

University of Birmingham

Authenticating compromisable storage systems
Yu, Jiangshan; Ryan, Mark; Chen, Liqun

DOI:
10.1109/Trustcom/BigDataSE/ICESS.2017.216

Document Version
Peer reviewed version

Citation for published version (Harvard):
Yu, J, Ryan, M & Chen, L 2017, Authenticating compromisable storage systems. in Proceedings of 16th IEEE
International Conference on Trust, Security and Privacy in Computing and Communications (IEEE TrustCom-
17). IEEE Computer Society Press, 16th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications (IEEE TrustCom-17), Sydney, Australia, 1/08/17.
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.216

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 09/06/2017

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 26. Apr. 2024

https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.216
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.216
https://birmingham.elsevierpure.com/en/publications/d38cdbca-8f95-4ccb-aa3a-4ef147304c21

Authenticating compromisable storage systems
Jiangshan Yu

Interdisciplinary Center for Security, Reliability and Trust
University of Luxembourg
Email: jiangshan.yu@uni.lu

Mark Ryan
School of Computer Science

University of Birmingham
Email: m.d.ryan@cs.bham.ac.uk

Liqun Chen
Department of Computer Science

University of Surrey
Email: liqun.chen@surrey.ac.uk

Abstract—A service may be implemented over several servers,
and those servers may become compromised by an attacker, e.g.
through software vulnerabilities. When this happens, the service
manager will remove the vulnerabilities and re-instate the server.
Typically, this will involve regenerating the public key by which
clients authenticate the service, and revoking the old one.

This paper presents a scheme which allows a storage service
composed of several servers to create a group public key in a
decentralised manner, and maintain its security even when such
compromises take place. By maintaining keys for a long term,
we reduce the reliance on public-key certification. The storage
servers periodically update the decryption secrets corresponding
to a public key, in such a way that secrets gained by an attacker
are rendered useless after an update takes place. An attacker
would have to compromise all the servers within a short period
lying between two updates in order to fully compromise the
system.

Index Terms—Post compromise security, Proactive security,
Self-healing system, Authentication, Information security.

I. INTRODUCTION

a) Motivation: Services across the internet authenticate
themselves to clients by means of public keys. If a server
becomes compromised by an attacker, the attacker may obtain
the secret key corresponding to its public key. If this happens,
in a real situation, the service manager will eventually become
aware of it, and can then shut down the service, repair the
damage, and generate a new key pair. The service manager
also has to revoke the old public key. In this scenario, clients
of this server will need to switch from the old revoked public
key to the newly updated key.

This paper introduces a technique which allows a service
composed of several servers to create a a service level public
key in a decentralised manner in a way that tolerates com-
promise of the secret key. Specifically, even if the servers
that run the service are compromised and the attacker obtains
their secrets, the service owner is (in situations satisfying our
assumptions) able to re-establish the servers with new secrets,
and securely run the service with the same public key as before.

By allowing public keys to survive possible compromises of
the services that own them, the technique reduces the reliance
on certificate authorities [1], and avoids the complexities and
uncertainties of public key revocation. Data storage systems
[2], [3], industrial control systems [4], and corporate servers
[5] whose clients are other corporate servers are examples of
situations in which one could benefit from having long-lived
public keys.

We develop these ideas in the context of an enterprise
backup service. We assume a platform which offers a storage
service provided collectively by a set of independent servers.
Each server generates its private/public key pair without re-
quiring recourse to a trusted dealer. A client Alice selects a
group of servers, and requests that they collaborate using the
protocol of this paper to compute a public key (which we call
the “group public key”). The system provides features such
that

• Alice can always authenticate the service (and encrypt
her backup1) by using the fixed group public key that
she obtained securely in the initialisation;

• Alice is not required to maintain any decryption secret
for later data recovery;

• in the event of a disaster that destroys her local data,
Alice can recover the encrypted backup by providing her
identity to each server;

• Alice can be guaranteed that the outsourced encrypted
backup remains secure even if an attacker compromises
all the servers over a long time period.
b) Overview of our solution: To apply the technique,

we assume that the storage service is composed of several
servers. Each server creates a key pair independently. The
servers collectively run a protocol to compute a group public
key based on the public part of their individual key pairs.
We call the secret part of each server’s individual key pair
a “share” of the decryption secret w.r.t. their group public
key. The full decryption secret is never reconstructed in the
protocol.

Time is divided into epochs. At each epoch, the servers
engage in a protocol to proactively update their individual key
pairs in a way that connects them back to the group public
key. In particular, (A) the group public key remains unchanged
regardless to the update process ensuring that it can still be
authenticated; (B) data encrypted using the fixed group public
key can still be decrypted by using the new secrets; and (C)
each update renders useless all previously generated shares
of the decryption secrets. So, an attacker cannot recover an
encrypted data without compromising all servers’ shares of
the decryption secrets in the same epoch.

1In practice, Alice can use hybrid encryption: she encrypts her backup with
a fresh symmetric key, and that symmetric key becomes the data encrypted
with the group public key. The symmetric key will be destroyed after the
encryption, and Alice is not required to remember any secret.

At any time, one or more of the servers may become
compromised by an attacker. In that case, the attacker obtains
all the data (including secrets) stored on the server. Our
solution ensures that the attacker is not able to perform any
decryption, provided that in any epoch at least one of the
servers remains uncompromised.

The solution we present requires all the selected servers to
participate. At the end of the paper, we discuss how it can be
extended to a threshold-based solution.

c) Contribution: We introduce a system which allows a
family of servers to maintain decryption secrets corresponding
to a group public key, with the following properties:

• The secrets are proactively maintained. This means that
the servers periodically engage in a protocol to update the
secrets, defending from attackers that could potentially
compromise all the servers over a long period.

• The group public key remains fixed, even though the
decryption secrets of the servers change in each time
period. We achieve this in a simple and decentralised
manner without requiring a trusted dealer.

• There is no time during our protocol at which an entire
decryption key corresponding to the group public key is
generated, stored, reconstructed or used.

We present the system as a self-healing storage service,
though this construction can be used as a building block to
solve the problem of authenticating a compromisable service
in other applications. Self-healing means servers can be at-
tacked and their secrets compromised, but after attacks the
service can continue with the same public key as before.

We formalise an adversary model for this kind of system.
Since there might be robust malware that cannot be removed
from a server, our adversary model allows the adversary to
permanently compromise servers. We also define the security
of a distributed storage system against our model through a
security game. We provide a rigorous formal security proof of
the proposed system under the defined security model. Our
proof also shows that the proposed scheme provides IND-
CCA2 security. Due to space limitations, the security proof is
not presented in this paper. We refer readers to our technical
report [6] for a fully detailed formal security analysis.

d) Efficiency: The system is also optimal in round com-
munication between a client and a group of servers, i.e. it
requires only one round communication per-server in both
phases for data encryption/distribution and for data reconstruc-
tion, and does not require any client involvement for the pe-
riodic update. In addition, it requires only two exponentiation
operations on the client side for encryption or decryption.

II. SECURITY MODEL

This section first presents an informal attacker model and
security goal, in Section II-A and Section II-B, respectively.
It then defines the formal security model in Section II-C.

We consider the scenario that an attacker wants to steal the
sensitive data of users on cloud servers, by gradually breaking
into servers of the system.

TABLE I
THE EXPLANATION ON DIFFERENT TYPES OF PARTICIPANTS.

Notation Description

SPAC The set of servers that are permanently controlled by
attackers. Security actions, e.g. software patches and
malware removal, can not succeed in restoring the
servers to a secure state.

STAC The set of servers that are temporarily controlled by
attackers. Security actions, e.g. software patches and
malware removal, can succeed in restoring the servers
to a secure state

SSec The set of servers that are currently secure.

CAC The set of clients (i.e. data owners) that are controlled
by attackers.

CSec The set of clients that are currently secure.

SAlice The set of servers selected by client Alice.

S The complete set of all servers, such that
S = SPAC ∪ STAC ∪ SSec

C The complete set of all clients, such that
C = CAC ∪ CSec

P The complete set of all participants, such that
P = S ∪ C.

A. Attacker model

Suppose an attacker compromises a server. Then the attacker
can fully control the server and has access to all its stored
secrets. Suppose sometime later, the maintainer of the server
applies software patches and malware removal. Depending on
the nature of the compromise, that action might restore the
server into a secure state, or it might not.

As shown in Table I, we use SPAC to represent the set
of permanently attacker-controlled servers; STAC to represent
the set of temporarily attacker-controlled servers (as illustrated
in Figure 2); and SSec to represent the set of secure servers.

Figure 1 shows the possible transformation between differ-
ent types of servers. Generally, any secure server in SSec may
become a temporarily attacker-controlled server; any server in
STAC may become a secure server; and any server in SSec or
STAC may become a permanently attacker-controlled server.

SPAC STAC SSec

CreateAttackerControlledServer()

CreateSecureServer()

TakeOwnershipServer()

TakeOwnershipServer()

CompromiseServer()

SecurityAction()

Fig. 1. A figure presenting the possible transformation between different
types of servers. In our formal security model, these transformations can be
achieved by using oracle queries as defined in Section II-C.

compromised compromised compromised
.

secure secure secure

t1 t′1 t2 t′2 tn t′n

Fig. 2. A timeline presenting a server’s security state transformation between
a temporarily attacker controlled server STAC and a secure server SSec. For
all i > 0, we assume that the server is compromised in the time interval
between ti and t′i, and is secure in the time interval between t′i and ti+1.

B. Security goal

All servers update their secrets simultaneously at pre-
determined times. We say T is an epoch if T starts from
the beginning of the process for updating secrets, and ends
at the beginning of the next process for updating secrets. Note
that since we allow an adversary to corrupt servers at any
moment during an epoch, if a server is corrupted during an
update phase from epoch T to the next epoch T ′, we consider
the attacker being able to obtain secrets in both the T -th and
T ′-th epochs.

Let SAlice be the set of servers selected by Alice. At
a given epoch T , let SPAC(T) be the set of permanently
attacker-controlled servers in SAlice, and STAC(T) the set of
temporarily attacker-controlled servers in SAlice.

Our security goal is that an attacker cannot learn any secret
of Alice, provided the total number of attacker-controlled
servers in T and T ′ is less than the number of servers chosen
by Alice, i.e. |SPAC(T

′)| + |STAC(T)| + |STAC(T
′)| <

|SAlice|.

Remark 1: Loosely speaking, it says that the system should
be secure if the total number of compromised servers in any
epoch is less than the number of servers chosen by Alice. Note
that SPAC(T) is the set of permanently compromised servers
at epoch T , and these servers will be included in the set of
permanently compromised servers in future epochs as well. So
we have |SPAC(T)| ≤ |SPAC(T

′)|. However, this is not true
for STAC(·).

C. Formal Model

We first define the scenario we are considering, i.e. attackers
can periodically compromise cloud servers for storage. Then
we formally define the ability of an attacker, and the security
of a self-healing distributed storage system.

Definition 1: A periodically compromised system envi-
ronment (PCSE) is an environment in which an attacker can
periodically control participants of a protocol. It consists of

1) Protocol Π: the underlying security protocol;
2) Security checking oracle SecurityCheck(Π, S): given a

server S ∈ S in protocol Π, it outputs a value VS to
indicate if S is compromised. If VS = comp, then an
attacker has compromised S; otherwise, S is secure. This
models the security status of a server.

3) Security action oracle SecurityAction(Π, S): given a
server S, it outputs a strategy for S such that if S is
a temporarily attacker-controlled server, i.e. S ∈ STAC ,

and it executes the strategy, then the server will become
a secure server, i.e. SecurityCheck(Π, S) = secure.

We define our security model through a game with two par-
ticipants, namely a challenger and a probabilistic polynomial
time (PPT) adversary A. The attacker’s goal is to win the
game that is initialised by the challenger. A is able to ask the
following oracle queries.

1) O1: Settings(Π). By sending this query, A is given all
the public parameters of Π.

2) O2: Execute(Π,P ′). Upon receiving this query, the set
of participants P ′ ⊆ P executes protocol Π, if applicable
(where P is the set of all participants, as defined in Table
I). The exchanged messages will be recorded and sent
to A. This oracle query models an attacker’s ability to
eavesdrop communications between participants in Π.

3) O3: CreateAttackerControlledClient(Π, C). Upon
receiving this query with a fresh identity C, the oracle
creates an attacker-controlled client C in Π according to
the attacker’s choice. After this query has been made,
we have that CAC := CAC ∪ {C}. We say an identity
is “fresh” if and only if the identity is unique and has
not been previously generated. This oracle models an
attacker’s ability to register a new client of its choice.

4) O4: CreateAttackerControlledServer(Π, S). Upon
receiving this query, the oracle creates a fresh server
S, and sends the corresponding secret key and public
key to the attacker. (The created secret key will be used
as this server’s share of the group decryption secret.)
After this query has been made, we have that SPAC :=
SPAC ∪{S}. This oracle allows A to adaptively register
permanently attacker-controlled servers of its choice.

5) O5: CreateSecureClient(Π, C). Upon receiving this
query, the oracle creates a fresh client C in Π. After this
query has been made, we have that CSec := CSec ∪ {C}.
This oracle query allows an attacker to introduce more
clients, which are initially secure.

6) O6: CreateSecureServer(Π, S). Upon receiving this
query, the oracle creates a fresh server S in Π. After this
query has been made, we have that SSec := SSec ∪ {S}.
This oracle query allows an attacker to introduce more
servers, which are initially secure.

7) O7: CompromiseClient(Π, C). Upon receiving this
query for some C ∈ CSec in Π, the oracle forwards
all corresponding secrets of C to A. From now on the
attacker controls C so that C ∈ CAC and C /∈ CSec after
this query has been made. This oracle query allows A
to adaptively and permanently compromise a client of its
choice.

8) O8: TakeOwnershipServer(Π, S). Upon receiving this
query for some S ∈ SSec or S ∈ STAC in Π, the oracle
forwards all corresponding secrets of S to A, and from
now on the attacker controls S. So, S is moved from its
current set in to SPAC after this query has been made.
This oracle query allows A to adaptively and permanently
compromise a server of its choice.

9) O9: CompromiseServer(Π, S). Upon receiving this
query, the oracle outputs all secrets of S ∈ SSec in Π. We
have S /∈ SSec and S ∈ STAC after this query has been
made. This oracle query models A’s ability to adaptively
and temporarily compromise an attacker-controlled server
of its choice.

10) O10: Dec(Π, Enc(M,PKSC
), C). Upon receiving this

query for some client C ∈ CSec with data M , the set SC

of servers collectively executes the decryption protocol to
decrypt the encrypted data Enc(M,PKSC), and sends
the decryption result M to the attacker, where PKSC

is
the group public key of the set SC servers selected by C
for encryption/decryption.

We now consider the distributed storage scenario. If a
powerful attacker A can fully control a data owner’s device
when the device is creating or recovering data M , then A can
easily learn M . As mentioned before, we do not consider this
case as there is nothing we can do and it is not interesting.
To focus on the more interesting cases, we only consider that
A cannot learn M by compromising the data owner’s device
during the secret creation or recovery time.

Definition 2: A self-healing distributed storage protocol Π
comprises a group of data owners, and a group S of decryptors.
It consists of two algorithm and three protocols, namely
key generation algorithm KeyGen(·), encryption algorithm
Enc(·), encryption key construction protocol ΠPK , decryption
key construction protocol ΠSK , and decryption protocol Πdec.

• KeyGen(λ). Taking security parameter λ as input, it
outputs a pair (si, Pi) of private and public keys for the
decryptor Si ∈ S.

• ΠPK . It is run by a group S ′ ⊆ S of decryptors. The
decryptor Si has private input si. After the completion
of the protocol, each Si ∈ S ′ outputs the same long term
public key PKS′ of group S ′.

• ΠSK . It is run by a group S ′ ⊆ S of decryptors at each
time period j. After the completion of the protocol, each
Si ∈ S ′ outputs a share sij of the corresponding group
private decryption key for time period j. If j = 0, then
the private input of Si is si. If j > 0, then the input of
Si is si(j−1).

• Enc(M,PKS′). Taking data M and the public key
PKS′ of group S ′ as input, it outputs the ciphertext of
M encrypted under PKS′ .

• Πdec. It is run by a data owner with encrypted M , and a
group S ′ ⊆ S of decryptors with their private input sij
for each Si ∈ S ′ at time period j. After the completion
of the protocol, the data owner outputs M .

Remark 2: The self-healing feature is defined by the
decryption key construction protocol ΠSK , as it enables de-
cryptors to update their keys periodically.

Definition 3: A self-healing distributed storage protocol Π
is (k, n)-secure if the advantage AdvA,n,k(λ) = |Pr[b = b′]−
1
2 | of A to win the following game, denoted Game-PCSE, is
negligible in the security parameter λ.

Game-PCSE:
• Setup(Π, λ). The challenger sets up protocol Π accord-

ing to the security parameter λ. Initially, S = C = ∅.
• Query phase. The attacker can ask a polynomially

bounded number of oracle queries Oi for i ∈
{1, 2, . . . , 10}. Let j4, j8, and j9 be counters counting
the total number of O4, O8, and O9 queries asked by the
attacker, respectively. We have that j4 + j8 + j9 < k.

• Security action phase. The challenger makes security
checking oracle queries on all servers, and then makes
security action oracle queries on the servers that are
temporarily controlled by the attacker. At the end of this
phase, the counter j9 will be reset to “0”.

• The query phase and the security action phase are re-
peated a polynomially bounded number of times.

• Challenge(Cb, C). The attacker selects a target client
C who has not been asked through Oi for i ∈ {3, 7},
i.e. C ∈ CSec; and selects two messages M0 and M1,
s.t. |M0| = |M1|. The attacker then sends them to the
challenger. The challenger tosses a coin. Let b ∈ {0, 1}
be the result of the coin toss. The challenger then
encrypts Mb according to Π, and sends the ciphertext
Cb = Enc(Mb, PKS) back to the attacker.

• The query phase and the security action phase are re-
peated a polynomially bounded number of times. Addi-
tionally, we require that the target client C cannot be
asked through O3 and O7, and Dec(Π, Cb, C) cannot be
queried through O10.

• Guess(b). The attacker makes a guess b′ of the value of
b, and outputs b′. The attacker wins if b = b′.

Remark 3: In the game defined above, the execution of a
query phase followed by a security action phase simulates an
epoch of the protocol.

Remark 4: In a (k, n)-threshold cryptosystem, an attacker
can break the security if the attacker is able to compromise
k secrets/parties during the lifetime of the system. However,
in the above defined (k, n)-secure system in the PCSE, an
attacker cannot break the security even if the attacker can com-
promise all n parties in the lifetime of the system, provided
at any time point t between two updates, at most k−1 parties
are compromised by the attacker.

III. OUR SOLUTION

We present our solution, first in a non-threshold form (i.e.,
we stipulate that the minimum number k of servers needed
for performing decryption is equal to n, the total number of
servers). Later, in section VI-A, we generalise it to a threshold-
based solution where we allow one to choose k < n.

A. Basic idea

A client Alice selects a set of servers, and requests that they
collaborate using the Initialisation protocol (detailed later) to
compute a public key for a storage service. She encrypts her
sensitive data using this group public key. Each selected server
stores a copy of the encrypted data. (Of course, in practice,
this makes sense only if the data is small. If a large amount of

Setup

SA : (a, ga), SB : (b, gb), SC : (c, gc), PK = gabc

Zero-th Update

SA : (a0, g
a0), SB : (b0, g

b0), SC : (c0, g
c0), H0 = g(a0b0c0/abc)

First Update

SA : (a1, g
a1), SB : (b1, g

b1), SC : (c1, g
c1), H1 = g(a1b1c1/abc)

The j-th Update

SA : (aj, g
aj), SB : (bj, g

bj), SC : (cj, g
cj), Hj = g(ajbjcj/abc)

Encryption at any time

C = (α = gabck, β = MZk), for some data M and random number k

Decryption at the j-th epoch

Compute γ = e(α,Hj), then decrypt (β, γ) by using (aj, bj, cj)

Fig. 3. The data associated with the servers SA, SB and SC at different
stages of the protocol, and the encryption and decryption computations.

data is required to be stored, we assume that a fresh session
key is generated. The large data is encrypted with the session
key and stored on an (untrusted) cloud service; and the session
key is encrypted using the group public key and stored on the
selected servers.)

Time is divided into epochs. At the end of each epoch, the
servers execute a protocol during which they generate new
decryption keys and destroy the old ones.

If a server is compromised in an epoch, the attacker obtains
all its (shares of) decryption keys. However, the protocol
ensures that decryption keys from a server in one epoch cannot
be used together with decryption keys from a server in a
different epoch. Each change of epoch renders useless the
decryption keys obtained by the attacker in previous epochs.

Thus, to decrypt the secret, an attacker would have to
compromise a threshold number of servers within the same
epoch.

B. Abstract construction

Our protocol is based on bilinear map, as defined below.

Definition 4 (Bilinear Map): Let G1, G2 be two cyclic
groups of a sufficiently large prime order q. A map e : G2

1 →
G2 is said to be bilinear if e(ga, gb) = e(g, g)ab is efficiently
computable for all g ∈ G1 and a, b ∈ Zq; and e is non-
degenerate, i.e. e(g, g) ̸= 1.

We now explain the protocol with three servers, SA, SB , and
SC . Let g ∈ G1 be a fixed public value and Z = e(g, g) ∈ G2.
The data associated with the servers at different stages of the
protocol are presented in Fig. 3.

Setup and zero-th epoch. SA generates a private key a, and
a public key ga. Similarly, SB and SC generate (b, gb) and
(c, gc). Then SA, SB , SC collectively compute and publish
their joint public key gabc.

Next, SA generates a new key a0 and public key ga0 , and
similarly SB and SC generate (b0, g

b0) and (c0, g
c0). Then

SA, SB , SC collectively compute and publish helper data

H0 = g(a0/a)·(b0/b)·(c0/c) with proofs that they have correctly
performed the computation. They destroy the secrets a, b, c.

At the end of the (j−1)-th epoch. The servers replace their
decryption keys aj−1, bj−1, and cj−1 with new ones aj , bj ,
and cj . Then SA, SB , SC collectively compute and publish
helper data Hj = g(aj/a)·(bj/b)·(cj/c) with proofs that they
have correctly performed the computation. The values a, b, c
are not required to compute Hj . They destroy the secrets aj−1,
bj−1, cj−1.

Encryption of data M . At any time during the server
lifecycle (i.e. any epoch j), a client Alice can encrypt her data
M by using the (unchanging) public key gabc. She selects a
new random k, and computes C = (α = gabck, β = MZk).

Decryption of ciphertext (α, β) at the j-th epoch. After
authenticating client Alice’s request for decryption, the servers
can collectively decrypt a ciphertext (α, β) during any epoch.
To decrypt (α, β), the servers compute γ = e(α,Hj) =
Zajbjcjk. Then the servers use their secrets aj , bj , and cj to
collectively compute Zk, and then they can recover the data
M from β = MZk. Note that during this decryption process,
Alice should apply masking to the γ to prevent servers from
learning the plaintext. More details are presented in the next
section.

Remark 5: Note that the public key used by clients for
encryption remains constant regardless of the secret updates
on the server side. Also, the update procedure is independent
of the number of stored ciphertexts. That is because in the
update phase the servers need only collectively compute the
helper data. The ciphertext (α, β) of each data item remains
unchanged.

C. Detailed construction

Initialisation: Setup. Let G1, G2 be two groups of a
sufficiently large prime order q, such that |q| = λ, with a
bilinear map e : G2

1 → G2, and g ∈ G1 is a random generator
and Z = e(g, g) ∈ G2.

Let S1, S2, . . . , Sn be the servers selected by Alice. Si

performs KeyGen(λ) to create setting-up key pair (si, g
si),

for some si ∈ Zq , respectively. They also run ΠPK to compute
a group public key PK = g

∏
si , which is available to the

client in an authentic matter, e.g., via a certificate. This key
can be established as follows:

• Each Si computes and publishes Pi = gsi .
• S2 computes PK12 = (P1)

s2 . This computation can
be verified by other servers by checking e(PK12, g) =
e(P1, P2).

• Si computes PK1...i = (PK1...(i−1))
si , which again can

be verified by other servers by checking e(PK1...i, g) =
e(PK1...(i−1), Pi).

Now, each Si has a secret key si and a group public key
PK.

Zero-th epoch. This epoch is to generate shares of the first
decryption key through ΠSK . Each Si chooses another secret
si0, computes ui0 = si0/si, computes and publishes Pi0 =
gsi0 , P ′

i0 = gui0 and deletes si. The correctness of these values
can be checked as e(P ′

i0, Pi) = e(Pi0, g).
By using ui0, Si works with other servers to get H0 =

g
∏

si0/si in the same way as computing PK, and then deletes
ui0.

At the end of the initialisation, Si only holds its share si0
at secret. This value can be used for decryption (if needed)
and is used for the next decryption key update. In addition, Si

also holds two public values, namely a helper data H0 and a
group public key PK.

Note that the group public key is used for data encryption
by the clients. This implies that the clients do not have to
follow the server key updating processes, and they will keep
using the key PK for a reasonably long time.

Updating the decryption keys (ΠSK): The decryption
key update process is similar to the computation of the first
decryption keys presented in the previous phase. At the end of
the (j − 1)-th epoch for some j ≥ 1, the servers replace their
decryption keys si(j−1) with new ones, sij . This is achieved
as follows.

• With the input si(j−1), Si chooses sij , computes uij =
sij/si(j−1), computes and publishes Pij = gsij and
P ′
ij = guij , and deletes si(j−1). The correctness of these

values can be checked as e(P ′
ij , Pi(j−1)) = e(Pij , g).

• By using uij , Si works with other servers to get Hj =

H
∏

sij/si(j−1)

j−1 = g
∏

sij/si and then deletes uij . The
correctness of these values should also be verified in the
same way as computing PK.

At the end of (j−1)-th update, Si only holds sij . This value
is used for both decryption and update in the (j)-th epoch.

Encryption: To encrypt data M , Alice selects a new
random k, and computes PKk = gk·

∏
si and MZk. Alice

sends (α = PKk, β = MZk) to each server.
Servers only accept (α, β) as some encrypted data from

Alice if a valid proof of knowledge of M (or k) is provided.
This is used to prevent replay attacks in which an attacker
who has observed (α, β) sets up an account with the servers,
and provides (α, β) as the attacker’s encrypted data, then
requests servers to decrypt it for the attacker. Any secure
zero knowledge proof of knowledge (ZKPK) can be used. For
example, the proof can be a Schnorr ZKPK of k, where the
prover knows k and the verifier knows PKk. If the prover
shows knowledge of k, this implies that she also knows M .

At the end, Alice destroys M and k after all servers are
convinced and accepted the ciphertext.

Decryption (Πdec): The basic idea of the decryption
process is presented in Fig. 4.

In more detail, in the j-th epoch for some j ≥ 0, Alice sends
a request to a selected server for retrieving the encrypted data.
After successfully authenticating Alice, the server calculates
γ = e(α,Hj) = Zk·

∏
sij , and sends (β, γ) to Alice.

Alice SAlice

Request

Authentication process

- If the authentication succeeded, then

compute γ = e(α,Hj) = Zk·
∏

sij

(β, γ)

- Select k′ ∈ Zq

- Compute γk′

- Generate proof P that

(Z,Zk′
, Zk·

∏
sij , Zkk′·

∏
sij) is a DDH tuple

(γk′
, P)

- Verify P

- Compute Zkk′
by collectively decrypting γk′

Zkk′

- Compute Zk = (Zkk′
)
1/k′

- Decrypt MZk

Fig. 4. The basic idea of the decryption process.

Alice selects a new random k′ ∈ Zq , sends Zk′
to each

of the servers as her commitment on k′, computes γk′
=

Zkk′·
∏

sij , and asks each server to remove its sij from the
exponent by calculating γk′·s−1

ij . The final output should be
Zkk′

. She then can recover Zk by computing (Zkk′
)
1/k′

, and
thus be able to decrypt MZk.

Before a server decrypts some message requested by a user,
the server expects a proof that the requested decryption is
indeed a step to help the user to recover a key that the user
actually owns, i.e. to prove that

(Z,Zk′
, Zk·

∏
sij , Zkk′·

∏
sij)

is a DDH tuple. This can be done by using classic non-
interactive ZKPK schemes, for proving that (g, gx, gy, gxy) is
a DDH tuple (e.g. Chaum-Pedersen protocol [7]). Each server
also needs to check the received values from other servers in
the same way.

IV. SECURITY ANALYSIS

The full formal security proof can be found in our technical
report [6] (Section 4, page 6-9). Here we provide a summary
of our security analysis. Our goal is to prove the security of our
protocol per Definition 3; that is, we prove that the advantage
that a probabilistic polynomial-time (PPT) adversary A has to
win the Game-PCSE is negligible.

To provide a rigorous security proof, we formally define
our hardness assumption, and define a cryptographic game
accordingly. To better simulate our protocol, the defined game

TABLE II
A LIST OF NOTATIONS FOR EVALUATION

Notation Description

Exp the operation of modular exponentiation;

Mul the operation of modular multiplication;

Inv the operation of modular multiplicative inverse;

BP the bilinear pairing operation e(·) of mapping from
G1 ×G1 to G2;

supports multiple rounds simulating the epochs in our proto-
col. We call such a game with j rounds as j-round modified
decisional bilinear Diffie-Hellman inversion game, denoted
Game-j-R-MDBDHI. We then prove in a lemma that if an
adversary can win Game-j-R-MDBDHI with a non-negligible
advantage, then we can break our hardness assumption.

Finally, we prove in our theorem that if an adversary can win
Game-PCSE with a non-negligible advantage ϵ, then we can
make use of this adversary to win Game-j-R-MDBDHI with
advantage (1+2ϵ)(N−N ′′)(N−N ′)

8N2 , which is also non-negligible.
(Here, the values N , N ′ and N ′′ are quantities of servers
participating in the protocol.)

V. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed
system in two aspects, namely the number of communication
rounds and the computational cost. We define some notations
to facilitate our evaluation, as presented in Table II.

The number in front of a notation means the number of
times this computation is required, e.g., 3Mul means that Mul
operation has been calculated three times in this phase. Note
that since the initialisation phase will only be run once at the
beginning of the system, our performance evaluation ignores
it here. In addition, we assume that the zero knowledge proof
uses Schnorr NIZK scheme [8], and costs 1Exp+ 1Mul for
proof generation and 2Exp+ 1Mul for verification [9].

Table III presents the number of communication rounds in
each phase in three figures. In brief, our evaluation shows
that the protocol for updating the decryption keys, which will
be run periodically, does not require the involvement of any
client. In addition, only one communication round is needed
for a client to communicate with each group member for data
encryption/distribution and for data reconstruction. This results
in N rounds for data encryption, and N + 1 rounds for data
decryption, where N is the number of servers. The reason
that the data decryption requires N + 1 rounds (rather than
N rounds) is that apart from one communication round with
each of the N servers, an additional communication round
is required between the client and the first server that the
client communicates with for computing γ, as shown in the
Figure 4. However, as we will see later, although the number
of communication rounds that a client is involved is dependent
on the number of servers, a client’s computational cost is
independent of the number of servers.

Table IV presents the computational cost, for a client and
for a server, in different protocol phases. Our evaluation shows
that all bilinear pairing operations are done on the server side.
Due to limited space, we refer readers to our full version [6]
for a more detailed analysis.

TABLE III
THE NUMBER OF COMMUNICATION ROUNDS .

Updating
the decryption keys Encryption Decryption

Rounds involving client - N rounds N+1 rounds

Rounds involving
only servers N-1 rounds - N-1 rounds

Rounds in total N-1 rounds N rounds 2N rounds

TABLE IV
THE COMPUTATIONAL COST IN DIFFERENT PROTOCOL PHASES .

Entity/phase Updating
the decryption keys Encryption Decryption

Client - 3 Exp +2 Mul 4 Exp + 1 Mul + 1 Inv

Server 1 Inv + 3 Exp
+ 4(N-1) BP 2 Exp + 1 Mul 1 BP* + 3 Exp + 1 Mul

+ (N-1) BP**

Note:
* Only 1 out of N servers need to perform this operation (for computing

γ with cost 1BP).
** The number of correctness checks is different for each server depending

on their network position, where (N-1)BP is the cost in average.

VI. DISCUSSION AND RELATED WORK
A. Extension to a threshold system

As mentioned in previous sections, our system requires the
presence of all servers for recovering a secret. However, it
can be easily extended to a threshold-based system, by using
any classical (verifiable) secret sharing schemes to back-up all
ephemeral secret keys of servers.

To be more precise, let ‘key servers’ be the servers in our
protocol and ‘back-up servers’ be the secret sharing servers.
Each time a new key of a key server is generated, the key
will be distributed to a set of back-up servers through secret
sharing schemes, and the shares associated to the old keys will
be destroyed. So, when a key server is dead, our system can
still continue by recovering the dead server’s secret keys from
shares, and take actions from there to re-build the server.

Intuitively, the extended threshold system is secure even if
we additionally allow an attacker to compromise less than a
threshold number of back-up servers at any epoch, provided
that the set of back-up servers does not overlap with the set of
key servers, and all key servers uses the same threshold with
the same set of back-up servers for sharing their keys. Loosely
speaking, since the shares of different epochs are independent
each other, the compromise of shares in an epoch does not
help an attacker to recover secrets shared in other epochs.

In fact, we can easily improve the security guarantee of the
extended threshold system by letting key servers use different

sets of back-up servers for sharing their keys. In this way,
an attacker would need to compromise a threshold number
of back-up servers to only obtain the secret of a single key
server, rather than being able to recover all key servers’ secrets.
A more rigorous security analysis of the extended threshold
system will be our future work.

B. Related work

Outsourcing storage is a growing industry, it enables users to
remotely store their data into a cloud, reduces users’ burden of
in-house infrastructure maintenance, and offers economies of
scale. However, due to concerns over data privacy and security
[10], users are not willing to outsource their sensitive data in
the cloud [11]. For example, many recent attacks have been
perpetrated on cloud systems [12], [13]. We discuss related
proactively secure systems that have been designed to secure
against compromised servers.

Proactive secret sharing (PSS) (e.g., [14]–[18]) is a tech-
nique for sharing a secret among a set of servers; it is secure
against an attacker that can compromise servers, one by one,
over a long period. In PSS, as in our protocol, time is divided
into epochs. In each epoch, the servers that hold shares of the
secret engage in a protocol to update their shares. An attacker
may compromise some servers in a given epoch, but the learnt
secrets are useless in other epochs. Thus, even if all the servers
are eventually compromised over different epochs, the secret
remains intact provided that in each epoch there was at least
one server that remained honest.

Proactively secure cryptographic systems (e.g., [19]–[25])
apply the ideas of proactively secure secret sharing to sharing
decryption or signing secrets among several servers. Such
systems have been achieved by combining a proactively secure
secret sharing scheme with an encryption or signature scheme.
However, these constructions make use of a trusted dealer, who
creates the secret key and distributes shares of some secrets
to the servers. Unfortunately, the creation of the secret key in
a single location by the dealer prevents the decentralisation
required and achieved in our protocol. Although it is men-
tioned in a number of papers (e.g. [25] can be extended to
a dealer-less protocol by using [26]) that the function of the
trusted dealer in these schemes can be done by the servers, it is
well known that both distributing a secret in Shamir’s secret
sharing scheme and creating and distributing an RSA (or a
DL) key, amongst multiple players without a trusted dealer,
are complicated and very expensive.In this paper, we propose
a decentralised distributed decryption scheme, which does not
have such a trusted dealer and is efficient.

VII. CONCLUSION

Increasing numbers of attacks on cloud servers challenge
the security of cloud storage. We have introduced a provably
secure distributed storage system as a security enhanced ap-
proach to this challenge. Because the system updates decryp-
tion secrets on servers, it remains secure even if all the servers
are compromised over a long time, provided that no more than
a threshold number of servers are compromised in a single

epoch. The storage system maintains a fixed public key; the
key can be used securely even after such compromises. This
solves an important problem of how to authenticate servers
when they are compromisable, without having to rely on PKI.

REFERENCES

[1] J. Clark and P. C. van Oorschot, “SSL and HTTPS:revisiting past
challenges and evaluating certificate trust model enhancements,” in IEEE
Symposium on Security and Privacy, 2013.

[2] M. T. Khorshed, A. B. M. S. Ali, and S. A. Wasimi, “A survey on gaps,
threat remediation challenges and some thoughts for proactive attack
detection in cloud computing,” Future Generation Comp. Syst., vol. 28,
no. 6, pp. 833–851, 2012.

[3] “The treacherous 12: Cloud computing top threats in 2016,” Cloud
Security Alliance Reports, February 2016.

[4] F. Skopik, G. Settanni, and R. Fiedler, “A problem shared is a problem
halved: A survey on the dimensions of collective cyber defense through
security information sharing,” Computers & Security, vol. 60, pp. 154–
176, 2016.

[5] K. Bode, “Google: Gmail now fully encrypted between data centers,
servers,” DSL Reports, March 2014.

[6] J. Yu, M. Ryan, and L. Chen, “Authenticating compromisable storage
systems,” Cryptology ePrint Archive, Report 2017/485, 2017, http:
//eprint.iacr.org/2017/485.

[7] D. Chaum and T. P. Pedersen, “Wallet databases with observers,” in
CRYPTO, 1992, pp. 89–105.

[8] C.-P. Schnorr, “Efficient identification and signatures for smart cards,”
in CRYPTO, 1989, pp. 239–252.

[9] F. Hao, “Schnorr NIZK Proof: Non-interactive Zero Knowledge Proof
for Discrete Logarithm,” Internet Draft 04, July 2016.

[10] C. A. Ardagna, R. Asal, E. Damiani, and Q. H. Vu, “From security to
assurance in the cloud: A survey,” ACM Comput. Surv., vol. 48, no. 1,
p. 2, 2015.

[11] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka,
and J. Molina, “Controlling data in the cloud: outsourcing computation
without outsourcing control,” in CCSW, 2009, pp. 85–90.

[12] F. Pennic, “Anthem suffers the largest healthcare data breach to date,”
https://goo.gl/6npFbO, 2015.

[13] T. Greene, “Biggest data breaches of 2015,” https://goo.gl/B9Oo2a,
2015.

[14] R. Ostrovsky and M. Yung, “How to withstand mobile virus attacks
(extended abstract),” in ACM PODC, 1991, pp. 51–59.

[15] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret
sharing or: How to cope with perpetual leakage,” in CRYPTO, 1995, pp.
339–352.

[16] V. Nikov and S. Nikova, “On proactive secret sharing schemes,” in SAC
2004, Waterloo, Canada, August 9-10, 2004, pp. 308–325.

[17] D. A. Schultz, B. Liskov, and M. Liskov, “MPSS: mobile proactive
secret sharing,” ACM Trans. Inf. Syst. Secur., vol. 13, no. 4, p. 34, 2010.

[18] J. Baron, K. E. Defrawy, J. Lampkins, and R. Ostrovsky, “How to
withstand mobile virus attacks, revisited,” in ACM PODC, 2014, pp.
293–302.

[19] Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung, “Proactive
RSA,” in CRYPTO , 1997, pp. 440–454.

[20] Y. Frankel, P. Gemmell, P. MacKenzie, and M. Yung, “Optimal resilience
proactive public-key cryptosystems,” in FOCS, 1997, pp. 384–393.

[21] Y. Frankel, P. D. MacKenzie, and M. Yung, “Adaptively-secure optimal-
resilience proactive RSA,” in ASIACRYPT, 1999, pp. 180–194.

[22] Y. Frankel, P. MacKenzie, and M. Yung, “Adaptive security for the
additive-sharing based proactive RSA,” in PKC, 2001, pp. 240–263.

[23] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl, “Asynchronous
verifiable secret sharing and proactive cryptosystems,” in ACM CCS,
2002, pp. 88–97.

[24] J. F. Almansa, I. Damgård, and J. B. Nielsen, “Simplified threshold
RSA with adaptive and proactive security,” in EUROCRYPT, 2006, pp.
593–611.

[25] D. Boneh, X. Boyen, and S. Halevi, “Chosen ciphertext secure public
key threshold encryption without random oracles,” in CT-RSA, 2006, pp.
226–243.

[26] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed
key generation for discrete-log based cryptosystems,” J. Cryptology,
vol. 20, no. 1, pp. 51–83, 2007.

