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Abstract 

The present study draws together two distinct lines of enquiry into the selection 

and control of sequential action: motor sequence production and action selection 

in everyday tasks. Participants were asked to build two different Lego walls. The 

walls were designed to have hierarchical structures with shared and dissociated 

colors and spatial components. Participants built one wall at a time, under low 

and high load cognitive states. Selection times for correctly completed trials 

were measured using 3D motion tracking. The paradigm enabled precise 

measurement of the timing of actions, whilst using real objects to create an end 

product. The experiment demonstrated that action selection was slowed at 

decision boundary points, relative to boundaries where no between-wall 

decision was required. Decision points also affected selection time prior to the 

actual selection window. Dual task conditions increased selection errors. Errors 

mostly occurred at the boundary between chunks and especially when these 

required decisions. The data support hierarchical control of sequenced behavior.  
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Public significance 
Activity of daily living (ADL) can be described as a sequence of actions that are 
hierarchically organized. For example, the task of making an instant coffee, can 
be broken down to more specific sequence of actions: boiling the kettle, adding 
coffee to the mug, pouring boiling water etc… Apraxia and action disorganization 
are neurological syndromes (AADS) associated with failure to execute sequenced 
actions, leading to loss of independence.  
 
In the context of laboratory experiment, the mechanism underlying learning and 
execution of sequenced actions has been investigated using simple key pressing 
tasks. There are many differences between action sequence in the context of ADL 
and key pressing tasks. The present study aimed to bridge between the two 
research fields. We designed a novel Lego building task that comes midway 
between laboratory key pressing and ADL tasks. Our main aim was to identify 
weak points in the sequence that are susceptible for errors. Participants were 
asked to build two partially similar Lego walls. We found that error and slow 
responses occurred at the dissimilarity points between the walls.  This suggest 
that rehabilitation of patients who suffer from AADS should account for overlap 
in action units across ADL tasks.  
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Introduction  

Processes underlying automated action sequences have been examined in 

various daily activity and laboratory settings. This paper aimed to form a bridge 

between everyday actions and lab based key pressing tasks, by introducing a 

new sequencing task that falls midway between the two.  

Sequential behavior is often described using a hierarchical structure, made up of 

increasingly complex subunits (Botvinick, 2008; Lashley, 1951; Schneider & 

Logan, 2006; Schwartz, 2006). Both Motor Sequence Production, with rapidly 

produced small amplitude movements and everyday tasks, such as washing and 

dressing can be described in terms of hierarchical structure. Whether sequences 

are hierarchically processed is less clear. Alternative views suggest that learned 

sequences are executed through lateral associations (Logan & Crump, 2011; 

Botvinic and Plaut, 2004) or chunking of responses (Varwey and Abrahamse 

2012).  

Frameworks across all views make a broad distinction between higher level 

selection processes engaged in retrieving and planning sequences based on 

symbolic representations, and lower level execution processes involved in 

muscle synergies and posture-based motor planning (Rosenbaum, Cohen, & 

Dawson, 2009). The interaction between the processes shifts according to task 

demands and level of task automatization.  

For activities of daily living (ADL), a dual system model (Norman & Shallice, 

1986) is proposed to explain the sequenced behavior. The model postulates a 

supervisory system which controls and monitors a contention scheduling (CS) 

system. The CS was inspired by the schema theory proposed for discrete skill 

motor sequence (Schmidt, 1975). According to this model (Cooper and Shallice, 

2006), routine tasks are executed through an interplay between: 1) hierarchical 

representations of action schemas, 2) representations of objects in the 

environment and 3) availability of effectors (e.g. hands). Each action schema is 

associated with a clear goal and is activated via external triggers (objects) or an 

internal (higher order) “source” schema. A ‘Boiling kettle’ schema can be 
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activated by seeing a kettle or through a higher schema of making tea. Reduced 

top down control is evident if external triggers have a larger impact, hindering 

the achievements of goals.  

A schema also specifies the flexibility of executing lower schemas. The flexibility 

is reduced when moving down the hierarchy. For example, the order in which 

“add milk” or “add sugar” schemas are used is flexible, but once “add milk” 

schema is selected it triggers a fixed order of lower sub-goal schemas (e.g. pick 

milk jar [reach -> grasp -> lift]). Schemas are in lateral inhibitory competition 

(Cooper and Schalice, 2006). Selection of schema would be slower and prone to 

errors at a flexible relative to lower inflexible layers. This prediction resonates 

with observed errors reported in healthy participants and neurological patients, 

where errors of omitting or adding entire sub-goal schemas are more common 

than errors within lower schemas (Reason, 1979, 1984; Rumelhart & Norman, 

1981; Schultz et al., 1991;   Bickerton, Humphreys, & Riddoch, 2006; Forde & 

Humphreys, 2000; Morady & Humphreys, 2008; Schwartz et al., 1999). The dual 

system model, like many other models of ADL, is silent in relation to the 

execution phase. This may be because movement associated with ADL is 

complex and varies substantially depending on the objects (e.g. electrical kettles 

vary in the specific movement required to operate them). 

A Lab based simplified versions of well learned sequence task have been 

developed to tap into the execution phase. For example, the Discrete Sequence 

Production (DSP) tasks require participants to execute explicitly learned 

sequences as fast as possible – either following external cues (Abrahamse, 

Ruitenberg, de Kleine, & Verwey, 2013) or from memory (Wiestler & 

Diedrichsen, 2013). These tasks often rely on key presses, but some have used 

more elaborate movements (e.g. Panzer, Krueger, Muehlbauer, Kovacs & Shea, 

2009; Shea, Kovacs & Panzer, 2011). We focus on the DSP task as it is understood 

to be representative of more complex real-world action (Abrahamse et al., 2013). 

Performances in these tasks are typically measured as the interval between two 

consecutive responses, or the time to initiate the first response. 
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The Dual Processor Model (DPM, Verwey, 1999, Abrhamase, 2013) has been 

proposed to explain various observation arising from the DSP. In contrast to the 

ADL model introduced above, the DPM does not assume hierarchical structure, 

in which higher level cognitive representations control/guide lower level motor-

based representations. Instead it suggests sequenced movement executed by 

cognitive and motor processors. These two processors operate in parallel and 

provide partially redundant information (Verwey 2001, Abrahamse, 2013). The 

cognitive processor uploads actions one-by-one to a motor buffer, enabling 

production of complex and novel sequence actions (Abrahams, 2013).  

Learning is reflected by the grouping of actions to chunks. This enables both the 

cognitive processor and the motor processor, to process multiple actions as one 

unit. This chunking facilitates production by reducing the time it takes to upload 

and retrieve information from the motor buffer (Wymbs, Bassett, Mucha, Porter, 

& Grafton, 2012).  

Typically, with longer sequences (6-7 keys), chunks emerge spontaneously and 

their size varies between participants as a function of individual’s working 

memory (Bo, Borza, & Seidler, 2009; Miller, 1956; Sakai, Kitaguchi, & Hikosaka, 

2003). Chunk structure can be controlled through introducing pauses (Verwey, 

Abrahamse, & de Kleine, 2010) and color grouping (Jimenez & Vázquez, 2011). 

Effects of sequence selection are evident typically at the beginning of the 

sequence, when the programing of the entire sequence is uploaded to working 

memory. Initiation of the first response of a chunk, within a sequence is also 

slowed. This reflects a concatenation point, the time to upload the chunk into the 

motor buffer (see Abrahamse 2013 for review). Selecting and uploading of the 

chunks is done by the cognitive processor. Once a chunk is uploaded its 

execution is automatic, as it is not slowed by a dual task (Verwey, Abrahamse, & 

de Kleine, 2010; Verwey, Abrahamse, De Kleine, & Ruitenberg, 2014). However, 

the cognitive processor is involved at concatenation points. Though it is assumed 

to be a low demanding process, as the cognitive processor can in parallel support 

performances in other tasks, with graded latency costs as function of task 

difficulties (Verwey, Abrahamse, De Kleine, & Ruitenberg, 2014).  
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In a classic DSP task overlaps between sequence structures is not controlled for 

(e.g. Verwey et al., 2001). Rosenbaum and colleagues (Rosenbaum, Inhoff & 

Gordon, 1984) examine the impact of ‘competition’ using partially overlapping 

sequences. Partial dissimilarity slows the initiation of the first response, 

potentially reflecting a cost of resolving the upcoming conflict (Though see Rose, 

1988). Like for the ADL tasks, Rosenbaum and colleagues (1984) suggest that 

slowness of the responses echoes the selection processes between lateral 

segments of hierarchical structured sequence. The description units are grouped 

based on similarity and dissimilarity across sequences 

(Rosenbaum, Cohen, Jax, Weiss & van der Wel, 2007).   

In summary, “weak” points in the sequence, measured by slowing of response 

and increase errors are attributed to two sources: 1) a selection process between 

competing lateral sub-actions or, 2) uploading of the next motor chunk. In this 

study we aimed to test whether sequences are processed hierarchically by 

assessing the impact of uploading and selection processes at chunk boundaries 

using a task that comes midway between DSP and ADL. 

Participants were trained to build two hierarchically structured walls using 

Duplo Lego bricks (Figure 1). This enabled the investigation of sequential 

performance using real objects in a controlled setting. Chunk structure of the 

Lego walls was created using colors as well as pauses in cue presentations. The 

task delineated structural boundaries between chunks where a decision between 

the two walls was required and boundaries where no decision needed to be 

made. All other points of measurement were within chunk actions. Performances 

were recorded with motion tracking and video cameras, enabling the exact 

coding of errors and inter-action intervals (IAI). We asked whether errors and 

IAI differed at boundary and decision points relative to within chunks. To assess 

a potential role of a generic cognitive processor we also measured performances 

under a dual task condition. 
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Method 

Detailed description of the methods is presented in Supplementary materials. 
 

Participants 

10 participants (mean age = 24.3yr) took part in two experimental sessions, 

separated by one day. Each session lasted ~ 1.5 hours. All participants were right 

handed. The study was approved by the local ethical committee.  

 

Procedure and Tasks 

Participants were asked to build two Lego walls (Anna’s wall and Daniel’s wall – 

Figure 1). The experiment was divided into four blocks. Day 1 included two 

training blocks (1 & 2). Day 2 included two test blocks (3 & 4). Each block had 20 

trials, 10 per wall. Block 4 was performed under dual-task condition, in which 

the secondary task involved monitoring an audio sequence for the highest 

uttered number (Ruh, Cooper, & Mareschal, 2010).   
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During the experiment, participants sat at a table with two Duplo Lego 

baseplates in front of them. The one on the right contained Lego bricks (Figure 

1) used to build the wall on the left baseplate. 

At the beginning of each trial, participants were presented with a picture of the 

target wall and started building the wall only after it disappeared. To ensure no 

systematic errors, the target wall was shown again as feedback at the end of the 

trial. We recorded error and timing by video and motion tracking cameras. 

 

Data analyses 

We used the video data to compute overall completion time (reported in Supp. 

Material) and record errors.  

Selection time (inter action interval, IAI) was defined as the time placing a brick 

on the wall, till picking a new brick from the right baseplate (sFigure 3). IAIs 

were calculated for correctly completed trials only. Bricks from the first layer 

(‘A’) were not analyzed. We defined four bricks of interest based on their 

position in a chunk: 1st brick (boundary) vs. 2nd or later (within chunk) and 

depending on the structural overlap between the two walls: non-overlapping 

chunks, requiring a decision or overlapping chunk, requiring no decision.  

Further analyses considered only the bricks at the 2nd position, to test whether 

within chunk bricks should be further divided to pre-decision points (the brick 

before a decision boundary) or predict points (the brick before a no decision 

boundary, i.e. structurally predictable point).  

Figure 1. The Lego wall 
a) Hierarchical representation of the task walls. Task goals are the wall names 
(Anna and Daniels). Each wall consists of chunks (A=yellow, B-right=red, C-
left=red, D=blue, E=green/black) and each chunk is made up of individual 
bricks (e.g., from right-to-left: E1 to E4). Solid ellipses mark decision boundary 
points (dissimilar chunks across walls) and dashed ellipses mark no decision 
boundary points (identical chunks walls). b) Schematic representation of the 
complete walls structure. Labelling does not necessarily represent the order of 
brick placement.  
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Results 

Participants learned to build the two walls, and after 5 practices of building each 

wall errors on completion were minimal. Furthermore, speed of total completion 

time stabilized from the second practice block onward to less than 30sec per 

wall. Participants were also accurate at completing the secondary auditory task 

with an average of 88.5% accuracy. Though, the dual task did not affect overall 

completion time. For more detail see Supp. Material. 

 
Error analysis  

Out of 400 testing trials, 98 (range 6-16 across participants) included at least 

one error, and only one was not corrected before completion. Eighty-four were 

cognitive errors and fourteen handling errors (Table 1). A 2 (nDT, DT) x 2 

(boundary type: decision, no decision) factorial design was used to compute 

differences in the frequency of the cognitive errors. A reliable difference 

between conditions is observed, X2(3)=24.5, p<0.001, d=1.33. Simple 

comparisons showed that the dual task (relative to nDT) increased errors mostly 

at the decision boundaries, X2(1) =9.62, p=0.002, d=0.92; but did not affect errors 

at no decision points. During the dual task, there were more errors at decision 

than no decision points X2(1)=13, p<0.001, d=1.34. Though, in both blocks there 

were more errors at boundary than within chunk points, nDT: 28 vs. 2,  

X2(1)=22.5, p<0.001, d=3.46; DT: 42 vs. 2, X2(1)=46.3, p<0.001, d>6.  

Examining the type of errors made, showed that the dual task affected mostly 

brick’s selection (nDT=7 vs. DT=26) rather than placement (nDT=9 vs. DT=9). A 

two (Block) by two (error type) Chi Square test confirmed reliable difference in 

the distribution of error types across blocks, Χ2(3)=18.57, p<0.001, d=3.25. With 

significant larger number of selection than placement errors in the dual task 

block, Χ2(1)=10.94, P<0.005, d=1.35; and also larger number of selection errors 

in the dual task than non-dual task block, Χ2(1)=8.26, P<0.005, d=1.5.  

There were also more handling errors in the dual task than the no dual task 
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block. The data suggests that the dual task increased the number of errors, 

especially at decision points, primarily interrupting the selection processes.  

 

Table 1 

Location and frequency of self-corrected errors.  

 No Dual Task Dual Task Total 

Decision boundary points 16 39 45  

No decision boundary points 12 13 22  

Within chunk points 2 2 4 

Handling 4 10 14 

Total 34   64   

 

Selection latencies analysis (Inter-action intervals) within the testing 

blocks 

Data of 2 participants were excluded. These participants did not have a 

consistent sequence of building the wall throughout the experiment (< 16 trials 

with the same order). This meant that we could not define decision vs. no 

decision boundary points for these participants.  

A 2 (chunk: decision/no decision) x 2 (brick position: boundary/within chunk) x 2 

(task: dual task/no dual task) repeated measures ANOVA was used to analyze the 

IAI data. The dual task did not affect the IAI, nor interacted with any of the 

factors. There was a chunk type x brick position interaction, F(1,7)=47.97, 

p<0.001, d=3.46 (Figure 2a). Paired-samples t-tests showed that in decision 

chunks, IAIs were longer at boundary points than within chunk points, t(7)=4.78, 

p=0.002, d=2.39. Surprisingly, in no decision chunks the pattern reversed, 

t(7)=3.34, p=0.012, d=1.67. This was an unexpected effect. 

One explanation for the above reverse effect is that in the context of the current 

set-up, within chunk bricks can also function as pre-decision points (for example, 
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D2 precedes E1; Figure. 2a). Therefore, we next tested whether within chunk 

bricks that reliably served as, pre-decision points took longer to select than 

within chunk bricks that served as predict points.  

 

  

A 2 (function: pre-decision/predict) x 2 (task: DT/nDT) repeated measures 

ANOVA revealed a main effect of function, with selection times of within chunk 

bricks at pre-decision points taking significantly longer than selection at predict 

points, F(1,7)=6.68, p=0.035, d=1.29 (Figure 2b). Task did not affect the results 

or interacted with the condition. 

 

Discussion 

In this study we used a novel Lego building task composed of colored bricks 

chunks to assess execution of sequenced actions. Participants learned to build 

two partially overlapping structured walls. We focused on selection processes 

underlying transition between chunk boundaries. To this aim, we defined two 

types of boundaries: 1) decision boundary reflecting a transition to a dissimilar 

chunk across sequences, and 2) no decision boundary between overlapping 

Figure 2. Inter Action Interval  
A. the plot represents the IAI 
(selection of a brick) at different 
functional points. Solid line bricks 
from none overlapping chunks that 
require decision; Dashed lines bricks 
from overlapping chunk with no 
decision. 1st B, selection of 1st brick at 
a boundary; 2nd W, selection of 
within chunk’s brick;  
B. IAI for within chunk bricks, solid 
line pre-decision bricks, preceding 
none overlapping chunk; dashed line 
predict bricks, preceding overlapping 
chunks. nDT, no dual task block; DT, 
dual task block. 
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chunks across the two walls. We observed more cognitive errors at chunk 

boundaries than within chunks. More interestingly, we found increased errors 

and slower inter action interval (IAI) when selecting bricks at a decision relative 

to no decision boundary. We also observed that IAI slowed when selecting for 

the action preceding a decision relative to an action that did not precede a 

decision. Surprisingly, ‘no-decision chunk’ boundary did not slow responses 

compared to within chunk responses. A secondary aim examined whether 

selection processes were affected by a dual task. The number of errors increased 

in the dual task condition, specifically at the decision boundary. These were 

primarily selection errors rather than placement errors. The dual task did not 

affect IAIs. Taken together, the data support hierarchical models for routinized 

sequence tasks.  

The observation that selection process at decision boundary points were most 

vulnerable to errors (especially under dual task condition) and costly in terms of 

timing, is in line with models postulating that sequenced actions are executed 

using hierarchical structure (Cooper and Shallice, 2006, Rosenbaum et al., 2007, 

Rhodes et al., 2004). It is assumed that at these points competition between 

alternative chunks, required traversing the hierarchy ‘to consult’ higher order 

schemas. While a simple chunk boundary involving no decision were potentially 

executed through lateral association triggers and affected selection only 

marginally through increase errors.  

A further key finding is that preparation for upcoming decision points affected 

selection times of the immediately preceding within chunk bricks, indicating that 

preparation for a difficult point in the task begins during the processing of 

previous actions, before the selection of the action itself. This is in line with 

Rosenbaum and colleagues’ observations (Rosenbaum et al., 1983, 1984) 

suggesting that dissimilarity between sequences affect preceding responses (see 

also Supp. Results). Similarly, in typing, finger movements for one keystroke 

begin before finger movement for the preceding keystroke ends (Flanders & 

Soechting, 1992). The notion that cognitive processes can occur in the 

background and prior to the required action has also been shown for classic DSP 
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tasks, where a cost of Simon conflict on response was diminished when preceded 

by other non-conflicting responses (Verwey, 1995).  

Surprisingly, we did not observed chunk concatenation effects on the IAI 

(Verwey, 2001), even though we used colour to elicit chunks’ boundaries. When 

the transition between chunks was identical across both walls (no decision 

boundary) latencies at concatenation points were no different than within chunk 

IAI. We note that error at chunk boundaries increased at both decision and no-

decision points. It could be that the large amplitude movement concealed any 

preparation effect (select and upload), without disrupting the temporal rhythm. 

It is also possible that in the context of two competing sequences, chunks are 

defined based on similarity and dissimilarity across sequences rather than 

properties of the stimuli - colour (Rosenbaum, Cohen, Jax, Weiss & van der Wel, 

2007).  

We used an auditory dual task, to overload the cognitive system. This 

manipulation led to increase of errors. As predicted by Cooper and Shallice 

(2006) model, reduced top down control, meant larger impact on the selection 

from the objects in the environment (than the relevant schema’s wall), leading to 

increased selection errors. Overloading the cognitive system did not affect the 

time it took to select a brick or the time it took to complete the wall. It is difficult 

to account for the lack of timing effect here. It could be that this effect was 

masked by noise arising from the complex movement used here. It could also be 

that other more demanding tasks will show larger interference (Verwey et al., 

2014). 

We designed the Lego Walls paradigm as a bridge between lab-based simple key-

press and ADL tasks. A few limitations should be noted as a precursor to any 

conclusions. First, the sample size of the current study was relatively small 

(n=10) and was composed of psychology students limiting the generalizability of 

the results. Furthermore, 20% of the participants used a flexible rather than 

more rigid and fixed strategies when constructing the walls. This suggests that 

underlying mechanisms to execute sequenced behavior may vary between 

individuals. Finally, in contrast to key-press DSP task which uses hundreds of 
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training trials, or ADL tasks which uses less than a dozen training trials; our 

tasks, were designed to be in between, had twenty training trials. As training is 

suggested to introduce a qualitative change to the way actions are executed, any 

direct comparisons between the results of the current study and past findings 

should be made with caution. Nevertheless, we believe that our results 

demonstrate that when using partially overlapping sequences, points of 

divergence that require decision take longer to execute, and under dual task 

condition increase selection errors. We also showed that preparation starts in 

the background of preceding actions, slowing their executions. Together, our 

data support hierarchical processing in the execution of sequential behavior.  

The current task provides a methodologically novel approach to investigate the 

performance of complex sequential tasks. Collecting timing data using real 

objects is time intensive, making it difficult to reproduce the practice levels of 

motor sequence tasks and other highly skilled tasks, such as typing and musical 

performance. Analyzing movement traces is also difficult to automate and 

divergence from expected movement can result in lost trials. The current 

paradigm is unique, as allows precise control over task structure, timing and 

accuracy, whilst retaining many of the important features of everyday tasks. The 

reproduction of standard results showing hierarchical control of action suggests 

continuity between everyday tasks and motor control. We hope that future 

designs could use the present paradigm to further investigate the link between 

motor sequence production and everyday action. 
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sFigure 1: Experiment set up 
The figure presents a schematic representation of the arrangement of 
the two baseplate. Each colored square represent a Lego brick 

Supplementary Materials 

Methods: 

 

Participants 
Ten participants (3 males, mean age = 24.3yr, range = 19-37yr) were recruited 

using an opportunistic sample, that included mostly lab members. This was 

because the task was taxing and the apparatus set up was relatively complex. 

Hence it required motivated and patience participants. Though, all participants 

were blind to the specific research questions. The relative small number of 

participants was also dictated by the laboring analysis procedure which relied 

on defining at individual level the functional role of each brick, and verifying that 

each action of picking/placing a brick in the video relates to the identified 

interval of the motion tracking velocity information (see below for details).  

 

Apparatus  
Participants set at a table with two baseplates in front of them. The right 

baseplate presented the Lego bricks, organized by colors and size in 5 columns 

(see sFigure 1). There were 26 bricks on the baseplate (more than what was 

needed for any single wall). The environment, available Duplo Lego, was fixed 

across the walls and was 

organized to reduce visual 

search load, though it 

contained additional 

irrelevant Lego pieces. The 

baseplate on the left of the 

participant, was empty and 

contained marks on which 

the walls should be built. 

 

 



 21 

The Lego walls  
Two Lego walls were used in the experiment. The walls were given a label for 

ease of reference and memory. The walls consisted of 5 chunks (sFigure 2) 

defined by the colors and spatial continuity of the bricks. Anna’a wall was 

constructed of 17 Lego brick and Daniel’s of 15 Lego brick. The walls had partly 

overlapping structures. ‘A’ (yellow), ‘C’ (red-right) and ‘D’ (blue) were identical 

across both walls. ‘B’ (red left) and ‘E’ (black/green) represent two types of non-

overlapping structures. Note that change of B also impacted the overall 

configuration of the two walls and their relations to the other chunks.  

The first two units of ‘B’ were identical across the two walls, we refer to them as 

‘Bi’; while the second two units appeared only in Anna’s wall but not in Daniel’s, 

referred to as ‘Bii’. Thus participants had to execute ‘Bi+Bii’ vs. ‘Bi’. This 

manipulation echoes the manipulation used by Rosenbaum et al., 1984, where 

responses to partially overlapping sequence structure was manipulated, e.g. an 

IMR vs. IM.  

‘E’ was the same in terms of its spatial configuration but differed in color 

between the walls.  Anna’a walls used green while Daniel’s wall used black Lego 

bricks. Here ADL hierarchical model predicts slowing when initiating ‘E’ relative 

to ‘D’, due to the need to select the appropriate brick color; DPM also predicts 

slowing on initiating ‘E’ relative to ‘D’, but this is because it is a longer sequence 

with 4 elements compare to the 2 in ‘D’. 
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Procedure 
At the beginning of each trial, participants were presented with the target wall. 

To ease comprehension and encouraged chunking, the wall was presented layer-

by-layer at 0.3Hz (3sec = Layer 1 (A=yellow bricks); 3sec = Layer 1 + layer 2(B + 

C red bricks); 3sec completed wall. The presentation order of the walls was 

random (apart from the first 10 practice trials, where each wall was presented 

consecutively 5 times). The walls were presented using E-prime 2.0.  

Participant started to build the wall once the picture had disappeared. They had 

unlimited time to complete the wall and were asked to be accurate. At blocks 2-4 

they were asked to complete the wall as fast as possible. They were instructed to 

complete a chunk (same color Lego bricks) before moving to the next, in any 

order they wished. They could use of both hands when needed, but were also 

asked to use their right hand to pick and place the Lego bricks. After the building 

was completed, participants were presented with a photograph of the completed 

wall as feedback. Feedback was available for 12 seconds in block 1 and for 5 

seconds blocks 2-4. This was done to ensure that errors were not systematically 

structured into the task. Following the feedback, the experimenter dissembled 

the wall and returned the bricks to the left baseplate, before the next trail 

commenced.   

 

The dual task 
We used an auditory monitoring task similar to that used in (Ruh, Cooper, & 

Mareschal, 2010). This involved a female voice uttering numbers at an irregular 

pace with an average rate of 2Hz. The numbers were uttered together with the 

appearance of the first pictorial cue and ended when the participant completed 

sFigure 2: The structure of the Lego Walls 
On the right, the final pictorial cue present to the participants’ as the goal. On the left a schematic 
representation of each wall with labeled colored chunks. The order of the labeling does necessarily 
correspond to the order of building. 
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the wall. At the end of the trial the participants were asked to report the highest 

number they heard. The experimenter recorded the correctness of the response. 

Numbers were randomly drawn from integers between 1 and 60. The upper 

limit of the range of the distribution was also determined randomly. A secondary 

auditory task was selected to ensure that effects observed, arises from the 

engagement of the cognitive supervisor and not due to within modal 

interference. The block with the dual task was always last, as task familiarity 

(number of practices) is expected to improve task performances while cognitive 

load is predicted to impinge on them.  

Data collection 
We collected video and motion tracking data. Video recordings were made using a 

LogiTech USB webcam. The camera was placed to enable a clear view of both 

hands, baseplates and walls. Movement data was collected only on the second 

day session, blocks 3-4 from the testing. During this session we attached a small 

reflective marker to the metacarpophalangeal joint of the right hand. Motion of 

this marker was captured using 4 Qualisys™ 3-D Motion Capture cameras 

located at the ceiling to reduce occlusions.  

Data analyses 
We used the video data to compute overall completion time and record errors. 

Completion times on a trial-by-trial basis were calculated as the mean time (in 

seconds) to build a wall. This was computed from the time the cue disappeared 

until the last brick was placed. All trials (correct and incorrect) were included in 

this analysis. We used one-way ANOVA with 4 levels representing in each block 

to analyze completion times. This analysis followed by t-tests to specifically 

assess the effects of training and the dual task on performances.  

Error analysis focused only on the testing blocks 3 & 4, completed on day 2. We 

used X2 to assess differences between conditions, with error frequencies across 

participants, as the dependent variable.  

The video data in combination with the motion tracking data was used to 

identify selection time of specific bricks. Selection time (inter action interval, IAI) 

was defined as the time between letting go after placing the preceding brick on 



 24 

the wall, till picking a new brick from the right baseplate. This two time points 

were identified using the movement velocity ( sFigure 3). Zero velocity when 

placing of a brick was defined as the onset, zero velocity when picking a new 

brick was defined as the offset. Thus in this experiment, IAI reflected the 

selection process. The IAI could include durations in which the hand hovered 

above the baseplate, before a decision of which brick to pick was made. IAIs 

were calculated for correctly completed trials only; trials with no handling 

errors (e.g., dropping a brick) and no self-correction errors (e.g. changing am 

initial selection).  

 

Main analysis of IAI as a function of decision and location: We defined four bricks 

of interest based on their position in a chunk: 1st brick (boundary) vs. 2nd or later 

(within chunk), and on the structural overlap between the two walls: non-

overlapping chunks, requiring a decision while overlapping chunk, requiring no 

decision. For example, the 1st brick of ‘Bii’ in Anna’s wall (or ‘C’ in Daniel’s Wall) 

was a decision boundary point between non-overlapping chunks, as participants 

had to decide whether to continue with B or move to C. The first brick of ‘E’ was 

also a decision boundary point, as participants had to decide whether they are 

using a green or a black color. The 2nd brick in ‘Bii’ (or 2nd, 3rd and 4th of ‘E’) were 

non-boundary points within non-overlapping chunks. The 1st brick of ‘Bi’ (or ‘D’) 

was a no decision boundary of overlapping chunks; while the 2nd was a no 

decision brick within overlapping chunks.  

Importantly, the functional definition of each brick was done individually, based 

sFigure3: Velocity of a typical trial 
The chart presents a velocity profile for a 
typical trial. Inter Action Intervals were 
computed between the zero velocity 
points. Examples are marked with 
stripes.  
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on the sequences used consistently by the participants. For this reason, 

participants who had shown no consistent pattern (chunk order) when building 

the walls were excluded from the IAI based analyses. Bricks from the first layer 

(‘A’) were not analyzed. We used repeated measured ANOVA with the following 

three factors: a 2 (chunk type: decision, non-decision) x 2 (brick position: 1st, 

≥2nd) x 2 (task: nDT, DT) to analyze the IAI data.   

We complemented the main analyses by looking at effects across walls in 

supplementary analysis.  

IAI at Pre-decision versus predict points: Further analyses considered only the 

bricks at the 2nd position. To test whether within chunk bricks should be further 

divided to pre-decision points (the brick before a decision boundary) or predict 

points (the brick before a no decision boundary, i.e. structurally predictable 

point).  

Results 

Performances in the dual task 
Overall participants were highly accurate (88.5% ± 5.8std. range from 80% 

accuracy to 95%) in completing the secondary task, i.e. reporting the highest 

number they heard. While numerically auditory memory was better at trials 

with no errors (92.2 ± 8.3std) than trails with errors (82.3 ± 17.7std) this effect 

was not reliable. The data clearly show that participants attended the task. As 

accuracy was not at ceiling it suggests the task was demanding.  

 

Completion time effects across the four blocks 
This analysis aimed to establish: 1) whether training improved the performance 

of the task; 2) whether the performance improvement was stable over the two 

day sessions; and 3) whether 

the dual task impinged on 

performance speed. A relative 

stabilization of completion 

times can be seen by block 2 
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sFigure 4: Total completion Time 
Averaged time across participants 
taken to build the walls as a function of 
practice. Each block had 10 repetitions 
per wall. All trials, correct and incorrect 
included in this analysis. Error bars are 
standard error of the mean. 

(sFigure 4), which persist in day two. Average completion times in seconds were 

bl1 = 53.55 ± 10.4std, bl2 = 32.7 ± 3.16, bl3 = 29.58 ± 2.99std, bl4 = 29.86 ± 

4.87std. This was verified with an ANOVA, showing reliable effects of block, F (3, 

27) = 70.17; p < 0.001 d = 2.65. Block 1 was the slowest relative to all other 

blocks, all t(9) > 7.7, P < 0.001, d > 3.34. Block 2 was slower than block 3 and 4, 

t(9) >2.55, P < 0.031, d > 1.14. There were no reliable differences in completion 

times between blocks 3 and 4, t(9) = -0.32, P =0.75, d=0.14. Thus overall 

performance, measured as total completion time did not deteriorate following 

the introduction of the dual task.  

 

 

 
 

 

 

Supplementary analysis - the wall type as a factor:  
We present in sFigure 5, the IAI for all time points in the sequence for each wall 

at the two testing blocks.  
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- Evidence for quasi-hierarchical structure: 

The 4 elements red bricks chunk (B) was structurally divided to two chunks (Bi, 

Bii). This was based on the overlap and dissimilarity between the structure of 

the two walls. This quasi-hierarchical structure of breaking chunks to smaller 

repetitive units (e.g. adding one, adding two sugars) is a feature of many 

everyday tasks (Botvinick & Plaut, 2004) which is often associated with increase 

errors (Reason 1979, 1984). We wanted to assess whether the selection IAI 

represented this quasi-structure with B being broken to separate elements, 

where Bii.1 is a decision boundary point for Anna’s wall as C.1 for Daniel’s wall.  

Hierarchical based models and the dual processor model (DPM, Verwey 2001, 

Abrahamse, 2013) make number of opposite predictions on the impact of this 

manipulation on performances: 

1.  Hierarchical models (Cooper and Shalice, 2006) predict increase latency and 

errors at ‘Bii’ as this is a decision boundary point. But the DPM predict no 

slowing down at this point, as this is within chunk point (same color as Bi). We 

computed a 2(wall) x 2(task) x 2(boundary type: D.1, Bii.1/C.1) ANOVA. The 

results show a main effect for boundary type, F(1,7) = 36.57, p = .001 d = 3.02. 

IAI at the decision boundary took longer than at no-decision boundary which did 

not interact with the wall or the task.  

2. Hierarchical models (Rosenbaum et al., 2007) predict that initiating ‘Bi.1’ 

would be slower relative to initiating ‘D’. This is because ‘B’ is different across 

the two walls while ‘D’ is identical. The chunk based model, DPM, predicts that 

initiation latencies would be affected by the number of units in a chunk. Hence 

initiating ‘D’ would be faster only relative to initiating ‘B’ when building Anna’s 

wall, as the former have 2 units, while the later has 4. When building Daniel’s 

wall time to initiate ‘B’ and ‘D’ should not differ. We computed a 2(wall) x 2(task) 

x 2(boundary type: Bi.1, D.1). The results show a main effect for boundary type, 

sFigure 5: IAI for selection of each brick 
Averaged IAI across participants representing the time to select each brick, during the building of 
each of the walls in the dual task (DT) and no-dual task (nDT) conditions; DB, decision boundary; 
nDB no decision boundary; preDB, IAI preceding a decision boundary. 
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F(1,7) = 10.11, p = .015 d =  1.58 and no interaction with the wall type, 

F(1,7)=2.1, p = .19 d =  0.7. Initiating B took longer than D, even though D & B (at 

least in Anna’s wall has the same number of step in the chunk). This support the 

hierarchical model, replicating Rosenbaum et al., (1984) findings.   

 

- Testing for no decision chunk effects 

To assess for evidence of chunking in the data in the absence of decision we 

compared IAI of ‘D.1‘, initiating a new blue chunk which is identical across the 

walls to ‘E.2’, which is within chunk brick. We used again a 2(task) x 2(walls) x 

2(bricks) repeated measured ANOVA. We surprisingly observed an interaction of 

wall and brick, F(1,7) = 34.27, p = .001, d = 2.97. This was because it took much 

longer to select E.2 in Daniel’s than in Anna’s walls, t(7) = 7.95, P < 0.001, d = 

3.97. It also took longer to select E.2 in Daniel’s wall relative to D.1, t(7) = 3.13, P 

= 0.017, d = 1.5. The difference between walls was unexpected. It may relate to 

the overall change in configuration following the dissimilarity of the layer 

underneath, as Anna’s wall had more bricks in this layer potentially making the 

placement of the bricks easier. It may also reflect the fact that the Black bricks 

were the farthest to the left (see sFigure 1) and hence IAI was confound by the 

extra distance needed to be covered. Though, more importantly the results did 

not show a chunk boundary effect. 

 

 
 


