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ABSTRACT 

NKG2D (natural killer group 2, member D) is an activating receptor found on the surface of 

immune cells, including natural killer (NK) cells, which regulates innate and adaptive 

immunity through recognition of the stress-induced ligands ULBP1 to ULBP6 and MICA/B. 

Similar to class I human leukocyte antigen (HLA), these NKG2D ligands possess a major 

histocompatibility complex (MHC)-like fold and exhibit pronounced polymorphism, which 

influences human disease susceptibility. However, whereas class I HLA polymorphisms 

occur predominantly in the α1α2 groove and affect antigen binding, the effects of most 

NKG2D ligand polymorphisms are unclear. Here, we studied the molecular and functional 

consequences of the two major alleles of ULBP6, the most polymorphic ULBP gene, which 

are associated with autoimmunity and relapse after stem cell transplantation. Surface plasmon 

resonance and crystallography studies revealed that the arginine-to-leucine polymorphism 

within ULBP0602 affected the NKG2D-ULBP6 interaction by generating an energetic 

hotspot. This resulted in an NKG2D-ULBP0602 affinity of 15.5 nM, which is 10- to 1000-

fold greater than the affinities of other ULBP-NKG2D interactions and which limited 

NKG2D-mediated activation. In addition, soluble ULBP0602 exhibited high-affinity 



 

competitive binding for NKG2D and partially suppressed NKG2D-mediated activation of NK 

cells by other NKG2D ligands. These effects resulted in a decrease in a range of NKG2D-

mediated effector functions. Our results reveal that ULBP polymorphisms affect the strength 

of human lymphocyte responses to cellular stress signals, and may offer opportunities for 

therapeutic intervention. 

 

INTRODUCTION 

NKG2D is a major activating receptor on cytotoxic immune cells and plays an important role 

in innate immunity and stress surveillance. Conserved between mice and humans, NKG2D is 

found on a range of cytotoxic immune cells, including natural killer (NK) cells, γδ T cells, 

NKT cells, and αβ T cell subsets (1). A key feature of NKG2D is its interaction with many 

different NKG2D ligands on the surface of target cells. In humans, the main NKG2D ligands 

are the MICA/B and the ULBP proteins, whereas in mice, they consist of the RAET1, 

MULT-1, and H60 proteins (2-5). The amounts of NKG2D ligands at the cell surface 

increase during times of cellular stress, such as during viral infection (for example, with 

cytomegalovirus) (6) and tumorigenesis (7-10). Tumor cells and viruses evoke a range of 

mechanisms to evade recognition by NKG2D (5, 11-13), highlighting the importance of this 

system of “lymphoid stress surveillance.” NKG2D ligands are also found on dendritic cells 

and myeloid cell subsets (14-16), which suggests a potentially important influence of the 

NKG2D-ligands pathway on the link between innate and adaptive immunity. 

 

NKG2D homodimers bind to NKG2D ligands in an interaction that is analogous to that seen 

in T cell receptor (TCR)–major histocompatibility complex (MHC) class I complexes (17). A 

striking feature of NKG2D ligand–encoding genes is their high rate of polymorphism (18-

21), which mirrors the more extensive polymorphism observed within classical MHC-



 

encoding genes. Polymorphisms in the MHC-encoding genes are clustered mainly around the 

region encoding the antigen-binding groove, and they influence both the repertoire of bound 

peptides and binding by the T cell receptor (TCR) (22). Such polymorphisms are thought to 

have evolved in response to infectious challenge (23). NKG2D ligands are homologous to 

MHC molecules, and polymorphisms are focused within the MICA/B (21), ULBP4, and 

ULBP6 genes (18, 21, 24). Interestingly, single nucleotide polymorphisms (SNPs) in NKG2D 

ligand–encoding genes are linked to human disease susceptibility and treatment outcome in 

several clinical disorders (25-30). 

 

Most efforts to understand the functional importance of NKG2D ligand polymorphisms have 

focused on the valine–to-methionine dimorphism at position 129 of MICA, which is 

associated with overall survival after stem cell transplantation (31). This polymorphism in the 

region encoding the 2 domain of MICA is suggested to affect the avidity of NKG2D 

binding (31, 32) and the relative cell surface abundance of MICA (33). These and other 

studies have contributed to the concept that MICA polymorphisms tune the strength of the 

NKG2D-mediated response to specific MICA variants and have also revealed highly variable 

responses between individuals (34). 

 

ULBP6 is one of the most recently discovered human NKG2D ligands and is highly 

polymorphic, with two haplotypes (ULBP0601 and ULBP0602) together making up ~70% of 

the human population (18, 19). ULBP6 polymorphisms are associated with diabetic 

nephropathy (27), alopecia areata (29, 35), and the clinical outcome after allogeneic 

hematopoietic stem cell transplantation (25). These studies highlight ULBP6 as an important 

immunoregulatory molecule and indicate the value of understanding the functional 

significance of the polymorphisms detected within the protein. We therefore undertook a 



 

detailed analysis of the biophysical, structural, and functional importance of polymorphisms 

within ULBP6, focusing on the ULBP0601/ULBP0602 dimorphism. We showed that a 

specific amino acid change within the ULBP0602 ectodomain had a substantial effect on the 

affinity of binding to NKG2D and resulted in an interaction with enhanced stability.  This 

high-affinity interaction dampened the NKG2D-mediated activation of effector cells and 

reduced the magnitude of effector responses to target cells in all individuals tested. In 

addition, high-affinity soluble ULBP0602, which was released from the surface of 

ULBP0602-transfected cells, blocked the interaction between NKG2D and other ULBPs. 

Thus, ULBP6 polymorphism acts as a critical regulator of human lymphoid stress 

surveillance and may represent an important immunotherapeutic target. 

 

Results 

ULBP6 is found on PBMCs and is increased in abundance in hematopoietic tumors 

To understand the potential influence of allelic polymorphism on the function of ULBP6, we 

first studied the pattern of ULBP6 expression by hematopoietic cells (Fig. 1A). The currently 

used ULBP6-specific antibody also binds to ULBP2 and ULBP5, so we initially investigated 

the pattern of expression of the genes encoding these three ULBPs by quantitative reverse 

transcription polymerase chain reaction (qRT-PCR) analysis of primary CD4+ and CD8+ T 

cells, NK cells, B cells, and monocytes. The specificity of these qRT-PCR assays was first 

validated (fig. S1). HCT116 cells (a colorectal cancer cell line) were used as a positive 

control, whereas NKL, LCL, Jurkat, and HeLa cells were used as negative controls for 

ULBP6 expression (Fig. 1B). 

 

Constitutive ULBP6 transcription was relatively high in NK and B cells (median 106 and 86 

copy numbers per 25 ng of cDNA reaction, respectively) but was lower in the other primary 



 

cells (Fig. 1B). This amount of ULBP6 mRNA in B cells and NK cells was several fold 

greater than that of ULBP2 mRNA (median 7.1 and 18 copies per reaction, respectively), 

although high ULBP2 transcription was observed in several cell lines (200 to 2000 copies per 

reaction) (Fig. 1B). ULBP5 mRNA was undetectable in almost all primary cells and cell lines 

(Fig. 1B). Given this profile of expression within primary hematopoietic cells, we next 

determined the pattern of ULBP6 expression in a range of primary hematological tumors 

(Fig. 1, C and D). Several hematological malignancies express at least one member of the 

NKG2D ligand family, although ULBP6 has not yet been studied in this regard (36). ULBP6 

transcription was substantially and specifically increased in tumor cells from patients with a 

range of lymphoid malignancies including chronic lymphocytic leukemia (CLL), acute 

lymphocytic leukemia, non-Hodgkin lymphoma, Hodgkin lymphoma, large granular 

lymphocytic lymphoma and PLPD. Median ULBP6 mRNA abundance was approximately ~5 

times higher than that observed in PBMCs from healthy control donors (Fig. 1C). 

 

To investigate how ULBP6 expression was altered in CLL, the most common subtype of 

leukemia, we compared transcriptional assays and anti-ULBP2/5/6 staining in healthy donor 

and primary CLL samples. Quantitative RT-PCR analysis demonstrated increases in ULBP6 

transcription, and to a lesser extent that of ULBP2, in PBMCs from CLL samples, whereas 

ULBP5 mRNA was not detectable in either healthy donor samples or CLL samples (Fig. 1D). 

In addition, statistically significantly more staining by antibody against ULBP2, -5, and -6 

was observed on primary CLL tumor cells than on healthy donor B cells (Fig. 1, E and F). 

This increase was relatively modest, consistent with studies on MICA and ULBPs 1 to 3, 

which have shown that NKG2D ligand expression is tightly controlled and that small 

alterations in NKG2D ligand abundance in response to stress stimuli can effectively modulate 

NKG2D-mediated responses (37). Finally, we assessed whether the ULBP0601/02 



 

polymorphism influenced the transcription of ULBP6 using sequence-specific polymorphism 

PCR as previously described (Fig. 1G) (25). No statistically significant difference in ULBP6 

expression was observed between the ULBP0601 and  ULBP0602 genotypes within a cohort 

of hematological malignancy samples (Fig. 1G), suggesting that allelic variation does not 

influence transcriptional regulation of ULBP6. Together, these results support ULBP6 being 

a bona fide stress-induced NKG2D ligand that is increased in abundance during 

tumorigenesis, but suggest that the ULBP6*01/02 polymorphism does not affect the stress-

induced expression of ULBP6. 

 

ULBP0602 has a high affinity for NKG2D 

We next examined whether the ULBP06*01/2 polymorphism influenced the molecular 

properties of the interaction of the protein with NKG2D. To assess this, we expressed 

recombinant ULBP6 with amino acids characteristic of the 01 and 02 haplotypes at the two 

polymorphic positions in the MHC-like ectodomain (hereafter termed ULBP0601, containing 

Arg
106

 and Ile
147

 and ULBP0602, containing Leu
106

 and Thr
147

). The biophysical 

characteristics of the interaction of these proteins with NKG2D were then assessed with 

surface plasmon resonance (SPR) (Fig. 2). As expected, SPR detected the binding of NKG2D 

to the ligand. However, when the binding to ULBP0601, ULBP0602, and the other ULBPs 

were compared at similar immobilization values, disproportionately high binding responses 

and slow dissociation of NKG2D were observed for ULBP0602, indicating a particularly 

high affinity for this allelic form (Fig. 2A). It took more than two hours for NKG2D to 

completely dissociate from immobilized ULBP0602 when a flow rate of 10 µl/min was used. 

Equilibrium affinity analyses (Fig. 2B) determined an affinity of 15.5 nM for the ULBP0602-

NKG2D interaction, which was more than 10-fold higher than the equivalent affinity of 

NKG2D for ULBP0601 (164.6 nM) and substantially greater than the affinities that we 



 

determined for the other ULBP family members (fig. S2), which varied between 

approximately 300 nM and 35 µM (table S1). An affinity of ~1 µM was reported for the 

binding of MICA/B to NKG2D (24). Kinetic measurements confirmed an extremely slow 

dissociation for the ULBP0602 form, with a koff of ~0.00125s
-1

 (t1/2 of ~550 seconds) (Fig. 

2C), substantially slower than the NKG2D-ULBP0601 interaction, which exhibited a koff of 

~0.022s
-1

 (t1/2 of ~31 seconds) (Fig. 2C). These data indicate that the interaction between 

NKG2D and ULBP0602 and is much stronger than that with ULBP0601 and the other ULBP 

family members. 

 

A structure of the NKG2D-ULBP6 complex was solved to 2.4 Å 

To understand how ULBP0602 bound so strongly to NKG2D, and to determine the 

biophysical correlate of the UBP0601/2 polymorphism, we next determined the structure of 

the NKG2D-ULBP0602 interaction by X-ray crystallography to 2.4 Å (Fig. 3, A and B, and 

table S2). The core structure of ULBP0602, including the topology of its NKG2D-binding 

surface, closely resembles that of ULBP3 (Fig. 3C, overall rmsd: 2.1 Å), comprising two 

major helices atop an 8-stranded, antiparallel β-sheet, with interlocking hydrophobic residues 

generating a narrower cleft than that of the class I MHC molecule, which is unsuitable for 

binding antigenic peptides (Fig. 3D). Note that one third (23) of the nonconservative 

substitutions relative to ULBP3 map onto the MHC-like helical surface that serves as a 

primary contact site for NKG2D (fig. S3A). 

 

Rigid body binding occurs within a conserved diagonal NKG2D interaction mode 

The NKG2D-ULBP0602 interaction broadly resembles that from previously solved NKG2D-

ligand structures, featuring the symmetric NKG2D homodimer bound to a monomeric 

ULBP0602 (Fig. 3A) through a diagonal mode similar to the NKG2D-ULBP3 (38) and 



 

NKG2D-MICA (39) structures and akin to the TCR-pMHC interaction (Fig. 3E). The saddle-

shaped NKG2D homodimer sits astride the ULBP6 helices, with NKG2D monomers A and B 

focused on the ULBP0602 α2 and α1 helices, respectively (Fig. 3A), resulting in a buried 

surface area (1855 Å
2
) similar to that of NKG2D-ligand complexes (1930 to 2180 Å

2
), and 

larger than those of the KIR-HLA (1560 Å
2
) and TCR-pMHC (1700 to 1800 Å

2
) interfaces. 

As noted for the NKG2D-ULBP3 interaction (38), three secondary structural elements from 

each NKG2D monomer stabilize the interface: the L1 loop (residues L150 to D152), the β5-

β5’ stirrup loop (residues M180 to S186), and the β6 strand (residues E195 to G200) (Fig. 

3A). Notwithstanding relatively minor conformational differences in the stirrup loop of 

ULBP6-bound NKG2D relative to either unbound NKG2D (fig. S3B) or ULBP3-bound 

NKG2D (fig. S3C), no major conformational changes were observed, which is reflected by 

the low rmsd values for the NKG2D chains (0.8 to 0.9 Å). 

 

Analysis of the NKG2D-ULBP0602 interface contacts indicated that the number of polar 

contacts used by ULBP0602 was similar to that of ULBP3 (Fig. 4A, fig. S4, and table S3). 

Note that the ULBP residues involved are not conserved within the family, either in position 

or identity (fig. S5, suggesting that family members use distinct combinations of interacting 

groups to bind to NKG2D (fig. S5). However, two charged residues, Glu
96 

and Asp
189

, 

conserved between ULBP3 and ULBP0602, are positioned in the center of the interface and 

oriented diagonally with respect to the α1 and α2 helices (Fig. 4B). Glu
96

 and Asp
189

 are also 

conserved across the ULBP family (fig. S5) and, for both ULBP3 and ULBP0602, they 

mediate structurally conserved interactions to Lys
150

 and Lys
197

 in NKG2D, respectively (Fig. 

4A and fig S5). It is tempting to speculate that they represent a conserved electrostatic 

orientation footprint, guiding NKG2D towards a diagonal mode of docking (Fig. 4B). 

 



 

Hydrophobic interactions mediate the high affinity of the NKG2D-ULBP6 interaction 

Hydrophobic contacts at the ULBP0602-NKG2D interface appear to play a defining role in 

determining the enhanced affinity of the ULBP0602 relative to that of ULBP0601 and 

explain why ULBP0602 has the strongest interaction with NKG2D. The previous NKG2D-

ULBP3 structure highlighted a hydrophobic patch on each NKG2D subunit (comprising 

Tyr
152

, Ile
182

, Met
184

, and Tyr
199

), which interacts with ULBP3 around the C-terminal ends of 

the α2 helix (subunit A, “patch A”) and the α1 helix (subunit B, “patch B”) (38). Note that 

hydrophobic contacts to patch A are ~3-fold enhanced in ULBP0602-NKG2D interface 

compared to those in the ULBP3-NKG2D interface, which is mediated by the substitution of 

Thr
181

 and Met
185

 in ULBP3 with Met
180

 and Tyr
184

 at equivalent positions in ULBP6 (Fig. 

4C and table S4). In addition, in ULBP6, Arg
189

 is replaced with Gly
188

, which is likely to 

invoke less energetic penalties in terms of binding to Patch A as compared to ULBP3. 

Furthermore, the largely hydrophobic NKG2D Patch B forms fewer contacts (~25% reduced) 

with ULBP6 than with ULBP3 (table S3), which is determined largely by numerous contacts 

to ULBP3 Leu
104

. However, as for Patch A, in ULBP3, the orientation of a charged Arg
103

 

towards this hydrophobic region is likely to incur energetic penalties; in ULBP6 the 

equivalent residue is uncharged, favoring interaction. 

 

The R106L polymorphism generates a hydrophobic hotspot that enhances the NKG2D-

ULBP6 interaction 

Examination of ULBP0601/02 allelic differences based on the NKG2D-ULBP6 structure 

indicated that the T147I change was unlikely to affect NKG2D binding, because this residue 

protrudes from the underside of the β-sheet (Fig. 4D). In contrast, the introduction of Leu
106

 

in ULBP0602, which is located at the receptor-ligand interface (Fig. 4D), provides a clear 

rationale for enhanced affinity, because it inserts directly into the center of the hydrophobic 



 

patch B of NKG2D, forming numerous nonpolar contacts with surrounding residues (Tyr
152

 

Ile
182

, Met
184

, and Tyr
199

) (Fig. 4, C and E, and table S4). In contrast, ULBP0601 has a 

charged and lengthy arginine at this position, and although its side chain can be 

accommodated without apparent steric clashes, its introduction within this predominantly 

hydrophobic environment is likely to be detrimental for NKG2D binding (Fig. 4F). To 

directly confirm the hypothesis that the 106 polymorphism was responsible for the higher 

affinity of ULBP0602 for NKG2D, relative to that of ULBP0601, we mutated both of the 

residues at the 147 and 106 positions of ULBP0602 to the residues found in ULBP0601. The 

ULBP0602-T147I mutant that retained Leu
106

 exhibited an affinity for NKG2D (13.4 nM) 

that was comparable to that of wild-type (WT) ULBP0602 (13.4 nM), whereas the affinity of 

the ULBP0602-L106R mutant (148.3 nM) was comparable to that of ULBP0601 (148.2 nM), 

indicating that the threonine-to-isoleucine mutation at position 147 had no effect on affinity 

(Fig. 4G). These results confirm the key role of polymorphism at position 106 in determining 

the high affinity of ULBP0602 for NKG2D. 

 

ULBP0602 elicits less efficient NKG2D-dependent cytotoxicity than does ULBP0601 

To assess the relative functional activities of the ULBP0601 and ULBP0602 proteins, we 

next tested their ability to elicit cytotoxicity in a range of NKG2D
+
 lymphocytes, namely NK 

cells, αβ T cells, and γδ T cells. We therefore generated Chinese hamster ovary (CHO) cells 

expressing ULBP0601 and ULBP0602 variants for use as target cells (called CHO-

ULBP0601 and CHO-ULBP0602, respectively) and used flow cytometric analysis to confirm 

that the cell lines had equivalent amounts of cell surface protein (Fig. 5A). 

 

To assess NKG2D-mediated cytotoxicity within PBMCs, we used an established assay (34) 

that involved mixing equal numbers of either CFSE-labelled CHO-ULBP0601 or CHO-



 

ULBP0602 cells with mock-transfected CHO cells labelled with a 670-nm fluorescent dye 

(CHO-controls) in the presence or absence of activated PBMCs (see Materials and Methods). 

After coincubation with PBMCs, the ratio of CHO-ULBP0601 or CHO-ULBP0602 cells to 

CHO-controls was measured to determine relative cytotoxicity (Fig. 5B). Antibody-blocking 

experiments were used to confirm that such cytotoxicity was indeed NKG2D-dependent (Fig. 

5B). Surprisingly, the ratio of CHO-ULBP0601 cells to CHO-controls was lower than the 

ratio of CHO-ULBP0602 cells to CHO-controls after co-incubation with PBMCs, indicating 

that the CHO-ULBP0601 cells elicited greater killing than did the CHO-ULBP0602 cells 

(Fig. 5B). To address donor-specific variation, we expanded the assay using PBMCs from 18 

healthy donors. Although the overall level of killing observed varied substantially, for all 

donors, CHO-ULBP0601 cells elicited enhanced NKG2D-dependent killing relative to the 

CHO-ULBP0602 cells (mean killing of 42.6 and 30.4%, respectively; P < 0.001; Fig. 5C). 

This stronger NKG2D-dependent killing elicited by the CHO-ULBP0601 cells was further 

confirmed by a chromium-51 based assay, which highlighted more pronounced differences in 

cytotoxicity (>3-fold) at lower effector:target ratios (fig. S6). The cytotoxicity to Jurkat-

ULBP0601 and Jurkat-ULBP0602 cells did not differ (fig. S7), which was possibly because 

of the expression of other NKG2D ligands on these cell lines. 

 

These results suggest that the enhanced affinity of the NKG2D-ULBP0602 interaction led to 

the relatively less efficient cytotoxic activity of effector cells in response to ULBP0602-

expressing cells compared to ULBP0601-expressing cells. To address this further, we next 

examined whether the exposure of NK cells to interactions with ULBP0602 could hinder the 

killing of CHO-0601 cells. Two combinations of CHO cell mixtures were established, 

consisting of a 1:1 mixture of either CHO-ULBP0601 and CHO-ULBP0602 cells or CHO-

parental and CHO-ULBP0601 cells. The NK cell–mediated lysis of CHO-0601 cells was 



 

markedly reduced in the presence of ULBP0602-expressing target cells (fig. S8), suggesting 

that engagement with ULBP602 indeed inhibited the ability of the NK cells to kill the 

surrounding target cells. 

 

We next combined direct detection of target cell recognition by measurement of CD107a 

degranulation with co-staining of phenotypic markers to identify the nature of the responding 

NKG2D
+
 cell populations. NK cells from healthy donor PBMCs showed substantial 

degranulation (20 to 40%) in response to CHO-ULBP6 cells compared to in response to 

parental CHO-control cells (Fig. 5D). In addition, the percentage of CD107a+ NK cells and 

the mean fluorescence intensity (MFI) of CD107a staining were consistently greater after 

incubation with CHO-ULBP0601 target cells than after incubation with CHO-ULBP0602 

cells. Because the degree of NK cell activation can also be regulated by the abundance of 

NKG2D ligand, we next assessed how the relative surface expression of ULBP0601 or 

ULBP0602 on target cells influenced NK activation. CHO cells were transiently transfected 

with different amounts of plasmids encoding ULBP0601 or ULBP0602 (5, 10, or 20 µg per 

510
6
 cells) which led to differential cell surface protein expression, although the amounts of 

ULBP0601 and ULBP0602 were comparable for a given amount of plasmid (fig. S9A). 

These CHO cells were then co-cultured with primary NK cells, and NK cell activation was 

determined by measuring the intensity of CD107a staining. The intensity of CD107a staining 

was maximal upon co-incubation with either the ULBP0601 or ULBP0602 transfectants that 

received 10 g of plasmid (fig. S9B). However, NK cell activation in response to co-

incubation with cells transfected with 10 or 20 µg of plasmid was markedly for the 

ULBP0601 target cells as compared to the ULBP0602 target cells (fig. S9C). 

 



 

Soluble NKG2D ligands are able to block the engagement of NKG2D with its ligands (40); 

thus, we generated and purified soluble ULBP0601 and ULBP0602 proteins. These were 

initially incubated with NK cells for 16 hours before the pattern of NKG2D expression was 

assessed by flow cytometry. Soluble ULBP0602 blocked the binding of NKG2D-specific 

antibody to NKG2D, but this effect was not observed when the lower affinity ULBP0601 

protein was used in concentrations up to 10 µg/ml. (Fig. 6, A and B). To determine whether 

this blockade had the potential to modulate NK cell function, we assessed the pattern of NK 

cell activation in response to K562 cells in the presence or absence of soluble ULBP6. We 

found that both ULBP0601 and ULBP0602 partially blocked NK cell activation by K562 

cells and that this effect was more substantial after incubation with ULBP0602 than with 

ULBP0601 (Fig. 6C). We therefore investigated whether soluble ULBP0601 or ULBP0602 

are released into the conditioned medium of CHO transfectants and whether this contributed 

to the observed pattern of differential cellular activation. Low amounts of soluble ULBP0601 

and ULBP0602 were indeed released into the culture medium after 12 hours of incubation, 

and typically reached comparable concentrations (~400 pg/ml) for both variants (Fig. 6 D). 

To assess whether soluble ULBP6 blocked the binding of other soluble ligands to NKG2D, 

we incubated the NKL cell line with ULBP2-Fc protein in the presence or absence of 

conditioned medium from the ULBP06-transfectants. The extent of ULBP2-Fc binding to the 

NKL cells was measured by flow cytometric analysis of the binding of an anti-Fc antibody. 

Conditioned media from both CHO-ULBP0601 and CHO-ULBP0602 transfectants partially 

blocked the binding of ULBP2-Fc to the NKL cell line, although this effect was more 

pronounced with CHO-ULBP0602 (37% inhibition compared to 14% by ULBP0601) (Fig. 

6E). 

 



 

Next, we tested the effect of ULBP6 polymorphism on NKG2D-dependent γδ and αβ T cell 

responses. Human peripheral blood Vγ9Vδ2 T cells proliferated in response to (E)-4-

Hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), expressed high amounts of NKG2D 

(Fig. 7A), and demonstrated enhanced killing of CHO-ULBP0601 cells compared to CHO-

ULBP0602 cells, indicating differential co-stimulation of γδ T cells responding to HMB-PP 

by ULBP06 variants (Fig. 7, B and C). In addition, NKG2D
+
 αβ cytotoxic T cell clones (Fig. 

7D) specific for EBV epitopes restricted by HLA-B7 displayed substantially enhanced 

production of IFN-γ in response to cognate antigen-pulsed Jurkat cells (which naturally 

express HLA-B7) transfected with plasmid encoding ULBP0601 (JKT-ULBP0601 cells) 

compared to those expressing ULBP0602 (JKT-ULBP0602 cells) (Fig. 7E), suggesting that 

ULBP6 polymorphism markedly influences the efficiency of HLA-restricted T cell 

costimulation (Fig. 7F). In summary, polymorphisms in ULBP6 substantially influenced the 

strength of NKG2D-dependent effector responses, with the lower-affinity ULBP0601 

allotype being more potent than the higher-affinity ULBP0602 allotype. 

 

The functional potency of ULBP0602 is limited by polymorphism at position 106 

We next tested whether altering the affinity of ULBP6 affected its potential to elicit NK cell 

cytotoxicity. After confirming NKG2D expression on the NKL cell line (Fig. 8A), NKL-

mediated cytotoxicity was assessed in the presence of a range of different target cell lines. 

These included CHO-ULBP0601 and CHO-ULBP0602 cells (Fig. 8B), as well as CHO-

ULBP0602-L106R and CHO-ULBP602-T147I cells, which carried single amino acid 

changes at positions 106 and 147 within ULBP0602 (Fig. 8C). Competitive cytotoxic assays 

were then performed and, as expected, NKL cells showed dose-dependent specific killing of 

CHO-ULBP0601 and CHO-ULBP0602 cells, with the CHO-ULBP0601 cells eliciting 

greater cytotoxicity than that elicited by the CHO-ULBP0602 cells (Fig. 8B). The CHO-



 

ULBP0602-L106R transfectant, which expressed a mutant of ULBP0602 with an NKG2D 

affinity matching that of ULBP0601, elicited greater cytotoxicity than did CHO-ULBP0602 

cells, and indeed was comparable to CHO-ULBP0601 cells (Fig. 8D, left). In contrast, CHO-

ULBP602-T147I cells elicited comparable cytotoxic responses to those elicited by CHO-

ULBP0602 cells (Fig. 8D, right), suggesting that the Leu
106

 SNP in ULBP0602 is responsible 

for both its high affinity for NKG2D and its limited functional potency relative to that of 

ULBP0601 (Fig. 8E). 

 

Differential NKG2D-ULBP6 affinities affect NKG2D signaling and receptor 

downregulation 

To understand how differential NKG2D-ULBP6 affinities could lead to altered effector cell 

responses, we assessed NKG2D downregulation (decreased cell surface expression), a 

surrogate indicator of receptor stimulation. After 1 hour of co-culture with CHO-ULBP0601 

cells, NKL cells showed ~80% downregulation of cell surface NKG2D (Fig. 8F). In contrast, 

co-culture with CHO-ULBP0602 cells resulted in substantially less receptor downregulation 

(Fig. 8F), and this difference persisted throughout the 16-hour time course. This finding 

reveals that ULBP0601 induced more efficient NKG2D downregulation than did the higher 

affinity ligand ULBP0602, which is suggestive of differential signaling. To address this, we 

assessed calcium flux after the engagement of NKG2D with either ULBP601 or ULBP0602. 

NKL cells loaded with Calcium Sensor Dye were acquired by flow cytometry before and 

after exposure to CHO-ULBP0601 or CHO-ULBP0602 cells. Relative to their basal calcium 

concentration, NKL cells co-incubated with CHO-ULBP0601 cells had statistically 

significantly increased free intracellular calcium concentrations compared to those in NKL 

cells co-incubated with CHO-ULBP0602 cells (Fig. 8G). 

 



 

DISCUSSION 

NKG2D ligands are thought to play a central role in the immunological control of infection 

and malignant disease. Notably, both ULBP and MIC proteins exhibit considerable 

polymorphism. However, the functional importance of these polymorphisms, the factors that 

have driven their selection, and how they might influence relevant disease mechanisms has 

remained largely unclear. We chose to focus on ULBP6 because this is the most polymorphic 

gene within the ULBP family, and SNPs within ULBP6 are associated with several clinical 

disorders (25, 27, 29). 

 

We showed that the two common allelic variants of ULBP6, ULBP0601 and ULBP0602 (19, 

25) elicited distinct NKG2D-dependent responses and exhibited profound differences in the 

affinity of NKG2D binding, which resulted in differential capacity to activate effector cells. 

Specifically, engagement with ULBP0601 elicited substantially enhanced NKG2D-dependent 

responses relative to those elicited by ULBP0602. Although the extents of the differences in 

effector responses elicited by ULBP0601 and ULBP0602 were relatively modest (typically 

≤30%, but up to ~3-fold in chromium-release assays), these differences were observed in all 

NKG2D
+
 effector subsets (NK cells, as well as αβ and γδ T cells), in relation to a range of 

different effector responses (cytotoxicity, cytokine production) and consistently across every 

individual tested. Thus, this common NKG2D ligand dimorphism can modulate the strength 

of NKG2D-mediated stress responses. We also outlined a previously uncharacterized 

molecular mechanism whereby this occurs,  namely through a key polymorphic amino acid 

change at position 106 (ArgLeu) which affects the strength and stability of the NKG2D-

ULBP6 interaction. Previous studies on MICA have highlighted high inter-individual 

variation in NKG2D-mediated responses (34), and the varying magnitude of the NK cell 

response that we observed between individuals is consistent with this. However, the hierarchy 



 

of responses to different polymorphic MICA variants was also found to vary between 

individuals (34). In contrast, the existence of a dominant hierarchy of functional responses to 

the ULBP6 dimorphic variants conserved in all individuals tested (ULBP0601>ULBP0602) 

hints at new mechanisms underpinning regulation of NKG2D-mediated responses. 

 

Previously, ULBP6 polymorphism was linked to diabetic nephropathy (27), autoimmune 

alopecia (29), and differential clinical outcome following SCT (25). Although the precise 

mechanisms that operate in each clinical scenario are unclear, we suggest that variability in 

the strength of NKG2D-mediated cellular responses contributes to such susceptibilities. 

Interestingly, despite eliciting stronger effector responses compared to those elicited by 

ULBP0602, the ULBP0601 variant is associated with reduced survival after SCT (25), 

perhaps suggesting that enhanced NK cell–mediated reduction in tumor antigen availability 

or elimination of antigen-presenting cells (APCs) (41-44) or T cells (45, 46) suppresses the 

subsequent development of alloreactive T cell immunity. Note that ULBP0602 mediated 

reduced NKG2D-mediated responses when expressed at the cell surface and in soluble form 

was a more potent suppressor of such responses than was ULBP0601. Our observation of 

increased ULBP6 expression in hematological tumor cells is consistent with the first model, 

and future studies may suggest novel immunotherapeutic strategies based on these concepts 

involving NKG2D-ULBP6–targeted immunomodulation after SCT and/or complementary 

vaccination or adoptive cell transfer approaches. 

 

Alopecia areata (AA) is a T cell–driven autoimmune condition (47, 48) and a ULBP6 SNP 

(rs9479482) is strongly associated with this condition, with the highest odds ratio of any 

locus outside the MHC (29, 35). Consistent with this, NKG2D
+
 T cells are critical mediators 

in initiating AA (48) and ULBP3 abundance is increased in hair follicles during active 



 

disease (29). Another ULBP6 SNP (rs1543547) showed the strongest linkage among >11,000 

SNPs analyzed for association with diabetic nephropathy, which is now a leading cause of 

renal failure and necessity of dialysis (27). Although previous studies have highlighted the 

important contribution of NKG2D
+
 T cells to nephropathy, the pattern of expression of 

ULBP6 has not yet been examined (49). These genetic associations, combined with our 

finding that ULBP6 can act as an important costimulatory molecule for T cell recognition, 

support a role for pathogenic cytotoxic T cell responses in susceptible individuals and suggest 

that local expression of ULBP6 in the skin and kidney, respectively, may be of considerable 

clinical importance. 

 

The molecular mechanisms whereby the ULBP0601/02 polymorphism influences NKG2D-

mediated responses are also of interest. The NKG2D-ULBP0602 structure revealed that, by 

inserting into a non-polar pocket in NKG2D, the R106L polymorphism contributes to a 

distinct interface featuring a double hydrophobic hotspot. This may explain why ULBP0602 

has the highest affinity for NKG2D of all of the NKG2D ligands, with a value that is >10-

fold higher than that of ULBP0601. This structure also sheds light on NKG2D recognition in 

general, where previous studies have invoked either “induced fit” or “rigid body adaptation” 

(38, 39) mechanisms to explain the remarkable ability of NKG2D to interact with eight 

relatively diverse ligands (ULBP1 to ULBP6, MICA, and MICAB). Notwithstanding 

relatively minimal conformational alterations in NKG2D upon ULBP6 engagement, our 

structural data indicate that ULBP6 and ULBP3 use very distinct molecular mechanisms of 

binding to NKG2D, which is consistent with rigid body adaptation (39). Moreover, our data 

reveal that underlying these diverse interaction profiles is a conserved electrostatic core 

comprising Glu
96

 and Asp
189

 on ULBP6, which interact with lysine residues in patch A and B 

on NKG2D, respectively. These two negatively charged residues are conserved across the 



 

entire ULBP family, and their diagonal orientation most likely guides NKG2D to dock in its 

diagonal binding mode. Our data thus suggest that a conserved “electrostatic restriction” to 

NKG2D ligand underpins the degenerate recognition by NKG2D of its diverse ligands. 

 

Our results also may explain how the substantial differences in affinity and kinetics in the 

interactions between NKG2D and ULBP0601 or ULBP0602 translate into differential 

functional effects. ULBP0602 exhibited a higher affinity than that of ULBP0601 for NKG2D, 

but engendered weaker NKG2D-mediated responses. One possibility is that the generation of 

soluble forms of ULBP06 underlies these functional differences. Consistent with this, we 

demonstrated that soluble recombinant ULBP0602 exhibited strong binding to NKG2D and 

had the potential to competitively inhibit NKG2D binding to alternative NKG2D ligands, 

leading to a greater relative suppression of NKG2D-mediated effector cell responses 

compared to ULBP0601. Indeed, this effect was observed to a modest extent with the use of 

conditioned medium from ULBP6-expressing transfected cell lines (Fig. 6, D and E), 

suggesting that cleavage of the ligand from the cell surface may play an important 

physiological role in vivo (13, 40). A second mechanism that may operate relates to the stable 

nature of the NKG2D-ULBP0602 interaction, which equates to a t1/2 of ~550 s at 25°C, and is 

likely to limit serial triggering of NKG2D molecules at the surface of the effector cell. In 

contrast, the faster koff for ULBP0601, equating to a t1/2 of ~31 ss at 25°C, could elicit much 

more efficient serial triggering of NKG2D. Serial triggering of TCRs by pMHC molecules is 

required for TCR downregulation and the intracellular signaling events that lead to activation 

(50, 51). Indeed, the more efficient downregulation of NKG2D molecules elicited by 

ULBP0601 suggests that NKG2D serial triggering is likely to be the key discriminator 

between ULBP601 and ULBP602, translating differential binding kinetics into distinct 

functional responses. Consistent with this, enhanced calcium fluxes were observed after 



 

NKG2D engagement by ULBP0601 relative to those stimulated by engagement with 

ULBP0602. Although it is unclear to what extent soluble ULBP6–mediated inhibition versus 

differential serial triggering effects drive the distinct biology of the two isoforms in vivo, our 

results highlight that, as for the TCR (51), the molecular properties of the NKG2D-ligand 

interaction play a key role in determining the efficacy of NKG2D-mediated effector cell 

responses. 

 

Our findings raise questions about the evolutionary selection of the ULBP0601 and 

ULBP0602 alleles. Their coexistence at broadly equivalent and high frequencies, and their 

presence in diverse human populations, including Euro-Caucasoid, Afro-Caribbean, Indo-

Asian (18), and an indigenous South American tribe (52), suggest that they arose in ancestral 

human populations and that the strength of NKG2D-mediated responses is the subject of 

strong and persistent evolutionary selection pressure. Interestingly, ULBP6 and ULBP4 are 

the only polymorphic ULBP molecules within the Kolla South American Indians and they 

exhibit linkage disequilibrium, indicating a potential selective advantage (52). One possibility 

is that different immunological challenges, such as protection against infection and 

immunological tolerance in pregnancy, may favor selection of these different forms. This 

potentially mirrors the evolution of KIR genes, whereby the balance of activating and 

inhibitory KIRs is thought to result from the action of similar environmental influences (53). 

NK cells within the decidua do indeed express ULBP (54), and as such polymorphism may 

influence reproductive success. Persistence of the ULBP0601/02 dimorphism could also 

result from balancing selection, a phenomenon that is thought to have helped drive MHC 

allelic diversity because heterozygosity has an adaptive advantage over homozygosity. 

Conceivably, weaker NKG2D-mediated responses in ULBP0602 homozygotes may 

compromise pathogen resistance, whereas ULBP0601 homozygosity may impair 



 

immunological tolerance. Consistent with ULBP0601/02 heterozygotes displaying a distinct 

immunological phenotype, heterozygote survival after SCT is intermediate compared to that 

of ULBP0601 and ULBP0602 homozygotes (25). This observation suggests that 

therapeutically modulating the strength of NKG2D-mediated responses could be a viable 

route to improving patient outcomes both in SCT and other settings. 

 

The considerable polymorphism within ULBP6 and the association of these alleles, including 

ULBP0601 and ULBP0602, with several clinical disorders suggests that this member of the 

NKG2D ligand family may represent an important therapeutic target (25, 27, 29, 35). 

However, rational interventions will require a more advanced understanding of the 

immunological mechanisms involved. This would include a better appreciation of how the 

strength of NKG2D-mediated responses affects the potency of alloreactive T cell responses 

after SCT (25). Similarly, an improved understanding of the regulation of ULBP6 expression 

in the context of autoimmunity (27, 29, 35) could shape future therapeutic ideas. Based on the 

results of such clinical studies, rational interventions that seek to modulate the strength of 

ULBP6-focussed effector responses within specific disorders may represent an important and 

unexpected source of novel immunotherapeutic approaches (55). 

 

MATERIALS AND METHODS 

Quantification of ULBP transcripts by qRT-PCR 

Total RNA was isolated from whole PBMCs or purified lymphocyte populations with the 

QIAGEN RNeasy kit and was treated with DNase I (Turbo DNA-free kit; Ambion). 

Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assays for ULBP2, 

ULBP5, and ULBP6 (ULBP2: Hs00607609-mH; ULBP5: Hs01584111-mH; ULBP6: 

Hs04194671-s1) were performed with TaqMan Gene Expression Assays (Applied 



 

Biosystems), with β2M (Hs00187842-m1) assayed for normalization. For absolute 

quantification of NKG2D ligand mRNAs, reference plasmids containing relevant ULBP or 

β2M PCR target gene sequences were used to generate standard curves. CD4
+
 T cells, CD8

+
 

T cells, NK cells, B cells, and monocytes were enriched by negative selection with magnetic 

beads, and purity was assessed by examining the combination of cell surface markers 

expressed (CD4
+
/CD3

+
, CD8

+
/CD3

+
, CD56

+
/CD16

+
/CD3

-
, CD20

+
CD3

-
, and CD14

+
, 

respectively). 

 

Cell culture, cell lines, antibodies, and flow cytometric analysis 

ULBP0601 and ULBP0602 constructs were generated by site-directed mutagenesis and 

cDNAs were subcloned into the pcDNA5/FRT vector. The Flp-In-CHO and Flp-In-Jurkat cell 

lines were purchased from Invitrogen and maintained in Ham’s F12 medium (Invitrogen) 

containing 10% fetal calf serum(FCS), penicillin (100IU/ml), streptomycin (100µg/ml), and 

Zeocin (100 μg/ml) or RPMI (Sigma) containing 10% FCS, Penicillin, Streptomycin, and Zeocin 

(100 μg/ml), respectively. The Flp-In-CHO cell line was transfected with ULBP-encoding plasmids 

with Lipofectamine LTX (Invitrogen), whereas Jurkat cell lines were transfected by 

electroporation, together with the pOG44 plasmid encoding the Flp-In recombinase. The 

stable transfectants were selected with Hygromycin (500 mg/ml). The NKL cell line was 

maintained in RPMI 1640, 10% FCS, and antibiotics with interleukin-2 (100 U/ml). PBMCs 

were isolated by Ficoll gradient. Blood samples from healthy donors were collected after 

informed consent. CD4+ T cell, CD8+ T cell, B cell, monocyte, and NK cell populations were 

separated with the EasySep human cell enrichment kit (Stemcell Technologies). Cell surface 

expression of ULBP6 or NKG2D on viable cells was determined by staining with APC-

conjugated antibody against ULBP2/5/6 or isotype control antibody (R&D Systems) or with 



 

APC-conjugated antibody against NKG2D or isotype control (BD Biosciences). Stained cells 

were analyzed on a BD Accuri C6 flow cytometer, and the data were processed with Flowjo 

software (Tree Star). APC conjugated anti-CD3, FITC-conjugated mouse anti CD107a, PE-

conjugated mouse anti-CD56, and PE-conjugated mouse anti-CD8 antibodies were purchased 

from eBioscience. PE-conjugated anti TCR pan γδ was purchased from Beckman Coulter. Dye 

eFluor 670 and CFSE were purchased from eBioscience. For calcium flux analysis, NKL cells 

were harvested, washed, and loaded with Calcium Sensor Dye eFluor 514 (eBioscience) for 

30 min at 37°C. NKL cells were then analzyed by flow cytometry (BD Accuri C6) for 1 min, 

removed for the addition of CHO-ULBP0601 or CHO-ULBP0602 cells, and immediately 

placed back on the flow cytometer for continued data acquisition. 

 

NK cell cytotoxicity assays 

The 1:1 mixture of ULBP0601 or ULBP0602 transfectants labeled with carboxyfluorescein 

diacetate succinimidyl ester (CFSE) and control transfected CHO cells labeled with Cell 

Proliferation Dye eFluor 670 were coincubated with effector cells (IFN-α–activated PBMCs) 

for 16 hours. After co-culture, the ratio of CFSE-negative cells (647 dye positive, control 

CHO cells) to CFSE-positive cells (ULBP0601 and ULBP0602 transfectant CHO cells) was 

calculated to determine the percentage of specific killing of each individual experiment. Lysis 

was calculated as follows: % specific lysis = 100 × {1 − [(control ratio)/(experimental 

ratio)]}. The control ratio refers to the ratio of CFSE-negative to CFSE-positive cells in the 

absence of effector cells, whereas the experimental ratio refers to the ratio of CFSE-negative 

to CFSE-positive cells in the presence of effector cells. Transfected CHO cell lines and IFN-

α–activated PBMCs were co-cultured with FITC-conjugated anti-CD107a antibody for 5 

hours. The cells were then washed and stained with combinations of APC-conjugated anti-

CD3 and PE-conjugated anti-CD56 antibody to identify the NK cell population in the culture. 



 

Stained cells were analyzed on a BD Accuri C6 flow cytometer, and the data were processed 

with Flowjo software (Tree Star). 

 

T cell culture and effector cell assays 

αβ T cell recognition was tested against Jurkat cell lines stably expressing ULBP0601 and 

ULBP0602, which were generated with the FRT-recombinase system as described earlier. 

For these assays, an HLA-B7–restricted, EBV-specific CD8+ T cell clone (specific for the 

BNRF1-derived epitope YPR and generated in our own lab) was used, and cultured in RPMI-

1640 medium supplemented with 10% FCS, 30% supernatant from the IL-2-producing MLA-

144 cell line, and 50U/ml recombinant IL-2. The capacity of the CD8
+
 T cell clone to 

recognize target cells was measured by IFN-γ ELISA. The Jurkat-ULBP0601 cells and 

Jurkat-ULBP0602 cells were pulsed with serially diluted, synthetic YPR peptide and were 

used as targets in T cell assays with the YPR CD8
+
 T cell clone. Briefly, 10

4
 effector T cells 

were incubated for 18 hours at 37°C in microtest plate wells with 10
5
 target cells, before 

assaying the supernatants for IFN-γ release by ELISA (Endogen) in accordance with the 

manufacturer’s recommended protocol. Peripheral blood Vδ2
+
 T cells were expanded from 

healthy donor PBMCs with 10 nM HMB-PP (Sigma) and 100 U/ml IL-2 (Miltenyi) for 14 

days, and purified by magnetic bead isolation (Miltenyi) by selecting for TCR Vδ2
+ 

cells 

(123R3, Miltenyi). For γδ T cell killing assays, parental CHO cells (eFlour670-labelled) and 

CHO cells stably expressing either ULBP0601 or ULBP0602 (CFSE-labelled) were mixed 

1:1 and co-cultured with the expanded purified Vδ2
+
 T cells at various effector-to-target 

ratios (E:T) in the presence of medium or 1 nM HMB-PP and 40 U/ml IL-2 for 18 hours. 

Specific killing of CHO cells was monitored by staining with the amine reactive dead cell 

marker, Zombie Aqua (Biolegend). 

 



 

Shedding of ULBP6 from CHO-ULBP6 cells and blocking of NKG2D ligand binding 

The culture medium from overnight (12-hour) culture of CHO-parental, CHO-ULBP0601, 

and CHO-ULBP0602 cells was harvested and analyzed with a Human ULBP-2 DuoSet 

ELISA kit (R&D system DY1298). The concentration of ULBP6 was calibrated according to 

the recommendation from the product datasheet: a sample containing 1.56 ng/mL of 

rhULBP-6 reads as 435 pg/mL (27.9% cross-reactivity). For the blocking of the NKG2D 

ligand binding assay, NKL cells were cultured with the conditioned medium from both 

cultures and then stained with ULBP2-Fc proteins, which was followed by incubation with 

APC-conjugated anti-human Fc and analysis by flow cytometry. 

 

Surface plasmon resonance assays 

SPR was perfomed at 25ºC on a BIAcore 3000 in HBS-EP essentially as described previously 

(56). For these experiments, recombinant NKG2D was expressed in E. coli and purified, and 

ULBP proteins were expressed in the Drosophila Expression System, with or without 

terminal His-tag/BirA biotinylation tags as appropriate. Equilibrium affinity measurements 

were conducted at 5 to 10 µl/min, and Kd values were obtained either by Scatchard plots or 

by non-linear curve fitting of the Langmuir binding isotherm [bound = C*max/(Kd + C), 

where C is the analyte concentration and max is the maximum binding response] to data 

using the Levenberg-Marquardt algorithm as implemented in Origin 2015 (OriginLab 

Corporation). Concentrations of NKG2D and ULBPs were calculated as described previously 

(57). For experiments comparing the interaction of NKG2D with ULBP0601 and 

ULBP060602, NKG2D was injected over streptavidin-coated CM5 surfaces on which 

biotinylated ULBP0601 or ULBP060602 complexes were immobilized. Streptavidin-coated 

surfaces left blank or coated with endothelial protein C receptor (EPCR) produced in the 

Drosophila expression system were used as negative controls. The Kd values for the 



 

NKG2D-ULBP0601 and NKG2D-ULBP0602 interactions in this orientation were 164.6 nM 

+/- 46 and 15.5nM +/- 4.3, respectively (n = 14 and n = 10 measurements, respectively). 

Equilibrium affinity measurements conducted similarly in the opposite orientation confirmed 

similar affinities (136.5 nM and 11.2nM for the NKG2D-ULBP0601 and NKG2D-

ULBP0602 interactions, respectively). For most other NKG2D-ULBP interaction 

measurements, ULBP molecules were injected over immobilized NKG2D molecules or E. 

coli–produced HLA-A2 refolded with the Wilms Tumour protein (WT1)-derived peptide 

(RMFPNAPYL). For analysis of the effects of mutations at positions 106 and 147 on 

NKG2D interaction (Fig. 4G), NKG2D was injected over ULBP0602, ULBP0602-T147I, 

ULBP0602-L106R, or a control protein. In a second, separate experiment, NKG2D was 

injected over ULBP0601, ULBP0602-T147I, ULBP0602-L106R, or a control protein. Fig. 

4G includes data from the two closely matched interactions (ULBP0602 and ULBP0602-

T147I surfaces from the first experiment; ULBP0601 and ULBP0602-L106R from the 

second), with control responses subtracted. Immobilization values were similar between 

ULBP0601 and ULBP0602-L106R (960 and 974 RU, respectively), but marginally higher for 

ULBP0602 than ULBP0602-T147I (1036 and 967 RU, respectively), which could explain the 

higher binding responses to the ULBP0602 surface. Kinetic measurements to determine 

NKG2D-ULBP6 dissociation rate constants were performed with NKG2D as the analyte, 

using a flow rate of 50 µl/min to minimize mass transport considerations. Dissociation data 

were fitted to single exponential decay curves using the Langmuir 1:1 dissociation model as 

implemented in BIAevaluation 4.1.1 (GE Healthcare), and conformed to single order 

kinetics. 

 

Protein expression, purification, and crystallization 



 

For structural studies, the ectodomain of human NKG2D (residues Asn
80

 to Val
216

) and 

ULBP0602 (residues Asp
29

 to Pro
207

) were both expressed in E. coli Rosetta cells as inclusion 

bodies and then reconstituted in vitro. To facilitate correct refolding of ULBP0602, C34, 

which does not contribute to the canonical ULBP family intramolecular disulfide bond 

formation, was mutated to serine with the Quickchange Kit (Stratgene). Analysis of the final 

NKG2D-ULBP0602 structure confirmed that the side chain at position 24 was entirely 

solvent-exposed. In brief, NKG2D or ULBP0602 were expressed from pET23a plasmids at 

37°C, purified from inclusion bodies as described previously (56), and then solubilized in 6 

M guanidine hydrochloride before undergoing renaturation. NKG2D and ULBP0602 were 

then renatured separately by dilution refolding, which was performed with a refolding buffer 

consisting of 0.5 M L-arginine, 2.5 mM oxidized glutathione, 5 mM reduced glutathione, 0.1 

M PMSF, and 100 mM Tris (pH 8.0). Renaturated NKG2D and ULBP0602 were then 

independently purified on a Superdex 200 column. ULBP0602 protein was further purified 

by anion exchange with a Resource Q column before crystallization, in 20 mM Tris (pH 8), 5 

mM NaCl, and eluted over a 1 M NaCl gradient. Purified ULBP0602 and NKG2D proteins 

were concentrated and mixed in a 1:1 molar ratio. Initial crystallization screening was 

performed using the hanging drop vapor diffusion method with the Mosquito nanolitre 

crystallisation robot (TTP LabTech). NKG2D-ULBP0602 complex crystals formed after 3 to 

4 days at 24°C with the Pact screen (Molecular Dimensions) condition 26, which consisted of 

0.1 M PCB buffer (pH 5) and 25% PEG 1500 at an overall protein concentration of 9.9 

mg/ml. 

 

Data collection, structure determination, and refinement 

NKG2D-ULBP0602 complex crystals were mounted directly from the mother liquor and 

flash cooled in liquid nitrogen. X-ray diffraction data were collected to 2.4 Å resolution using 



 

an in house MicroMax 007HF rotating anode Rigaku X-ray generator with a Saturn CCD 

detector. The NKG2D-ULBP0602 complex crystallized in the monoclinic space group C2, 

with one NKG2D-ULBP0602 complex per asymmetric unit, and unit cell parameters a = 82.3 

Å, b = 82Å, c = 73.2 Å, and β = 106.5°. All data were processed with XDS (58), with the 

relevant statistics listed in table S2. The complex structure was solved by molecular 

replacement using MOLREP (59), with the NKG2D-ULBP3 complex as the search model 

[PDB code: 1KCG (38)]. Refinement was performed with CNS (60) and REFMAC5 (61) 

interspersed with rounds of model building using COOT(62). Electron density maps were 

well-defined, enabling all amino side chains to be built. The stereochemical and refinement 

parameters are listed in table S2. All calculations relating to model validation, model 

analysis, and structure comparisons were performed with PROCHECK (63), programs of the 

CCP4 suite and the Uppsala Software Factory (64). All non-glycine residues are found in the 

allowed regions of the Ramachandran plot. Models of ULBP family members 1, 2, 4, and 5 

were generated with the ULBP0602 structure as the template with the PHYRE server (65). 

Electrostatic surface potential maps were calculated with DelPhi (66). Structural figures were 

generated with PyMOL. 

 

Statistical analysis 

For univariate analyses, where data did not follow a normal distribution, either Mann-

Whitney U test (for unpaired data) or Wilcoxon matched-paired signed rank test (for paired 

data) were used. Where data followed a normal distribution, the data were analyzed by either 

paired or unpaired, two-tailed t-tests. Where there were multiple independent variables, they 

were categorized and then analyzed by either one- or two-way ANOVA with Bonferroni 

post-hoc testing. All analyses were performed with Prism version 6.0 (Graphpad software). 
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Fig. 1. Expression of polymorphic variants of ULBP6. (A) Polymorphisms and haplotypes 

in the ULBP6 gene. (B) The relative abundances of ULBP6, ULBP2, and ULBP5 mRNAs in 

the indicated cell lines (HCT116 cells were a positive control for ULBP6 and NKL, LCL, 

Jurkat, and HeLa cells were negative controls for ULBP6) and PBMC-derived immune cell 

populations were determined by qRT-PCR analysis. Data are shown as mean copy numbers ± 

SEM of 8 donors. Each symbol represents one donor or cell line, with the differences 

analyzed by one-way ANOVA with Dunn’s multiple comparison post test between indicated 

groups (*P<0.05) (C) The relative abundance of ULBP6 mRNA in PBMCs from healthy 

donors (HDs) and patients with lymphoid malignancies were determined by qRT-PCR 

analysis. Data are shown as mean ± SEM of 66 patients and 60 HDs. Each symbol represents 

one patient or HD. Statistical differences were analyzed by Mann-Whitney test. ****P < 

0.0001. (D) The relative abundances of ULBP2, ULBP5, and ULBP6 mRNAs in primary B 

cells from healthy donors and CLL patients were determined by qRT-PCR analysis. Data are 

shown as mean ± SEM of 8 HDs and 13 CLL patients. Each symbol represents one HD or 

CLL patients. Statistical differences were determined by Mann-Whitney test. *P < 0.05. (E) 

The relative cell surface abundance of ULBP2, ULBP5, and ULBP6 on B cells from one 

representative healthy donor (gated on CD19
+
 cells) and one representative CLL patient 

(gated on CD19
+
CD5

+
 tumor cells) were determined by flow cytometric analysis. Staining 

with the isotype control is shaded. Data are representative of four independent experiments. 

(F) The mean fluorescence intensity (MFI) values of cell surface ULBP2, ULBP5, and 

ULBP6 staining on healthy B cells (n = 3 donors) and CLL cells (n = 4 patients) were 1.4-

fold and 1.8-fold the MFI of isotype control, respectively. Statistical differences between the 



 

MFIs of healthy donor B cells and CLL cells were determined by Mann-Whitney test. *P < 

0.05. (G) The relative abundance of ULBP6 mRNA in PBMCs from 0602-negative (n = 39) 

versus 0602-positive (n = 45) patients (left) and in 0601-positive (n = 57) versus 0601-

negative (n = 27) patients (right). Data are shown as mean ± SEM. Each symbol represents 

one patient. Statistical differences were determined by Mann-Whitney test; ns, not 

significant. 

 

Fig. 2. SPR analysis of NKG2D-ULBP interactions. (A) Specific binding of NKG2D to 

ULBP0601, ULBP0602, and ULBP1, in comparison to Endothelial Protein C Receptor 

control. Recombinant NKG2D was expressed in E. coli and ULBP proteins were expressed in 

the Drosophila expression system. (B) Equilibrium affinity analysis of NKG2D interactions 

with ULBP0601, ULBP0602, and ULBP1. Data from a representative experiment are shown. 

Equilibrium affinity measurements injecting ULBP0601 or ULBP0602 over immobilized 

NKG2D yielded Kd values similar to those obtained from experiments performed with the 

opposite orientation [136.5 nM +/-10.6 for ULBP0601 (n = 8); 11.2 nM +/-0.6 for ULBP0602 

(n = 4)]. The number of independent equilibrium binding analyses performed for ULBP0601, 

ULBP0602, and ULBP1 were 14, 10, and 8, respectively. (C) Kinetic analysis of the 

dissociation of NKG2D from ULBP0601, ULBP0602, and ULBP1. Data were collected at a 

flow rate of 50 µl/min to minimize mass transport effects. Dissociation data were normalized 

to assist comparison [ULBP0602 (n = 6): koff ~0.00125s
-1

, t1/2 ~550 seconds; ULBP0601 (n = 

6): koff = 0.022s
-1

, t1/2  ~31 s; ULBP1 (n = 6): koff ~0.030s
-1

, t1/2 ~23 s]. 

 

Fig. 3. Structural features of the NKG2D-ULBP0602 complex. (A) NKG2D homodimer 

[NKG2D-A (pale green) and NKG2D-B (salmon)] interacting with monomeric ULBP0602 

(cyan). Recombinant NKG2D and ULBP0602 were expressed in E. coli. NKG2D regions that 



 

stabilize the complex interface include loop 1 (L1), the β5’-β5 loop (stirrup loop), and strand 

β6. Secondary structural elements are highlighted. (B) Stereoview of the 2.4 Å-resolution 

composite omit the 2Fo-Fc electron density map for the ULBP0602 α1 helix (residues 

99DILTEQLL106) contoured at 1.5σ (black). (C) Structural comparison of ULBP0602 (cyan) 

and ULBP3 (light orange, PDB code: 1KCG). Structural differences are highlighted with black 

dashed circles. (D) Narrow MHC-like antigen-binding groove of ULBP0602 is lined with bulky 

side-chains (shown in stick format), which prevent peptide binding. (E) Top view of the 

complex from the perspective of NKG2D. The receptor-ligand interaction conforms to the 

diagonal mode of docking, with footprints for NKG2D-A and NKG2D-B shown in light green 

and salmon, respectively. 

 

Fig. 4. Stabilization of the NKG2D-ULBP0602 complex interface. (A) Stabilization of the 

NKG2D-ULBP0602 complex. The interface is dominated by hydrogen bonding interactions 

(black dashed lines) mediated by polar residues (shown in stick format). The color coding is 

the same as that used in Fig. 3A. (B) Comparison of the molecular surface electrostatic 

potential for ULBP6, ULBP3 (PDB ID: 1KCG), MICB (PDB ID: 1JE6), MICA (PDB ID: 

1B3J), and Phyre-derived models of ULBP1, 2, 4, and 5, calculated with Delphi. There is a 

conserved electronegative patch (residues labelled) that may facilitate the docking of NKG2D 

in the diagonal orientation. The potential scale ranges from -7 (red) to +7 (blue) in units of 

kT/e. (C) The NKG2D-ULBP0602 complex interface is stabilized by nonpolar residues 

(shown in stick format) that combine to form two distinct hydrophobic patches (A and B). 

The color coding is the same as that used in Fig. 3A. (D) Structure of the NKG2D-

ULBP0602 complex showing the location of ULBP6 polymorphic residues at positions 106 

and 147 (stick format, yellow). (E) Molecular surface electrostatic potential for ULBP0602. 

Leu
106

 in ULBP0602 inserts directly into the hydrophobic pocket of patch B of NKG2D, 



 

forming extensive hydrophobic contacts with surrounding residues. (F) Predicted molecular 

surface electrostatic potential for ULBP0601. Introduction of Arg
106

 in ULBP0601 is likely to 

be detrimental for NKG2D binding. (G) Specific binding (left) and equilibrium affinity 

analysis (right) of the interaction of NKG2D with wild-type ULBP0602 (n = 2) and wild-type 

ULBP0601 (n = 2), and with ULBP0602 bearing point mutations at positions 106 (n = 2) and 

147 (n = 2). 

 

Fig. 5. Compared to ULBP0602, ULBP0601 elicits enhanced NK cell–mediated killing of 

targets. (A) Validation of the equivalent cell surface expression of the indicated allotypes by 

different CHO cell lines. CHO-parental (shaded histogram), CHO-ULBP0601 (solid line), 

and CHO-ULBP0602 (dotted line) cells were stained with antibody against ULBP2/5/6 and 

then were analyzed by flow cytometry. Data are representative of four independent 

experiments. (B) Assay of the specific cytotoxic responses of PBMCs from a healthy donor 

to CHO cells expressing ULBP0601 or ULBP0602 in the presence (right panels) or absence 

(including control antibody, middle panels) of blocking anti-NKG2D antibody. Data are 

representative of four independent experiments. (C) Left: Comparison of the magnitude of 

specific cytotoxic responses of cells from 18 healthy donors to ULBP0601- or ULBP0602-

expressing CHO, depicted in increasing magnitude of absolute response. Each symbol 

represents one healthy donor. Right: Representation in boxplots. Data are shown as means 

and the full range. Differences between ULBP0601 and ULBP0602 were analyzed by 

Wilcoxon matched-pairs signed rank test. **P < 0.01. (D) The percentages of NK cells 

expressing the degranulation marker CD107a were measured after activation in response to 

ULBP0601- or ULBP0602-expressing CHO cells. Data are representative of three 

independent experiments from three healthy donors (HD1 to HD3). Left: Data are means ± 

SEM. Right: Boxplots. The data are shown as means and the full range. Differences between 



 

ULBP0601 and ULBP0602 were analyzed by Wilcoxon matched-pairs signed rank test. *P < 

0.05. 

 

Fig. 6. Soluble ULBP0602 blocks the binding of anti-NKG2D antibody and inhibits the 

activation of NK cells. (A) NKL cells were incubated with PBS (solid line) or 10 µg /ml of 

soluble ULBP0601 (dotted line) or ULBP0602 (dashed line) for 16 hours before NKG2D 

surface expression was analyzed by flow cytometry. The filled gray histogram represents 

isotype control staining. Data are representative of three independent experiments. (B) NKL 

cells were incubated with the indicated concentrations of soluble ULBP0601 or ULBP0602. 

NKG2D surface staining was analyzed by flow cytometry and quantified and the differences 

were analyzed by two-way ANOVA with Bonferroni-corrected post-hoc comparisons 

between the indicated groups. ***P < 0.001. Data are means ± SEM from three independent 

experiments. (C) Primary NK cells from 6 donors were co-cultured with K562 cells with or 

without soluble ULBP0601 or ULBP0602 (10 µg /ml), and NK cell activation was quantified 

by the flow cytometric analysis of CD107a staining. The differences between the indicated 

groups were analyzed by one-way ANOVA with Turkey’s multiple comparison post test. **P 

< 0.01, ***P < 0.001. (D) The concentration of soluble ULBP6 released during the culture of 

CHO-ULBP0601 and CHO-ULBP0602 cells was quantified by ELISA. Data are means ± 

SEM from three independent experiments. (E) NKL cells were cultured with the conditioned 

medium from the indicated cells and then were stained with ULBP2-Fc proteins followed by 

APC-conjugated anti-human Fc and flow cytometric analysis. Data are means ± SEM from 

three independent experiments. Differences were analyzed by Mann-Whitney test. *P < 0.05, 

**P < 0.01. 

 



 

Fig. 7. Compared to ULBP0602, ULBP0601 elicits enhanced T cell–mediated killing of 

targets. (A) NKG2D and TCR Vδ2 expression on 14-day expanded peripheral blood γδ T-

cells. Flow cytometry plots are representative of three independent experiments from three 

different donors. (B) Parental (blue) and ULBP0601- or ULBP06020-expressing (red) CHO 

cells were co-cultured with or without expanded peripheral blood γδ T-cells at an effector-to-

target (E:T) ratio of 10:1 in medium or HMB-PP/IL-2. The CHO cell lines were then assessed 

for specific cell death. (C) Parental, ULBP0601-, and ULBP0602-expressing CHO cells were 

co-cultured with γδ T-cells and HMB-PP/IL-2 at the indicated E:T ratios for 18 hours. 

Representative flow cytometry plots (B) and graphs showing mean ± SEM specific killing of 

CHO cells (C) are from three independent experiments with five different donors. 

Differences between the ULBP0601- and ULBP0602-expressing cells were analyzed by two-

way ANOVA with Bonferroni-corrected post-hoc comparisons between the indicated groups. 

*P < 0.05, ***P < 0.001. (D) Validation of cell surface NKG2D expression on EBV-specific 

CTLs. Data are representative of three independent experiments. (E) Validation of the 

equivalent cell surface expression of ULBP0601 (solid line) and ULBP0602 (dashed line) 

relative to untransfected Jurkat cells (dotted line) and isotype control staining (shaded 

histogram). Cells were stained with anti-ULBP2/5/6 antibody. Data are representative of 

three independent experiments. (F) Analysis of the production of IFN-γ by EBV-specific 

CTLs in response to ULBP0601- or ULBP0602-expressing Jurkat cells pulsed with cognate 

peptide antigen. Data are means ± SEM from three independent experiments. Differences 

between the ULBP0601 and ULBP0602 cells were analyzed by two-way ANOVA with 

Bonferroni-corrected post-hoc comparisons. *P < 0.05, **P < 0.01, ****P < 0.0001. 

 

Fig. 8 ULBP6 polymorphism at residue 106 affects effector cell functions through 

alterations in NKG2D-mediated signaling. (A) Validation of the cell surface expression of 



 

NKG2D on the NKL cell line. NKL cells were stained with anti-NKG2D antibody. 

Histograms show NKG2D cell surface expression on NKL cells (solid line) compared to 

isotype control staining (shaded histogram). Data are representative of three independent 

experiments. (B) Analysis of the NKL cell–mediated killing of ULBP0601- and ULBP0602-

expressing cells. Differences between the indicated groups were analyzed by two-way 

ANOVA with Bonferroni-corrected post-hoc comparisons. *P < 0.05, **P < 0.01, ***P < 

0.001, ****P < 0.0001. Data are means ± SEM from three independent experiments. (C) 

Analysis of the cell surface expression of ULBP0602-L106R (long dash), ULBP0602-T147I 

(short dash), ULBP0602 (dotted line), and ULBP0601 (solid line) in comparison to parental 

CHO cells (shaded histogram). All cells were stained with anti-ULBP2/5/6 antibody. Data are 

representative of three independent experiments. (D) Cytotoxic response elicited by 

transfected CHO cells expressing the indicated WT and mutant ULBP6 forms. Data are 

means ± SEM from three independent experiments. Differences were analyzed by Mann-

Whitney test. *P < 0.05, **P < 0.01. (E) Differential killing and binding affinity of WT 

ULBP0601 (n = 2; Kd = 148.2 +/- 1.2 nM), WT ULBP0602 (n = 2, Kd = 13.4 +/- 0.2 nM), 

ULBP0602-L106R (n = 2, Kd = 148.3 +/- 0.4 nM), and ULBP0602-T147I (n = 2, Kd = 13.4 

+/- 0.1 nM). (F) Analysis of the extent of NKG2D downregulation elicited by ULBP0601 

and ULBP0602. Differences between the indicated groups were analyzed by two-way 

ANOVA with Bonferroni-corrected post-hoc comparisons. **P < 0.01, ****P < 0.0001. Data 

are means ± SEM from three independent experiments. (G) Calcium flux analysis of NKL 

cells in response to NKG2D-ULBP6 interactions. Data are the relative MFI of the NKL cells 

after the addition of the indicated CHO-ULBP6 cells compared to the basal MFI of the NKL 

cells and are shown as means ± SEM from three independent experiments. Differences 

between ULBP0601 and ULBP0602 were analyzed by Mann-Whitney test. *P < 0.05. 

 



 

 

 



 

 

 



 

 

 



 

 

 


