
 
 

University of Birmingham

Alternating subgroups of exceptional groups of Lie
type
Craven, David

DOI:
10.1112/plms.12043

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Craven, D 2017, 'Alternating subgroups of exceptional groups of Lie type', London Mathematical Society.
Proceedings , vol. 115, no. 3, pp. 449-501. https://doi.org/10.1112/plms.12043

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is the accepted version of the following article: Craven, D.A. (2017), Alternating subgroups of exceptional groups of Lie type. Proc.
London Math. Soc., 115: 449-501., which has been published in final form at: https://doi.org/10.1112/plms.12043

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 20. Apr. 2024

https://doi.org/10.1112/plms.12043
https://doi.org/10.1112/plms.12043
https://birmingham.elsevierpure.com/en/publications/a9d36592-8a84-44c4-84de-1c6e15255763


Submitted exclusively to the London Mathematical Society
doi:10.1112/0000/000000

Alternating Subgroups of Exceptional Groups of Lie Type

David A. Craven

Abstract

In this paper we examine embeddings of alternating and symmetric groups into almost simple
groups of exceptional type. In particular, we prove that if the alternating or symmetric group has
degree equal to 5, or 8 or more, then it cannot appear as the maximal subgroup of any almost
simple exceptional group of Lie type. Furthermore, in the remaining open cases of degrees 6
and 7 we give considerable information about the possible embeddings. Note that no maximal
alternating or symmetric subgroups are known in the remaining cases.

This is the first in a sequence of papers aiming to substantially improve the state of knowledge
about the maximal subgroups of exceptional groups of Lie type.

The maximal subgroups of the finite simple groups have been the object of intense study
over the last few decades. For the exceptional groups of Lie type it seems plausible – unlike
for example in the classical group case – to have a complete list of all maximal subgroups. If
G = G(q) is an exceptional group of Lie type, then all maximal subgroups of G are known,
except for an explicit, finite, list of candidates, all of which are almost simple. Indeed, all
maximal subgroups are known unless G is one of F4, E6, 2E6, E7 and E8, so we concentrate
on these cases.

Techniques for finding maximal subgroups of the larger-rank exceptional groups have until
now been largely geometric (for example, [22] and [2] for F4 and E6) or relate to algebraic
groups (for example, [14, 15, 16]). Independently the author, in a series of papers of which this
is the first, and Alastair Litterick [20], introduced methods from modular representation theory
to attack the problem. These seem much more suited to the remaining, difficult, open cases of
small almost simple groups being embedded in large exceptional groups and offer hope that a
complete solution can be obtained. Representation theory is predominantly used to prove that
maximal subgroups do not exist, and other methods will need to be used to prove existence
and uniqueness of maximal subgroups that do, in fact, exist.

The author’s rough estimation is that, from the list of possible isomorphism types of maximal
subgroups that have not yet been eliminated or found, these methods can be used to solve 90%
of them or more, leaving a small number of possibilities. These methods really apply when
the characteristic of the field over which the group of Lie type is defined, say p, divides the
order of the potential maximal subgroup H. As an example of their power, one can use them
to eliminate PSL2(7) as a maximal subgroup of E8(3a) for all a in one line, using the tables in
[20] as a starting point.

In keeping with this theme of vastly reducing – but not eliminating entirely – the possibilities,
we do not prove that there can be no maximal alternating or symmetric subgroups in
exceptional groups, but we do prove this in almost all cases. Our strongest theorems are
slightly more technical, so we begin with a weaker theorem that serves for many purposes. We
should state that no maximal alternating or symmetric subgroup of an exceptional group of
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Lie type is known at the moment, and so the next theorem merely lists the possibilities not
yet excluded.

Theorem 1. Let G be an almost simple exceptional group of Lie type over a field of
characteristic p, and let H be a maximal subgroup of G such that F ∗(H) = Alt(n) for some
n ≥ 5. Then n = 6 or n = 7, and one of the following holds:

(i) n = 6 and (G, p) is one of (F4, 3), (F4,≥ 7), (E6,≥ 7), (E7, 5), (E7,≥ 7), (E8, 2), (E8, 3),
(E8,≥ 7);

(ii) n = 7 and (G, p) is one of (E7, 5), (E8, 3), (E8, 5), (E8, 7), (E8,≥ 11).

In this theorem, E6 means either E6 or 2E6, and ≥ p means all primes at least p, i.e., the case
where p - |H|, which includes characteristic 0. This theorem is a summary of more complicated,
and stronger, theorems about embeddings of alternating groups into simple exceptional groups
of Lie type. In addition, because we will always prove that there exists a positive-dimensional
subgroup of the algebraic group fixing certain specific subspaces that the potential maximal
subgroup also fixes (normally lines on the minimal or adjoint module), using results from
Section 1 the above restrictions also apply to any almost simple group whose socle is an
exceptional group, giving the full statement of the theorem above.

Let G be an exceptional algebraic group, let X be the set of all maximal positive-dimensional
subgroups of G, and let X σ denote the fixed points under the Steinberg morphism of the σ-
stable members of X , which are subgroups of the finite group G = Gσ. We prove that, with
the exceptions above, H is always contained inside a member of X σ. This is stronger than
simply stating that H is not maximal, since there are other potential maximal subgroups of
G that could contain H. For example, inside E6 in characteristic 0, there is a copy of 2F4(2)′

acting irreducibly on the minimal module, and this contains a copy of PSL3(3). This subgroup
is clearly not maximal, but is not contained in any member of X . In addition, since we
understand the set X σ, we can get some handle on the possible embeddings of H into G.

Theorem 2. Let G = Gσ be a simple group of type F4, E6, 2E6, E7 or E8. If H is a
subgroup of G with F ∗(H) ∼= Alt(5) then H lies inside a member of X σ.

For the alternating groups Alt(6) and Alt(7) much less is known. We summarize what we
do know now. In what follows we denote simple modules by their dimension, distinguishing
between modules of the same dimension with an index, so 42 is a module of dimension 4. P (−)
denotes the projective cover and we delineate between socle layers with a ‘/’ character.

Theorem 3. Let G = Gσ be a simple group of type F4, E6, 2E6, E7 or E8. Let H be a
subgroup of G with F ∗(H) ∼= Alt(6), and suppose that H does not lie inside a member of X σ.
Then one of the following holds:

(i) p = 2 and G = E8, with F ∗(H) acting on L(G) with composition factors
861, 8

6
2, 4

16
1 , 4

16
2 , 1

24;
(ii) p = 3 and G = F4, E8;
(iii) p = 5 and G = E7, with F ∗(H) acting on Vmin and on L(G) as

10⊕4 ⊕ 8⊕2 and 10⊕2 ⊕ 5⊕31 ⊕ 5⊕32 ⊕ P (8)⊕3 ⊕ 8

respectively, or acting on Vmin and L(G) as

10⊕32 ⊕ 103 ⊕ (41/42)⊕ (42/41) and 10⊕5 ⊕ P (8)⊕3 ⊕ 8
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respectively;
(iv) p > 5 and G = F4, E6,

2E6, E7, E8.

Theorem 4. Let G = Gσ be a simple group of type F4, E6, 2E6, E7 or E8. Let H be a
subgroup of G with F ∗(H) ∼= Alt(7), and suppose that H does not lie inside a member of X σ.
Then one of the following holds:

(i) p = 3 and G = E8, with F ∗(H) acting on L(G) with composition factors
154, 136, (10, 10∗)5, 110;

(ii) p = 5 and G = E7, with F ∗(H) acting on Vmin as either (10⊕ 10∗)⊕2 ⊕ 8⊕2 or 20⊕
(4/14)⊕ (14/4∗), or G = E8, with F ∗(H) acting on L(G) as

35⊕4 ⊕ 15⊕4 ⊕ 10⊕ 10∗ ⊕ (8/6)⊕ (6/8);

(iii) p = 7 and G = E8, with F ∗(H) acting on L(G) as

35⊕3 ⊕ 21⊕ 141 ⊕ 14⊕22 ⊕ P (10)⊕2 ⊕ 10 or 35⊕4 ⊕ 14⊕21 ⊕ 10⊕6 ⊕ 5⊕4;

(iv) p > 7 and G = E8, acting on L(G) with composition factors 354, 154, 1421, 10, 10∗.

Once we move past Alt(7), however, we have complete theorems. For Alt(8) and above we
can prove that every copy lies inside a positive-dimensional subgroup. This includes the difficult
case of Alt(8) = GL4(2) inside E8(2n), which starts to extend to E8 the results on defining-
characteristic embeddings of groups of rank at least 2 considered for F4, E6 and E7 in work in
preparation by the author and collaborators. Extending this theorem to include E8 is ongoing
work of the author.

Theorem 5. Let G = Gσ be a simple group of type F4, E6, 2E6, E7 or E8. If H is a
subgroup with F ∗(H) = Alt(n) for n ≥ 8, then H lies inside a member of X σ.

In [20, Section 3.3], Litterick proves that, for n ≥ 10, if F ∗(H) ∼= Alt(n) then H is never
maximal in an almost simple exceptional group. We include an alternative proof of the case
n = 10, p = 2, G = E8 in the last section, as we show that H fixes a line on L(G) more easily
with a theoretical argument involving Frobenius reciprocity.

In addition, Litterick has proved many other cases for alternating groups, in his more wide-
ranging project that included all simple groups other than Lie type in defining characteristic.
We refer to [20], as yet not in publication but available on the arXiv, for full details as to the
cases proved there, which are more than in his PhD thesis. We have however mostly maintained
our own proofs here both for completeness and as our methods are slightly different.

These results include and extend known results on maximal subgroups of exceptional groups.
For p ≥ 5 and G = F4 we recover results of Magaard in [22]. For G = E6 we extend results of
Aschbacher in [2], where we remove the following possibilities for maximal subgroups:

– Alt(6), p = 2;
– Alt(6), p = 5;
– Alt(7), p = 5;
– Alt(8), p = 2.

We leave Alt(6), p ≥ 7 (or p = 0) unresolved.

The method of proof here is as follows: we firstly use traces of semisimple elements to restrict
the possible sets of composition factors for the action of H on both the minimal and adjoint
modules. This task was already accomplished in [20] when H is not isomorphic to a Lie type
group in the same characteristic, so we only have to consider those cases.
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Once we have these data, we then use the information about the action of unipotent elements
on the minimal and adjoint modules in [11] to build up a picture of the possible restrictions of
the minimal and adjoint modules to the subgroup. Often this is enough to prove something like
the subgroup fixes a line on one of these two modules, or that the set of composition factors
cannot yield an embedding of the subgroup.

We also use a result from [15] that states that for certain unipotent classes, which we call
‘generic’ classes in the next section, merely containing an element from them and not acting
irreducibly on the minimal or adjoint module is enough to guarantee that the subgroup lies in
the set X above. This is where many embeddings do lie, and so it is useful to exclude large
numbers of embeddings from consideration early on.

If the group has a cyclic Sylow p-subgroup then we have complete information about the
module category for the group, and so we can get very good information on the possible
embeddings. Potential embeddings that seem not to be attackable with using the techniques
here are listed in Theorems 3 and 4. Other ideas such as using structure constants, which have
been used before to success, might be one avenue for these, and of course the characteristic 0
possibilities, as they have been successful before, for example for Alt(5) [21].

Many of the arguments for p = 2, 3 from later sections require use of a computer, however.
Our choice of computer program for these tasks is Magma [3]. This is firstly to prove the
existence or non-existence of certain modules, and secondly to determine the actions of
unipotent elements on these modules. While it might be possible in many cases to perform
this analysis without a computer, doing so would substantially increase both the size of the
paper and the likelihood of mistakes appearing. The author believes that the probability of
there being bugs in Magma that invalidate the results here is lower than the chances of making
an error in hundreds of pages of module computations.

Having said that, despite the author’s use of a computer to produce various modules, many
claims can be checked using the structures of projective indecomposable modules for the small
alternating groups in characteristics 2 and 3, that have appeared in the literature.

The structure of this paper is as follows: we begin with a section collating the notation we
need, and the preliminary results, including a result on passing from maximal subgroups of the
simple group to those of an almost simple group. We then briefly summarize those aspects of
the theory of blocks with cyclic defect groups that we need, particularly how the structure of
the Brauer tree informs the structure of the projective indecomposable modules. In Section 3
we give information about simple modules for alternating groups, in particular their dimensions
and Ext1, the Brauer trees of Alt(n) for p = 5, 7 and n ≤ 8, and some useful lemmas for specific
groups. The succeeding section classifies the composition factors of large-degree alternating
groups on the adjoint module for E8 in characteristic 2.

After these preliminary sections, Section n considers Alt(n), for 5 ≤ n ≤ 10.

1. Notation and preliminary results

Throughout this paper, to avoid confusion with algebraic groups, we denote by Alt(n) the
alternating group on n letters, and so to remain consistent use Sym(n) for the symmetric group
on n letters.

Although we will remind the reader often, we establish a consistent naming convention for
the various permutations we will need in Table 1

Let G be a simple algebraic group, and let σ be a Steinberg endomorphism of G. The finite
group G = Gσ is a finite group of Lie type. We can also think of G as G(qδ), a finite group of Lie
type defined over the field Fqδ . In our case G = Gσ = G(qδ) is one of 2B2(q2), 3D4(q3), E6(q),
2E6(q2), E7(q), E8(q), F4(q), 2F4(q2), G2(q) and 2G2(q2), or their universal central extensions.
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Since we are examining maximal subgroups, and the maximal subgroups are known for all of
the above groups except for those of twisted rank at least four, we assume that G is one of
F4(q), E6(q), 2E6(q2), E7(q) and E8(q). (The maximal subgroups of the remaining groups are
given in [25], which includes references to the original papers.) We will assume that by E6 and
E7 we mean the simply connected version, so Z(E6) and Z(E7) have orders gcd(3, p2 − 1) and
gcd(2, p− 1) respectively. (We will remind the reader of this regularly.)

Let p | q be a prime, and let k be a field of characteristic p. We specifically do not take k
to be algebraically closed, because embeddings of (say) H into F4(2) produce F2H-modules,
not modules over the algebraically closed field. This is not important when proving that a
subgroup fixes a line on a module, since this is true regardless of the field over which the
module is considered, but is important when asking whether, for example, SL2(4) stabilizes a
2-space on a module.

If M is a module for a group, soc(M), the socle of M , is the largest semisimple submodule
of M , and top(M) is the largest semisimple quotient of M . Write ↑ and ↓ for induction and
restriction, and write kH or 1H for the trivial module for the group H. If the group H is obvious
we will simply write k or 1. The kernel of the map M → top(M) is denoted by rad(M), the
Jacobson radical of M . Write P (M) for the projective cover of M , the smallest projective
module that has M as a quotient. If I is a set of simple modules, the I-radical of M is
the largest submodule whose composition factors lie in I, and the I-residual is the smallest
submodule for which the quotient only has composition factors lying in I. By M∗ we refer to
the dual of M . The I-radical and I-residual are related by the following: the I-radical of M∗ is
the dual of the quotient by the I-residual of M . In analogy with the notation of a p′-subgroup,
I ′-radical and I ′-residual mean (Irr(H) \ I)-radical and (Irr(H) \ I)-residual.

We will often use the actions of p-elements in this work, and in particular their Jordan
normal form. We use the same notation as in [11], so if a p-element g acts with two block of
size 2 and one of size 1, we write 22, 1. Note that if g has order pa then all blocks have size at
most pa. As shorthand, we say that g acts projectively on M if all blocks of the action of g on
M are of size pa.

Write Vmin for one of the minimal modules for G, namely L(λ4) for F4, either L(λ1) or
L(λ6) for E6 and 2E6, L(λ7) for E7 and L(λ1) for E8. We write L(G) for the simple, non-trivial
constituent of the Lie algebra module, which is L(λ1), L(λ2), L(λ1) and L(λ1) respectively.
These have the dimensions given in Table 1.

We will remind the reader when L(G) does not have the usual dimension.
The actions of certain reductive subgroups, and all Levi subgroups, on these modules is

helpfully tabulated in [24]. There are many such subgroups and it is not necessary to reproduce
the full list of tables, but we describe some of the more commonly used subgroups in Table 3.

The actions of unipotent elements on these modules are given in [11]. From that we can
extract much information. For example, we have Tables 4 and 6 of certain actions of elements
of orders 3 and 5 on L(G) for E8. In these we only see the non-generic classes: we should

Label Permutation

t (1, 2)(3, 4)
u (1, 2, 3, 4, 5)
v (1, 2, 3, 4)(5, 6)
w (1, 2, 3, 4, 5, 6, 7)
x (1, 2, 3)
y (1, 2, 3)(4, 5, 6)
z (1, 2, 3, 4, 5, 6, 7, 8, 9)

Table 1. Labels for permutations in alternating groups
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define what this means now. We use the Bala–Carter–Pommerening notation, in particular the
precise notation used in [11] which will be our main reference for unipotent actions, and this
allows us to compare the actions of a unipotent class in different characteristics.

Definition 1.1. Let p be a prime, let G be an algebraic group in characteristic p, and let
C be a unipotent class in G. Let L(λ) be a highest-weight module for G. If the Jordan blocks
of the action of u ∈ C on L(λ) are the same size as for the same class C in G for all primes
q >> 0, then C is said to be generic at the prime p. Otherwise, C is non-generic.

As an example, as we see in [11, Table 7], the class E7(a2) in E7 acts on Vmin with blocks
18, 16, 10, 8, 4 for all p 6= 2, 3, 13, 17, but for example with blocks 134, 4 for p = 13. This means
that this class is generic for Vmin whenever p 6= 2, 3, 13, 17, and non-generic for these primes.
Notice that, on L(G), [11, Table 8] shows that E7(a2) is non-generic for p = 2, 3, 5, 13, 17, 19,
so being non-generic does depend on the module under consideration.

Our next two results mean that, if H is a subgroup of an exceptional algebraic group G, and
H contains a unipotent element of order p from a generic class, then there exists a positive-
dimensional subgroup X of G containing H and stabilizing the same subspaces of Vmin as H.
In particular, if H does not act irreducibly on Vmin then H is contained in a known maximal
subgroup of G, since the set of maximal positive-dimensional subgroups X of G are known
[17], and since X 6= G.

This result appears in [15, Lemma 1.14].

Lemma 1.2. Let H be a subgroup of an algebraic group G, and let u ∈ H be a unipotent
element of order p. If u is contained in an A1 subgroup that acts with p-restricted composition

Group dim(Vmin) dim(L(G))

F4 26 − δq,3 52
E6 27 78 − δq,3
E7 56 133 − δq,2
E8 248 248

Table 2. Dimensions of some simple modules for exceptional groups

Group Subgroup Factors on Vmin Factors on L(G)

F4 B4 1000,0001,0000 0100,0001

A2Ã2 (10,10),(01,01),(00,11) (11,00),(00,11),(10,02),(01,20)

E6 F4 0001,0000 1000,0001
A1A5 (1, λ1),(0, λ4) (2, 0),(0, λ1 + λ5),(1, λ3)

E7 E6 λ1,λ6,02 λ2,λ1,λ6,0
A7 λ2,λ6 λ1 + λ7,λ4

D6A1 (λ1, 1),(λ5, 0) (λ6, 1),(λ2, 0),(0, 2)

E8 A1E7 N/A (2, 0),(0, λ1),(1, λ7)
D8 N/A λ2, λ7
A8 N/A λ1 + λ8, λ3, λ5

Table 3. Actions of some common subgroups on Vmin and L(G). ‘Factors’ means the same
composition factors as the Weyl modules of these highest weights.
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factors on a module M for G, then there exists a positive-dimensional subgroup X of G such
that H ≤ X, and H and X stabilize the same subspaces of M . In particular, if G acts irreducibly
on M and H acts reducibly on M , then H is contained in a member of X , and if H is contained
in G = Gσ then it is contained in a member of X σ.

(To get from [15, Lemma 1.14] to this result, let X be the subgroup generated by H and
the unipotent subgroup U containing u ∈ H that is constructed in [15, Lemma 1.14].)

Now we need to know that such A1s actually exist for the minimal and adjoint modules.
Together with the previous lemma, this means that we can discount generic unipotent classes
from consideration.

Lemma 1.3. Let p be an odd prime and let G be one of F4, E6, E7 and E8. Let u be a
unipotent element in G of order p. If u belongs to a generic class for either the minimal or
adjoint module, then u lies inside an A1 subgroup whose composition factors on that module
are p-restricted.

Proof. In the case of the adjoint module, we simply use the tables in [13], which construct
A1 subgroups above unipotent classes, and whenever u comes from a generic class the
composition factors are p-restricted. It remains to consider the minimal module (except for
E8, where the two coincide).

We must construct, for each unipotent class, an algebraic A1 with p-restricted composition
factors, whenever u is in the generic case. Using the embeddings F4 < E6 < E7 we can reduce
our work by embedding an A1 inside F4 into both E6 and E7.

We use the tables in [11] both to determine for which primes we are in the generic case, and
to give a list of the unipotent classes that we will use here. As mentioned earlier this section, if
the unipotent class contains blocks of size greater than p then its order is not p, and so we can
ignore that class. We also consult [24] for the actions of Levi subgroups and irreducible A1s.

Let G = F4. For classes A1 and Ã1 we use the A1 Levi subgroups, which act as needed. For
A1 + Ã1 we use the diagonally embedded A1 inside the A1Ã1 Levi subgroup. For A2 we use
the irreducible A1 inside the A2 Levi subgroup.

For the rest of the classes we need p ≥ 5. For Ã2 and B2 we can use the irreducible A1s inside
the Ã2 and B2 Levi subgroups. For A2 + Ã1 we use the A1 embedded in the Levi subgroup
A2Ã1 acting as L(2) on the A2 and as L(1) on the A1 factor. The same subgroup of Ã2A1

deals with u lying in Ã2 +A1.
For C3(a1), we consider the C3 Levi subgroup, which acts on the minimal module as the

sum of two copies of the natural module L(100), and one copy of the adjoint L(010), which is
the exterior square of the natural minus a trivial. If A1 is embedded as L(1)⊕ L(3) then the
exterior square of this is

Λ2(L(1))⊕ Λ2(L(3))⊕ (L(1)⊗ L(3)) = L(0)⊕ (L(0)⊕ L(4))⊕ (L(2)⊕ L(4)),

yielding the correct action. (Remember that Λ2(A⊕B) = Λ2(A)⊕ Λ2(B)⊕ (A⊗B).)
For u lying in F4(a3), [13, Table 2] suggests we can look inside C3A1: this acts as the

sum of 010⊗ 0 (the exterior square of the natural minus a trivial, tensored by the trivial)
and 100⊗ 1 (the natural tensored by the natural). Inside here, we take a diagonal A1 which
projects non-trivially along the C3 and acts as L(1)⊕ L(3) on the natural, as in the previous
case of C3(a1), but also as L(1) on the A1 factor. This then acts as L(1)⊗2 ⊕ (L(3)⊗ L(1)) =
L(0)⊕ L(2)⊕2 ⊕ L(4) on 100⊗ 1 and as Λ2(L(1)⊕ L(3)) = L(0)⊕2 ⊕ L(2)⊕ L(4)⊕2 minus a
copy of L(0) on 010⊗ 0, as needed.
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For B3 we need p ≥ 7. Inside the B3 Levi subgroup we take an A1 acting as L(6), i.e.,
irreducibly, on the natural, and hence as L(0)⊕ L(6) on the 8-dimensional module, giving the
correct action.

We now need p ≥ 11. For C3 we take the A1 lying in the C3 Levi subgroup acting as L(5):
since Λ2(L(5)) = L(0)⊕ L(4)⊕ L(8) we get the correct action on the minimal module.

For F4(a2), [13, Table 2] suggests that as for F4(a3) we can look inside C3A1: the diagonal
A1 acting as L(5) on the natural for C3 and the natural on the A1 factor works, because the
100⊗ 1 restricts to L(4)⊕ L(6), and the 010⊗ 0 restricts to L(4)⊕ L(8), as needed.

For F4(a1) and F4, we see in [24, Table 10] that there are two irreducible A1s, namely
subgroups 7 and 10, that cover these two classes, completing the proof for F4.

For E6 we can take the A1s from F4 and add a trivial, dealing with many classes. We run
through those that are left.

The first such class is A2 +A1, which requires p ≥ 5, and lies in the A2A1 Levi subgroup.
We take an irreducible diagonal A1 acting as L(2) along the A2 factor and as L(1) along the A1

factor. The Levi subgroup acts (up to duality) on Vmin with factors L(10)⊗ L(1), four copies
of L(10)⊗ L(0), and three copies each of L(00)⊗ L(1) and L(00)⊗ L(0). The restriction to
the A1 clearly yields composition factors of L(3), L(2)4, L(1)4, L(0)3, as needed.

The next class is A4, which requires p ≥ 7. The A4 Levi subgroup acts as (up to duality, which
is not important for A1s) three copies of the natural, one of its exterior square, and two trivials.
If we embed as A1 as L(4) then Λ2(L(4)) = L(2)⊕ L(6), and so we get L(6), L(4)3, L(2), L(0)2

as the factors of the A1 on the minimal module, as needed.
The next class is A4 +A1, also needing p ≥ 7, for which we embed an A1 diagonally into the

A4A1 Levi as L(4)⊗ L(1). This acts on 1000⊗ 1 as L(5)⊕ L(3), and on 0001⊗ 0 as L(4). It
acts on 0010⊗ 0 as L(6)⊕ L(2), as in the previous case, and so we get the correct factors for
covering an element from class A4 +A1.

There are only two classes left: D5(a1) needs p ≥ 11, and this A1 can be found inside D5,
acting as L(7)⊕ L(5)⊕ L(1) on the 16-dimensional spin module and L(6)⊕ L(2) on the 10-
dimensional natural module. The last one is E6(a1), which needs p ≥ 13, and is covered by
subgroup 6 from [24, Table 11]. This completes the proof for G = E6.

As with E6 and F4, we can use E6 to exclude many classes for E7, and deal with only those
that are left. However, this still leaves twenty-four classes, and so we want to cut a few of those
down before constructing individual groups.

We use the subgroup F4A1 for this, which acts with factors 0000⊗ 3 and 1000⊗ 1. Notice
that every generic class of order p in F4 for the module 1000 is covered by an A1 acting with
p-restricted factors, as we have just proved it, and obviously the same is true for the A1 factor;
therefore at least for Vmin we know that every unipotent class of F4A1 that is generic is covered
by an A1 subgroup acting with p-restricted composition factors also. (If one is worried that
there is a composition factor L(p− 1)⊗ L(1) in Vmin, note that the class is not generic for p,
and only for primes larger than p.)

Consulting the first and third columns of Table 38 in [12], we get the unipotent classes
contained in F4A1: the third column contains the classes (3A1)′′, 4A1, A2 + 3A1, (A3 +A1)′′,
A3 + 2A1, D4(a1) +A1, A3 +A2, A3 +A2 +A1, D5(a1) +A1, D6(a2), E7(a5), E7(a4) and
E7(a2).

This leaves only eleven unipotent classes to cover with A1s with p-restricted composition
factors, which is enough that we can construct the subgroups explicitly. The list of classes left
to cover is

(A5)′′, D4 +A1, A4 +A2, A5 +A1, D6(a1), A6, D5 +A1, D6, E7(a3), E7(a1), E7.
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In the A5 Levi subgroup one sees (A5)′′ as the regular class, and the regular A1 covering it
acts as L(3)⊕ L(5)⊕ L(9) on the exterior cube of the natural, hence has the right properties
for p ≥ 11. Taking this class and tensoring it by an A1 factor inside the A5A2 Levi subgroup
provides a module acting with composition factors of dimension 6 (from L(λ1)⊗ L(0) and
its dual), 10, 6, 4 (from L(λ3)⊗ L(0)) and 7, 5 (from L(λ1)⊗ L(1) and its dual), hence covers
A5 +A1.

Inside A7 a multiplicity-free module for PGL2 will have a fixed-point-free exterior square,
and so we can take A1s acting as L(0)⊕ L(6) and L(2)⊕ L(4), and these act on Vmin as
L(10)⊕ L(6)⊕2 ⊕ L(2) and L(6)⊕2 ⊕ L(4)⊕ L(2)⊕3, containing representatives from classes
A6 and A4 +A2.

For E7(a1) and E7 we need p ≥ 23 and p ≥ 29 respectively, and the maximal A1s inside E7

provide the subgroups.

For the rest we need to examine the D6A1 maximal-rank subgroup. Consider firstly a copy
of SL2 inside D6 that acts on the natural as L(10)⊕ L(0). This acts on the spin module as
L(15)⊕ L(9)⊕ L(5), at least as long as the characteristic is at least 17. This will cover the
unipotent class D6.

To cover E7(a3) we simply take the diagonal subgroup between this A1 and the A1 factor.
This leaves the 32 alone but tensors the L(10)⊕ L(0) by L(1) to get L(11)⊕ L(9)⊕ L(1),
finishing this case.

This also shows how to construct A1s above D4 +A1 and D5 +A1: we take the A1s lying
above the D4 and D5 classes, which are known to exist and act as p-restricted composition
factors whenever we are in the generic case, since they lie inside the E6 Levi subgroup, and as
with F4A1 we tensor with the A1 in the second factor of D6A1: as this A1 acts as L(8)⊕ L(0)⊕3

on the natural, we get p-restricted composition factors, as needed. Similarly, the A1 covering
the D4 class acts as L(6)⊕ L(0)⊕5 on the natural, and so we get the right composition factors
for the diagonal subgroup with the A1 factor.

The last unipotent class left to cover is D6(a1). Now we consider an SL2 acting on the natural
as L(8)⊕ L(2), which lifts to the spin module with factors L(11), L(9), L(5) and L(3), at least
for p ≥ 13. This yields the final class of A1s needed to prove the result.

Lemma 1.4. Suppose that H is a subgroup of G = G(q), and suppose that

– H stabilizes a 1-space on either Vmin or L(G),
– H stabilizes a 2-space on Vmin for G of type F4, E6 or E7, or
– H stabilizes a 3-space on Vmin for G of type E6.

Then H is contained in a member of X σ.

Class Action on L(G)

3A1 331, 250, 155

A2 357, 177

4A1 344, 240, 136

A2 +A1 358, 220, 134

A2 + 2A1 365, 216, 121

A2 + 3A1 370, 214, 110

2A2 378, 114

2A2 +A1 379, 22, 17

2A2 + 2A1 380, 24

Table 4. Non-generic unipotent classes for E8 and order 3
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Proof. If H fixes a 1-space on L(G) then H is contained in either a parabolic or semisimple
subgroup by Seitz [23, (1.3)], and thus is in a member of X σ. If H stabilizes a line on Vmin

then H is contained in a member of X σ, for example see [18, Lemma 2.2]. (For G = F4, H is
contained in B4 or a maximal parabolic, for G = E6, H is contained in F4 or a D5 parabolic,
and for G = E7, H is contained inside an E6 or D6 parabolic, or inside an E6 or 2E6 subgroup
with an automorphism on top.)

For the others, we simply compute the dimension of the subspace stabilizer inside the
algebraic group, and note that it is non-zero. For example, the dimension of the stabilizer
of a 3-space in Vmin for G = E6 is at least

78− (27 + 26 + 25− 3− 2− 1) = 6 > 0.

Class Action on L(G)

A2 42, 354, 178

A2 +A1 414, 330, 234, 134

A2 + 2A1 422, 314, 252, 114

A2 + 3A1 426, 36, 262, 12

2A2 428, 336, 128

2A2 +A1 440, 312, 218, 116

2A2 + 2A1 444, 34, 228, 14

A3 446, 210, 144

A3 +A1 446, 224, 116

A3 + 2A1 446, 230, 14

A3 +A2 450, 310, 26, 16

A3 +A
(2)
2 454, 32, 210, 16

A3 +A2 +A1 454, 32, 212, 12

D4(a1) 454, 32, 126

D4(a1) +A1 454, 32, 210, 16

D4(a1) +A2 456, 38

2A3 460, 24

Table 5. Unipotent classes for E8 and order 4

Class Action on L(G)

2A2 +A1 514, 414, 323, 218, 117

2A2 + 2A1 518, 412, 320, 220, 110

A3 513, 432, 155

A3 +A1 521, 416, 39, 214, 124

A3 + 2A1 525, 410, 314, 214, 113

A3 +A2 530, 48, 313, 28, 111

A3 +A2 +A1 532, 48, 310, 210, 16

D4(a1) 529, 325, 128

D4(a1) +A1 529, 46, 314, 214, 19

D4(a1) +A2 536, 320, 18

2A3 538, 412, 110

A4 545, 123

A4 +A1 545, 3, 26, 18

A4 + 2A1 545, 34, 24, 13

A4 +A2 546, 35, 13

A4 +A2 +A1 546, 42, 32, 22

A4 +A3 548, 42

Table 6. Non-generic unipotent classes for E8 and order 5
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Having done this, the stabilizer of a subspace W of the appropriate dimension above is therefore
positive dimensional. To see σ-stability, we note that W is fixed by H ≤ G, so W is defined
over Fq and in V σmin.

This proves non-maximality of simple subgroups of simple groups, but when we move to
almost simple exceptional groups we need to be more careful, as Vmin is not always stable
under outer automorphisms.

The next lemma deals with so-called novelty maximal subgroups. Suppose that G is an
almost simple group with socle X, and let M be a maximal subgroup of G not containing X.
If M ∩X is a maximal subgroup of X then M is said to be an ordinary maximal subgroup,
and if X ∩M is not maximal in X then M is said to be a novelty maximal subgroup. Notice
that, while ordinary maximal subgroups can be easily found from a list of maximal subgroups
of X, novelties are harder, and arise when a subgroup H is stabilized by a group of outer
automorphisms of X (hence extending to a larger subgroup of G) but any subgroup of X
containing H is not stabilized by the outer automorphisms, so it becomes maximal.

The alternating subgroups of exceptional groups considered here never become novelty
maximal subgroups.

Lemma 1.5. Let G be an almost simple group with socle an exceptional group of Lie
type. Suppose that H is an almost simple subgroup of G such that F ∗(H) has abelian outer
automorphism group.

(i) If the preimage of F ∗(H) in the simply connected form of F ∗(G) fixes a line on either
the minimal or adjoint module for F ∗(G) then H is contained in a member of X σ. In
particular, H is not a novelty maximal subgroup of G.

(ii) If there exists a positive-dimensional subgroup X of F ∗(G) containing F ∗(H) and
stabilizing the same subspaces of a simple module V for F ∗(G) that is G-stable and
such that H acts reducibly on V , then H is not a novelty maximal subgroup of G.

(iii) Suppose that G induces a graph automorphism θ on F ∗(G), and let H̄ denote the
preimage of F ∗(H) in the simply connected form Ḡ of F ∗(G). If W is an H̄-submodule
of the minimal module Vmin for Ḡ such that Wφ is not an H̄-submodule of V θmin for any
φ ∈ Out(H̄), then the G-conjugacy class of F ∗(H) splits upon restriction to F ∗(G). In
particular, H is not maximal in G.

Proof. The first part follows from the orbit-stabilizer theorem: ifG is an almost simple group
that does not induce a graph automorphism on F ∗(G) then the automorphisms of G/F ∗(G)
stabilize both the minimal and adjoint modules, and so the dimension of a line stabilizer is
positive.

If G does induce a graph automorphism then L(G) is still stabilized, so that is fine, but Vmin

is swapped with another module of the same dimension: however, Vmin ⊕ V θmin has dimension
at most that of G (in the case F4 and p = 2) and so the line stabilizer on that module is still at
least 1-dimensional. As F ∗(H) fixes a line, and Out(F ∗(H)) is abelian, H still fixes a line on
Vmin ⊕ V θmin, so lies inside a positive-dimensional subgroup of G, hence H lies inside a member
of X σ.

(Notice that if H ≤ Gσ then while not every line is σ-stable, there is a σ-stable line, so H is
contained in a member of X σ.)

The second part is easy: the subgroup 〈X,H〉 is proper in G since it acts reducibly on V
and hence H cannot be a novelty maximal subgroup.

For the third part, we note that, in order for F ∗(H) to be stabilized by θ, we must have an
automorphism φ ∈ Out(F ∗(H)) such that V θmin ↓H= Vmin ↓φH . By assumption this is not true,
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so θ does not normalize F ∗(H) and NG(F ∗(H)) = NG′(F ∗(H)) for some proper subgroup G′

of G. In particular, H ≤ G′, and so is not maximal.

In order to examine embeddings of alternating groups into exceptional groups, we need to
know the potential composition factors of the restrictions of Vmin and L(G) to the subgroup.
One way to do this is to know the traces of semisimple elements of the algebraic group, i.e.,
the possible Brauer characters of the restriction. We end up using traces of elements of order
up to 15 (as there are elements of order 15 in Alt(8)) but it would be impractical to list these
here. We simply list the integral traces of elements of orders 2, 3 and 5, since this is enough for
many purposes. The others can be downloaded from the author’s webpage, or computed with
Litterick’s program in [19].

Lemma 1.6. The traces of semisimple elements of orders 2, 3 and 5, whose entries are
integers, on Vmin and L(G) respectively, are as follows.

Group Order Trace on Vmin Trace on L(G)

F4 2 2, −6 −4, 20
3 −1, 8 −2 or 7, 7
5 1 2

E6 2 3, −5 −2, 14
3 0, 9 −3 or 6, 15
5 2 3

E7 2 8, −8 5, 5
3 −25, −7, 2, 20 52, 7, −2 or 7, 34
5 6 8

E8 2 N/A −8, 24
3 N/A −4, 5, 14, 77
5 N/A −2, 3, 23

Since we are aiming to prove that a module has a trivial submodule or quotient, we need a
result that will guarantee such an outcome. A slightly weaker version of this has been considered
before, for example [15, Lemma 1.2] or [20, Proposition 3.6]. We start with a definition.

Definition 1.7. Let G be a finite group, k be a field, and let M be a kG-module. Suppose
that, for every composition factor V of M , H1(G,V ) = H1(G,V ∗). (This is true, for example,
if there exists an automorphism swapping simple modules and their duals.) Suppose further
that H1(G, k) = 0, i.e., Op(G) = G. Write cf(M) for the multiset of composition factors of M .
The pressure of M is the quantity

∑
V ∈cf(M)

(H1(G,V )− δV,k).
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The pressure of a module is an indicator of how easy it is to hide trivial composition factors in
the middle of it. Before we prove this we need the following lemma, which gives some indication
that the pressure of a module is an interesting invariant.

Lemma 1.8. Let G = Op(G) be a finite group, k be a field, and let M be a kG-module.
Suppose that, for every composition factor V of M , H1(G,V ) = H1(G,V ∗).

(i) If M is a module with negative pressure, then M has a trivial submodule and a trivial
quotient.

(ii) Suppose that M contains trivial composition factors, but no trivial submodules. If M
has pressure n then dim(H1(G,M)) ≤ n.

Proof. (i) is known, for example [20, Proposition 3.6].
For (ii), let M ′ be the module with no trivial submodules obtained from M by extending

by km, where m = dim(H1(G,M)), and suppose that M has pressure less than m, so that M ′

has negative pressure. The module (M ′)∗ still has negative pressure but no trivial quotient, a
contradiction.

Even better than modules of negative pressure, we have the following result on pressures,
which helps in eliminating a variety of cases from consideration.

Proposition 1.9. Let G = Op(G) be a finite group, k be a field, and let M be a kG-
module. Suppose that, for every composition factor V of M , H1(G,V ) = H1(G,V ∗). Suppose
that M contains trivial composition factors, but no trivial submodule or quotient.

If M has pressure n then there is no subquotient A of M with pressure greater than n or
less than −n. In particular, if M has a trivial composition factor but has non-positive pressure,
then M has a trivial submodule or quotient, and if M has a composition factor V whose 1-
cohomology has dimension greater than the pressure of M , then M has a trivial submodule or
quotient.

Proof. Let A be a subquotient of M , and let B and C be the other two factors involved
in M , i.e., B is a submodule of M and C a quotient of M whose kernel contains B and such
that the surjective map M/B → C has kernel isomorphic to A. If A has pressure greater than
n then at least one of B and C must have negative pressure, without loss of generality (take
duals) B. Since B has negative pressure, it has a trivial submodule, a contradiction. Similarly,
if A has pressure less than −n, then one of B and C has pressure at most n, say B again.
Since the pressure of C is less than −n, it has a trivial submodule of dimension at least n+ 1
by repeated application of Lemma 1.8. However, H1(G,B) has dimension at most n, again by
Lemma 1.8, and so we cannot fit this trivial submodule from C on top of B without getting a
trivial submodule in M .

Modules M of pressure 1 are fairly easy to characterize: ignoring non-trivial composition
factors with no 1-cohomology, the structure of M is uniserial, alternating between non-trivial
and trivial modules. (Of course, M need not be uniserial, but ignoring non-trivial composition
factors with no 1-cohomology it is. What this means is that there is no subquotient k ⊕ k and
no subquotient V ⊕W with H1(G,V ), H1(G,W ) > 0.)

The reason for the name pressure is that modules of low pressure will have socle structures
that look long and thin (close to uniserial) and as the pressure increases they tend to get
squashed down.
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Suppose that H is a subgroup of a finite group G, and let M be a kG-module. Frobenius
reciprocity gives us information about how to relate M and M ↓H . Recall that Frobenius
reciprocity states that if N is a kH-module, then

Hom(N,M ↓H) = Hom(N ↑G,M).

The next result follows immediately from this.

Lemma 1.10. Let G be a finite group and let H be a subgroup of G. Let k be a field and
let M be a kG-module. Write N for the permutation module of G on the cosets of H. If α ∈M
is fixed by H then there is a module homomorphism φ : N →M whose image contains α.

The next result finds singular subspaces of the natural module for orthogonal and symplectic
groups preserved by a particular subgroup. It comes in handy when analysing copies of Alt(5)
in the D6 parabolic of E7 in characteristic 3, at the end of Section 5.

Lemma 1.11. Let F be a field, let H be a finite group, and let H act on an F-vector space V
of dimension n preserving a bilinear form f . If −1 is a sum of m squares in F then H stabilizes
a totally isotropic n-dimensional subspace of V ⊕(m+1).

Consequently, if H is a subgroup of an orthogonal or symplectic group in positive
characteristic, and the action of H on the natural module has a submodule isomorphic with
three copies of a given module of dimension n, then H stabilizes a totally isotropic subspace of
the natural module of dimension n, and hence lies inside a parabolic subgroup of the orthogonal
or symplectic group.

Proof. If λ1, . . . , λm ∈ F, then let H act on the diagonal subspace {(v, λ1v, . . . , λmv) : v ∈
V }: the restriction of f to this subspace has norm (1 + λ21 + · · ·+ λ2m)(v, w), for v, w ∈ V . If
λ21 + · · ·+ λ2m = −1 then this means the form vanishes, and we get the result.

If the characteristic of F is p then we claim that −1 is always the sum of two squares in Fp:
to see this, note that if non-squares are not the sum of two squares, then the squares form a
subfield of Fp.

The consequence arises because the stabilizers of totally isotropic subspaces are parabolic
subgroups.

We often know that a subgroup H of G is contained in a member of X σ, and we want to find
all possible embeddings. We of course can run through all members of X σ, but some of them,
like the normalizer of a torus, are maximal while the quotient by the connected component
of the identity could contain a copy of our simple group, i.e., X/X0 is not soluble. The next
result states that, if an alternating group H is contained inside a member of X σ then H is
contained inside a connected parabolic or reductive subgroup, rather than inside a subgroup
like the normalizer of a torus, where H lies inside the Weyl group. In this lemma we leave out
the case where G = E7, and H = PSU3(3) in all characteristics and SL2(8) in characteristic 2,
but this does not mean that these are genuine counterexamples, merely that our methods do
not immediately cover it, and the author’s later results do not need these specific instances of
the lemma. (This improves on [20, Proposition 3.10].)

Lemma 1.12. Let H be a simple subgroup of a member X of X . Either there exists some
member Y of X such that H ≤ Y 0, or G = E7 and H = PSU3(3), or G = E7, p = 2, and
H = SL2(8).
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Proof. In [17] all maximal subgroups of positive dimension are found, and so it is easy to
see which members of X have X/X0 insoluble. If G = G2 or G = F4 then all subgroups X/X0,
which are subgroups of the Weyl group, are soluble, so the result holds.

If G = E6 then the only maximal subgroup X with X/X0 insoluble is the normalizer of the
torus, and as the Weyl group has PSU4(2) of index 2, we have that H is PSU4(2). If p = 2 then
H is a subgroup of NG(T ), and an easy calculation shows that H acts on Vmin as 1⊕ (6/14/6),
so H is contained in a line stabilizer. Outside of characteristic 2, NG(T ) is a non-split extension
and there is no such subgroup H of it. (This is easy to check by computer for some prime p,
and the extension to all primes is formal.)

For G = E7, we can have that X = NG(T ) or X = A7
1.PSL2(7). In the first case, the

Weyl group is 2× Sp6(2), and by [20, Lemma 3.9] we reduce to the case where H =
PSL2(8),PSU3(3),Sp6(2).

If H = Sp6(2), then again there is copy of H inside NG(T ) unless p = 2, in which case H is
a subgroup of NG(T ), and acts on Vmin as

1/(6, 1, 14)/(6, 6)/(1, 14)/6/1,

so it fixes a line on Vmin and therefore lies inside an E6 parabolic or D6 parabolic, as needed.
(Since the 1-cohomology of the reflection representation is 0 for p = 3, 5, 7 by an easy computer
calculation, there is only one class of complements to the torus in NG(T ).) The same is not
true for PSU3(3) and SL2(8) though, which have 1-dimensional 1-cohomology on this module
in characteristic 3.

If H = SL2(8) then the non-split extension of T by Sp6(2) restricts to a non-split extension
of T by H, so H is not a subgroup of NG(T ) for p odd.

We leave PSU3(3), and consider the subgroup X = A7
1.PSL2(7), which can be thought of

as A1 o PSL2(7) with PSL2(7) acting on seven points. The conjugacy classes of complements
in a permutational wreath product are in bijection with the homomorphisms from the point
stabilizer to the base group, in this case maps from Sym(4) to SL2(q). Of course, there are
exactly two of these, and both maps restrict to maps from Sym(4) to a maximal torus of
SL2(q), say T1. By the description in [10] – but see [9, p.208] for a clearer description – the
two conjugacy classes of complements in A1 o PSL2(7) intersect the two classes of complements
in T1 o PSL2(7), and hence if H = PSL2(7) then H can be chosen to lie in NG(T ), which has
already been dealt with. This completes the proof for E7.

Finally, let G = E8. If H is contained in NG(T ) then we are done by [20, Lemma 3.9], so
we may assume that H is contained in A1 oAGL3(2). There are two classes of simple subgroup
of this, both PSL2(7) of course, one transitive and one fixing a point. The one fixing a point
centralizes an A1 subgroup and lies in the reductive subgroup A1E7. The transitive one has
point stabilizer a Frobenius group of order 21, so again there are exactly two homomorphisms
from this to A1, both of which restrict to homomorphisms to T1, and so we again lie inside
NG(T ), so inside X0 for some X ∈X . This completes the proof.

We end this section with one obvious, but useful, result, which can be found in, for example
[8, Proof of Lemma 4.2]. The proof simply uses the fact that the two classes of involutions in
E8 in odd characteristic have centralizers A1E7 and D8.

Lemma 1.13. Let H be a perfect subgroup of G = E8 in characteristic p 6= 2, and suppose
that CG(H) contains an involution. Either H ≤ D8 or H ≤ A1E7. If H has no representation
of dimension 2 over F̄p then H is contained in either E7 or D8.
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2. Blocks with cyclic defect group

In this section we will summarize the theory of blocks with cyclic defect groups, at least as
much as is needed for our purposes. More details can be found in, for example [1] and [5]. This
includes the case where the Sylow p-subgroup of a finite group G is cyclic.

Throughout this section, G is a finite group and k is an algebraically closed field of
characteristic p, B is a block of kG with cyclic defect group D. The number of simple B-
modules is e, and (|D| − 1)/e, an integer, is the exceptionality of B. If D is a Sylow p-subgroup
then e = |NG(D)|/|CG(D)|. We will assume that e > 1.

To B we may associate a planar-embedded tree, the Brauer tree of B (technically it is
merely a ribbon graph, but a planar-embedded tree is easier to envisage), whose edges are
labelled by the simple B-modules, and whose vertices are labelled by the ordinary characters
of B. If the exceptionality of B is 1, then any two different ordinary irreducible characters
in B have different p-modular reductions, but if the exceptionality is n > 1 then there is a
unique p-modular reduction that occurs n times amongst all p-modular reductions of irreducible
characters, with all others occurring with multiplicity 1. The n vertices of the Brauer tree that
correspond to characters with the same p-modular reduction are identified and referred to as
the exceptional vertex.

If χ is an irreducible ordinary character of B then the Brauer characters that are constituents
of the p-modular reduction of χ occur with multiplicity 1. The edges incident to a given vertex
of the Brauer tree label the composition factors of the p-modular reduction of the corresponding
ordinary character.

We need to describe the embedding of the tree now. We order the vertices so that M and
N appear next to each other in clockwise order around some mutually incident vertex if and
only if Ext1(M,N) = k, and in all other cases Ext1(M,N) = 0.

In our case of alternating groups all Brauer trees are lines, and so the issue of the cyclic
ordering of edges around the vertices is not important. However, for arbitrary simple groups
the Brauer tree can be very complicated, and it is for this reason that we have defined the
general situation.

We now explain how to use the tree to construct the projective cover of each simple module
in B. If S is a simple B-module, corresponding to an edge in the tree with incident vertices
labelled by χ and φ, then χ+ φ is the projective character of S. Furthermore, the projective
cover P (S) has the following structure:

The top and socle of P (S) are both S. Removing both of these, the module splits as the
direct sum of two (possibly one is the zero module) uniserial modules M and N , corresponding
to the two incident vertices χ and φ respectively.

Write n for the exceptionality of χ if it is exceptional, and n = 1 otherwise. Starting from
S, write the edges appearing in clockwise order in n complete revolutions around the vertex χ.
For example, if there are four edges, S = S1, S2, S3 and S4 around χ, and n = 2, we get the
list

S1, S2, S3, S4, S1, S2, S3, S4.

Delete the first copy of S from the start: these are the radical layers of the uniserial module
M . The same process around φ produces N , and P (S) has structure

S/(M ⊕N)/S.

Notice that if the Brauer tree is a star (i.e., all but one vertex has valency 1) and the central
vertex is exceptional (if there is such a vertex), then all projective modules are uniserial. If G
is p-soluble then the Brauer tree of B is always a star with exceptional node in the centre.

The quotients of the projective modules give many indecomposable modules in B, and in
general, using the Green correspondence and the structure of the Brauer tree of blocks of
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p-soluble groups, it is easy to see that there are (|D| − 1)e non-isomorphic indecomposable
modules in B. Hence it is possible to list them all, and in particular know when we have all of
them.

If B is a block with Brauer tree a line, and with simple modules S1, S2,. . . , Se, listed in
order along the line, and with exceptionality 1, then the structure of the projectives is

P (Si) = Si/(Si−1, Si+1)/Si,

for 1 < i < e, and

P (S1) = S1/S2/S1, P (Se) = Se/Se−1/Se.

This yields obvious indecomposable modules Si, P (Si), Si/Si−1 (and its dual) and
Si/Si−1, Si+1 (and its dual) for all appropriate i. The remaining simple modules (up to duality)
have two socle layers, with socle

Si, Si+2, Si+4, . . . , Si+2m

and top

Si+1, Si+3, . . . , Si+2m±1,

for some m so that all indices are at most e. To construct these modules, we generalize in the
obvious way the construction of the module (S1, S3)/(S2, S4) obtained by taking the sum of
(S1, S3)/S2 and S3/S4 and taking the kernel of the appropriate diagonal homomorphism onto
S3. This process constructs all non-projective indecomposable modules, up to duality.

As our modules in the future will have many composition factors, we will suppress the
brackets between each socle layer to save space, and for example write S1, S3/S2, S4 for the
module above.

We quickly count the number of modules so obtained. We have e projective modules, e
simple modules, and for each 1 ≤ i ≤ e, exactly 2(e− i) non-simple indecomposable modules,
the above modules and their duals. This yields

2e+ 2

e∑
i=1

(e− i) = 2e+ e(e− 1) = e(e+ 1) = (|D| − 1)e,

as needed.
If the Brauer tree of B is a line, but this time the exceptionality of B is 2 and the exceptional

vertex is at the end of the Brauer tree of B, then we have exactly the same indecomposable
modules as above, except that Si = Se−i+1 for all i.

The Brauer tree of any block of any alternating group with cyclic defect group is always a
line, with exceptionality 1 or 2, and if it is 2 then the exceptional vertex lies at the end of the
tree, so this covers all cases.

To see that the Brauer trees for alternating groups are lines with exceptionality 1 or 2, If B
is a block of a symmetric group with cyclic defect group, then there are p ordinary characters
in B, and they are all real (all characters of symmetric groups are real), so the Brauer tree of
B must be a line, and the exceptionality is 1. The theory of so-called ‘foldings’ given by Feit in
[6], shows that the Brauer tree of a block of an alternating group must be a folding of a line,
which is a line with exceptionality 1 or 2, and with exceptional node (if it exists) at one end
of the tree.

One final point to make is the following lemma.

Lemma 2.1. Let B be a block with cyclic defect group, whose Brauer tree is a line, Suppose
that the exceptionality of B is 1, or it is 2 and the exceptional vertex has valency 1. If S is
a simple B-module and M is an indecomposable module with S as a composition factor but
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with no submodule or quotient isomorphic to S, then M = P (T ) for some T , and T and S
label edges that share a vertex of the Brauer tree. In particular, if S is the trivial module then
M is uniquely determined, and has the structure T/1, U/T for some simple B-module U .

Since we often want to prove that Vmin has a trivial submodule or quotient, such a lemma
is of tremendous importance.

3. Modules for alternating groups

In this section we summarize some information about modules for alternating groups. We
begin by giving in Table 7 all simple modules in all characteristics for all alternating groups
Alt(n) for 5 ≤ n ≤ 9, and for p = 2, 3. The first row is the principal block, the second row is
modules in the second block, and so on. The only exception to this is when we write ‘a and
b’, where these are two projective simple modules (hence appearing in different blocks) and
we have done so simply to save space. Here, the outer automorphism of Alt(n) induced by the
transposition (1, 2) in the symmetric group swaps all simple modules that are not self dual
with their duals, and swaps i1 and i2 for all i apart from 41 and 42 for Alt(6) in characteristic
2.

We also need to describe 1-cohomology for these simple modules if we want to apply
Proposition 1.9.

Proposition 3.1. Let 5 ≤ n ≤ 9, and p = 2, 3. If M is a simple module for Alt(n) in
characteristic p then H1(Alt(n),M) = 0 unless M appears in Table 8. Here, all 1-cohomologies
are 1-dimensional unless the module is in bold, in which case it is 2-dimensional.

For p = 5 and p = 7, the Sylow p-subgroups are cyclic and so we can simply describe the
Brauer trees. If there is an exceptional node we represent it by filling in the node. By χi we
mean an ordinary character of degree i. We start with p = 5.

For Alt(5), we have a principal block and a single projective simple module of dimension 5.

Group p = 2 p = 3

Alt(5) 1, 21, 22 1, 4
4 31 and 32

Alt(6) 1, 41, 42 1, 31, 32, 4
81 and 82 9

Alt(7) 1, 14, 20 1, 10, 10∗, 13
41, 42, 6 6, 15

Alt(8) 1, 4, 4∗, 6, 14, 20, 20∗ 1, 7, 13, 28, 35
64 21

45 and 45∗

Alt(9) 1, 81, 82, 20, 20∗, 26, 78 1, 7, 21, 35, 41
83, 48, 160 27, 189

162

Table 7. Simple modules in characteristics 2 and 3 for alternating groups
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χ1 χ4 χ3

1 3

For Alt(6) there is the principal block with the following Brauer tree, and three projective
simple modules, 51, 52 (not permuted by the Sym(6) outer automorphism, but are by the other
two) and 10.

χ1 χ9 χ8

1 8

For Alt(7) there is the principal block with the following Brauer tree, and four projective
simple modules, 10, 10∗, 15 and 35.

χ1 χ7 χ14 χ21 χ13

1 6 8 13

We also need the two dual faithful blocks of 3 ·Alt(7), which have the same structure.

χ6 χ24 χ21 χ24 χ21

6 18 3 21

For Alt(8), we have the principal block and a non-principal block with the two trees below,
plus five projective simple modules, 20, 35, 45, 45∗ and 70.

χ1 χ14 χ56 χ64 χ211

1 13 43 211

χ7 χ28 χ212

7 212

We now turn to p = 7. Of course, we only need to consider Alt(7) and Alt(8). For Alt(7),
apart from the principal block we have four projective simple modules, 141, 142 (not swapped
by the outer automorphism), 21 and 35.

χ1 χ6 χ15 χ10

1 5 10

For Alt(8), apart from the principal block we have nine projective simple modules, namely
7, 14, 211, 212, 21∗2, 28, 35, 56 and 70, with the outer automorphism swapping 212 and 21∗2.

χ1 χ20 χ64 χ45

1 19 45

Group p = 2 p = 3

Alt(5) 21, 22 4

Alt(6) 41, 42 4

Alt(7) 14, 20 10, 10∗, 13

Alt(8) 6, 14, 20, 20∗ 13, 35

Alt(9) 20, 20∗, 26, 78 7, 35, 41

Table 8. Simple modules with non-trivial 1-cohomology (bold indicates 2-dimensional)
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To end this section, we give a couple of facts about specific modules for Alt(5) and Alt(8)
in characteristic 2.

Lemma 3.2. Let M be a module for H ∼= Alt(5) in characteristic 2, and suppose that M
has no trivial submodules or quotients. If u ∈ H is an involution, suppose that u acts on M
with exactly a Jordan blocks of size 1, and there are exactly a+ 2b trivial composition factors
in M . There are at least 2a+ 3b composition factors of dimension 2 in M .

Proof. Firstly, the projective cover P (2i) has the form 2i/1/23−i/1/2i, and since we may
assume that H does not fix a line or hyperplane on M , it is a submodule of copies of P (21)
and P (22), together with copies of 4, which break off as they are projective. If M has five socle
layers then there must be a projective summand, and so we write M as U ⊕W , where U has
no projective summands and W is projective. Notice that U has at most three socle layers,
since it cannot have five by above, and if it had four then it would have a trivial quotient.

For U not to fix a line or hyperplane, U must have at least twice as many 2-dimensional
factors as trivials, so 2a. For W , P (1) is not a summand, and so we have copies of P (21) and
P (22), which have three 2is for each trivial composition factor. This proves the result.

Lemma 3.3. Let G = Alt(8) and k be a field of characteristic 2. Suppose that M is a
kG-module with no composition factors of dimension 20. If M has no trivial submodules or
quotients, and M has n trivial composition factors, then M also has composition factors of
either 14n, 6n+1 or 14n+1, 6n.

Proof. Since Ext1(1, 4) = Ext1(1, 4∗) = 0, we can remove any 4s and 4∗s from the top and
bottom of M , so that M is a submodule of a sum of P (6) and P (14).

Of course, we can perform the same reductions to the top as well, so we can assume that
this submodule has top consisting entirely of 6s and 14s. We therefore examine the largest
submodules of P (14) and P (6) containing no 20s or 20∗s. For P (14) this has a single trivial
composition factor, and the smallest submodule containing it with no trivial quotient is

14/1, 6/14,

which satisfies the statement, and for P (6) the module has exactly two trivial composition
factors, and so we need to examine this. The smallest submodule containing both trivials and
with no trivial quotient is given by the following diagram.

6

6

1

1

6

14

14
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Since there are no uniserial modules 6/1/6 or 14/1/6, the statement clearly holds for
submodules with a single trivial factor. As M contains a diagonal submodule of one of these
as a submodule, the statement holds for M .

4. Alternating subgroups in positive-dimensional subgroups

In this section we classify the possible composition factors of H ∼= Alt(n) on Vmin and
L(G) for G = F4, E6, E7, E8 in characteristic 2, for n = 7, 8, 9. This is particularly useful when
attacking Alt(8) and Alt(9), because there are many possible sets of composition factors (i.e.,
consistent with the traces of semisimple elements) that do not actually occur. We establish the
base case of the induction in Theorem 4 by showing that every Alt(7) occurs in a positive-
dimensional subgroup, hence easily classifiable. We then restrict the composition factors for
Alt(8) and Alt(9) to Alt(7) to cut down substantially on the amount of work we have to do in
later sections to prove Theorem 5.

Proposition 4.1. Let G be one of F4, E6, E7 and E8 in characteristic 2, and let H ∼=
Alt(7).

(i) If G = F4 then the possible composition factors of H on Vmin and L(G) are as follows:

Vmin L(G)

6, (4, 4∗)2, 14 14, 63, (4, 4∗)2, 14

14, 62 14, 63, (4, 4∗)2, 14

(ii) If G = E6 then the possible composition factors of H on Vmin and L(G) are as follows:

Vmin L(G)

6, (4, 4∗)2, 15 14, 64, (4, 4∗)4, 18

14, 62, 1 142, 65, (4, 4∗)2, 14

15, 6′, 6′ 20, 14, 64, (4, 4∗)2, 14

(The first two are embeddings of Alt(7) into E6, the last is 3 ·Alt(7) ≤ E6.)
(iii) If G = E7 then the possible composition factors of H on Vmin and L(G) are as follows:

Vmin L(G)

62, (4, 4∗)4, 112 14, 66, (4, 4∗)8, 119

142, 64, 14 144, 69, (4, 4∗)2, 17

68, 4, 4∗ 148, 6, 115

(iv) If G = E8 then the possible composition factors of H on L(G) are as follows:

L(G)

14, 610, (4, 4∗)16, 146

148, 617, (4, 4∗)2, 118

204, 144, 68, (4, 4∗)7, 18

204, 1410, 62, 4, 4∗, 18
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Proof. There is no embedding of H ∼= Alt(7) into subgroups of type A1, A2, B2 and G2, and
so if we see these factors in an algebraic group we can remove them. Since we only considering
the sets of composition factors we may replace parabolic subgroups by their Levis, and so may
assume that X, a positive-dimensional subgroup of G, is a product of simple groups not of
type A1, A2, B2 and G2.

Inside F4, we know that there are five potential sets of composition factors by [20], each
of which lies inside a positive-dimensional subgroup by Theorem 4. Let X be a maximal such
subgroup: if X = B4 then we can embed H as 4, 4∗, 1 or 6, 13 on the natural, both of which
yield 6, (4, 4∗)2, 14 on Vmin and 14, 63, (4, 4∗)2, 14 on L(G).

If X = C4 then there are two sets of composition factors on the natural, namely 4, 4∗ and
6, 12, both of which yield 14, 62 on L(λ2) (which is the restriction of Vmin to X), and these
factors determine the action on L(G). Since H 6≤ A2Ã2 this case need not be considered.

The only Levi subgroups that can be considered are B3 and C3, which lie in B4 and C4

respectively, and so we are done.

For G = E6, since H must fix a line on Vmin we have that H ≤ F4 or H ≤ D5. If H ≤ F4

then we know the answer, and if H ≤ D5 then the factors on the natural are 6, 14 or 4, 4∗, 12;
in either case, H fixes a line on the natural, so that H ≤ B4, but this is contained in F4 and
we are done.

We could also haveH ∼= 3 ·Alt(7) contained in E6 with centres coinciding. By the appropriate
table in [20] we see that the composition factors on Vmin have dimensions 15, 6, 6, and this
means that H must lie in the A5 Levi subgroup, acting irreducibly on the natural module. The
composition factors of this embedding on L(G) are easily calculable (as they are two copies of
Λ3(M) and one of M ⊗M∗, where M is the natural module for the A5), and are as appear in
the table above.

For G = E7, H ∼= Alt(7) either fixes a line on Vmin or has composition factors 68, 4, 4∗, by
[20]. The line stabilizers are contained in an E6 parabolic or are subgroups q1+32(q − 1)B5(q),
which acts on Vmin with composition factors 32, 112, 12. Since the non-trivial irreducibles for
H have even dimension, we get in the latter case that H fixes a line on the 11 so lies inside
D5 ≤ E6 anyway. We therefore get those inherited from E6, which are the first two rows of the
table. For the final row, this is the case stated above: if H is embedded as 4⊕ 4 inside the A7

maximal-rank subgroup then it acts on Vmin as the sum of Λ2(4)⊕2 ⊕ 4⊗ 4 and its dual, but
this is 6⊕2 ⊕ 6/4/6, as needed.

For G = E8, we know that H lies inside a positive-dimensional subgroup, so we consider the
maximal such subgroups X, which are given in [17]. Using Lemma 1.12 we can exclude those
subgroups X ∈X with X0 ≤ Y for some other Y ∈X , for example the normalizer of a torus.

We can remove any quotient from X that does not contain a copy of Alt(7), so for example
replace (D2

4).(Sym(3)× 2) by D2
4.

If H lies in X = E7 then we get the first two cases, as the second and third case for E7 yield
the same factors for E8. Thus we may assume that H does not lie inside E7. This eliminates
the E7A1, E6A2 and F4G2 reductive subgroups.

For X = A8, we must have H ≤ A8 since the faithful irreducible modules for 3 ·Alt(7) have
dimensions 6, 15 and 24. We can embed Alt(7) inside A8 with factors

42, 1 4, 4∗, 1 6, 13, 4, 15.

These result in composition factors on L(G) of

204, 144, 68, (4, 4∗)7, 18, 204, 144, 68, (4, 4∗)7, 18, 148, 617, (4, 4∗)2, 118, 14, 610, (4, 4∗)16, 146,
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respectively.
For X = D8, we run through the possible actions of H on the natural 16, noting that it

cannot have more than three trivial composition factors on this module as else it would lie
inside D6 ≤ E7. There are only three possibilities, namely

(4, 4∗)2, 6, 4, 4∗, 12, 14, 12.

Using the traces of elements of orders 3, 5 and 7, and comparing them with the nine classes
of elements of order 3, the 53 classes of elements of order 5, and the 209 classes of elements of
order 7 from D8, we find that the composition factors on L(λ7) are determined uniquely for
the second and third embeddings, but there are two possibilities for the first embedding.

Factors on L(λ1) Factors on L(λ2) Factors on L(λ7)

(4, 4∗)2 144, 68, 4, 4∗, 18 204, (4, 4∗)6 or 144, 69, 4, 4∗, 110

6, 4, 4∗, 12 202, 142, 64, (4, 4∗)3, 14 202, 142, 64, (4, 4∗)4, 14

14, 12 202, 144, 62, 4, 4∗, 14 202, 146, 14

The sum of the second and third columns give the action on L(G), which contributes the
last line to the table in the result.

For X = A4A4, the only action of H on a 5-space is as 4⊕ 1 (or 4∗ ⊕ 1), and so H ≤ A3A3 ≤
A8, so we have already done this case.

For the maximal Levi subgroups, they are

D7, A7, A1A6, A1A2A4, A4A3, D5A2, E6A1, E7,

and after removing A1s and A2s, these are contained within D8, A8, A8, A8, A4A4, E7, E7 and
E7 respectively, so we have gone through the complete list of maximal positive-dimensional
subgroups of G.

Proposition 4.2. Let G be one of F4, E6, E7 and E8 in characteristic 2, and let H ∼=
Alt(8).

(i) If G = F4 then the possible composition factors of H on Vmin and L(G) are as follows:

Vmin L(G)

6, (4, 4∗)2, 14 14, 63, (4, 4∗)2, 14

14, 62 14, 63, (4, 4∗)2, 14

(ii) If G = E6 then the possible composition factors of H on Vmin and L(G) are as follows:

Vmin L(G)

6, (4, 4∗)2, 15 14, 64, (4, 4∗)4, 18

14, 62, 1 142, 65, (4, 4∗)2, 14

(iii) If G = E7 then the possible composition factors of H on Vmin and L(G) are as follows:

Vmin L(G)

62, (4, 4∗)4, 112 14, 66, (4, 4∗)8, 119

142, 64, 14 144, 69, (4, 4∗)2, 17

68, 4, 4∗ 148, 6, 115
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(iv) If G = E8 then the possible composition factors of H on L(G) are as follows:

L(G)

14, 610, (4, 4∗)16, 146

148, 617, (4, 4∗)2, 118

(20, 20∗)2, 144, 68, (4, 4∗)7, 18

642, 20, 20∗, 144, 62, 4, 4∗, 14

Proof. By the construction of the Alt(7)s inside G = F4, E6, E7 and E8, for each set of
composition factors there is an Alt(7) representing these factors that extends to an Alt(8)
inside G. We need to determine the composition factors of that extension.

Notice that the restrictions to Alt(7) of all but one of the simple Alt(8)-modules are simple,
and are unique except that 20 and 20∗ both restrict to the same module. The last module is
64, and the restriction to Alt(7) has factors 20, 143, 12.

Thus if Alt(7) extends to H ∼= Alt(8) and does not have 20 as a composition factor on a
module M , then the composition factors of the Alt(8) on M are uniquely determined. This
completes the list for G 6= E8, and for two entries for G = E8.

Notice that, since L(G) is self dual, we cannot have an odd number of 64s as then we
would be left with an odd number of 20s in L(G) ↓H . This deals with the third possibility
for the action of Alt(7) on L(G) given in Proposition 4.1. We are left with Alt(7) acting as
204, 1410, 62, 4, 4∗, 18, which can act as either

(20, 20∗)2, 1410, 62, 4, 4∗, 18 or 642, 20, 20∗, 144, 62, 4, 4∗, 14.

Using the traces of semisimple elements of order up to 15, the potential set of composition
factors for Alt(8)s inside E8 is

148, 617, (4, 4∗)2, 118, 20, 20∗, 146, 610, (4, 4∗)7, 18, (20, 20∗)2, 144, 68, (4, 4∗)7, 18,

64, 20, 20∗, 145, 66, (4, 4∗)4, 16, 64, (20, 20∗)2, 143, 64, (4, 4∗)4, 16, 642, 20, 20∗, 144, 62, 4, 4∗, 14,

642, (20, 20∗)2, 142, 4, 4∗, 14, 14, 610, (4, 4∗)16, 146.

Only one of the two possibilities we generated above is on this list, and so we are done.

This proposition does not require the case n = 8 from Theorem 5 to prove it and so it can
be used in the proof of Theorem 5.

Similarly, the next proposition does not require the n = 9 case of Theorem 5.

Proposition 4.3. Let G be one of F4, E6, E7 and E8 in characteristic 2, and let H ∼=
Alt(9).

(i) If G = F4 then the possible composition factors of H on Vmin and L(G) are as follows:

Vmin L(G)

81, 82, 83, 1
2 26, 81, 82, 83, 1

2

26 26, 81, 82, 83, 1
2

(ii) If G = E6 then the possible composition factors of H on Vmin and L(G) are as follows:
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Vmin L(G)

81, 82, 83, 1
3 26, 821, 8

2
2, 8

2
3, 1

4

26, 1 262, 81, 82, 83, 1
2

(iii) If G = E7 then the possible composition factors of H on Vmin and L(G) are as follows:

Vmin L(G)

821, 8
2
2, 8

2
3, 1

8 26, 841, 8
4
2, 8

4
3, 1

11

262, 14 264, 81, 82, 83, 1
5

(iv) If G = E8 then the possible composition factors of H on L(G) are as follows:

L(G)

26, 881, 8
8
2, 8

8
3, 1

30

268, 81, 82, 83, 1
16

264, (20, 20∗)2, 851, 8
2
2, 1

8

482, 264, 853, 1
8

48, 262, (20, 20∗)2, 831, 8
3
2, 8

2
3, 1

4

(Here, 81 and 82 are swapped under the outer automorphism of Alt(9).)

Proof. Since Alt(9) ≤ F4(2) by, for example, [16] (see also [20]), we consult the tables in
[20] to find its composition factors, and see that there are two classes swapped by the graph
automorphism. These classes propagate through E6 and E7, and using [20] we see that there
are no more possible sets of composition factors, completing the proof for these groups. Hence
G = E8.

If H ≤ X = E7 then we get the first two lines of the tables in the proposition, so we may
assume that H is not contained in E7.

If H ≤ A8 then as 81 and 82 are swapped by the outer automorphism of H, so we get that
H acts on the natural module with factors either 81, 1 or 83, 1: these yield

264, (20, 20∗)2, 851, 8
2
2, 1

8, 482, 264, 853, 1
8

on L(G), yielding the next two rows.
The only other positive-dimensional subgroup in which H can lie is D8. If H acts on the 16

with eight trivial factors then H ≤ D6 ≤ E7, so we may assume that the factors on the 16 are
8i, 8j .

Examining the table in [20], and using Proposition 4.2, we can determine the potential sets
of composition factors that can occur, given their restrictions to Alt(8) must exist. As well as
those already found, there are two more:

782, 48, 20, 20∗, 14, 48, 262, (20, 20∗)2, 831, 8
3
2, 8

2
3, 1

4.

The exterior square of 8⊕2i is 264, 8i, 1
8, and so cannot be either of the two remaining sets of

composition factors. The other cases are 81 ⊕ 82 and 81 ⊕ 83: their exterior squares are

Λ2(81 ⊕ 82) = 48, 262, 823, 1
4, Λ2(81 ⊕ 83) = 262, 20, 20∗, 81, 8

2
2, 1

4.

This means the first case cannot occur in any positive-dimensional subgroup. To see whether
the second can occur we simply compute its Brauer character and compare it to that produced
by 81 ⊕ 82 and 81 ⊕ 83, computing traces using the program for semisimple elements in [19].
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There are 650 classes of semisimple elements of order 9 and 9375 of order 15 in D8. Using the
traces of these elements it is possible to construct the Brauer character of H on L(G). If H acts
as 81 ⊕ 82 on the natural then there are two options for the Brauer character on L(G), arising
from the modules 482, 264, 853, 1

8 and 48, 262, (20, 20∗)2, 831, 8
3
2, 8

2
3, 1

4. For 81 ⊕ 83 we have again
two possible characters on L(G), arising from 48, 262, (20, 20∗)2, 831, 8

3
2, 8

2
3, 1

4 again and also
264, (20, 20∗)2, 851, 8

2
2, 1

8 this time.
Now suppose that H does not lie in a positive-dimensional subgroup of G. We are still yet to

find the single case from [20] allowed by Proposition 4.2 but not in any positive-dimensional
subgroup. Since H1(H,M) has dimension 2 for M = 26, dimension 1 for M = 20, 20∗, 78, and
0 otherwise, the first of the two options above has a trivial submodule Proposition 1.9, and so
lies inside a positive-dimensional subgroup of G, a contradiction.

5. Alt(5)

There are four possibilities for primes p when H is Alt(5): p = 2, 3, 5 and primes larger than
5. Recall our assumption that E6 and E7 are used to denote the simply connected forms, so
that Z(E6(q)) and Z(E7(q)) have orders gcd(3, q − 1) and gcd(2, q − 1) respectively.

Proposition 5.1. Suppose that p 6= 2, 3, 5.

(i) If G = F4 then there is a unique conjugacy class of subgroups isomorphic to Alt(5) that
fixes a line on neither Vmin nor L(G). This is contained in the A2Ã2 subgroup, and
hence is not maximal.

(ii) If G = E6, E7, and H ∼= Alt(5), then H fixes a line on either Vmin or L(G), and hence
is not maximal.

(iii) If G = E7 and H ∼= 2 ·Alt(5) with Z(H) = Z(G), then either H fixes a line on L(G) or
then H fixes a 2-space on Vmin and Vmin ↓H is not Out(H)-stable, and hence H is not
maximal.

(iv) If G = E8 then there is a unique conjugacy class of subgroups isomorphic to Alt(5) that
does not fix a line on L(G). It is contained in a D8 subgroup, and hence is not maximal.

Proof. In [20] we find tables of all possible sets of composition factors for embeddings of
H ∼= Alt(5) into G = F4, E6, E7 and E8 for p > 5, which immediately proves (ii) by Lemma
1.4 (as H must act semisimply on L(G) and Vmin). If we embed 2 ·Alt(5) into the simply
connected version of E7 with centres coinciding, then there is a single possibility that has no
trivial composition factors on L(G) from [20, Table 6.137], and that has two isomorphic 2-
dimensional composition factors, but not their Frobenius twists, so that H stabilizes a 2-space
inside Vmin and so is not maximal by Lemma 1.4; this proves (iii). (The condition of Out(H)-
stability is there to prove that in this case there is no almost simple subgroup with socle H
being maximal in an almost simple group of type E7, via Lemma 1.5(iii).)

For (i) and (iv), so G is one of F4 and E8, we need to consider those possible embeddings
of H into G with no trivial composition factors on either Vmin or L(G). In this case, there are
only two cases to consider: one in E8 and one in F4.

For G = E8, the fixed-point-free embedding was proved to be unique by Lusztig [21] and
contained in D8 by [7, Table 7.6] (it is pattern 844). For G = F4, this is proved to not be
maximal by Lemma 16.4 of [22], and indeed is unique by [7, Table 4.18]. It can be found inside
the A2Ã2 subgroup, acting irreducibly along both factors as different 3-dimensional modules.
This completes the proof.
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Proposition 5.2. Suppose that p = 5. If G is one of F4, E6, E7 and E8, and H is Alt(5),
or H is 2 ·Alt(5) for G = E7 with Z(H) = Z(G), then H fixes a line on either Vmin or L(G),
and hence is not maximal.

Proof. For p = 5 we have the Brauer tree in Section 3, and Lemma 2.1 states that the only
indecomposable module for H that has trivial composition factors but no trivial submodules
or quotients is P (3), which has composition factors 33, 1. Thus if M is any module for H
in characteristic 5 with fewer than three times as many 3s as 1s, then M has a trivial
submodule or quotient. We now prove that this always occurs for Vmin or L(G). (Since this is
a defining-characteristic embedding of Alt(5) = PSL2(5) the possible composition factors are
not tabulated in [20].)

The traces of t = (1, 2)(3, 4) and x = (1, 2, 3) on the three irreducible modules are as follows:

Dimension of M Trace on t Trace on x

1 1 1
3 −1 0
5 1 −1

For F4 the traces of t and x are given in Lemma 1.6, and this yields the following possible
sets of composition factors for H acting on Vmin:

36, 18, 5, 37, 53, 33, 12.

Since we need at least three times as many 3s as 1s, else we fix a line, we see that the first and
third case clearly fix a line on Vmin, leaving us with the second case. In this case the trace of t
on Vmin is −6, so the trace of t on L(G) is 20, whence H has at least twelve trivial composition
factors, so we need at least thirty-six 3-dimensional factors to avoid fixing a line, but this is
more than 52 = dim(L(G)), so that H fixes a line on L(G).

For E6 the traces of the elements on Vmin are 1 more than for F4 (as the conjugacy classes of
Alt(5) are real and therefore lie inside F4), so we end up with the composition factors above,
or no trivial composition factors at all, but this is impossible. The first and third case fall as
before, and in the second case we switch to L(G), on which t has trace 14. Since the trace of
x on Vmin is 0, on L(G) it is −3 or 6. This gives composition factors of H on L(G) as either
511, 35, 18 or 58, 38, 114, and we again see that H fixes a line on L(G).

For G = E7 the trace of an involution is ±8 and the trace of an element of order 3 is one of
−25, −7, 2 and 20. This yields four possible sets of composition factors for Vmin ↓H , namely

312, 120, 52, 314, 14, 59, 33, 12, 56, 36, 18.

Of these, only the second could potentially not fix a line on Vmin, and in this case the trace of
an involution on L(G) must be 5, and the trace of an element of order 3 on L(G) is either −2
or 7, whence the composition factors of L(G) ↓H are

513, 319, 111 or 510, 322, 117.

In either case, H clearly fixes a line on L(G).
The remaining possibility is that H ∼= 2 ·Alt(5) embeds inside G = E7 with Z(H) = Z(G).

The faithful simple modules for H are of dimension 2 and 4, on which x acts with trace −1
and 1 respectively. Since the trace of x on Vmin is one of −25,−7, 2, 20, we cannot have the
last case, but the rest yield

4, 226, 47, 214, 410, 28.
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As with the case of Alt(5), only a projective module can have a 2-dimensional composition
factor but no 2-dimensional submodule or quotient, and since P (4) has structure 4/2/4, we
need at least twice as many 4s as 2s not to fix a 2-space on Vmin. This clearly never happens,
and so we are never maximal for p = 5 and G of type E7.

For E8 the trace of an involution on L(G) is 24 or −8 and the trace of an element of order
3 on L(G) is one of −4, 5, 14 and 77. This leads to seven possible sets of composition factors
(since we cannot simultaneously have traces of −8 and 77) and we have

528, 328, 124, 525, 331, 130, 522, 334, 136, 520, 344, 116,

517, 347, 122, 514, 350, 128, 5, 355, 178.

Although the fourth possibility gets close to the limit, it still must fix a line, and hence H
always fixes a line on L(G), as needed.

Proposition 5.3. Suppose that p = 3. If G = F4, E6, E7, E8 and H ∼= Alt(5) or G = E7

and H ∼= 2 ·Alt(5) with Z(H) = Z(G), then H fixes a line on the simple module L(G).

Proof. Proposition 3.1 and Lemma 2.1 can be used (together with the fact that the Sylow 3-
subgroup is cyclic) to see that the only indecomposable module with a trivial composition factor
but no trivial submodule or quotient is the projective module P (4), which has composition
factors 42, 1. Thus if M is any module for H in characteristic 3 with fewer than twice as many
4s as 1s, then M has a trivial submodule or quotient. We can now consult the tables in [20]
to see whether, for G = F4, E6, E7, E8, there are any such sets of composition factors. We see
that H always fixes a line on L(G) for F4, E6 (remember to remove a single trivial as L(G) is
not simple) and E7 (and in most cases fixes a line on Vmin as well), and always fixes a line on
L(G) for G = E8. We must also consider 2 ·Alt(5) inside E7 with Z(H) = Z(G), and here we
fix a line on L(G) also.

Proposition 5.4. Suppose that p = 2.

(i) If G = F4, E6, E7 and H ∼= Alt(5) then H fixes either a line or a 2-space on Vmin, and
hence is not maximal.

(ii) If G = F4, E6, E7 and H ∼= Alt(5) with Vmin ↓φH= Vmin ↓∗H for φ a generator of Out(H),
then H fixes a line on Vmin.

(iii) If G = E8 and H ∼= Alt(5) then H fixes a line on L(G).

Proof. The modules for H have dimension 1, 2, 2 and 4, and there are semisimple elements
x of order 3 and y of order 5. The two modules of dimension 2 are swapped by the outer
automorphism of H.

If V is a module for H whose Brauer character is Out(G)-stable, then V has factors 1, 4 and
21 ⊕ 22 = 42. Each of these has a rational trace for an element of order 5, and there is a unique
rational class of semisimple elements of order 5 in each of F4, E6 and E7. These have traces
1, 2 and 6 respectively on Vmin, and together with the possible traces of elements of order 3,
yields very few possible sets of composition factors for Vmin ↓H , namely

44, 42, 1
7, and 4, 442, 1

7

for E6 and these with one trivial removed for F4, and

48, 422, 1
16, and 482, 4

2, 116
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for E7. If G = E7 then these have non-positive pressure and so H always fixes a line on Vmin. If
G = F4, E6 then we have six and seven trivial modules respectively, and from [11] we see that
an involution acts with at least two and three blocks of size 1 respectively, so from Lemma 3.2
we see that we need at least ten and twelve composition factors of dimension 2 not to fix a line
on Vmin, and we have at most eight. This completes the proof of (ii).

For (i), this is easy: as 4 is projective it breaks off, and so the only way that H does not
stabilize a 1- or 2-space on a module V is if V ∼= 4⊕m for some m. But then the trace of an
element of order 5 on V is −m < 0, so this is not true for Vmin as we stated above the trace of
u = (1, 2, 3, 4, 5) if it is rational.

We thus move to G = E8. There are four and fourteen classes of elements of order 3 and
5 respectively, and this yields many possibilities for the composition factors of H on L(G).
Using a computer we can list them all, and by Lemma 3.2 we firstly need that there are more
2-dimensional factors than trivials, else we certainly fix a line.

By [11, Table 9], we see that t in H acts with at least eight blocks of size 1, and so if
there are 8 + 2b trivial composition factors, we use Lemma 3.2 to see that we need at least
16 + 3b composition factors of dimension 2. We now check in each case that there are fewer
2-dimensional factors than this, proving that H always fixes a line on L(G), as needed.

For the next section, we want to understand copies of H ∼= Alt(5) inside G = E7 in
characteristic 3 with specific composition factors on the minimal module.

Lemma 5.5. Let p = 3. If H ∼= Alt(5) is a subgroup of G = E7 with composition factors
46, 361, 3

4
2, 1

2 on Vmin, then H is contained in an A6-parabolic subgroup of G and and the action
of H on L(G) has P (1)⊕3 as a summand.

Proof. Let H be embedded in G with those factors. The action of x = (1, 2, 3) on Vmin must
have at least sixteen blocks of size 3, whence it is 318, 12 by [11, Table 7], and the only way
this can work is if H embeds as

(4/1/4)⊕2 ⊕ 3⊕61 ⊕ 3⊕42 ⊕ 4⊕2.

Since we know that H lies in a positive-dimensional subgroup, we run through the list of
maximal connected subgroups from [17] and see how many embeddings we can find.

Suppose that H is contained in the A6-parabolic subgroup X of G: this acts on Vmin with
composition factors 7, 7∗, 21, 21∗, where 7 is the natural module and 21 its exterior square,
and 7 is a submodule. Since 7 is a submodule of Vmin ↓X , H cannot fix a line on the natural
module, and so the only embedding can be as 4⊕ 31 (or 4⊕ 32). The action of X on L(G) has
7⊗ 7∗, Λ3(7) and Λ3(7∗) as factors, and it is easy to check that all three of these have a copy
of 1/4/1 = P (1) as a summand, so the result holds if H is contained in an A6-parabolic.

We now check the other parabolics: since H does not fix a line on Vmin, it does not lie in
the E6 parabolic. The D5A1 parabolic has two 2-dimensional composition factors on Vmin,
so not compatible with the composition factors of H. For the A1A5 parabolic X, notice that
both (0, λ1) and (1, λ1) are composition factors of Vmin ↓X , so in fact H is contained in the A5

parabolic, which is in the A6 parabolic, so done. If H lies inside the A2A4 parabolic then, as
it cannot act irreducibly on a 5-dimensional module it must fix a line or hyperplane, hence lie
inside A2A3, which is contained inside the A6 parabolic again. A similar argument kills off the
A1A2A3 parabolic.

If X is the D6 parabolic, then H cannot fix a line on the natural module, since the action of
X on Vmin is 12/32/12. Computing with the involutions and the thirty-four classes of elements
of order 5, one sees that 3⊕31 ⊕ 32 is the only possibility for the restriction of the 12 to H.
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We can therefore apply Lemma 1.11 to find that the image of H in D6 lies inside a parabolic
subgroup, hence H lies inside a different parabolic subgroup of G, but all other parabolics have
been dealt with.

Having proved the result for parabolics, we move on to reductive maximal subgroups, starting
with the maximal-rank subgroups.

If X is the A7 maximal-rank subgroup then H embeds as either Alt(5) or 2 ·Alt(5) in the
natural module for SL8. In the former case, if H fixes a line or hyperplane if lies inside an
A6-parabolic, considered before, and the only other case if 4⊕ 4, but Λ2(4⊕ 4) has a trivial
submodule, and this is a summand of Vmin ↓H . If 2 ·Alt(5) embeds in SL8 then, as the faithful
simple modules for 2 ·Alt(5) have dimension 2 and 6, it either has a 2-dimensional submodule
or quotient, whence its exterior square has a trivial submodule or quotient, not permitted.

For X = A2A5 it must act irreducibly as 31 along the A2 factor and cannot fix a line along
the A5 factor, else it would be inside the A2A4 parabolic. This means it must act as 3i ⊕ 3j
along the A5 factor: this however means that either i = j = 2 or H fixes a line on (10, 1000),
which is a submodule of Vmin ↓X . If i = j = 2 though, we have that 4/1/4 appears four times
in Vmin ↓H , which is not allowed either.

For X = A1D6, if H embeds in the D6 factor we are done, whence H acts irreducibly along
the A1 factor, say as 21 on its natural module. Since the summands of Vmin ↓X are the spin
module for the D6 factor and the product of the natural modules for A1 and D6, this means
that H embeds as 2 ·Alt(5) when acting on the natural for the D6, with composition factors
21, 22 and 6. Since x = (1, 2, 3) acts as 318, 12 on Vmin, it must act projectively on the 24-
dimensional summand of Vmin ↓X , hence its projection along D6 acts projectively on the 12.
Thus the projection of H along D6 acts with summands from the list

21/22/21, 22/21/22, 6,

i.e., the faithful projectives for 2 ·Alt(5). The first is not possible as H would then fix a line
on Vmin as 2⊗21 would be a submodule. If H embeds as the sum of two isomorphic 6-spaces
then since F9 must be a subfield of our field of definition, else Vmin ↓H is not definable, −1 is a
square in our field, so Lemma 1.11 applies and the projection of H stabilizes a totally isotropic
6-space, thus lies inside one of the two A5-parabolics of D6; this means that H is contained
inside A7 or A2A5, examined before. Thus the projection of H along D6 acts on the natural
module as 22/21/22 ⊕ 6, but this does not fix an orthogonal form, completing the result for
this group.

Now for the other maximal connected reductive subgroups: for A1F4, since Z(F4) = 1 H
cannot act along the A1 factor and so must lie inside the F4 factor, but this is contained in
E6, which is not allowed. For A1G2 we again get that H is contained in the G2, and this time
G2 ≤ A6, as was seen in [23, pp.33–35], so this case is also done.

Finally, for H ≤ X = G2C3, the summands of Vmin ↓X are (10, 100) and (00, 001), and one
has that the exterior cube of L(100) is the sum of L(100)⊕ L(001). To embed H into C3 we
need to choose a 6-dimensional module: 31 ⊕ 32, 1/4/1, 4⊕ 1⊕2 and 3i ⊕ 1⊕3 do not support
symplectic forms (the quickest way to see this is to note that they are not summands of their
exterior cubes) and 3⊕21 has four trivial submodules on its exterior cube, so not correct. Thus
H does not embed into X, completing the proof.

6. Alt(6)

The cases under consideration are p = 2, 3, 5 and primes larger than 5. We continue our
assumption that E6 and E7 are used to denote the simply connected forms, so that Z(E6(q))
and Z(E7(q)) have orders gcd(3, q − 1) and gcd(2, q − 1) respectively.
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For p 6= 2, 3, 5, in Theorem 3 we say nothing, so we will not give a formal proposition here,
and just list those entries from [20] that are fixed-point free on both Vmin and L(G).

For F4 there is one possibility that fixes no line on either Vmin or L(G), and this acts as
92, 81 and 102, 81, 8

3
2 on Vmin and L(G) respectively.

For G = E6, there is a single set of factors for Alt(6)s that fix lines on neither module, and
these have factors 9, 81, 51, 52 and 102, 92, 821, 8

3
2 on Vmin and L(G) respectively.

For 3 ·Alt(6) embedding into E6 with centres coinciding, there is only one possibility whose
image in L(G) does not fix a line, and this acts as 92, 6, 3 on Vmin, so stabilizes a 3-space on
Vmin, hence not maximal in G by Lemma 1.4, although we don’t consider almost simple groups
with socle Alt(6) inside almost simple groups with socle E6.

For E7 there is a single example, acting as 104, 821 on Vmin and as 102, 93, 841, 8
3
2, 5

3
1, 5

3
2 on

L(G), which exists inside the A7 subgroup, but there might be other classes.
For 2 ·Alt(6) inside E7 with the centres coinciding, there is (up to outer automorphism) a

single possible action on Vmin of 823, 1032, 103, acting on L(G) as 105, 93, 841, 8
3
2.

For Alt(6) inside E8, there are four potential collections of composition factors for L(G) ↓H
with no fixed points, namely (up to an outer automorphism that swaps 51 and 52)

1010, 96, 841, 8
4
2, 5

6
1 1010, 96, 841, 8

4
2, 5

3
1, 5

3
2, 108, 98, 861, 8

6
2, 108, 94, 871, 8

7
2, 5

2
1, 5

2
2.

Since we prove specific things about other primes, we now switch to formal propositions, as
with the previous and later sections.

Proposition 6.1. Suppose that p = 5.

(i) If G = F4, E6 and H ∼= Alt(6) then H fixes a line on Vmin, and hence is not maximal.
(ii) If G = E6 and H ∼= 3 ·Alt(6) with Z(H) = Z(G) then either H fixes a line on L(G) or

Vmin ↓H has exactly one of a semisimple submodule of dimension 12 and a semisimple
quotient of dimension 12, and in particular satisfies the conditions for non-maximality
of Lemma 1.5(iii) in an almost simple group with socle E6.

(iii) If G = E7 and H ∼= Alt(6) then either H fixes a line on L(G) or Vmin ↓H and L(G) ↓H
are

10⊕4 ⊕ 8⊕2 and 10⊕2 ⊕ 5⊕31 ⊕ 5⊕32 ⊕ P (8)⊕3 ⊕ 8.

(iv) If G = E7 and H ∼= 2 ·Alt(6) with Z(H) = Z(G) then either H fixes a line on L(G) or
Vmin ↓H and L(G) ↓H are

10⊕32 ⊕ 103 ⊕ 41/42 ⊕ 42/41 and 10⊕51 ⊕ P (8)⊕3 ⊕ 8.

(v) If G = E8 and H ∼= Alt(6) then H fixes a line on L(G).

Proof. From the Brauer tree in Section 3, and Lemma 2.1, the appropriate module is the
projective cover of 8, which is 8/1, 8/8, and so we need at least three times as many 8s as 1s.
We can go through the tables in [20] to see if this is the case. For F4 we are therefore done
using Vmin or L(G), and for E6 we are done using Vmin. If H ∼= 3 ·Alt(6) however, we can have
the action of H on L(G) having factors 102, 87, 12, with all other cases fixing lines on L(G).
In this case we need P (8)⊕2 in L(G) ↓H , and the 102 are projective, leaving 8 remaining. This
yields an action of H on L(G) of 10⊕2 ⊕ P (8)⊕2 ⊕ 8, on which the element y = (1, 2, 3, 4, 5)
acts with blocks 515, 3, so class A4 +A1. This acts on Vmin as 55, 2. The composition factors
of Vmin ↓H are one of

15, 62, 63, 33,

with neither of these modules definable over F5, so that H ≤ E6(52a) for some a. In this case,
if there is a 3 in the socle of Vmin ↓H then H is contained in a member of X σ by Lemma 1.4.
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The Brauer tree of the block containing 3 has two edges with exceptional vertex at the end
labelled by 3, so the projectives are

6/3/6, 3/3, 6/3,

and therefore we need twice as many 6s as 3s in order not to stabilize a 3-space; thus 63, 33

does indeed stabilize a 3-space. Since the 15 is projective it splits off from Vmin ↓H , and so we
must have 15⊕ 6⊕ 6, and so u cannot act on Vmin as 55, 2, a contradiction.

To deal with almost simple groups of type E6, we need to examine the 63, 33 case more
closely. Since the action of u is 55, 2, there is a unique non-projective summand of Vmin ↓H ,
necessarily of dimension 12. This must be one of 3/3, 6 or 3, 6/3, with the remaining summand
being P (6). Therefore Vmin ↓H has 6⊕2 as a submodule or quotient, but not both, and so since
the graph automorphism interchanges Vmin and its dual, we may apply Lemma 1.5(iii) to get
no maximal subgroups in the almost simple group case.

For E7 there is a single possibility for the composition factors of H on L(G) and Vmin that
has at least three times as many 8s as 1s on L(G), and this is H acting with factors 104, 82 for
Vmin and 102, 810, 531, 5

3
2, 1

3 for L(G).
The only way this could work without fixing a line or hyperplane on L(G) is

10⊕2 ⊕ 5⊕31 ⊕ 5⊕32 ⊕ P (8)⊕3 ⊕ 8,

on which u = (1, 2, 3, 4, 5) acts as 526, 3. This is consistent with coming from class A4 +A2.
For H ∼= 2 ·Alt(6) in G = E7 with the centres coinciding, the unique action on L(G) with

at least three times as many 8s as 1s is similar to above, namely 105, 810, 13, so again has u
coming from class A4 +A2. This must act on Vmin as

10⊕32 ⊕ 103 ⊕ 41/42 ⊕ 42/41,

and everything is again consistent.
In E8, we are left with two sets of composition factors on L(G), after examining the table

in [20]. These are

108, 818, 521, 5
2
2, 1

4, 109, 816, 541, 52, 1
5.

For the first case, we need P (8)⊕4 to hide the four trivial modules, and then have six 8-
dimensional modules left over. Taking projectives into account, if the 8s form simply an 8⊕6,
we would get 46 blocks of size 5 in the action of u on L(G). Since the only modules constructible
using only 8s are 8 and 8/8, on which u acts as 5, 3 and 53, 1 respectively, we get the action of
u to be one of

546, 36, 547, 34, 1, 548, 32, 12, 549, 13.

None of these appears on Table 6, and so H must fix a line on L(G).
For the second one, the only way it could not have a trivial submodule is P (8)⊕5 ⊕ 8, which

means that u acts on L(G) with Jordan blocks 549, 3, which does not appear on Table 6. This
proves that H always fixes a line.

The two open cases occur in E7, inside the A7 and A2A5 maximal-rank subgroups: the Alt(6)
acts irreducibly on the natural for A7; the 2 ·Alt(6) is really 6 ·Alt(6) acting irreducibly on
the naturals for A2 and A5.

For p = 3, Theorem 3 gave no information about F4 and E8: for F4, this will be considered
in a later paper of the author on SL2(q) subgroups of exceptional groups not of type E8. For
E8 there are many possible sets of composition factors for the action of H on L(G) and we do
not consider this here.

Proposition 6.2. Suppose that p = 3.
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(i) If G = E6 and H ∼= Alt(6) then H fixes a line on either Vmin or L(G).
(ii) If G = E7 and H ∼= Alt(6) then H fixes a line on Vmin or L(G).

(iii) If G = E7 and H ∼= 2 ·Alt(6) with Z(H) = Z(G) then H always stabilizes a σ-stable
2-space, and if φ is any automorphism of H that stabilizes Vmin ↓H then 〈H,φ〉 also
stabilizes a 2-space on Vmin.

Proof. From Section 3, we know that there are five simple modules: 1, 31, 32, 4 and the
projective 9. Only the 4 has any 1-cohomology, and it is 2-dimensional. The structure of P (4)
is

4/1, 1, 31, 32/4, 4, 4/1, 1, 31, 32/4,

and so has five 4s for every four trivials. If an indecomposable module is not projective and
has no trivial submodules or quotients, then by removing the 3is from top and bottom we may
assume that it has three socle layers, so in particular needs as many 4s as 1s. Thus if M is a
module with more trivial factors then 4-dimensional factors then H fixes a line or hyperplane
on M .

Let G = E6. If H ∼= Alt(6) acts on Vmin with more trivial composition factors than 4-
dimensional ones then it fixes a line by the previous paragraph, and so we may assume
the contrary. Using the traces of semisimple elements, one finds only three possible sets of
composition factors on Vmin, up to swapping 31 and 32, and these are

9, 43, 31, 1
3, 9, 331, 3

3
2, 43, 331, 3

2
2.

The restriction of the last case to the point stabilizer Alt(5) must be semisimple as the 3is
become projective and the 4s have no self extensions, so that x = (1, 2, 3) acts on Vmin with
Jordan blocks 317, 15, not present in [11, Table 5], and so this case cannot occur.

For the middle case we turn to the Lie algebra, where the traces of the semisimple elements on
Vmin mean that t = (1, 2)(3, 4) and v = (1, 2, 3, 4)(5, 6) act with trace 13, and u = (1, 2, 3, 4, 5)
acts with trace 2 on the 77-dimensional module L(G). This is enough to uniquely determine
the composition factors of L(G) ↓H , and they are

96, 42, 31, 32, 1
9,

so that H centralizes at least a 7-space on L(G).
Finally we have the first case. However, we only have three 4s here, so we cannot have two

4s both above and below the three trivials, so this case must also fix a line. (If there are an odd
number 2n− 1 of trivial composition factors then we need at least 2n 4-dimensional factors to
avoid fixing a line, in a slight improvement to our earlier result.) Thus H always fixes a line
on Vmin or L(G), as needed.

If G = E7 then, as we said before, we are only interested in possible sets of composition
factors on Vmin that have at least as many 4s as 1s. Using the traces of all semisimple elements,
it turns out that, up to application of an outer automorphism swapping 31 and 32, there are
five such sets of composition factors, namely

410, 321, 1
10, 9, 49, 31, 1

8, 46, 391, 32, 1
2, 46, 361, 3

4
2, 1

2, 9, 45, 351, 3
4
2.

The first three of these yield unique sets of composition factors on L(G), namely

96, 49, 361, 3
5
2, 1

10, 95, 410, 371, 3
5
2, 1

12, 416, 3101 , 3
6
2, 1

21.

Notice that each of these has more trivials than 4s, so the first three cases fix a line on L(G).
For the final case, we claim it cannot occur. To see this, restrict to the point stabilizer Alt(5)
inside H: the 3is become projective and the 4s have no self-extensions, with the 9s restricting
to the projective P (4), and so this module becomes

P (4)⊕ 3⊕51 ⊕ 3⊕42 ⊕ 4⊕5,



Page 34 of 54 DAVID A. CRAVEN

on which x = (1, 2, 3) acts with Jordan blocks 317, 15. A quick check of [11, Table 7] proves
that this is not a valid unipotent class.

We are left with the fourth case: restricting to an Alt(5) subgroup L, we notice that it has
composition factors 46, 361, 3

4
2, 1

2, and so Lemma 5.5 applies. Thus L(G) ↓L has three copies of
P (1) as summands. We claim that, if V is a module for H with no trivial submodules, and its
restriction to L has P (1)⊕m as a summand if and only if V has P (4)⊕m as a summand. To see
this, it suffices to prove the case m = 1 by induction, and notice that the restriction of P (4)
for H to L is P (4)⊕2 ⊕ P (1), so one direction is true. For the other, since V has no trivial
submodules, in order to restrict to 1/4/1 there must be five socle layers to V , but P (4) only
has five socle layers, so the whole projective must be a submodule of V , hence a summand.

Thus L(G) ↓H has P (4)⊕3 as a summand, so since P (4) has structure

4/1, 1, 31, 32/4, 4, 4/1, 1, 31, 32/4,

there are at least six copies of 32 in L(G) ↓H . However, using the Brauer character of Vmin ↓H ,
we get two options for the composition factors of L(G) ↓H , and these are

93, 415, 361, 3
5
2, 1

13 and 95, 411, 361, 3
5
2, 1

11,

neither of which has six 32s. Thus H fixes a line on L(G), as required.

Of course, we also have to deal with H ∼= 2 ·Alt(6) = SL2(9) embedding in G = E7 with the
centres coinciding. We firstly assume that G = G(q) for q an odd power of 2. In this case the
irreducible modules are 4 = 21 ⊕ 22 and 12 = 61 ⊕ 62. An element of order 8 acts with trace
0 on both of these, and so this element acts with trace 0 on all of Vmin. However, no such
element exists in E7, and so H does not embed with Z(H) = Z(G) unless q is an even power of
2. In particular, this means that we may assume that there is no 2-dimensional submodule of
Vmin ↓H . Hence Vmin ↓H is a submodule of copies of P (61) and P (62). The structure of P (61)
is

61/21/22/21/61,

and so we actually see that Vmin ↓H either has a 2-dimensional submodule or quotient, or is
actually projective. Since 56 is not a multiple of 3, this is impossible, so H always fixes a
2-dimensional subspace of Vmin, as needed.

For p = 2 we get a result for everything but E8, where there is one set of composition factors
that might yield an example that does not fix a line on L(G).

Proposition 6.3. Suppose that p = 2.

(i) If G = F4 and H ∼= Alt(6) then either H or its image under the graph automorphism
fixes a line on Vmin, and hence is not maximal.

(ii) If G = E6 and H ∼= Alt(6) then H fixes a line on Vmin, and hence is not maximal.
(iii) If G = E6 and H ∼= 3 ·Alt(6) then H fixes a line on L(G) and hence is not maximal.
(iv) If G = E7 and H ∼= Alt(6) then H fixes a line on Vmin.
(v) If G = E8 and H ∼= Alt(6) then either H fixes a line on L(G) or the composition factors

of L(G) ↓H are

861, 8
6
2, 4

16
1 , 4

16
2 , 1

24.

Proof. From Section 3 we see that there are five simple modules: 1, 41, 42, and two
projectives 81 and 82. The projective cover of 4i is given by

P (4i) = 4i/1/43−i/1/4i/1/43−i/1/4i,
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so we see that for H not to fix a line on a module we must have at least five modules of
dimension 4 for each four of dimension 1.

If, in a module V , there are the same number of 81s as 82s then u = (1, 2, 3, 4, 5) acts with
rational trace, namely +1 on 1 and 16 = 81 ⊕ 82, and −1 on the 4i. There is a single rational
class of elements of order 5 in F4, E6 and E7, with trace on Vmin given by 1, 2 and 6 respectively.
The last thing we need to note is that the minimal module for F4 and E6 restricts to H with
at least two and three trivial composition factors, since there are at least two and three Jordan
blocks of size 1 in the action of t = (1, 2)(3, 4) on Vmin by [11], and t has no blocks of size 1
on all non-trivial simple modules. These facts prove that Vmin ↓H always has at least as many
trivials as 4-dimensionals, hence has non-positive pressure and fixes a line or hyperplane on
Vmin, as needed.

Thus we may assume that there are more 81s than 82s in Vmin ↓H , and in particular that
there is at least one 81. If G = F4 then the 81, together with the two trivials, and three 4s
needed to avoid fixing a line on Vmin, gives us 22 of 26 dimensions, so our composition factors
must be 8, 44, 12. The trace of x = (1, 2, 3) on this module is one of −7,−4,−1, 2, 5 depending
on the numbers of 41s and 42s, and −1 is the only one of these that is a trace of a class in F4,
so the composition factors are 81, 4

2
1, 4

2
2, 1

2. The Brauer character of its image under the graph
automorphism is easy to compute, and is the character of 832, 1

2, which clearly fixes a line on
Vmin, as needed.

For E6, we have three trivial composition factors, and hence four 4s else we fix a line, and
an 81, so we have one more trivial, but the same composition factors as before, namely

81, 4
2
1, 4

2
2, 1

3.

Since this has pressure 1, and the 81 is projective so breaks off, by the discussion after
Proposition 1.9 if we ignore the 81 the module must be uniserial. However, the element
t = (1, 2)(3, 4) acts projectively on a module of the form 1/4i/1, and so t would have to act on
Vmin as 213, 1, not a valid action by [11, Table 5]. Thus H fixes a line on Vmin, as needed.

If H ∼= 3 ·Alt(6) with Z(H) = Z(G) then the composition factors for Vmin ↓H consist of 31,
32 and 9, with the 3i being swapped by the outer automorphism of H fixing Z(H).

Using the traces of elements of orders 3 and 5, there are five possible sets of composition
factors for Vmin ↓H , up to swapping the 3i, and these are

381, 32, 361, 3
3
2, 9, 331, 3

3
2, 92, 321, 32,

and all of these fix 3-spaces on Vmin, so H lies inside a positive-dimensional subgroup of G by
Lemma 1.4. However, we need more because the graph automorphism does not stabilize Vmin,
so we switch to L(G). Here the third and fourth sets of composition factors for Vmin ↓H do not
have corresponding factors on L(G), so these do not exist, and the other two have factors

881, 1
14 and 8, 371, 3

7
2, 1

14

respectively, both of which have non-positive pressure and so H fixes a line on L(G).

Now consider G = E7. The element v = (1, 2, 3, 4)(5, 6) acts projectively on all non-trivial
simple modules, so we can get a lower bound on the number of trivial composition factors
by examining the action of the unipotent classes on Vmin from [11, Table 7]. The maximum
number of blocks of size 4 in the action of v is twelve, so there are at least eight trivials, hence
either H fixes a line on Vmin or there are nine 4s, and also an 81 from our assumption. This
takes up 52 of our 56 dimensions, and so the composition factors of Vmin ↓H must be 81, 4

10, 18,
for some distribution of the 4s among 41 and 42. Since Vmin ↓H has pressure 2, this means that
it is a submodule of 81 ⊕ P (4i)⊕ P (4j) for some i, j. However, P (4i) is equal to

4i/1/43−i/1/4i/1/43−i/1/4i,



Page 36 of 54 DAVID A. CRAVEN

which has dimension 24, so Vmin is actually projective. But v does not act projectively on Vmin,
a contradiction, so that H fixes a line on Vmin.

We lastly turn to E8. Using a computer and the traces of elements of orders 3 and 5, we are
left with two possibilities (up to applying outer automorphisms), namely

861, 8
6
2, 4

16
1 , 4

16
2 , 1

24, 851, 8
5
2, 4

19
1 , 4

16
2 , 1

28.

In these two cases there are at least fifty-five blocks of size 4 in the action of v = (1, 2, 3, 4)(5, 6)
on L(G). From Table 5 we see that there are only two possible classes in E8 in which v can lie,
namely D4(a1) +A2 acting as 456, 38, and 2A3 acting as 460, 24. Notice that, in order to make
a block of size 4 in the action of v we need a projective factor P (4i).

Notice that the second possibility for the composition factors of L(G) ↓H has factors
810, 435, 128, so that there are exactly five 4s for every four 1s. Since this is the exact ratio
as for P (4i), we see that L(G) ↓H consists solely of projective modules, which is not allowed
by the action of v above. Thus the second set of possible composition factors must fix a line.

For the first set of factors, if v acted with eight blocks of size 3 then we would need thirty-two
4s to cover these, just enough, yielding

(81 ⊕ 82)⊕6 ⊕ (41/1/42/1/41/1/42 ⊕ 42/1/41/1/42/1/41)⊕4.

We are also able to construct a module with action of v given by 460, 24, for example

(81 ⊕ 82)⊕6 ⊕ (P (41)⊕ P (42))⊕2 ⊕ (41/1/42/1/41 ⊕ 42/1/41/1/42)⊕2.

The restriction of this to L = Alt(5) has factors 148, (21, 22)34, 416, which cannot be
distributed amongst the factors of L(G) ↓E7 , so that L does not lie in the E7 parabolic. However,
it can lie inside the A8 maximal-rank subgroup and inside the A7 parabolic, with composition
factors 21, 21, 22, 22 on the natural module for the A7.

In order to be of use in the next section, just as in the last section, we include a lemma. This
is deducible from [8], but we produce a quick proof here.

Lemma 6.4. There is no copy of H ∼= Alt(6) in G = E8 with composition factors
1011, 96, 831, 8

3
2, 5

2
1, 5

5
2, 1 on L(G), in characteristic at least 7 or 0.

Proof. Firstly, Alt(6) does not embed, even projectively, in A1, nor in B2 or G2. Secondly,
as H is a reductive subgroup of G, so is CG(H) (because the characteristic of the field does not
divide the order of H), and because H has a trivial submodule on L(G), CG(H) has dimension
1 (again because of the restriction on the characteristic), and in particular has an involution
in it, hence we may apply Lemma 1.13 to get that we need only consider E7 and D8.

Since E7 centralizes a 3-space on L(G), clearly H cannot lie in it, so H ≤ D8.

Element λ1 λ2 λ7

Possible 7 21 −16
traces for x −2 3 2

Possible
traces for y

−5 15 −1
4 6 8
13 78 −64
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We thus search for 16-dimensional modules for Alt(6), or 2 ·Alt(6), with x = (1, 2, 3) acting
with trace 7 or −2, and y = (1, 2, 3)(4, 5, 6) acting with trace −5, 4 or 13.

Since L(λ2) = Λ2(L(λ1)), it is easy to compute the traces of the elements of order 3 in
potential embeddings of H into D8. Firstly, we cannot have more than two trivial factors on
the 16-dimensional because then we would get more than one trivial on L(λ2), which is not
allowed. This leaves

10, 5i, 1, 9, 5i, 1
2, 52i , 53−i, 1, 821, 81, 82

The element x acts on these with trace 4 or 1, 4 or 1, 4 or 1, −2 and −2 respectively, so only
the one with 8s works, but y acts on these with trace −2 as well, which is not allowed.

For embedding 2 ·Alt(6) into Ω+
16, we have modules 41, 42, 81 and 82, on which x acts with

trace 1, −2, −1 and −1 respectively, and y acts with trace −2, 1, −1 and −1 respectively. This
means we need a different number of 41s to 42s, and which of the 8i we use does not matter,
so either 42i , 81, 44i or 43i , 43−i, none of which works with the traces above. Hence H cannot lie
in D8 either, and we are done.

7. Alt(7)

We consider the cases p > 7, p = 7, p = 5, p = 3 and p = 2 in turn. We continue our
assumption that E6 and E7 are used to denote the simply connected forms, so that Z(E6(q))
and Z(E7(q)) have orders gcd(3, q − 1) and gcd(2, q − 1) respectively.

Proposition 7.1. Suppose that p 6= 2, 3, 5, 7.
(i) If G = F4 and H ∼= Alt(7) then H does not embed into G.
(ii) If G = E6 and H ∼= Alt(7), or H ∼= 3 ·Alt(7) with Z(H) = Z(G), then H fixes a line on

L(G) and hence is not maximal.
(iii) If G = E7 and H ∼= Alt(7) then H fixes a line on L(G) and hence is not maximal.
(iv) There is no embedding of H ∼= 2 ·Alt(7) into G = E7 with Z(H) = Z(G).
(v) If G = E8 and H ∼= Alt(7) then either H fixes a line on L(G) and hence is not maximal,

or H acts on L(G) with composition factors

354, 154, 1421, 10, 10∗.

(Such a subgroup exists inside a D8 maximal-rank subgroup acting as 15⊕ 1 on the
natural module.)

Proof. This follows immediately from the tables in [20] together with Lemma 1.4.

Proposition 7.2. Suppose that p = 7.
(i) If G = F4 and H ∼= Alt(7) then H does not embed into G.
(ii) If G = E6 and H ∼= Alt(7), or H ∼= 3 ·Alt(7) with Z(H) = Z(G), then H fixes a line on

L(G) and hence is not maximal.
(iii) If G = E7 and H ∼= Alt(7) then H fixes a line both on Vmin and on L(G) and hence is

not maximal.
(iv) There is no embedding of H ∼= 2 ·Alt(7) into G = E7 with Z(H) = Z(G).
(v) If G = E8 and H ∼= Alt(7) then either H fixes a line on L(G) and hence is not maximal,

or H acts on L(G) as

35⊕3 ⊕ 21⊕ 141 ⊕ 1422 ⊕ P (10)⊕2 ⊕ 10 or 35⊕4 ⊕ 14⊕21 ⊕ 10⊕6 ⊕ 5⊕4.

(The second of these is the reduction modulo p of the case for p = 0.)
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Proof. The Brauer tree in Section 3 implies that the projective modules are

1/5/1, 5/1, 10/5, 10/5, 10/10,

and the only indecomposable module with a trivial composition factor but no trivial submodule
or quotient is P (5) by Lemma 2.1.

The action of H on the adjoint module L(G) has at least three trivials and at most two
5-dimensionals, whether H ∼= Alt(7) or H ∼= 3 ·Alt(7) inside E6, and so H always fixes a line
on L(G). For G = E7, the unique set of composition factors has the same number of 5s as 1s,
so fixes a line on Vmin (it also does on L(G)).

For G = E8 however, there are three potential sets of composition factors that have no trivial
composition factor at all, and others with enough 5s and 10s to cover the trivials they do have.

Those without trivials are, up to projectives,

108, 107, 52, 106, 54.

In the case of 108 we can only produce 10s and 10/10, on which w = (1, 2, 3, 4, 5, 6, 7) acts as
7, 3 and 72, 6 respectively. Thus we have blocks of size 7 and 6i, 38−2i, which is not allowed by
[11, Table 9]. Hence H does not embed with these factors.

In the cases of 107, 52 and 106, 54, we have the following possible indecomposable modules:

10, 5, 10/10, 10/5⊕ 5/10, 10, 5/10⊕ 5, 10/10, 5, 10/5, 10, 10/5, 10/10.

The actions of w on these elements are (up to projectives) 3, 5, 6, 12, 42, 2 and 0. For 107, 52

we are allowed only P (10)⊕2 ⊕ 10, and for 106, 54 we are only allowed the semisimple case
10⊕6 ⊕ 5⊕4, leading to the two cases listed in the proposition.

If the composition factors of L(G) ↓H have trivials but have twice as many 5s and as many
10s, then up to projective simple modules we have one of

109, 52, 1, 108, 54, 1, 1010, 54, 12.

Removing copies of 10, 52, 1 (i.e., P (5)) yields 108, 107, 52 and 108, and so the first and last of
these cannot occur without fixing a line, but the second can. However, the set of composition
factors on L(G) is 352, 141, 1422, 108, 54, 1, (where 141 is a factor of 5⊗2). This restricts to Alt(6)
with composition factors 1011, 96, 831, 8

3
2, 5

2
1, 5

5
2, 1, which happen to be those which were proved

not to exist in Lemma 6.4. Thus this embedding does not exist.

Proposition 7.3. Suppose that p = 5.
(i) If G = F4 and H ∼= Alt(7) then H fixes a line on Vmin, and hence is not maximal.

(ii) If G = E6 and H ∼= Alt(7) then either H fixes a line on L(G), or is contained inside an
algebraic A2 subgroup with action of Vmin given by (up to duality) 8/19, with two classes
of H being swapped by the graph automorphism. In particular, H is not maximal.

(iii) If G = E6 and H ∼= 3 ·Alt(7) with Z(H) = Z(G), then H fixes a line on L(G), and
hence is not maximal.

(iv) If G = E7 and H ∼= Alt(7), then H fixes a line on either Vmin or L(G), and hence is not
maximal, or H acts on Vmin and L(G) as

(10⊕ 10∗)⊕2 ⊕ 8⊕2 and 10⊕ 10∗ ⊕ P (8)⊕3 ⊕ 8.

(v) If G = E7 and H ∼= 2 ·Alt(7) with Z(H) = Z(G), then H acts on Vmin and L(G) as

20⊕ 4/14⊕ 14/4∗ and 35⊕3 ⊕ 10⊕ 10∗ ⊕ 8.

(vi) If G = E8 and H ∼= Alt(7), then either H fixes a line on L(G), hence is not maximal,
or H acts on L(G) as

35⊕4 ⊕ 15⊕4 ⊕ 10⊕ 10∗ ⊕ 8/6⊕ 6/8.
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(This is again the reduction modulo p of the case for p = 0.)

Proof. Using the Brauer tree in Section 3, the projective modules are

1/13/1, 13/1, 8/13, 8/6, 13/8, 6/8/6.

For G = F4 we consult the table in [20] and see that H has two trivial and three 8-dimensional
factors, so acts semisimply on Vmin and in particular fixes a line on Vmin.

For G = E6, there are three possible sets of composition factors on Vmin according to [20].
Two of these have trivial composition factors on L(G), and no 13s in either case, and hence
these fix lines. The final case has composition factors 6, 8 and 13 on Vmin and 352, 8 on L(G).
This means that u = (1, 2, 3, 4, 5) acts with factors 515, 3 on L(G) (since the 35s are projective),
and hence comes from class A4 +A1, which acts with blocks 55, 2 on Vmin. This means that H
acts indecomposably on Vmin, hence as 8/6, 13 or its dual.

The restriction of H to L = Alt(6) has structure 51 ⊕ 52 ⊕ 8/1, 8, which clearly fixes a line,
and so lies in the D5-parabolic (as the other line stabilizer is F4 which has a trivial summand
on Vmin). The D5-parabolic acts with structure 10/16/1, and obviously the embedding of L
into this acts as 8/8 on the spin module and 51 ⊕ 52 on the natural. In particular, this proves
that the image of L is uniquely determined up to conjugacy in the D5 Levi.

To determine the number of classes in the D5 parabolic we need to consider 1-cohomology
on the spin module, which is the action of the Levi on the unipotent radical of the parabolic.
The 1-cohomology of 8/8 is 1-dimensional, and so there are q classes of Alt(6)s inside the D5

parabolic, where G = E6(q). We claim that all q − 1 of those outside the D5 Levi subgroup
are permuted by the T1 factor of the D5T1, at least in the adjoint form of E6: to see this, any
element of T1 centralizes the maximal subgroupD5T1 of theD5-parabolic, and so if it centralizes
anything else in the parabolic, for example, another class of Alt(6), then it centralizes the whole
parabolic so lies in Z(G). Thus there is a unique class in the adjoint form of E6 and either one
or three in the simply connected form, depending on whether |Z(G)| has order 1 or 3.

We can proceed in two different ways here, but both are similar. The first is to note that L
is contained in one of the two algebraic A2s, say X, which act on Vmin as 8/19 (up to duality
induced by the graph automorphism). Since the 19-space is uniquely determined in the action
of both L and H, we must have that H is contained in 〈H,X〉, which is just X as X is known
to be maximal. (Notice that this inclusion was known in [2] but uniqueness of H was not.)

Alternatively, if H̄ is any other Alt(7) subgroup containing L, and with the same module
structure on Vmin as H, then both H and H̄ must fix the same 19-space (with quotient 8),
since L and H both fix a unique 19-space. This proves that either H is uniquely determined
up to conjugacy or that H is not maximal. If H is unique up to conjugacy, however, then it is
contained in the algebraic A2 above, and hence is not maximal either.

If 3 ·Alt(7) embeds in G with Z(H) = Z(G), then there are three sets of composition factors
for L(G), two of which have at least three 1s and at most one 13, so fix a line. The remaining
possibility has composition factors 21, 6 on Vmin and 352, 8 on L(G). The 35 is projective, so
splits off, and thus L(G) ↓H is semisimple, with the action of u = (1, 2, 3, 4, 5) on L(G) being
515, 3, so class A4 +A1, which acts on Vmin as 55, 2. Thus Vmin ↓H cannot be semisimple, but
Ext1(21, 6) = 0 from the Brauer tree in Section 3. Thus H cannot embed with these factors,
as needed.

For G = E7, the only set of composition factors embedding Alt(7) into G with at least twice
as many 13s as 1s for both Vmin and L(G) is

(10, 10∗)2, 82, (10, 10∗), 133, 87, 63,

and modules can be constructed so that u = (1, 2, 3, 4, 5) acts on Vmin as 510, 32 and on L(G)
as 526, 3. The first is semisimple, and the second is 10⊕ 10∗ ⊕ P (8)⊕3 ⊕ 8. Note that this exists
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as a copy of H acting irreducibly on the natural module for the A7 maximal-rank subgroup.
There is also a possible set of composition factors for 2 ·Alt(7) embedding in E7 with centres
coinciding, that yields the same action of u on the two modules: it acts as

20⊕ 4/14⊕ 14/4∗, 35⊕3 ⊕ 10⊕ 10∗ ⊕ 8

on Vmin and L(G) respectively.
For E8 and p = 5 we again consult the tables of possible sets of composition factors from

[20], and once we apply the statement that there needs to be twice as many 13s as trivials,
leaves us with five options, four with no trivial factors at all:

[354, 152, 10, 10∗], 132, 84, [354, 153, 10, 10∗], 13, 83, 6, [354, 154, 10, 10∗], 82, 62,

[35, (10, 10∗)4], 13, 812, 64, 137, 814, 67, 13.

(We place brackets around the composition factors in blocks of defect zero, which simply
become summands and u = (1, 2, 3, 4, 5) acts projectively.)

In the first case we have at least 546, and so there are few classes to which u can belong,
from Table 6. With just 13 and 8, the only indecomposable modules we can produce are 13, 8,
and 13/8 and 8/13 on which u acts as projective plus a block of size either 3 or 1. Thus u acts
only with blocks 5, 3 and 1, so must come from class A4 +A2 acting as 546, 35, 13; however,
this cannot work either, so H cannot embed with these factors.

In the second case, u acts with at least 47 blocks of size 5, so must come from A4 +A2 and
act as 548, 42. This means we can have no 13 as a summand of L(G) ↓H (as it would contribute
a 3 to the action of u), thus it lies inside a self-dual summand, which is only P (8), thus we get
P (8)⊕ 8, another contradiction. Thus H cannot embed with these factors either.

In the fourth case, the indecomposable modules containing an 8 but no 1s are (up to duality)

8, 8/13, 8/6, 8/13, 6, P (8), P (6).

With the exception of 8, each of these has at least as many factors that are not of dimension 8
as those that are, and since there are five factors that are not of dimension 8 in the principal
block for L(G) ↓H , this means we have seven summands of L(G) ↓H of dimension 8, thus 37

contributing to the action of u on L(G). In addition, we have at least 541 from the projective
blocks in L(G) ↓〈u〉, and there is no such class in Table 6. Thus H cannot embed with these
factors.

In the fifth case, in order not to fix a line, L(G) ↓H must have three copies of P (13), meaning
that we have at least 541, and leaves factors 13, 811, 67 to understand. In addition, applying the
argument before yields 8⊕3 as a summand of L(G) ↓H , so we have blocks in u of 541, 33; looking
at Table 6, this means that u lies in one of two classes, A4 + 2A1 acting as 545, 34, 24, 13, or
A4 +A2 acting as 546, 35, 13. The four indecomposable modules contributing a 1 to the action
of u are 1, 6, 8/13 and 13/8, and since we have three blocks of size 1 (so we need a self-dual
summand), this means we have a 6 as a summand in L(G) ↓H , thus another 8 as a summand
by the above argument. For the other 12, we have either 6⊕2, which means we have another
8⊕2 and at least six blocks of size 3 in u, which is not allowed, or we have 8/13⊕ 13/8, which
is not allowed because we only have a single 13. This contradiction means that H must fix a
line if it embeds with these factors.

We are left with the third possibility, that H embeds with factors projective plus 82, 62. Here
there is a single possibility for the action of u, since we have at least forty-eight blocks in the
action of u, namely u acts as 548, 42, which means that H must act as

35⊕4 ⊕ 15⊕4 ⊕ 10⊕ 10∗ ⊕ 8/6⊕ 6/8.

This is the only module that satisfies the traces of elements and the action of the unipotent
class, and so must be the reduction modulo 5 of the embedding into D8 given over C.
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As with Alt(6), the two open cases occur in E7, inside the A7 and A2A5 maximal-rank
subgroups: the Alt(7) acts irreducibly on the natural for A7; the 2 ·Alt(7) is really 6 ·Alt(7)
acting irreducibly on the naturals for A2 and A5.

Proposition 7.4. Suppose that p = 3.
(i) If G = F4 and H ∼= Alt(7) then H does not embed into G.
(ii) If G = E6 and H ∼= Alt(7) then H fixes a line on L(G).

(iii) If G = E7 and H ∼= Alt(7), or H ∼= 2 ·Alt(7) with Z(H) = Z(G), then H fixes a line on
either Vmin or L(G).

(iv) If G = E8 and H ∼= Alt(7) then either H fixes a line on L(G), and hence is not maximal,
or acts on L(G) with composition factors

154, 136, (10, 10∗)5, 110.

Proof. From Proposition 3.1, the modules 10 and 10∗ each have 1-dimensional 1-
cohomology, and 13 has 2-dimensional 1-cohomology, with all other cohomology groups being
zero. The projective covers P (10) and P (13) have structures

10/1/10∗, 13/1/10 and 13/1, 1/13, 10, 10∗/1, 1/13

respectively, and so if M is a module whose socle consists solely of 10s, 10∗s and 13s, with no
trivial quotients, then it either has at most three socle layers or it contains a projective.

If H embeds in E6 then it does so with factors 15, 13, (10, 10∗)2, 6, 13 (remember that
dim(L(G)) = 77, not 78, for p = 3), and since L(G) is self dual, if 13 lies in the socle (or
top) then it is a summand, and so does not need to be considered. The 6 and 15 lie in a non-
principal block, and so form a summand of the form 6⊕ 15 and will be ignored. We therefore
may assume that the socle of L(G) ↓H consists of 10s and 10∗s, with possibly 13 as a summand.

As L(G) is self dual, if P (10) is a summand of L(G) ↓H then so is P (10∗), but this is not
possible, as it uses too many 13s. This also means that the 13 is definitely a summand. However,
we now do not have enough 10-dimensional modules to cover three trivials, and so H must fix
a line on L(G).

When G = E7 we have two possible sets of composition factors for embeddings of H ∼= Alt(7),
one of which has two trivial factors on Vmin and no other modules from the principal block,
hence centralizes a 2-space, and one of which has nine trivial factors on L(G) and a single 13,
with no 10s, so centralizes at least a 7-space. If 2 ·Alt(7) embeds in E7 with centres coinciding,
then there are twenty-two trivial composition factors, seven 13s and 10, 10∗, so our module has
negative pressure and fixes a line by Proposition 1.9.

In E8 there are four possible sets of composition factors for L(G) ↓H , but only one case has
negative pressure, hence fixes a line by Proposition 1.9. We examine the other three now. If
the composition factors are 156, 139, 65, 111 then H fixes a line, because without any 10s we
can only form 13/1, 1/13, and so need as many 13s as 1s not to fix a line.

With factors 152, 1311, (10, 10∗)2, 63, 117, we cannot have P (10) as a factor because, together
with its dual, we would need three 10s, too many. Each P (13) reduces the number of 13s by
three and 1s by four, and we can have at most two of them, beyond which we can only have
13/1, 1/13, and this will not use up enough trivials. Hence we may assume that L(G) ↓H , cut
by the principal block, has three socle layers. Removing any simple summands, we have at
most five 13 and two 10s in the socle, which support at most twelve trivials above, so we must
fix a line again.

If the factors are 154, 136, (10, 10∗)5, 110, however, then we cannot yet prove that H fixes a
line on L(G), although it would be surprising if an embedding that has no fixed points does
exist.
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Although in the last case we cannot prove that H fixes a line on L(G) or doesn’t exist, we
can prove a lot about L(G) ↓H . Firstly, x = (1, 2, 3) lies in class 2A2, and y = (1, 2, 3)(4, 5, 6)
lies in class 2A2 + 2A1. Furthermore, P (13) is not a summand of L(G) ↓H , and the subgroups
isomorphic to Alt(5) and PSL2(7) both centralize a 2-space on L(G), with the Alt(5)s having
two trivial summands. Finally, H fixes a line on L(G) if and only if the subgroup Alt(6) does.

Proposition 7.5. Suppose that p = 2.

(i) If G = F4 and H ∼= Alt(7) then either H or the image of H under the graph
automorphism fixes a line on Vmin, and hence is not maximal.

(ii) If G = E6 and H ∼= Alt(7) then H fixes a line on both Vmin and L(G), and is hence not
maximal.

(iii) If G = E7, E8 and H ∼= Alt(7), or G = E6 and H ∼= 3 ·Alt(7) with Z(H) = Z(G), then
H fixes a line on L(G), and hence is not maximal.

Proof. From the table in Section 3, there are three modules in the principal block: the
projective covers have structure as follows:

1/14, 20/1, 1/20, 14/1, 14/1/20/1, 14/14, 20/1/14/1/20.

For F4, L(G) always has four trivial composition factors and at most one non-trivial factor
in the principal block, so certainly fixes lines. Therefore if σ denotes the graph automorphism
then either H or its image Hσ under the graph automorphism fixes lines on Vmin. (This is
because for p = 2, L(G) has composition factors Vmin and V σmin.)

For E6, all embeddings of H from [20] have non-positive pressure on Vmin, hence fix lines
or hyperplanes. For 3 ·Alt(7), the two possibilities for composition factors on L(G) both have
pressure −2, so again fix lines.

For G = E7 there are more possibilities, but in each case there are significantly more trivial
factors than non-trivial factors in the principal block (even taking into account the fact that
L(G) has a trivial submodule in characteristic 2), hence H fixes lines on L(G) again.

For G = E8, we need to be a little more precise: from the structure of the projectives, it is
clear that we need at least three 14s or 20s for every two 1s. This reduces the possibilities down
to three, namely

206, 148, 18, 4, 4∗, 205, 149, 18, 6, 4, 4∗, 204, 1410, 18, 62, 4, 4∗.

The element v = (1, 2, 3, 4)(5, 6) acts projectively on both 20 and 4, and acts with blocks 4, 2
and 43, 2 on 6 and 14 respectively. Thus, if the embeddings were semisimple, the action of v
on these three modules has blocks

456, 28, 18, 455, 210, 18, 454, 212, 18.

Write L(G) ↓H= A⊕B, where A is a sum of projectives and the {4, 4∗, 6}-radical, and B
is a module in the principal block with no projective summands. In particular, B has three
socle layers, and examining the structure of P (14), we see that B has at least as many 20s as
trivials. Since the same is true for P (20), we need a copy of P (14) in L(G) ↓H for every trivial
composition factor above the number of 20s, i.e., two, three and four respectively. Since there
are three 14s in P (14), this means the third case is not possible, and the second case cannot
work either as all 14s are used up in the P (14)⊕3, leaving none to cover the remaining two
trivials. In the first case P (14)⊕2 uses up 202, 146, 14 and leaves 204, 142, 14, 4, 4∗; this gives
sixty blocks to the action of v already, and so we cannot have any more P (14)s or P (20)s, but
this leads to a contradiction as, with three socle layers, B must have at least twice as many
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non-trivial composition factors as trivial ones. Hence any embedding of H into E8 fixes a line.

8. Alt(8)

The cases to consider are firstly p > 7, and then p = 7, 5, 3, 2 in that order. We continue our
assumption that E6 and E7 are used to denote the simply connected forms, so that Z(E6(q))
and Z(E7(q)) have orders gcd(3, q − 1) and gcd(2, q − 1) respectively.

Proposition 8.1. Suppose that p 6= 2, 3, 5, 7.
(i) If G = F4, E6 and H ∼= Alt(8) then H does not embed into G.
(ii) If G = E7, E8 and H ∼= Alt(8) then H fixes a line on L(G) and hence is not maximal.

(iii) There is no embedding of H ∼= 2 ·Alt(8) into G = E7 with Z(H) = Z(G).

Proof. This follows immediately from the tables in [20] together with Lemma 1.4.

Proposition 8.2. Suppose that p = 7.
(i) If G = F4, E6 and H ∼= Alt(8) then H does not embed into G.
(ii) If G = E7, E8 and H ∼= Alt(8) then H fixes a line on L(G) and hence is not maximal.

(iii) There is no embedding of H ∼= 2 ·Alt(8) into G = E7 with Z(H) = Z(G),

Proof. As before, using the Brauer tree in Section 3 and Lemma 2.1, the only projective
containing the trivial module other than P (1) is P (19), which has the form 19/1, 45/19. We
then consult the tables in [20]: for E7 there is a unique embedding of H, which has two trivial
factors and no 45 on L(G), so fixes lines, and for E8 the three possible embeddings of H each
have at least three trivial factors and at most one 45, so all fix lines.

Proposition 8.3. Suppose that p = 5.
(i) If G = F4, E6 and H ∼= Alt(8) then H does not embed into G.
(ii) If G = E7, E8 and H ∼= Alt(8) then H fixes a line on L(G) and hence is not maximal.

(iii) There is no embedding of H ∼= 2 ·Alt(8) into G = E7 with Z(H) = Z(G),

Proof. Using the Brauer trees from Section 3 the projective indecomposable modules are

1/13/1, 13/1, 43/13, 43/13, 211/43, 211/43/211, 7/212/7, 212/7, 212/212.

Thus a module needs at least twice as many 13s as 1s in order not to fix a line. For E7 there
are three possible sets of composition factors, two of which have one trivial and at most one
13, so fix lines on L(G). The remaining set of composition factors acts with factors 2122, 7

2 on
Vmin and acts as 20⊕ 43⊕ 70 on L(G). Clearly u = (1, 2, 3, 4, 5) acts as 526, 3 on L(G), and so
must come from class A4 +A2, so act as 510, 32 on Vmin. This can be realized by 21⊕ P (7).

However, this restricts to Alt(7) as

13⊕ 8⊕ 1/13/1⊕ 6/8/6,

and so lies in the stabilizer of a unique line, either an E6-parabolic or a B5 type subgroup,
the latter acting with composition factors 1, 1, 11, 11, 32, clearly not possible. (To see this, the
derived subgroups of the stabilizers of the other orbits from [14, Lemma 4.3] all lie inside
an E6-parabolic, hence stabilize more than one line.) Therefore this Alt(7) lies inside an E6
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parabolic, with composition factors 13, 8, 6 on the minimal module W for E6. The E6 parabolic
acts as 1/W/W ∗/1, and so there must be a non-split extension between the 6 and 8 in W ,
but the 13 must split off, so that up to duality we have that Alt(7) acts on W as 8/6⊕ 13.
However, u acts on this module as 54, 4, 3, not listed in [11, Table 5]. Thus this embedding of
Alt(8) into E7 does not exist, and H fixes a line, as needed.

For E8 every possible set of composition factors from [20] has at least three trivials and at
most one 13, so these all fix lines.

Proposition 8.4. Suppose that p = 3.

(i) If G = F4, E6 and H ∼= Alt(8) then H does not embed into G.
(ii) If G = E7 and H ∼= Alt(8) then either L(G) ↓H has a trivial summand or (1, 2, 3) lies in

a generic unipotent class for Vmin, and so there exists a positive-dimensional subgroup
stabilizing the same subspaces of Vmin as H. In either case, H is not maximal.

(iii) There is no embedding of H ∼= 2 ·Alt(8) into G = E7 with Z(H) = Z(G),
(iv) If G = E8 and H ∼= Alt(8) then H fixes a line on L(G).

Proof. For E7 there is a unique set of composition factors, both on Vmin and on L(G). On
Vmin we have that H acts with factors 212, 72. Since the 21 lies in a separate block to the 7,
and the 7 has no self extensions, Vmin must have 7⊕2 as a summand. The other summand is
either 21⊕2 or 21/21. The element x = (1, 2, 3) acts on 7 with blocks 3, 14 and on 21 as 35, 16,
so on 21/21 as 310, 26. This means that x acts on Vmin as either 312, 120 – so lies in class A2,
which is generic, and so we are done by Lemma 1.2 – or acts like 312, 26, 18 – so lies in class
A2 +A1, and acts on L(G) as 337, 28, 16.

The composition factors of H on L(G) are also uniquely determined as 352, 21, 13, 74, 1. The
1 can be covered only by 35/1, 7/35, on which both classes of unipotent element act as 326.
Even if the rest of the module is semisimple, the 74 contributes four blocks of size 3, the 21
another five, and the 13 gives three, taking the total to 38, too many. Thus 35/1, 7/35 cannot
be a subquotient of L(G) ↓H , and so L(G) ↓H has a trivial summand and hence H fixes a line
of L(G).

For E8, there are two possible sets of composition factors for L(G) ↓H , each with four trivial
composition factors. As H1(H,M) = 0 unless M is either 13 or 35, in which cases it is 1-
dimensional, the fact that there are exactly three such composition factors in L(G) ↓H implies
that it has negative pressure and so H fixes a line on L(G) by Proposition 1.9, as needed.

Proposition 8.5. Suppose that p = 2.

(i) If G = F4 and H ∼= Alt(8) then either H or its image under the graph automorphism
stabilizes a line on Vmin, and hence is not maximal.

(ii) If G = E6 and H ∼= Alt(8) then H has a trivial summand on Vmin and lies inside a
conjugate of F4 or the D5 Levi subgroup. In particular, H is not maximal in G.

(iii) If G = E7 and H ∼= Alt(8) then H fixes a line on either Vmin or L(G), and hence is not
maximal.

(iv) If G = E8 and H ∼= Alt(8) then H fixes a line on L(G), and hence is not maximal.

Proof. We will use Proposition 4.2 firstly, together with the dimensions of 1-cohomology
from Table 8. If G = F4 then we have two possible sets of composition factors, swapped by the
graph automorphism, and the first one has pressure −3, so fixes a line on Vmin.

For G = E6, there are again two sets of composition factors for H: the first has pressure
−4 on Vmin and −3 on L(G), so fixes a line on both. Moreover, since in Vmin ↓H only one
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composition factor has 1-cohomology, and there are five trivials, this means there are at least
three trivial summands in Vmin ↓H .

If the composition factors of Vmin ↓H are 14, 62, 1, then we can check by computer that there
are no modules of the form 6/1/6 or 6/1/14, so either H fixes a line or hyperplane on Vmin

or Vmin ↓H is indecomposable, with socle 6 up to duality. Since Ext1(6, 6) = 0, we get that
Vmin ↓H has shape 6/1, 14/6. There is a unique such module inside P (6), but this has a trivial
quotient, so H always fixes a line or hyperplane on Vmin. (Notice that the dimensions are
incompatible with coming from the D5 parabolic, as this acts with factors 16, 10, 1, so in fact
H ≤ F4 and has a trivial summand.)

For G = E7, Proposition 4.2 states that there are three possible sets of composition factors,
with the first and third stabilizing lines on L(G) (remember to remove one trivial since
dim(L(G)) = 132 for p = 2) as they have pressure −11 and −6 respectively. The second case,
of 142, 64, 14, has pressure 2, so assuming that H does not fix a line on Vmin, there are at
most two composition factors in the socle by Proposition 1.9. The {1, 6, 14}-radicals of P (6)
and P (14) have two and one trivial composition factor respectively, so the socle must therefore
be 6⊕2: however, we cannot have a submodule 14/6, 6 of Vmin ↓H , since this has pressure 3.
However, the {1, 6, 14}-radical of P (6) is

6/14/1, 6/1, 14/6,

and so to support the trivial in the third socle layer we clearly need the 14 in the second socle
layer, so in fact (14/6)⊕2 is a submodule of Vmin ↓H , a contradiction since it has pressure 4.

The remainder of this proof concerns E8, and is very delicate and long. We will proceed in
stages.

Step 1: Identifying the two difficult cases Firstly, using Proposition 4.2, we have exactly
four possibilities for the set of composition factors on L(G), namely

14, 610, (4, 4∗)16, 146, 148, 617, (4, 4∗)2, 118, 204, 144, 68, (4, 4∗)7, 18, 204, 1410, 62, 4, 4∗, 18.

Since the modules 6, 14, 20, 20∗ each have 1-dimensional 1-cohomology by Proposition 3.1, in
the first case H must have a trivial submodule by Proposition 1.9.

In the second possibility, there are no 20s at all, and so Lemma 3.3 applies to L(G) ↓H , and
we get that H fixes a line on L(G) because it has fewer 6s than trivials.

We now apply Lemma 1.10 to L(G) ↓L, where L = Alt(7). Since we proved in the previous
section that L fixes a line on L(G), this yields a map from the permutation module of H on
the cosets of L to L(G) ↓H . Since this module is 1/6/1, and we assume that H does not fix a
line on L(G), we get that 1/6 is a submodule of L(G) ↓H .

We examine the third set of composition factors of H on L(G) now, namely
204, 144, 68, (4, 4∗)7, 18. Let v = (1, 2, 3, 4)(5, 6), an element of order 4 that acts projectively
on both 20 and 4, and acts with a single block of size 2 and otherwise projectively on 6 and 14.
We write W for the subquotient of L(G) ↓H obtained by quotienting out by all submodules
and taking the kernel of any quotient by factors of dimension 4, i.e., take the {4, 4∗}-residual of
L(G), and quotient out by the {4, 4∗}-radical of that to get W . This does not alter the action
of v, since it acts projectively on these factors. Thus W is a submodule of copies of P (6), P (14)
and P (20).

Step 2: Finding 1/14/1 subquotients We show that there are four disjoint subquotients of
W of the form 1/14/1. To see this, we first note that there does not exist any module M with
no 14s as composition factors, with at least one trivial composition factor, and with no trivial
submodule or quotient. This is proved easily: the largest submodules of P (6) and P (20) with
no trivial quotients and no 14s are

6/4, 4∗/6/4, 4∗/6 and 4/20.



Page 46 of 54 DAVID A. CRAVEN

Hence we need a 14 above or below every trivial in W . However, there are four 14s and eight
1s in W , so we must have 1/14/1 four times.

Step 3: Connecting the 1/14/1s to 6s The socle of W has at most four 6s and two modules
of dimension 20. We will prove that there is at most one 1/14/1 lying above any 6 in the socle.

Since the dimension of P (6) is 320, we cannot have P (6) in L(G) ↓H , so we may remove the
top of P (6), to leave its Jacobson radical. Since the top of W consists of 6s, 20s and 20∗s, we
may take the {1, 4, 4∗, 14}-residual of this module, a module of dimension 290. This will contain
an isomorphic copy of any submodule of L(G) ↓H lying above a 6 in the socle. We now take
the {1}′-residual and then quotient out by the {1}′-radical to find the smallest subquotient
containing all copies of 1/14/1, and this leaves us with

1⊕ 1, 1/14, 20, 20∗/1, 1, 1.

Thus we can have at most one 1/14/1 lying above each 6 in the socle of W .
Performing the same calculation with P (20) yields

1/14/1/20, 20∗/1/14/1,

which of course contains two 1/14/1s, but needs 20⊕ 20∗ inside the module to obtain them
both.

Step 4: No 6⊕4 in the socle Suppose that there are four 6s in soc(W ), so that there are no
6s in rad(W )/soc(W ). We construct the largest submodule of P (6) with exactly one 6, yielding

20, 20∗/1/1, 4, 4∗, 14/6,

which has no 1/14/1 inside it, so we cannot stack enough 1/14/1s, and hence we cannot have
6⊕4 inside soc(W ). In particular, this means that we have one of the following socles:

63, 20, 62, 20, 63, 202, 62, 202,

where here 202 means two modules of dimension 20, either 20 or 20∗.

Step 5: Each 1/14/1s requires a 10 or 20∗ and a 6/4/6 or 6∗/4/∗ around it We construct
a submodule M of P (6) by the following process:

(i) Start with the {4, 4∗, 6}-radical of P (6) (this has dimension 40);
(ii) Add to this all trivials possible (there is only one);
(iii) Add to this all 14s possible (there are three);
(iv) Add to this all trivials possible (there are three);
(v) Add to this all 4s, 4∗s and 6s possible (this yields a module of dimension 112);

(vi) Take the {6}′-residual of this module (this yields a module of dimension 110).
This process yields a module with five socle layers. If it were possible to construct a submodule
of P (6) with no 20s or 20∗ and with a 1/14/1 subquotient but no trivial submodules or
quotients, it would lie inside M . It has socle layers

6, 6, 6/4, 4, 4∗, 4∗, 14, 14/1, 6, 6, 6/1, 4, 4∗, 14/6.

But this clearly does not have a 1/14/1 inside it, and so we must need a 20 or 20∗ above any
such submodule to prevent the 1/14/1 floating to the top of W .

Since we need at least two 6s in the socle of W , with 1/14/1s above them, this means we
need at least two 20s above that, so in particular they cannot be used to string together the
two 1/14/1s in the subquotient of P (20) above. We therefore see that we need at least four
factors in soc(W ), so either 62, 202 or 63, 20. However, with 63, 20, we would need three 20s
above the 63, meaning the module cannot be self dual. To see this, placing a 20 above a 1/14/1
creates a module

20/1/14/1,
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and since there are four 1/14/1s and four 20s or 20∗s, for each 20 placed above a 1/14/1 in W
there must be a 20∗ placed below a 1/14/1, to maintain self duality of W . We therefore see
that there are two factors of dimension 20 in soc(W ), and two 6s.

We now construct the same module M as in the process above, but instead of step (v), we
place 20 on top of it. (We could use 20∗ as well, but this would yield the image under the
outer automorphism of H.) Instead of (vi) we then take the {20}′-residual. This will contain
any smallest submodule of P (6) with no trivial quotient or submodule and a 1/14/1 inside it.

This process produces the module M with socle layers

20/1/4, 14, 20/1, 6/1, 4, 4∗, 14/6

and its dual M∗ has structure

6/4/1, 6/14, 14/1, 1, 4∗, 4∗/20∗, 20∗;

from this we easily see the submodule 6/4∗/6 insideM (there is a unique such uniserial module).
Furthermore, since the only copy of 6 not in the socle is at the top of this submodule, we can
see what happens if we remove this submodule by requiring a unique 6 in our module M : even
before performing stage (vi) and removing quotients, the structure is

20/1/1, 4, 4∗, 14/6,

and so does not contain a 1/14/1. Hence for every 6 supporting a 1/14/1 above it, we need a
6/4/6 or 6/4∗/6 as a submodule.

Bringing this to a conclusion, for each 1/14/1 in our module, we need a 20 or 20∗ above it,
and a 6/4/6 or a 6/4∗/6 below it, or vice versa. In particular, we will need four submodules
or quotients of the form 6/4/6 (up to duality) in W , in order for it not to have any trivial
submodules or quotients.

Step 6: Contradiction for third set of composition factors The element v =
(1, 2, 3, 4)(5, 6) acts projectively on this module, so since it already acts projectively on 1/14/1,
if there are i disjoint subquotients of the form 6/4/6 (or 6/4∗/6) then we have that v acts on
L(G) with blocks 458+i, 28−2i. However, from Table 5 we see that i = 2. However, we have just
shown that i = 4, a contradiction. Thus W , and hence L(G) ↓H , has a trivial submodule or
quotient, as needed.

Step 7: Elimination of all possible socles for fourth set of composition factors The
last case to consider is 642, 20, 20∗, 144, 62, 14. The socle of W is a submodule of 6⊕ 14⊕2 ⊕ 20,
and we have already shown above that it contains 6. If it is all of them then there must be a
submodule

1, 1, 1, 1/6, 14, 14, 20,

and each of 6, 14 and 20∗ must cover one of the trivials. However, there are two extensions of
6 by this module, both of which lie above the 14s and not the 1s, so that this cannot be the
socle.

On the other extreme, if the socle is just 6 then this also fails: the largest submodule of P (6)
with a single 6 has two trivial factors, so cannot work.

We do a similar thing if the socle has two or three factors: compute the largest submodule
M of the appropriate sum of projectives, with the proviso that the composition factors of
top(M)/soc(M) do not include 6, and do not include 20 if 20 ∈ soc(W ) and similarly if 14⊕2 ≤
soc(W ), and remove any simple quotients from M whose duals are not isomorphic to anything
in the socle.

If the socle has factors 14, 6 then we construct the module M , add all four 6s onto M , then
remove all quotients not of dimension 14 or 6 to leave a module of dimension 122 with two
trivial factors, so this doesn’t work either.
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We end with the socle being 6⊕ 14⊕2. Define A1 to be the preimage in P (14) of the {1, 4, 4∗}-
radical of P (14)/soc(P (14)). We can construct a single extension of this module by 20, yielding
a module A2. In P (14)⊕ P (14), adding a single 20 to A1 ⊕A1 always makes, by choosing
diagonal submodules if necessary, a copy of A2 ⊕A1, up to isomorphism. The preimage of the
{1, 4, 4∗}-radical of P (6)/soc(P (6)) is a module A3, on which one cannot place a 20 or 20∗.
For P (14) we construct similar modules A1 and A2 as above, but this time by taking the
{1, 4, 4∗}-radical. To the sum of A1, A2 and A3, we then place as many 1s, 4s, 4∗s and 20∗s as
we can, to make a module of dimension 108 with six trivial factors. Placing on top of this as
many 14s as we can, then as many 6s as we can, still yields three trivial quotients, so we can
only cover three factors, and this is the final contradiction.

Hence there is no possibility for soc(W ), so H must always fix a line on L(G), as needed.

9. Alt(9)

Characteristics other than 2 and 3 have already been solved by Litterick in [20], so we
consider only p = 3 and then p = 2. We continue our assumption that E6 and E7 are used to
denote the simply connected forms, so that Z(E6(q)) and Z(E7(q)) have orders gcd(3, q − 1)
and gcd(2, q − 1) respectively.

Proposition 9.1. Suppose that p = 3.

(i) If G = F4, E6 and H ∼= Alt(9), then H does not embed into G.
(ii) If G = E7 and H ∼= Alt(9) then either L(G) ↓H has a trivial summand or (1, 2, 3) lies in

a generic unipotent class for Vmin, and so there exists a positive-dimensional subgroup
stabilizing the same subspaces of Vmin as H. In either case, H is not maximal.

(iii) If G = E7 and H ∼= 2 ·Alt(9) then there is no embedding of H into G with Z(H) =
Z(G).

(iv) If G = E8 and H ∼= Alt(9) then H fixes a line on L(G), so is not maximal.

Proof. Recall the simple modules and dimensions of Ext1 from Section 3. In characteristic
3 we need to consider G = E7 and G = E8. In E7, H acts on Vmin with factors 212, 72, and so
the element z = (1, 2, 3, 4, 5, 6, 7, 8, 9), which acts on 21 as 92, 3 and on 7 with a single block,
must come from either class A6, acting as 94, 72, 32, or from class E6(a1), acting as 96, 12.

In the previous section, we proved that L = Alt(8) either contained a unipotent element from
the generic class A2 – and hence is contained in a positive-dimensional subgroup by Lemma 1.2
– or has a trivial summand on L(G) and x = (1, 2, 3) comes from class A2 +A1. In addition,
y = (1, 2, 3)(4, 5, 6) acts on Vmin as 318, 12, and comes from class 2A2 (as the trivial summand
on L(G) means it cannot come from class 2A2 +A1, which acts as 343, 22).

If the socle of Vmin ↓H is 7⊕ 21 then the module is one of 7/21⊕ 21/7 or 7, 21/7, 21, with
both modules being uniquely determined. The element y acts on the former module as 312, 120,
which is not right, so this is not the correct embedding. Thus we may assume that H acts as
either 7, 21/7, 21 or as 7⊕ 7⊕ 21/21. The element z acts on the first module as 96, 12 and on
the second as 94, 72, 32, so acts on L(G) as either 911, 74, 3, 13 or 914, 7.

The composition factors of H on L(G) are 352, 27, 21, 72, 1, with the 27 splitting off as a
summand since it lies in a separate block. The action of z on each composition factor is

93, 7, 1, 93, 92, 3, 7, 1.

As L fixes a line on L(G), by Lemma 1.10 there is a map from the permutation module of
H on L, which is 1/7/1, to L(G) ↓H . As we assume that H fixes no line on L(G), this means
that 1/7 is a submodule of L(G) ↓H .
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Since z acts indecomposably on 1/7, we cannot have that the factors of z on L(G) are
911, 74, 3, 13, and so z acts as 914, 7 on L(G). In particular, the only possible simple summands
of L(G) ↓H are 27 and 7, and in particular 35 cannot be. However, since 1/7 is a submodule
of L(G) ↓H (and 7/1 is a quotient) we cannot have that 7 is a summand. Hence the socle of
L(G) ↓H (apart from the 27) is either 7⊕ 35 or 7.

The largest submodule of P (7) with a single 7 and other factors 1, 21 and 35 is
21, 35/1, 21, 35/7. Since this has only three socle layers, we cannot have that the 21 has an
extension with the 35s (since as L(G) is self dual we would need socle layers of 7, 35, 21, 35
and 7). But then the two 35s cannot lie above the 7, a contradiction. Thus the socle of L(G) ↓H
must contain 35.

Removing the 35s from the top and bottom of L(G) ↓H , we are left with a self-dual module
with factors 72, 21, 1, and with 1/7 as a submodule. Since there is no uniserial module 7/1/7,
this must be M = 7/1, 21/7.

The action of y on the direct sum of the composition factors of L(G) is 342, 17, so we
cannot have any module extension inside L(G) ↓H that changes the action of y. We have that
Ext1(M, 35) is 1-dimensional, but when this module is constructed, the element y has a block
of size 2 in its action, contradicting our earlier statement. This final contradiction proves that
H fixes a line on L(G), as needed for G = E7.

We finally consider G = E8, where the composition factors of L(G) ↓H are uniquely
determined and are 352, 27, 215, 76, 14.

As H1(H,M) = 0 unless dim(M) = 7, 35, 41 (and of course we can ignore 41), by taking the
{1, 21, 27}-residual of L(G) ↓H and then quotienting out by the {1, 21, 27}-radical, we get a
subquotient W of L(G) ↓H whose top and socle consist of 7s and 35s. Suppose that 35 lies in
the socle: this means that W is a submodule of P (35)⊕ P (7)⊕i for some i, and removing the
35 from the socle and top we have no more 35s. The {1, 7, 21}-radical of P (7) is 7/1, 21/7, and
the preimage in P (35) of the {1, 7, 21}-radical of P (35)/soc(P (35)) has the form 1, 7, 21/35.
As we need to hide four trivials, we clearly need the socle to be 35⊕ 7⊕3, whence that 7 lying
above the 35 cannot lie in W . However, Ext1(35, 1, 21/35) has dimension 2, but all of these
extensions have a trivial quotient, whence we fix a line. Thus the socle of W consists solely of
7s.

The {1, 7, 21, 35}-radical of P (7) is

7/1, 21, 35/7, 7, 21, 35/1, 21, 35/7,

and so since we need to conceal four trivial composition factors, the socle of W needs at least
two 7s. However, in order to have both trivial composition factors, we need the whole of this
module as a submodule of W , which contains three 35s, a contradiction. Thus we need as many
7s in the socle as 1s above them, i.e., four, which is not possible. Thus H always fixes a line
on L(G).

For p = 2, if G 6= E8 then [20, Theorem 1] gives the result, but we add it for sake of
completeness since the proofs are easy using Proposition 4.3.

Proposition 9.2. Suppose that p = 2.
(i) If G = F4 and H ∼= Alt(9), then either H or its image under the graph automorphism

fixes a line on Vmin, and so is not maximal.
(ii) If G = E6 and H ∼= Alt(9), then H has a trivial summand on Vmin, and hence is not

maximal
(iii) If G = E7 and H ∼= Alt(9), then H fixes a line on Vmin, and hence is not maximal.
(iv) If G = E8 and H ∼= Alt(9), then H fixes a line on L(G), and hence is not maximal.
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Proof. The dimensions of 1-cohomology for simple H-modules are given in Table 8, and
the composition factors for Vmin ↓H and L(G) ↓H are given in Proposition 4.3. These together
prove that for G = F4 either H or its image under the graph automorphism has pressure −2,
and for E6 either Vmin ↓H has pressure −3 or has composition factors 26 and 1, hence fixes a
line or hyperplane on Vmin. However, if the factors are 81, 82, 83, 1

3 then the trivial split off and
if the factors are 26, 1 then H cannot lie in a D5 parabolic, with factors 10, 16, 1 on Vmin, hence
H lies in F4, which acts as 26⊕ 1, proving the result. For E7 we have factors 821, 8

2
2, 8

2
3, 1

8,
hence having eight trivial summands, or 262, 14, of pressure 0, hence H fixes a line.

We are left with the case of G = E8. The proof of this is quite long, and we will break it
into stages. As we saw in Section 3, the simple modules here are 1, 81 and 82, permuted by
the outer automorphism, 83, 20, 20∗, 26, 48 and 78, plus modules that do not appear in our
analysis. The modules 83 and 48 lie in a non-principal block of H.

Step 1: Eliminating all but one set of composition factors on L(G). By Proposition
4.3 we may assume that the composition factors of H acting on L(G) are one of

26, 881, 8
8
2, 8

8
3, 1

30, 268, 81, 82, 83, 1
16, 264, (20, 20∗)2, 851, 8

2
2, 1

8

482, 264, 853, 1
8, 48, 262, (20, 20∗)2, 831, 8

3
2, 8

2
3, 1

4.

As H1(H,M) is 2-dimensional for M = 26 and 1-dimensional for 78, 20 and 20∗, we have that
these sets of composition factors yield modules of pressure −28, 0, 4, 0 and 4, respectively, so
only the third and the fifth case might not fix a line on L(G).

Let L ∼= Alt(8) ≤ H. Since L fixes a line on L(G), we may apply Lemma 1.10 to find a map
from the permutation module of H on the cosets of L, which is 1⊕ 83, to L(G) ↓H . Thus if
83 is not a submodule of L(G) ↓H then H fixes a line on L(G). This deals with the third
possibility for the composition factors of L(G) ↓H above, so we may assume from now on that
the composition factors of L(G) ↓H are

48, 262, (20, 20∗)2, 831, 8
3
2, 8

2
3, 1

4,

and that the composition factors of L(G) ↓L are

(20, 20∗)2, 144, 68, (4, 4∗)7, 18.

Step 2: 83/48/83 is a summand of L(G) ↓H . We concentrate on the non-principal block,
which has factors 48, 823. As Ext1(48, 83) is 1-dimensional, and there are no self extensions of
83 or 48, we get a unique uniserial module of structure 83/48/83, and so this summand of
L(G) ↓H is one of

83/48/83, 83 ⊕ 83 ⊕ 48,

since it is self dual. We understand completely the restrictions of these modules to L, and they
are

1/14/6, 6/4, 4∗/1, 1, 6/6, 14/1, (1/6/1)⊕2 ⊕ 14/6/4, 4∗/6/14.

Notice that, as we may assume that L(G) ↓H has no trivial submodules, these two modules
describe the summand of L(G) ↓L with trivial submodules.

Suppose that we are in the second case, i.e., 83 is a summand of L(G) ↓H . We now see that
14/1 cannot be a submodule of L(G) ↓L: to see this, let ρ1 and ρ2 denote the projection maps
along the non-principal and principal block summands M1 and M2 of L(G) ↓H . If M = 1/14/1
is isomorphic to a submodule of L(G) ↓L, then the sum of the images along ρ1 and ρ2 must
equal all of M . However, as M is uniserial, this means that one of ρ1 and ρ2 is an injection for
M , hence M is contained in M1, but from the actions above we see that it is not. Similarly,
any module that is an extension with quotient 14/1, 6 (indecomposable) and submodule a
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module with factors 4 and 4∗ cannot appear in L(G) ↓L either. With these facts in mind we
try to understand all Alt(8)s inside E8 in characteristic 2, running through positive-dimensional
subgroups and using Proposition 4.2 and its proof. We are only interested in those with factors
as given above, so we only need concern ourselves with those in the A7 parabolic with factors
42 or 4, 4∗ on the natural, D7 parabolic with factors 6, 4, 4∗ on the natural, and D8 with factors
(4, 4∗)2 on the natural. Thus we may assume that L lies in one of these

If L lies inside the A7 parabolic X and its factors are 4, 4∗, then the action on the natural
is either 4⊕ 4∗ or 4/4∗ (up to outer automorphism). The filtration of the action of X on L(G)
is (up to duality)

L(λ7)/L(λ2)/L(λ3)/L(λ1 + λ7)/L(λ3)/L(λ6)/L(λ1),

and so we are interested in L(λ6) = Λ2(L(λ1))∗. In the two cases this module is 1, 6/14/1, 6
and 1/14/1⊕ 6⊕2, so has a submodule 14/1, 6 (indecomposable) or 14/1. Of course, the layer
below this has factors 4 and 4∗, so has no extensions with 1 or 14, so we have one of the two
submodules of L(G) ↓L not allowed by the above arguments.

Alternatively, L acts as 4⊕ 4 on the natural, but then all of L(λ1), L(λ2), L(λ3) and their
duals have no trivial composition factors. Hence the {1}′-residual, modulo its {1}′-radical, is
a subquotient of L(λ1 + λ7), but this module is clearly

(4⊗ 4∗)⊕4 = (1/14/1)⊕4,

so we can never have 1/6/1 being a submodule of L(G) ↓L. Thus L does not lie in the A7

parabolic.

If L lies inside X = D8 with factors (4, 4∗)2 on the natural module V , then Λ2(V ) is a
summand of L(G) ↓X , and so if 4⊕ 4∗ is a submodule of V ↓L then 4⊗ 4∗ = 1/14/1 is a
submodule of L(G) ↓L, which is not allowed. Hence 4⊕ 4 is the socle of V ↓L. (The {4, 4∗}-
radical of P (4) is 4∗/4.) This means that L acts on V as (4∗/4)⊕2. The exterior square of this
module has three summands, two of which are Λ2(4∗/4), which we earlier saw had 14/1, 6 as
a submodule, so not allowed in L(G) ↓L, and L 6≤ X again.

We are left with X being the D7 parabolic, with L acting on the natural with factors 6, 4, 4∗.
Certainly L stabilizes a 4-space on the natural module, and acts as GL4(2) on it, so the
stabilizer in X acts irreducibly on the 4-space.

This means that the radical of the form on the 4-space is either 0 or the whole space, so that it
is either non-singular or totally isotropic. These stabilizers are a maximal parabolic or a D2D5

subgroup, the latter subgroup not containing GL4(2) acting irreducibly on a 4-dimensional
non-degenerate subspace of the natural module, and so we lie in a parabolic subgroup of X,
hence a different parabolic subgroup of G. However, the parabolic subgroups of G contained in
the D7 parabolic are all (after A1s and A2s have been stripped out) in the E7 or A7 parabolics,
and so have been dealt with.

This proves that we cannot have 8⊕23 ⊕ 48 as a summand of L(G) ↓H . We note that all
unipotent elements in H act projectively on 83/48/83.

Step 3: 26 is not a submodule of L(G) ↓H . We come back to the principal block summand,
which has composition factors 262, (20, 20∗)2, 831, 8

3
2, 1

4. The element v = (1, 2, 3, 4)(5, 6) acts
projectively on 81, 82, 20 and 20∗, and as 45, 23 on the 26. Thus v has at least fifty-eight blocks
of size 4 in its action on L(G), so must act as 460, 24 by Table 5.

Write W for the {81, 82}-residual modulo its {81, 82}-radical, so W is a submodule of a sum
of P (26), P (20) and P (20∗)s. Remove also any simple summands from W .

Suppose that 26 lies in the socle of W . The {26, 78}′-radical of P (26)/soc(P (26)), lifted back
to P (26), has the form

20, 20∗/1, 1, 81, 82/26.
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The {26, 78}′-radical of P (20) is

82/20∗/1, 81/20,

and so if 26 lies in soc(W ), then soc(W ) = 20⊕2 ⊕ 26 or 20⊕ 20∗ ⊕ 26. In both cases, the action
of v on the submodule

1, 1, 1, 1/26, 20, 20±

is projective (where 20± means either 20 or 20∗), plus 3, 22, 13. Since v acts projectively on
all of 81, 82, 20 and 20∗, and acts on 26 as 45, 23, extending this module (possibly with some
81s and 82s as well) by the 26⊕ 20⊕ 20∓ (where 20∓ means the dual of the module selected
earlier) on the top of W requires us to, for the action of v, add 23 onto 3, 22, 13 to make 42, 24.

We claim that, for the cyclic group of order 4, there is no submodule N of M = 42, 24 of
shape 3, 22, 13, whose quotient is 23. To see this, firstly note that the socles of M and N
coincide, so we may work modulo soc(M). Now the socle of M has dimension 6 and the socle
of N has dimension 3, so the extension of N by soc(M/N) must be split; loosely speaking, the
socle of M/N is ‘contained in’ the socle of N (although of course this doesn’t strictly make
sense). We therefore have an extension of 13 by 2, 15 to make 32, 14 (remember we are working
modulo soc(M)), but 13 is a trivial module, so that the kernel of the map from 32, 14 to 13

contains the Jacobson radical of 32, 14, namely 22, a contradiction.
What we have therefore proved is that 26 is not in soc(W ), and hence the socle of W is one

of 20, 20⊕2 and 20⊕ 20∗.

Step 4: Eliminating the remaining socle possibilities. If the socle is 20 then W is a
submodule of P (20), and we firstly take the {78}′-radical of P (20), then take the {20∗}′-residual
of that (since soc(W ) = 20, top(W ) = 20∗), to produce the self-dual module

20∗/1, 82/20, 26/1, 1, 81/20∗, 26/1, 82/20.

However, v acts projectively on this, and since it acts projectively on the non-principal block
part of L(G) as well, this means that it would act projectively on all of L(G), which is not
allowed by Table 5, as v is supposed to act as 460, 24. Thus the socle isn’t simple.

Thus the socle is 20⊕ 20±, and in particular all 20, 20∗s are taken up by the socle and top
of W . We thus want to take the preimage in P (20)/soc(P (20)) of the {1, 81, 82, 26}-radical M ,
which is

1, 81/26/1, 82/20.

In theory this could work, but we will need to place 20 or 20∗ on top of this module and hide the
trivial quotient. Firstly, Ext1(20,M) = 0, so this will not work; Ext1(20∗,M) is 1-dimensional,
but this module is

1, 81/26, 20∗/1, 82/20,

and so the socle cannot consist of 20±s either. Thus H fixes a line on L(G), as needed.

10. Alt(10) and above

For H ∼= Alt(n) for n ≥ 10, Litterick in [19] proved that H lies inside a σ-stable positive-
dimensional subgroup for all G, except possibly a single set of composition factors for p = 2,
G = E8 and H ∼= Alt(10), which was completed in his forthcoming Memoir [20]. Using pressure
and Frobenius reciprocity we can provide a shorter proof of this result.

The composition factors of L(G) ↓H are

482, 264, 85, 18,
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and since H1(H, 48) = 0 and H1(H, 26) = H1(H, 8) are 1-dimensional we have that L(G) ↓H
has pressure 1. If we remove any 48s in the socle and top of L(G) ↓H to get a module W , then
since W has pressure 1 by Proposition 1.9 we have that soc(W ) is either 8 or 26, so that W is
a submodule of either P (8) or P (26).

Using Lemma 1.10, since L(G) ↓L has a trivial submodule (where L = Alt(9)), there is a
non-trivial map from 1L ↑H= 1/8/1 to L(G) ↓H , and hence to W . Thus either H fixes a line
on L(G), as needed, or 1/8 is a submodule of L(G) ↓H , and so W ≤ P (8).

Furthermore, since W has pressure 1, W must have at least seventeen socle layers, since
all 1s, 8s and 26s must lie in different layers. The projective P (8) has exactly nineteen socle
layers, and is given in [4]. The seventeenth socle layer of P (8) is 26⊕ 200 and the eighteenth
is 1, which therefore means that if soc(W ) = 8 then W cannot be self dual. Hence H fixes a
line on L(G), so is not maximal.
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