a small device

(e.g. a smart-card) is compromised. Assuming the ability of the

small device to detect a break-in and overwrite stored secrets

before being controlled by an attacker, it aims to inform a

recipient that this has happened, without being noticed by the

attacker.

Certificate transparency Certificate transparency (CT) [18]

is a technique proposed by Google aiming to detect mis-issued

public key certificates. CT achieves this by recording all issued

certificates in an append-only Merkle tree log. CT has been

extended to handle revocation [6], and much work on building

transparent systems has been proposed based on the concept

of CT. Examples include ARPKI [19] and PoliCert [20]

for transparent PKI, and CIRT [6] and CONIKS [7] for

transparency in messaging systems.

III. THREAT MODEL AND DESIGN GOALS

Assumptions We assume a role called sender, that sends mes-

sages, and another one called receiver, that receives messages.

Users can perform one or both of those roles. Each user has

one or more devices, and can pick any of his/her devices to

send a message, and can receive messages on any of them.

We use Sally and Robert to refer to an arbitrary sender and

receiver, respectively.

Threat model The attacker has control over the network and

the messaging server. This means he can eavesdrop, modify,

insert and suppress any messages, and as many of them

he wants. In this way, he can act as a persistent MITM.

However, we also assume that the parties can occasionally

communicate short messages, possibly through an independent,

low-bandwidth and unreliable channel. The attacker has only

partial control of this additional channel — he can intercept,

modify and suppress messages, but not all of them all of

the time (occasionally, a message will get through)1. In other

words, we assume that the attacker can block all communica-

tions in one channel, but cannot block all communications in

all possible diverse channels.

In addition, the attacker may compromise any user’s devices

at any time. After compromising a device, the attacker fully

controls it, and can retrieve and store all the data (including

secret keys) that are stored on it.

Periodically and routinely, users detect and remove malware

on their devices, upgrade the operating system, and install

software patches that remove known vulnerabilities. This can

put the device back into a trustworthy state. The users do

1The idea of this secondary channel is to enable the users to detect a
misbehaving log server that shows different versions of the log to different
users. It has been used in other transparent log based systems, such as in CT,
CIRT and CONIKS. We indicate how this works at the end of the section
IV-C on page 6.
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t1 t′1 t2 t′2 . . . . . .tn t′n

Fig. 1. A device is compromised at time t1, and then restored into a secure
state at time t′1. This cycle is repeated. Thus, the device is in a compromised
state during the intervals {(tj , t

′

j) | j ∈ {1, 2, 3, . . .}}.

not regenerate long-term keys or change passwords unless

evidence of a compromised device has been found.

Thus, we assume that devices are periodically trustworthy.

An attacker compromises the device by exploiting a vulnera-

bility, and sometime later the device owner restores it into a

secure state. This cycle repeats, as illustrated in Figure 1.

The problem Once a device is compromised, then the victim’s

secrets stored in the device are exposed to the attacker. Per-

forming security updates and removing malware is insufficient

to prevent the attacker masquerading as the victim.

Security goals To solve this problem, our system detects key

usages by the attacker. We state our security goal here, and

explain how to achieve the goal in the following sections. In

the security statements below, we assume a parameter ζ, which

is a time period set by the user. A shorter ζ brings greater

security. However, devices are automatically unregistered from

the system if they are not used for periods longer than ζ, and

have to be re-registered. Thus, a very short ζ reduces usability.

Typically, ζ would be about two days. We discuss ζ and other

system parameters later.

In the next section, we develop two protocols: the basic

DECIM protocol and the full DECIM messaging application.

These offer slightly different guarantees.

• Basic DECIM protocol.

Suppose receiver Robert’s device is compromised during

the periods {(tj , t
′

j) | j ∈ N}. Suppose a message is sent

by sender Sally at time t from a device in a trustworthy

state, and the plaintext is obtained by the attacker. Robert

can detect this attack provided his device

– was well within a trustworthy state when the message

was sent; that is, t′j + ζ ≤ t ≤ tj+1 − ζ for some j.

• Messaging application (many users each with many

devices).

Suppose Robert’s devices are periodically compromised,

as before: Di is compromised during the intervals

{(ti,j , t
′

i,j) | j ∈ N}. Suppose a message is sent by Sally

at time t from a device in a trustworthy state, and the

plaintext is obtained by the attacker. Robert can detect

this attack provided, for each of his devices Di,

– Di was well within a trustworthy state when the

message was sent; that is, t′i,j + ζ ≤ t ≤ ti,j+1 − ζ for

some j, or

– Di was in a compromised state, but had not been used

by Robert since t− ζ.

The last condition reflects the fact that one can tell that a

device has been compromised if the device was not being

used at the time its key was used. Later, in Section IV-B,

we show the user interface that allows a user to check

this.

As part of our solution, we introduce an auxiliary role called

the log maintainer. In practice, there can be one or more

agents acting as log maintainers. We do not require that any of

these log maintainers are trusted and assume that the attacker

controls them.

IV. OVERVIEW OF DECIM

We present an overview of two protocols for detecting

endpoint compromise. In the first, the participants are a single

sender and a single receiver, assisted by a log maintainer. This

situation is too simple to be useful, but serves to illustrate the

core concepts. The second protocol is more involved; there

are multiple senders and receivers, and each of them has

multiple devices. This reflects a more realistic situation, and

the multiple devices assist in the detection of attacks.

A. The basic DECIM protocol

Our solution involves three roles: senders, receivers, and a

log maintainer. We assume all of these can be compromised.

We assume a log maintainer is capable of receiving data and

storing it in an append-only log.

During the bootstrapping phase, the receiver Robert obtains

or generates a long-term signing and verification key pair

(skR, vkR), and the sender Sally obtains an authentic copy of

vkR. The log maintainer has a signing key skL, and Robert and

Sally have an authentic copy of the corresponding verification

key vkL. How these keys are securely distributed is not the

subject of this paper; we assume it can be done through

PKIs such as S/MIME [21], PGP [22]–[24], CIRT [6], or

CONIKS [7].

The log maintainer signs and publishes digests of the log.

We use ‘digest’ to denote a short data item that uniquely

summarises the log (in practice, it is the root tree hash of

a Merkle tree). The maintainer is able to create cryptographic

proofs that given data is present or absent from the log. Data

is never deleted from the log represented by a given digest.

The log maintainer can also create proofs that a given digest

represents an append-only extension of the log represented by

a previous digest.

Sally and Robert track the digests issued by the log, all the

time checking the proofs issued by the log that later digests

represent extensions of earlier ones. Sally and Robert also

periodically directly exchange the digests they know about,

and request and check proofs of extension of those digests

with respect to those they already have. Our assumption that

the attacker cannot suppress all messages ensures that they are

being presented with the same version of the log.

The transmission part of the basic DECIM protocol then

runs as follows (see Figure 2).

• To prepare for receiving a message, Robert’s device

creates an ephemeral encryption and decryption key pair

(ek, dk), and certifies it with his long-term signing key

skR. He publishes the certificate CertskR
(R, ek) in the

log. Publishing the certificate in the log assures Sally that

it is a valid encryption key belonging to Robert.

• To send a message, Sally’s device retrieves

CertskR
(R, ek) from the log along with a proof of
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Sally Robert

- generate ephemeral (ek, dk)
- create a certificate σ = CertskR

(R, ek)
- sends σ to the log maintainer
for insertion in log

σ

- request from the log maintainer
proofs that σ is present in log

- verify obtained proofs
- encrypt message m using ek

Encek(m)

- use dk to decrypt message
- request proofs from the log maintainer

to check that all keys in log for “Robert”
are genuine

Fig. 2. The basic DECIM protocol. Robert has a pair (skR, vkR) of long term
keys for signature signing and verification. He generates an ephemeral key
pair (ek, dk) for encryption, creates the certificate σ = CertskR

(R, ek) on
ek, and sends the certificate to the log maintainer for insertion into the public
log. Meanwhile, Robert also sends the certificate to Sally. After receiving σ,
Sally requests from the log maintainer proofs that the certificate is present in
the log. If the proof is valid, Sally sends a message m to Robert encrypted
with ek. Robert requests proofs from the log maintainer to enable him to
verify whether the log contains signatures that he did not generate.

its currency in the log. She encrypts the message with

ek and sends it to Robert. Sally will not use a key whose

certificate is not in the log.

• Robert’s device receives the encrypted message and de-

crypts it.

Additionally, Robert’s device periodically checks (where the

period is determined by the parameter ζ) that all the keys

ek′ for which a certificate CertskR
(R, ek′) exists in the log

were put there by him. If he finds entries in the log not

corresponding to his actions, then he knows that his long term

credentials have been disclosed and abused by an attacker.

The basic protocol assumes that Robert is online at the

time that Sally wants to send a message. In the messaging

application protocol below, we generalise this to work when

Robert is offline.

Intuitively, our protocol design detects compromise attacks

because an attacker in possession of Robert’s long term key

would have to leave evidence of its usage of the key in the log.

We give examples of how this detection works in Section IV-C.

We perform a formal analysis of our designs in Section VI.

Properties of the log The security of the method requires

that an attacker cannot remove information from the log. To

achieve this, the log is typically stipulated to be append-only.

It is also a requirement that users of the log (including Robert)

can verify that no information has been deleted from the log.

For this purpose, the log can be organised as a Merkle tree

[25] in which data is inserted by extending the tree to the

right. Such a log was designed and introduced in certificate

transparency [18]. The log maintainer can provide efficient

proofs that (A) some particular data is present in the log, and

(B) the log is being maintained in an append-only manner.

Proof A is referred to as proof of presence (PoP) and proof B

is referred to as proof of extension (PoE).

Certificate transparency has been extended to provide proofs

that all data associated to some attribute (e.g. keys associated

to a user identity) is absent from the log, and proofs that some

data associated to some attribute is the latest valid data in the

log. The former is referred to as proof of absence, and the

latter as proof of currency [6], [7].

B. DECIM Messaging application

The DECIM messaging application generalises the basic

DECIM protocol, allowing the users to have multiple devices.

Sally can choose any of her devices to send a message, and

Robert is able to receive the message on all of his devices.

Although this makes the protocol a bit more complicated, it

also allows us to obtain a stronger security guarantee, because

even if one of Robert’s devices is in an untrustworthy state

we are able to leverage security from the other ones.

As before, we assume a log, with the same capabilities

mentioned above. We also assume that Robert and the log

maintainer have long-term signing and verification key pairs

(skR, vkR) (skL, vkL) respectively, and all parties have au-

thentic copies of the verification keys they need.

The parameters δ, ǫ and ζ The protocol is parameterised

by three values:

• δ is the period between the times at which device registra-

tion requests are processed. It is set by the log maintainer.

We expect it to be typically one hour.

• ǫ is the period between the times at which key update

requests are processed. We refer to such periods as

“epochs”. It is also set by the log maintainer, and is

typically one day.

• ζ is the maximum lifetime of a key. It is set by the user.

Different users can choose different values of ζ, subject

to the constraint ǫ ≤ ζ. We expect it to be about two or

three days.

The messaging protocol has three main sub-protocols: en-

rolling, message transmission, and key updates. We describe

these in turn.

Enrolling a device To enroll a device Dℓ, Robert needs to

install skR onto it. We assume that skR is derived from a

passphrase that Robert types into Dℓ. Next, Dℓ needs to create

a key pair and publish its certificate in the log. More precisely:

• Dℓ generates a new ephemeral encryption key pair

(ekℓ, dkℓ) and sends the certificate CertskR
(Dℓ, ekℓ, tℓ)

to the log maintainer. Here, tℓ is the key creation time.

The key will be used from the current time until the next

epoch beginning, for the purpose of encrypting messages

for Robert’s device.

• After time δ, the log maintainer has inserted the certificate

into the log and sends to Dℓ the list of device certifi-

cates CertskR
(Di, eki, ti) for Robert present in the log,

together with a proof that the list is complete, and current

in the log.

• Dℓ verifies the proof of currency for CertskR
(Dℓ, ekℓ, tℓ).

It displays the table (Di, ti) (for each i) to Robert, so he

can check that the devices mentioned are indeed recently

used. If Robert sees a device mentioned that he has not

recently used, it is evidence of an attack (§ IV-D). Figure
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Fig. 3. An example of envisaged GUI that presents the table (Di, ti) for
i = {1, 2} to Robert. The ticked box against the “key usage proof” indicates
that the proofs about the usage statement (e.g., last update time) have been
cryptographically verified.

3 presents an example of the envisaged GUI to show how

the information is likely to be presented to Robert.

The device is now ready to be used. When Sally encrypts

a message, her device will obtain all the public parts of the

current ephemeral keys for Robert from the log, and encrypt

the messages with each of them.

Remark. The method of displaying on a user’s device the

user’s activities on other devices is well-known (for example,

in Gmail, a user can click “last account activity” to see a table

of the sessions open by other devices). A crucial difference in

our protocol is that the displaying device can fully verify the

veracity of the account activity provided by the untrusted log

maintainer.

Sending and receiving a message

• To send a message, Sally retrieves CertskR
(Di, eki, ti)

(for each available i) from the log along with proofs of

currency. Her device encrypts a copy of the message by

using each received eki according to the specific end-

to-end secure messaging protocol that they both use2.

It sends the encrypted message and together with the

encrypted k to each of Robert’s devices.

• Robert picks up any of his devices, receives the encrypted

message, and decrypts it.

Updating the keys Whenever Robert invokes the messaging

app on a device Dℓ, the device checks to see if it is the first

time it has run the app during that ǫ-long epoch. If so, it

generates a new device key which will become the key for the

following epoch. More precisely, on the first invocation during

an epoch:

• Dℓ requests and verifies proof of currency for all of the

current epoch’s device certificates CertskR
(Di, eki, ti) for

each available i. It verifies that ekℓ is indeed the one it

created and sent the previous epoch; if this verification

fails, it is evidence of an attack (§ IV-D). Dℓ displays

the table (Di, ti) (each i) to Robert, so he can check that

the devices mentioned are indeed recently used. If Robert

2The design of DECIM is agnostic about the specific end-to-end secure
messaging protocol used; e.g. it could be PGP, Axolotl, or something else.
For simplicity and concreteness, in the detailed presentation of DECIM in
section V, and also in the Tamarin proofs of section VI, we encrypt messages
by using the hybrid mechanism deployed in PGP and iMessage.

sees a device mentioned that he has not recently used, it

is again evidence of an attack.

• Dℓ next creates a new ephemeral encryption key pair

(ek′ℓ, dk
′

ℓ) and sends the certificate CertskR
(Dℓ, ek

′

ℓ, tℓ)
to the log maintainer. Here, tℓ is the key creation time.

• By the next epoch, the log maintainer has inserted into the

log all the device keys thus received. If a device does not

send a new key during an epoch, the old key is retained

in subsequent epochs until a period ζ has elapsed. At

that time, keys of devices that did not send new keys are

revoked.

• When a new key becomes valid, Dℓ securely removes the

old key in the device.

In other words, devices change their key every epoch, and if

they don’t do so (because the application is not invoked during

a particular epoch) then their key is reused for a certain period,

and then revoked. In this last case, the device can’t be used

until it re-registers.

C. Detecting attacks: examples

To provide intuition on how our protocol allows users to

detect attacks, we explain some potential attack detection

scenarios. We will present our formal security analysis in

Section VI.

Attacks from a third party

Suppose one of Robert’s devices, say his phone, is infected

with malware, allowing an adversary to misuse all the keys

stored on the device. Suppose the adversary is the messaging

service provider acting as a persistent MITM. The adversary

may decrypt messages encrypted with ephemeral keys in that

epoch, and may create new signed ephemeral keys by using

the phone’s long term key and inserting them into the log to

perform MITM attacks in future epochs.

Robert routinely performs malware scanning and software

patching, which may or may not help him regain the control

of his phone depending on the robustness of the malware. It

is obvious that one can do nothing for the epoch in which

the adversary has all the ephemeral secrets for decryption. We

focus on the more interesting case, namely, the security of

messages exchanged in future epochs.

If Robert regains control of his phone, and the attacker

continues to use the phone’s long-term key to create ephemeral

keys, the phone can detect this activity via the log, and report

it to the user.

If the adversary remains in full control of the phone, then

Robert might still be able to detect the device compromise by

monitoring the long-term key usage – he notices unexpected

usage of phone using the GUI of Figure 3. The figure shows

the GUI displayed on another device of Robert’s. It informs

him that (so far in the current epoch) the keys corresponding

to his phone and his iPad have been active. If Robert has not

used his phone in the epoch, then he learns that it has been

compromised. The GUI also confirms that the proofs about

the usage statement have been cryptographically verified.

Attacks on or by the log maintainer Suppose the log main-

tainer is malicious or compromised. It may provide fake proofs,

or provide no proofs at all. This is readily detected by client
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software. It may maintain the log incorrectly, either by not

correctly recording signed ephemeral keys or by incorrectly

recording fake ephemeral keys. These attacks are detected

when the key owner requests a complete proof of presence.

A more interesting attack arises if the log maintainer shows

different versions of the log to different users. A receiver

may see a version in which his ephemeral keys are correctly

recorded, while the sender sees a version in which attacker-

owned keys are present instead. This would allow the attacker

to play man-in-the-middle attacks, preventing the sender and

receiver ever exchanging information about the log digests they

have. In DECIM, users can detect such attacks by gossiping

with their contacts, for example, through an out-of-band chan-

nel as used in Signal [12], or through a gossip protocol [26]–

[28] as recommended by Google CT [18] and CONIKS [7].

Such a procedure will ensure that the log maintainer is not

misbehaving. We refer readers to the referenced work for more

detail.

D. Responding to attacks

If Robert detects unexpected activity on a device, or some

verification fails, this is evidence of an attack. Robert’s re-

sponse should be to fix the software on his devices. He should

generate a new long-term key, in order to prevent attacks

occurring (and being detected) due to the disclosure of his

current long-term key. The corresponding public key can be

distributed using the method used in the bootstrapping phase.

Furthermore, he can inform Sally that some of her recent

messages to him may have been compromised.

Robert can also detect failure when he verifies the actions

of the log maintainer. His response is to change to a different

provider.

V. DETAILED MESSAGING PROTOCOL

In this section we present our proposal’s details in several

parts. We first present the log structure in Section V-A. We

then turn to describe the protocol in more detail in Section V-B.

The procedures that ensure that we detect malicious log

maintainers are described in Section V-C. we consider privacy

concerns in Section V-D.

A. Log structure

The public log is organised as a tree of trees: the top-

level tree is append-only, and its leaves are lexicographically

ordered trees.

The top-level tree of the log is implemented by a append-

only Merkle tree [25]. The digest of a log is the root hash

value and the size of this tree. A Merkle tree is a tree in

which every node is labelled with the hash of the labels of its

children nodes. Suppose a node has two children labelled with

hash values h1, h2. Then the label of this node is h(h1, h2).
Merkle trees allow efficient proofs that they contain certain

data. To prove that a certain data item d is part of a Merkle

tree requires an amount of data proportional to the log of the

number of nodes of the tree. (This contrasts with hash lists,

where the amount is proportional to the number of nodes.) If a

TABLE I
THE METHODS SUPPORTED BY THE MERKLE TREE.

Method Input Output

Size T The size of the Merkle tree T

Root T The root value of the Merkle tree T

Last T The data stored in the rightmost side leaf of Merkle tree T

PoP (T, d) Proof of Presence: The proof that d is in T

PoC (T, d) Proof of Currency: The proof that d is the last leaf in T

PoA (T, a) Proof of Absence: The proof that any data d having attribute a is absent

from the Merkle tree T . This proof can only work if items in T are ordered

lexicographically according to the attribute.

PoE (T, dg′) Proof of Extension: The proof that the Merkle tree T is an extension of

another Merkle tree whose digest is dg′. This proof can only work if T is

append-only.

Merkle tree is append-only, i.e. the only supported operation is

to append some data to the tree, then it supports efficient proof

that a version of the tree is extended from a previous version.

If items in a Merkle tree are ordered lexicographically, then the

Merkle tree supports efficient proof that some data is absent

from the tree. The sizes of all the above proofs are proportional

to the log of the number of nodes of the tree. More examples

can be found in [6], [18]. Table I shows methods that a Merkle

tree supports.

The append-only Merkle tree T (as shown in Figure 4)

records the entire update history. Items in T are stored only in

leaves and ordered chronologically, and each leaf is labelled

by the root hash value of another Merkle tree T ′ (presented

in Figure 5). Items in T ′ are also stored only in the leaves,

but ordered according to user identity. Each leaf of T ′ is

labelled by users’ identity and a list of ephemeral certificates

for different devices of the same user.

We give some examples based on Figure 4 and 5 to show

how the proof can be done with our log. We will explain how

to verify that the log is maintained correctly — i.e. the log

maintainer only appends data in T , and items in every T ′ are

ordered lexicographically — in §V-C.

Example of proof of presence To prove that data d′2 for Bob

is in T ′

6 (see Figure 5), the log maintainer only needs to give

the data needed to compute the label of parent node from d′2
to the root of the tree.

PoP(T ′

6, d
′

2) = [w, d′1, h(3,4), h(5,7)]

where w = l · l · r is the path to d′2, and l (resp. r) indicates

the path to the left (resp. right) child. So, given d′2, Root(T ′

6),
and the proof PoP(T ′

6, d
′

2), one can verify the proof by recon-

structing the root value hT = h(h(h(d′1, d
′

2), h(3,4)), h((5, 7))).
If hT = Root(T ′

6), then the proof is valid.

Example of proof of currency The proof of currency is the

same as the proof of presence, but there is an extra constraint

for the verifier to check, namely that the path to the root of

the lexicographic tree (e.g., the path from the root to d6 in

Figure 4) is of the form r · r . . . · r, i.e., the leaf should be the

rightmost leaf of the tree.

Example of proof of extension To prove that the cur-

rent version of the log represented by T is an extension

of a previous version (Told) containing four updates (i.e.
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h(h(h(d1, d2), h(d3, d4)), h(d5, d6))

h(h(d1, d2), h(d3, d4))

h(d1, d2)

d1 := Root(T ′
1
)

d2 := Root(T ′
2
)

h(d3, d4)

d3 := Root(T ′
3
)

d4 := Root(T ′
4
)

h(d5, d6)

d5 := Root(T ′
5
)

d6 := Root(T ′
6
)

Merkle tree T

Fig. 4. An example of the log containing six updates {d1, d2, . . . , d6}. The
log is an append-only Merkle tree T whose leaves are ordered chronologically.

h(1,7)

h(1,4)

h(1,2)

d′1 := (Alice,
DA,1, tA,1, h(certA,1)
DA,2, tA,2, h(certA,2))

d′2 := (Bob,
DB,1, tB,1, h(certB,1)
DB,2, tB,2, h(certB,2)
. . .
DB,5, tB,5, h(certB,5))

h(3,4)

d′3 d′4

h(5,7)

h(5,6)

d′5 d′6

d′7 := (Robert,
DR,1, tR,1, h(certR,1)
DR,2, tR,2, h(certR,2)
DR,3, tR,3, h(certR,3)
DR,4, tR,4, h(certR,4))

Merkle tree T ′
6

Fig. 5. An example of the data structure T ′ recording data in each update.
Items in T ′ are ordered lexicographically. For all a, b ∈ [1, 7], h(a,b) is the

root hash value of a Merkle tree containing data from d′a to d′
b
. For example,

h(1,2) = h(d′1, d
′

2), and h(1,7) = h(h(1,4), h(5,7)). Each leaf of T ′ is
labelled by (h(ID), (Dj , tj , h(certj))

n
j=1), such that certj is a certificate

on (Dj , ekj , tj) issued by ID, where Dj is the identity of the jth device of
ID, ekj is an (ephemeral) public encryption key, and tj is the issuing time.

Root(Told) = h(h(d1, d2), h(d3, d4)) and Size(Told) = 4),

the log maintainer gives h(d5, d6) as the proof. Given the

two digests and this proof, the verifier can verify that T

is extended from Told by reconstructing Root(T ). A well

defined algorithm for generating the proof in different cases

is presented in §5.1.2 of [18].

Example of Proof of absence To prove that no certificates

for user identity ‘Bill’ is included in T ′

6, the log maintainer

needs to prove that any node whose label containing Bill is

absent from T ′

6, by performing the following steps.

• Locate node A such that the user identity contained in

its label is lexicographically the largest one smaller than

Bill. In our example, the label of node A is d′1 which

contains user identity ‘Alice’.

• Locate node B such that the user identity contained in its

label is lexicographically the smallest one greater than

Bill. In our example, the label of node B is d′2 which

contains user identity ‘Bob’.

• Prove that d′1 and d′2 are present in T ′

6, and they are

siblings (so no node is placed in between of them). The

former is proved by using proof of presence, and the latter

one can be verified by checking the path to d′1 and d′2.

B. Messaging protocol details

We recall the defined system parameters in Table II.

TABLE II
SYSTEM PARAMETERS.

Parameter Explanation

δ the period between the times at which device registration requests are

processed. It is set by the log maintainer. (Typically one hour.)

ǫ the regularity of processing key update requests on the server side. It is set

by the log maintainer. (Typically one day.)

ζ the lifetime of the device ephemeral keys, defined by each individual user.

1) Enrolling a device (Figure 6): We assume that all

Robert’s devices have shared his long-term signing key skR.

To enrol a device Dℓ, it generates a new ephemeral certificate,

and publishes it in the log. In more detail, as presented in

Figure 6:

skR, dgold, σold
L

Robert’s device Dℓ

skL, log

Log maintainer

- generate (dkℓ, ekℓ)
- issue CertskR

(Dℓ, ekℓ, tℓ)
- dgold = (Root(Told), Size(Told))

m1 = (req1, R, dgold,CertskR
(Dℓ, ekℓ, tℓ))

- verify the received certificate and tℓ
- store m1
- dgnew := (Root(T ), Size(T ))
- σL := sign{dgnew, h(CertskR

(Dℓ, ekℓ, tℓ))}skL

- P1 := PoE(T, dgold)

m2 = (dgnew, σL, P1)

- verify σL and P1
- dgold := dgnew

- σold
L := σL

- remove any expired keys

After δ time

m3 = (req′1, R,Dℓ, dgnew)

- update the log from T to Tnew

- T := Tnew

- Last(T ) := Root(T ′

n+1)
- find d in T ′

n+1 such that R is contained in d
- P2 := PoC(T, Last(T ))
- P3 := PoP(T ′

n+1, d)
- P4 := PoE(T, dgnew)
- md := all data associated to d
- dg′new := (Root(T ), Size(T ))
- mL := (dg′new, Last(T ), {Pi}

4
i=2,md, t)

- σ′L := sign{mL}skL

m4 = (mL, σ′L)

- verify σ′L, all received proofs, and that CertskR
(Dℓ, ekℓ, tℓ) is in md

- (dgnew, σL) := (dg′new, σ′L)
- display all (Di, ti) to Robert

Fig. 6. The protocol for (re-)enrolling a device. In the protocol, if Robert is
re-enrolling his device, then dgold and σold

L are the previously stored digest
and signature received from the log maintainer, respectively.

• Dℓ generates a new ephemeral key pair (dkℓ, ekℓ) for

decryption and encryption, respectively. Then, Dℓ issues

a certificate CertskR
(Dℓ, ekℓ, tℓ) on (Dℓ, ekℓ, tℓ) by using

skR, where tℓ is the key creation time; and sends the

signed registration request

m1 = (req1, R, dgold,CertskR
(Dℓ, ekℓ, tℓ)) to the log,

where req1 is the request identity, R is the identity of

Robert, and dgold = (Root(Told), Size(Told)) is the digest

of the log that Robert possibly has previously stored (it is

likely to happen if Robert is re-enrolling his device Dℓ).

• After the log maintainer receives the request, it verifies

the signature and the certificate, and that tℓ is in the time

interval of the current update epoch δ. If they are all

valid, it stores the request, and issues a signed confirma-
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tion sign{Root(log), Size(log),CertskR
(Dℓ, ekℓ, tℓ)}skL

,

where log is organised as T , as explained in §V-A. If

dgold is provided, the log maintainer also generates a

proof P of extension that the current log is extended from

the log represented by dgold, and sends the proof together

with signed confirmation as the message m2 to Robert.

• Dℓ verifies the received signature and proof, stores the

new digest dgnew with signature σL, and sends the

request m3 containing a request identity req′1, Robert and

the device’s identity (R,Dℓ), and current observed digest

to the log maintainer after δ time.

• After each period of length δ, the log maintainer updates

the log according to the list of device enrollment requests

received from its customers. The list of requests should

be in the form

(Ri, (CertskRi
(Di,j , eki,j , ti,j))

P
j=1)

M
i=1

where Ri is the client identity, P is the number of devices

that a client has requested to enroll this update, and M is

the total number of clients who have sent the enrollment

request for this update.

To update the log, the log maintainer retrieves the current

T ′

n such that Root(T ′

n) = Last(T ), and creates T ′

n+1 by

adding each request to the appropriate node of T ′

n, where

n is the size of the current log. It then extends T with a

new rightmost node T ′

n+1.

In addition, the log maintainer proves that the list of

certificates (including the ones in the enrollment request)

for each participant Ri is complete, and current in the log.

If Ri has previously observed a digest dgold of the log,

then log maintainer also generates a proof of extension

that the current log is extended from the log represented

by dgold. To do so, the log maintainer locates the node

labelled with d for Ri in T ′

n+1, and generates:

– PoP(T ′

n+1, d) that d is present in T ′

n+1;

– PoC(T, T ′

n+1) that the root hash value of T ′

n+1 is the

label of the rightmost leaf in T ; and

– PoE(T, dgold) that the current log is extended from the

log represented by dgold.

So Ri can verify that d — which contains a full list of

certificates for his devices (including the newly enrolled

ones) — is present in the latest update of the log.

• Dℓ verifies the received proofs and signatures. Addition-

ally, it displays the table (Di, ti) (for all i ∈ [1, P ]) to

Robert, so he can check that the devices mentioned are

indeed recently used. If Robert sees a device mentioned

that he has not recently used, it is evidence of an attack

that an attacker who has used his long-term key without

authorisation and has inserted a certificate for him.

The device is now ready to be used. A similar process is

used to un-register a device with the log maintainer.

2) Sending and receiving a message (Figure 7): To send

a message to Robert, Sally’s device retrieves all the current

device certificates for Robert from the log, and encrypts the

messages with each of them. More precisely (as presented in

Figure 7), to send a message:

• Sally sends request m1 = (req2, R, r, dgold) to the log,

skL, log, vkR

Log maintainer

dgold, σold
L , vkR, vkL

Sally

skR, dki

Robert’s device Di

- generate random number r
- dgold := (Root(Told), Size(Told))

m1 = (req2, R, r, dgold)

- Last(T ) := Root(T ′)
- find d in T ′ such that R is contained in d
- P1 := PoC(T, Last(T ))
- P2 := PoP(T ′, d)
- P3 := PoE(T, dgold)
- md := all data associated to d
- dgnew = (Root(T ), Size(T ))
- mL := (‘CertResp’, dgnew, Last(T ), {Pi}

3
i=1, r,md, t)

- σL := sign{mL, r}skL

m2 = (mL, σL)

- verify t, σL, all received proofs and certificates
- set dgold := dgnew and σold

L := σL

- extract eki from each received certificate
- create symmetric key k

m3 = ({m}k, {k}eki
) for all i

- decrypt {k}eki
by using dki

- decrypt {m}k by using k

Fig. 7. The protocol for sending and receiving a message. In which, σold
L is

the signature received from the log maintainer in the last session. If any of
the stated verification checks fails, the agent aborts the protocol.

where req2
3 is the request identity, R is the identity

of Robert, r is a random number, and where dgold =
(Root(Told), Size(Told)) is the digest of the log that Sally

received in the last session.

• After receiving the request, the log maintainer locates the

leaf whose label d contains R in the latest update T ′ (that

is represented by the rightmost leaf of T ), and generates

the proof P1 that Root(T ′) is current in T , proof P2 that d

is in T ′, and proof P3 that the current log is an extension

of the log that Sally has previously observed. It then sends

m2 to Sally. In particular, m2 is the signed message

(‘CertResp’, dgnew, Last(T ), P1, P2, P3, r,md, t), where

‘CertResp’ is a tag, dgnew = (Root(T ), Size(T )), md =
(R, (Dj , tj , ekj ,Certj)

P
j=1) is the data associated to d,

and t is the time to identify the current epoch.

• After receiving the message from the log maintainer,

Sally verifies if t corresponds to the current epoch, and

verifies the received signature, proofs, and certificates. If

all verifications succeed, she replaces dgold and σold
L by

dgnew and σL, respectively, where σL is the signature

from the log maintainer.

Her device encrypts a copy of the message with a fresh

symmetric key k, and encrypts k with each received eki.

It sends the encrypted message and together with the

encrypted k to each of Robert’s devices.

• Robert picks up any of his devices, receives the encrypted

message, and decrypts it.

Note that in the protocol, if there is no certificate for Robert

in the latest update, then a proof of absence that the identity

of Robert is not in the latest update is provided to the user.

3This request corresponds to the ‘CertReq’ in our Tamarin code.



9

skR, dkold
ℓ , Certold, dgold, σold

L

Robert’s device Dℓ

skL, log

Log maintainer

- generate (dkℓ, ekℓ) and issue CertskR
(Dℓ, ekℓ, tℓ)

- dgold = (Root(Told), Size(Told))

m1 = (req3, R, dgold,CertskR
(Dℓ, ekℓ, tℓ))

- verify the received certificate and tℓ
- dgnew := (Root(T ), Size(T ))
- σL := sign{‘Confirmation’, dgnew, h(CertskR

(Dℓ, ekℓ, tℓ))}skL

- Last(T ) := Root(T ′)
- find d in T ′ such that R is in d
- P1 := PoC(T, Last(T ))
- P2 := PoP(T ′, d)
- P3 := PoE(T, dgold)
- store m1
- md := all data associated to d

m2 = (dgnew,md, σL, {Pi}
3
i=1)

- verify σL, all received proofs, and that h(Certold) is in md

- dgold := dgnew

- σold
L := σL

- remove expired keys
- display all (Di, ti) to Robert

At the end of the epoch w.r.t. ǫ

Update the log similar to the update in Figure 6

Fig. 8. The protocol for updating keys. In the protocol, dkold
ℓ

is the current
valid ephemeral secret key, Certold is the corresponding certificate, dgold
and σold

L are the digest and signature received from the log maintainer in the
last session, respectively.

3) Updating the keys (Figure 8): Devices change their key

every epoch w.r.t. ǫ, and if they don’t do so (because the

application is not invoked on a particular day), then their key

will be reused for a certain period (e.g. a few more ǫ), and

then will not be included in the log for the next further update

epoch. In this last case, the device can’t be used for receiving

and reading messages until Robert uses the device again — it

will re-register the device automatically. So, after Robert can

use this device again in δ time (e.g. one hour). Note that if

Robert has un-registered the device, then the device will not

automatically re-register itself; and Robert has to re-register it

manually in this case.

More precisely, whenever Robert invokes the messaging app

on a device Dℓ, the device checks to see if it is the first time

it has run the app during that epoch w.r.t. ǫ. If so,

• Dℓ creates a new ephemeral key pair (dkℓ, ekℓ), issues

a certificate CertskR
(Dℓ, ekℓ, tℓ), which will become the

valid key in next epoch, where tℓ is the key creation time.

Then, he sends the signed request

m1 = (req3, R, dgold,CertskR
(Dℓ, ekℓ, tℓ)) to the log

maintainer, where req3
4 is the identity of update request,

dgold = (Root(Told), Size(Told)) is the digest of the log

that he observed in the last session.

• After receiving the request, the log maintainer verifies

the signature, time tℓ, and the received certificate. If

they are all valid, then it generates a commitment σL =
sign{‘Confirmation’, dgnew, h(CertskR

(Dℓ, ekℓ, tℓ))}skL

that it will put the received new certificate in the log by

the end of this epoch. The log maintainer locates the node

d for Robert in the latest update of the log, and generates

the proof P1 that the root hash value of T ′ is the label of

the rightmost leaf in T , proof P2 that d is present in T ′,

and the proof P3 that T is an extension of the log that

4This request corresponds to the ‘UpdateReq’ in our Tamarin code.

Robert has observed in the last session. Note that P1 and

P2 together form the proof that d is the latest update for

Robert in the log. The log maintainer sends the generated

signature and proofs to Dℓ.

• Upon receiving the response, Dℓ verifies all signatures

and proofs. Additionally, it verifies that the hashed cer-

tificate (contained in d) for Dℓ in the latest update is

indeed corresponding to the one it created and sent in

the previous epoch. This verification ensures that no

unauthorised request has been generated and recorded in

the current log. (We will explain in the §V-C that why we

don’t need to require Dℓ to verify all history certificates

for Dℓ in the log are indeed generated by Dℓ.) If all

verifications succeed, Dℓ removes any expired keys stored

in Dℓ, replaces the stored digest of the log with the new

one, and displays the table (Di, ti) (for each possible i)

to Robert, so he can check that the devices mentioned are

indeed recently used. If Robert sees a device mentioned

that he has not recently used, it is evidence of an attack.

• At the turn of the epoch, the log maintainer inserts all

received update request into the log. Suppose in the

current epoch, the log maintainer which maintains the log

(represented by T of size n) has the tree T ′

n containing

(Alice, DA,1, tA,1, h(certA,1)

DA,2, tA,2, h(certA,2)),

(Bob, DB,1, tB,1, h(certB,1)

DB,2, tB,2, h(certB,2)

. . .

DB,5, tB,5, h(certB,5)),

. . . . . .

and receives

(Ri, (CertskRi
(Di,j , eki,j , ti,j))

P ′

j=1
)
M′

i=1

for some identity Ri and certificates for its devices Di,j ,

where P ′ is the number of a user’s devices that have

sent a key update request, and M ′ is the total number

of clients who have sent the key update request in this

epoch.

To update the log, the log maintainer performs the fol-

lowing steps:

Step 1) creates a new tree T ′

n+1 by copying and pasting

the entire T ′

n;

Step 2) replaces the old certificates with the correspond-

ing new ones in T ′

n+1;

Step 3) checks if any un-replaced certificate is older than

ζ; if there is any, the log maintainer removes

them from T ′

n+1;

Step 4) extends T with a new rightmost node

Root(T ′

n+1).
Similar to the idea explained in §V-B1, the log maintainer

can provide the proof that the list of certificates (including

the ones in the key update request) for Ri is complete,

and current in the log; and the proof that the current log is

an extension of the log that Ri has previously observed.

If a device has not updated ephemeral keys and has been

excluded from the latest update by the log maintainer,

then the device will automatically re-register itself when
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the owner has used the device again, so the device will be

included in the log and be ready to receive and decrypt

messages in δ time.

C. Crowd-sourced verification

Since we want to guarantee some security even when the

log maintainer is not trusted, we need to monitor the log

maintainer’s behaviour to see if the log is maintained correctly.

This can be easily verified by allowing any interested party to

download and check the entire log at any time. Parties can set

themselves up as monitors to perform such checks as a public

service. Alternatively or in addition, to avoid having to rely

on such monitors, we can use crowd-sourced verification by

breaking the verification work into independent little pieces,

and distribute each piece to different devices.

First, we need to verify that the log update history recorded

in T is maintained in an append-only manner. This is achieved

by verifying the proof of extension performed in the pro-

tocols for enrolling a device, updating the keys, and send-

ing/receiving a message. Hence, there is no need for any

additional verification.

Second, we need to verify that in each update T ′

i , items are

ordered lexicographically according to the user identity. It can

be verified by asking each device to pick a random leaf in

an update T ′

i , and verify that the user identity recorded in its

left (or right) neighbour leaf is lexicographically smaller (resp.

greater) than the user identity in the picked leaf.

Third, in our protocol a device only checks its latest

certificate in the log, instead of verifying all certificates

recorded in the log. So, it cannot guarantee that no attacker-

generated certificates have been previously included in the

log. To detect such behaviour, we need to verify that the time

of the key generation for the same device in different updates

of the log is only going forward. To achieve this, each device

picks a random leaf for a user in an update Ti, and verifies

that either the record in an update is the same as the one in

the previous update, or it is different and the time in the node

for the same device of the user in the left (or right) neighbour

update Ti−1 (or Ti+1) is no greater (or no smaller) than the

time in the picked leaf, respectively. Additionally, if the two

times are equal, then the hash values of the certificates should

also be equal. A missing associated record in a new update is

evidence of misbehaviour. If no leaf for the user is included

in the neighbour update, then a proof of absence that a node

containing the user identity is not included in the update is

provided.

Remark. Note that these checks ensure that the log is

maintained correctly, and the most recently published device

key of all user devices are recorded in the latest log update

(i.e. the rightmost leaf of the top level tree, see §V-A). Any

unexpected record is evidence of misbehaviour of the log

maintainer. Thus, to detect the un-authorised usage of the

long-term keys, users only need to check their device records

against the records in the latest log update, as stated in the

protocol for enrolling a device and for updating the keys.

D. Privacy considerations

The public log may cause some privacy concerns. For

example, depending on deployment specifics, one may want

to hide the user identities contained in a log against potential

spammers, the total number of communications of a user, or

the time distribution of a user’s communications, etc. We

provide an informal discussion here, and leave a detailed

formal study on the privacy of transparent log based systems

as a future work.

To hide the user identity, the log maintainer can issue a

signature on a user identity, then use a hash value of the signed

user identity in the labels of leaves in each log update, rather

than containing the user identity directly in the labels (see

Figure 5). The signature scheme used should be deterministic

and unforgeable, as suggested in [7]. Hence, users that have

the recipient’s address can request the signed user identity

from the log maintainer, and verify the log; but an attacker

who has downloaded the entire log cannot recover the identity

of users, based on the unforgeability of the chosen signature

scheme. In this case, the nodes in each update tree T ′

i will be

ordered lexicographically according to the hash value of the

signed user identity. In addition, users can also make the log

to be only available to a fixed set of contacts. To hide the real

number of communications associated to a given client of the

log, the client can generate some noise — for example, the

client can make ‘spoof queries’ to the log maintainer through

an anonymous channel (e.g. Tor network).

VI. SECURITY ANALYSIS

We provide all input files required to understand and repro-

duce our security analysis at [29]. In particular, these include

the complete DECIM models. The proof assumes that all users

see the same log (a gossip protocol can be used to detect

attacks in which different views of the log are presented to

different users). We also assume that each user has only one

device. The detection of some attacks when a user has multiple

devices would need the user’s involvement. A formal study on

the user behavior and security analysis with multiple devices

is an interesting future work.

Security properties Our messaging protocol achieves both

classical security properties as well as novel ones. In a classical

sense, Sally obtains the guarantee that if Robert’s devices are

not compromised, then the attacker will not learn the messages

she sends.

The more interesting properties are achieved in the cases

where Robert’s devices get compromised. In this case, we

cannot avoid that messages sent by Sally in the same epoch are

also compromised. However, we prove that if any of Sally’s

messages from different epochs are compromised, then Robert

will be able to detect this.

Formal analysis We analyse the main security proper-

ties of the protocol using the TAMARIN prover [30]. The

Tamarin prover is a symbolic analysis tool that can prove

properties of security protocols for an unbounded number of

instances and supports reasoning about protocols with mutable

global state, which makes it suitable for our log-based protocol.

Protocols are specified using multiset rewriting rules, and
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properties are expressed in a guarded fragment of first order

logic that allows quantification over timepoints.

TAMARIN is capable of automatic verification in many

cases, and it also supports interactive verification by manual

traversal of the proof tree. If the tool terminates without finding

a proof, it returns a counter-example. Counter-examples are

given as so-called dependency graphs, which are partially

ordered sets of rule instances that represent a set of executions

that violate the property. Counter-examples can be used to

refine the model, and give feedback to the implementer and

designer.

Modeling aspects We used several abstractions during mod-

eling. We model the Merkle hash trees as lists, similar to the

abstraction used in [19].

We model the protocol roles S (sender), R (receiver) and

L (log maintainer) by a set of rewrite rules. Each rewrite rule

typically models receiving a message, taking an appropriate ac-

tion, and sending a response message. Our modeling approach

is similar to most existing TAMARIN models. Our modeling

of the roles directly corresponds to the protocol descriptions

in the previous sections. TAMARIN provides built-in support

for a Dolev-Yao style network attacker, i.e., one who is in

full control of the network. We also specify rules that enable

the attacker to compromise devices and learn their long and

short-term secrets.

The final DECIM model consists of 450 lines for the base

model, and six main property specifications, examples of

which we will give below.

Proof goals We state several proof goals for our DECIM

model, exactly as specified in TAMARIN’s syntax. Since

TAMARIN’s property specification language is a fragment of

first-order logic, it contains logical connectives (|, &, ==>,

not, ...) and quantifiers (All, Ex). In Tamarin, proof goals are

marked as lemma. The #-prefix is used to denote timepoints,

and “E @ #i” expresses that the event E occurs at timepoint

i.

The first goal is a check for executability that ensures that

our model allows for the successful transmission of a message.

It is encoded in the following way.

lemma protocol_correctness:

exists-trace

" /* It is possible that */

Ex d R skR dkR m #i.

/* R received an encrypted message m on device d */

MsgReceived(d, R, skR, dkR, m) @ #i

/* without the adversary compromising any device. */

& not (Ex d2 A ltk dkR #j.

Compromise_Device(d2, A, ltk, dkR) @ #j)"

The property holds if the TAMARIN model exhibits a

behaviour in which one of R’s devices received a message

without the attacker compromising any device. This property

mainly serves as a sanity check on the model. If it did not hold,

it would mean our model does not model the normal (honest)

message flow, which could indicate a flaw in the model.

Tamarin automatically proves this property in a few seconds

and generates the expected trace in the form of a graphical

representation of the rule instantiations and the message flow.

We additionally proved several other sanity-checking prop-

erties to minimize the risk of modeling errors.

The second example goal is the core secrecy property with

respect to a classical attacker, and expresses that unless the

attacker compromises one of Robert’s keys, he cannot learn

any messages sent by Sally. Note that K(m) is a special event

that denotes that the attacker knows m at this time.

lemma message_secrecy:

"All R skR ekR m #i.

/* If S sent a message m to R */

( MsgSent(R, skR, ekR, m) @ #i &

/* without the adversary compromising any of Robert’s

devices */

not (Ex #j d sk dkR.

Compromise_Device(d, R, sk, dkR) @ #j)

) ==>

/* then the adversary cannot know m */

(not ( Ex #j. K(m) @ #j) ) "

TAMARIN also proves this property automatically.

The above result implies that if Robert receives a message

that was sent by Sally, and the attacker did not compromise

his device during the current epoch, then the attacker will not

learn the message.

The final property encodes the unique security guarantees

provided by our protocol. If the attacker compromises Robert’s

device in an epoch, he can use the private ephemeral key

to decrypt Sally’s messages in that epoch. We prove that if

he uses the compromised long-term key of Robert to learn

messages sent by Sally in other epochs, then he will be

detected once Robert checks the log.

lemma detect_usage_S_sends:

"All d skR dkR m #i1 #i2 #i3 detectionresult R k.

/* If S sent to R an encrypted message m,

where pk(dkR)=ekR */

( MsgSent(R, skR, pk(dkR), m) @ #i1 &

/* and the adversary knows m */

K(m) @ #i2 &

/* and the ephemeral key used by the sender was

not compromised, i.e., the compromise occurred

in a different epoch */

not (Ex #j sk .

Compromise_Device(d, R, sk, dkR) @ #j ) &

/* and Robert afterwards checks the log */

CheckedLog(d, R, detectionresult, k ) @ #i3

& #i1 < #i3

) ==>

/* then we detect a compromise */

( (detectionresult = ’bad’) ) "

The property states that if Sally sends a message when

Robert’s device is not controlled by an attacker in the current

epoch (but might have been compromised previously), and the

attacker learns the message, then Robert detects the fact that

his key was previously compromised when he next verifies the

log.

The above properties are all proven automatically by the

TAMARIN prover on a laptop within a few minutes. Overall,

the modeling effort was in the order of weeks, with several

iterations to debug both the abstract model and the property

specifications. The verification process helped us not only to

prove, but also to refine the precise security properties of our

protocol.

VII. REALIZATION IN PRACTICE

A. Estimating communication cost

To check if deployment might be feasible, we estimate the

expected cost of our protocol design. As an example, we

consider the following scenario. We assume that there are 109
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TABLE III
THE SIZE OF MESSAGES IN DIFFERENT PROTOCOLS. IN WHICH, SIZEP IS

THE SIZE OF PROOFS IN THE CORRESPONDING MESSAGE, AND SIZEM IS

THE MAXIMUM SIZE OF A MESSAGE.

Message sizeP sizeM
Enrolling a device

request - 1.6 KB

response 2.2 KB 2.5 KB

Total 4.1 KB

Fetching keys from log

request - 78 B

response 2.2 KB 6.9 KB

Total 7 KB

Updating the keys

request - 1.5 KB

response 2.2 KB 2.5 KB

Total 4 KB

crowd-sourced verification

Total 5.3 KB 5.9 KB

users, each user has 3 devices, the log has been operating for

100 years, the log update period δ for registration request is

1 hour, and the log update epoch ǫ for certificate update is 1

day.

In this scenario, the size of T will be 100 · 365+100 · 365 ·
24 = 912500 < 220, and the size of each T ′ is 109 which is

less than 230. In addition, we assume that the size of a hash

value is 256 bits (e.g. SHA256), the size of a signature is 64

Bytes (e.g. ECDSA), and the size of a certificate is 1.5 KB.

In addition, we assume that the size of a user (or device)

identity is 12 Bytes, and time is in the 64-bit format, a random

number is 28 bytes (recommended by TLS 1.2 [31]), each

request identifier is 4 bits, and the size of a digest of a log is

300 bits.

The size of a proof of presence that some data is in T and

is in T ′ will be at most 640 bytes and 960 bytes, respectively;

the size of the proof that a version of the log is extended from

a previous version is at most 640 bytes. We present the size

of messages in the protocol in our example scenario in Table

III.

From Table III we can see that up to 5 KB data are needed

to be transferred for both enrolling a device and updating

keys. The protocol for fetching keys from the log is the most

expensive one, as the sender has to download all certificates

for different devices of the same users. In our example, the

sender needs to download 3 certificates, the size of which is

already 4.5 KB.

The results of our analysis indicate that the space cost of

our system is acceptable.

B. Proof-of-concept log server prototype

To demonstrate the deployment of DECIM in a real-world

setting, we built a proof-of-concept prototype of the log

server. We implemented a full log server implementation with

interfaces, and client-side code for (a) adding users/devices,

(b) rotating keys at the end of each epoch, and (c) sending

messages. This involves all the operations to manipulate the

log (consisting of a tree of trees), produce various proofs, and

produce and verify the appropriate signatures. Anticipating

a deployment on platforms such as Google’s App Engine,

we implemented our code in Python. We use basic caching

mechanisms for previously computed results.

On a quad-core 4 GHz Intel Core i7 with 32 GB of memory,

we obtain the following times. The times are measured locally

and therefore do not include network latency. Performing

100000 (1e05) enrollment requests from distinct users takes

1526 seconds, i.e., 15 milliseconds per request on average.

When 100000 (1e05) users enroll 3 devices each, enrollment

takes 1708 seconds, i.e., 5.7 milliseconds on average. The

delay experienced by the user is therefore dominated by the

network latency of transmitting 4.1 KB (Table III), which is

certainly less than a second.

When the tree contains 10000 (1e04) entries, the server

produces 100000 (1e05) responses to message queries in 14.1

seconds, i.e., 0.14 milliseconds per message query. Updating

a tree by simultaneously adding 10000 (1e04) entries takes

about 1 second, which is mostly spent in creating the leaf

data structures. Once again, the user’s experience is mostly

affected by the network latency, which is small because the

data transferred is a few KB.

The memory usage when 100000 (1e05) users enroll one

device is 410 MB (computed using “heapy” for the full

process, not just reachable objects). If they enroll three devices

each, memory usage increases to 900 MB.

Thus, even though our proof-of-concept implementation is

not yet optimized for efficiency or storage, its performance

already indicates our scheme is feasible.

VIII. CONCLUSION

End-to-end encryption has become popular in the years

since the Snowden revelations, motivating attackers wishing to

intercept messages to instead turn their attention to client end-

points. To address this, we have presented a novel messaging

protocol that offers security guarantees even when an attacker

can access all the secret keys in a user’s devices. In particular,

(a) the protocol limits the impact of a compromise, since the

attacker can only learn messages sent in the same epoch with-

out being detected, and (b) if the attacker uses compromised

long-term keys to impersonate users, then the protocol allows

the participants to detect this, and therefore to take remedial

action. Our protocol supports multiple devices per user, and

the multiplicity of devices helps detect attacks by intuitive

indicators to users about which (device) keys have recently

been active.

The methods we introduce are not intended to replace

existing methods used to keep keys safe. Existing technologies

such as Axolotl ratcheting, TPMs, smart-cards, and ARM

TrustZone are all useful for securing keys. However, none of

these technologies are completely secure. For example, even

if hardware security is used, malware may be able to trigger

usages of the key without having the ability to copy the key.

Our methods can also detect such cases. Thus, DECIM adds

an additional layer of security that allows users to detect when

other layers fail.
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