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Abstract: The Late Caledonian Newry Igneous Complex (NIC), Northern Ireland, comprises 

three largely granodioritic plutons, together with an intermediate-ultramafic body at its 

northeastern end.  New whole-rock geochemical data, petrological classifications and 

published data, including recent Tellus aeromagnetic and radiometric results, have been used 

to establish 15 distinct zones across the four bodies of the NIC.  These become broadly 

younger to the southwest of the complex and toward the centres of individual plutons.  In 

places, zones are defined by both current compositional data (geochemistry and petrology) 

and Tellus results.  This is particularly clear at the eastern edge of the NIC, where a thorium-

elevated airborne radiometric signature occurs alongside distinct concentrations of various 

elements from geochemistry.  However, in the northeastern-most pluton of the NIC a 

prominent ring-shaped aeromagnetic anomaly occurs independent of any observed surface 

compositional variation, and thus the zones in this area are defined by aeromagnetic data only.  

The origins of this and other aeromagnetic anomalies are as yet undetermined, although in 

places these closely correspond to facies at the surface.  The derived zonation for the NIC 

supports incremental emplacement of the complex as separate, distinct magma pulses.  Each 

pulse is thought to have originated from the same fractionally crystallising source that 

periodically underwent mixing with more basic magma.   

 

 

 

Key words: Zonation; Aeromagnetic; Radiometric; Incremental emplacement; Magma 

evolution 
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1. Introduction 

 

 The zonation of an igneous body represents the systematic change in composition, 

structure or geophysical properties throughout the body (Richey, 1928; Schetselaar et al., 

2000, Cooper et al., in press).  Zonation can be gradational (Bowen, 1919; Exley, 1996) or 

expressed through more abrupt lithological changes (Richey, 1928; Pitcher, 1997; Hecht and 

Vigneresse, 1999; Kryza et al., 2014).  In the latter case, the pluton can often be subdivided 

into distinct zones, which may reflect incremental emplacement via separate magma pulses. 

(Richey, 1928; Pitcher, 1997; Hecht and Vigneresse, 1999; Coleman et al., 2004; Lipman, 

2007; Stevenson, 2007; Miller, 2008; Farina et al., 2012).  Geochronological studies show 

that such plutons can be constructed over periods of several million years (Matzel et al., 2006; 

Annen, 2011; Miller et al., 2011; Scheone et al., 2012; Barboni et al., 2013, 2015).   

 Many studies demonstrate the success of using geophysical techniques to investigate 

zonation in igneous intrusions (Vigneresse, 1990; Benn et al., 1999; Petford et al., 2000; 

Schetselaar et al., 2000, 2007; Mishra, 2011).  Of these, aeromagnetic and airborne 

radiometric surveying allows large areas to be covered and provide relatively shallow-

penetrating signatures, which can often be correlated with surface geology.   For example, 

Schetselaar et al. (2000) use aeromagnetic results to identify a previously undetected unit 

boundary within the Western Slave Granitoid in northeast Alberta. 

Airbourne radiometric data usually record proportions of common isotopes of potassium, 

uranium and thorium (
40

K, 
238

U and 
232

Th), which can be assumed to represent total 

proportions of the respective elements in the bedrock (e.g., Grasty 1975; Cook et al., 1996; 

Schetselaar et al., 2000; Martelet et al., 2006; Dempster et al., 2013; Keaney et al., 2013).  

Unlike aeromagnetic results, these data relate to composition of only the uppermost several 

centimetres of the ground.  Hence, the radiometric signature of an area will often yield 

concentrations of the three elements within the local topsoil, although these concentrations 

usually correspond to the composition of the underlying bedrock (e.g., Cook et al., 1996; 

Martelet et al., 2006).   

Here we provide new whole rock geochemical and petrological data on the Newry Igneous 

Complex (NIC).  This is examined alongside existing petrological, geochemical, 

aeromagnetic, radiometric and geochronological data (Reynolds, 1934; 1936; 1943; Meighan 

and Neeson, 1979; Neeson, 1984; Cooper et al., in press) to provide a new detailed zonation 

for the NIC.  This new zonation pattern will require a reexamination of the emplacement of 

the NIC.  We outline possible emplacement implications and suggest relevant hypotheses.   
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2. Geological background 

 

 The Newry Igneous Complex (NIC) is a Devonian, exclusively I-type intrusion located in 

Northern Ireland (Fig. 1) (Meighan and Neeson, 1979; Cooper and Johnson, 2004; Cooper et. 

al., in press).  The NIC forms part of the Southern Uplands-Down-Longford Terrane 

associated with final closure of the Iapetus Ocean in the Late Silurian-Early Devonian (Bluck, 

1985; Needham and Knipe, 1986; Leggett, 1987; Anderson, 2004; Brown et al., 2008; Miles 

et al., 2013).  Broadly speaking, the NIC comprises three separate, largely granodioritic 

plutons (Reynolds, 1934; Meighan and Neeson, 1979; Neeson, 1984), which are referred to as 

the Rathfriland (northeast), Newry (central) and Cloghoge (southwest) plutons (Fig. 1) 

(Cooper et al., in press).  The Rathfriland pluton hosts a Devonian intermediate-ultramafic 

body at its northeast margin (Reynolds, 1934, 1936; Meighan and Neeson, 1979; Neeson, 

1984; Cooper and Johnson, 2004a), referred to as the Seeconnell Complex (Fig. 1) (Inman et 

al., 2012).    Additionally, the Cloghoge pluton has been extensively intruded by a large 

Palaeogene subvolcanic complex, known as the Slieve Gullion Complex (Richey, 1928; 

Neeson, 1984; Cooper and Johnson, 2004b; Stevenson, 2007) (Fig. 1).       

 

3. Previous work on the NIC 

 

3.1. Composition 

 

 Previous petrological work shows that the NIC becomes generally more silicic to the 

southwest (Fig. 1) (Reynolds, 1943; Meighan and Neeson, 1979; Neeson, 1984).  Individual 

plutons also display broad internal zoning.  The Rathfriland pluton shows normal zoning, 

ranging in composition from an exterior composed of hornblende granodiorite to an interior 

composed of biotite granodiorite (Meighan and Neeson, 1979; Neeson, 1984) (Fig. 1).  

Normal zoning of the Cloghoge pluton is defined by a relatively abrupt change between an 

outer hornblende granodiorite and an inner (off-centre) felsic granodiorite (Neeson, 1984).  In 

contrast, the Newry pluton shows reverse zoning, expressed by the occurrence of an outer 

biotite granodiorite and an inner hornblende granodiorite (Neeson, 1984) (Fig. 1). 

  

3.2 Distinctive facies 

 

3.2.1. Seeconnell Complex 

 The Seeconnell Complex represents a compositionally distinct body at the northeastern 

margin of the Rathfriland pluton (Reynolds, 1934; Meighan and Neeson, 1979) (Fig. 1).  It is 

known to be cross cut by the main part of the Rathfriland pluton (Neeson, 1984), and U-Pb 
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geochronology shows that it is the oldest part of the NIC (Cooper et al., in press) (Fig. 2).  

The Seeconnell Complex contains a large and variable set of internal facies, consisting of two 

monzonites, diorite, meladiorite and biotite pyroxenite (Reynolds, 1934, 1936; Meighan and 

Neeson, 1979; Neeson, 1984).  The distribution of these facies within the Seeconnell 

Complex is intricate and has not been mapped as part of the current study. 

 

3.2.2. Intermediate bodies 

 A small area in the north of the main Rathfriland pluton exhibits similar monzonitic and 

dioritic compositions to the Seeconnell Complex (Reynolds, 1934; Neeson, 1984) (Fig. 1).  

This has been divided into three intermediate bodies in the vicinity of Rough Hill and 

Legananny Mountain (Neeson, 1984) (Fig. 1).  The compositional similarity of these bodies 

to the Seeconnell Complex is thought to reflect similar ages of intrusion (Neeson, 1984).  

Thus, together with the Seeconnell Complex, the bodies most likely predate other parts of the 

NIC.     

 Another intermediate body occurs in the vicinity of Kilcoo in the southern part of the 

Rathfriland pluton (Meighan and Neeson, 1979; Neeson, 1984) (Fig. 1).  However, this is 

defined as a quartz diorite and, as such is significantly more felsic than the northern 

intermediate bodies and the Seeconnell Complex (Neeson, 1984).  In fact, Neeson (1984) 

suggests that this quartz diorite relates more closely to the main part of the Rathfriland pluton 

than to any of the other more mafic bodies.   

 

3.2.3. Porphyritic granodiorite 

 A distinct porphyritic granodiorite containing hornblende and biotite phenocrysts occurs 

within the Newry pluton (Reynolds, 1943; Neeson, 1984).  This facies is thought to crop out 

as a narrow ring, separating the outer biotite granodiorite and inner hornblende granodiorite in 

this pluton (Neeson, 1984) (Fig. 1), although previous mapping has been based on limited 

exposure. 

 

3.3. Geophysical data 

 

 The Tellus Project is an ongoing, comprehensive and multi-award winning geological 

mapping project of Northern Ireland, managed by the British Geological Survey (BGS), the 

Geological Survey of Northern Ireland (GSNI) and the Geological Survey of Ireland (GSI) 

(Leslie et al., 2013).  Part of the initial phase of this project, taking place in 2005/2006, was 

the Tellus Regional Airborne Geophysical Survey of Northern Ireland, arranged in 

partnership between the BGS and the Geological Survey of Finland.Aeromagnetic and 

radiometric data for the NIC from this survey were interpreted by Anderson (2015) and 
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Cooper et al. (in press).  Cooper et al. (in press) use these results to divide the NIC into a 

number of geophysical zones, although prior to the current study these have not been 

correlated with specific lithologic units.     

 

3.3.1. Aeromagnetic data 

 Aeromagnetic data reveals a number of distinct positive aeromagnetic anomalies within 

the NIC, including two ring-shaped anomalies within the Rathfriland and Newry plutons 

respectively (Fig. 2A).  The aeromagnetic ring within the Newry pluton corresponds, in part, 

to outcrop of the porphyritic granodiorite, whereas the aeromagnetic ring within the 

Rathfriland pluton lacks a corresponding surface facies (Fig. 2A).  The other positive 

aeromagnetic anomalies approximately correspond to mapped locations of the Seeconnell 

Complex, intermediate bodies and both the Caledonian and Palaeogene parts of the Cloghoge 

pluton (Fig. 2A).  The anomaly corresponding to the Seeconnell Complex is slightly larger in 

extent than this body.  Cooper et al. (in press) state that the positive aeromagnetic anomaly in 

the area of the Cloghoge pluton corresponds to the Palaeogene Slieve Gullion Complex (see 

Fig. 1).  Despite the correlation of several of positive aeromagnetic anomalies with 

petrological characteristics, the original cause of these anomalies has been poorly understood.     

 Less prominent areas of negative aeromagnetic signature are also present throughout much 

of the Rathfriland and Newry plutons, as well as over a large area occupied by Palaeozoic 

sediments to the northeast of the NIC (Fig. 2A).   

 

3.3.2. Radiometric data 

 

 Ternary radiometric data indicate an area of thorium enrichment at the eastern rim of the 

Rathfriland pluton (Fig. 2B).  This signature spans the entire eastern rim of the pluton, apart 

from the Seeconnell Complex, which displays a more mixed radiometric signature (Fig. 2B).  

The remaining (western) Rathfriland pluton and entire Newry pluton display a potassium-

elevated radiometric signature (Fig. 2B).  This signature does not appear to show fluctuations 

relating to any of the three distinct previously defined facies of the Newry pluton (Fig. 1).  

The Cloghoge pluton displays a distinct mixed thorium- and potassium-elevated signature 

(Fig. 2B).   

 

3.4. Geochronology 

 

 Cooper et al. (in press) report nine U-Pb zircon ages for the NIC, which range from ca. 414 

to 407 Ma (with errors of 0.18 to 0.58 Myr at 2) (Fig. 2).  The dates confirm that the NIC 
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was intruded sequentially from northeast to southwest, with the Seeconnell Complex 

representing the oldest part.  These dates also show that the Rathfriland and Newry plutons  

become younger towards their respective centres (Fig. 2).  Overall geochronology suggests 

that there were large hiatusus in emplacement not only between plutons, but also within 

plutons.   

 

3.5. Large scale mapping 

 

 The pluton margins illustrated in Fig. 1 (as well as Fig. 2 – 5) correspond to the most 

recent mapping of this area by the Geological Survey of Northern Ireland (GSNI, 1997).  

However, this mapping is reveals a different location of the Newry-Cloghoge pluton 

boundary to Neeson’s (1984) study of the NIC (Fig. 1).  Therefore, the location of this 

boundary is investigated and confirmed in the current study (see discussion).    

    

4. Methods 

 

 For this study 133 samples were collected from across the NIC (see Appendix 1 for 

sampling locations), which were analysed geochemically and petrologically.  Data obtained 

are used alongside existing compositional and geophysical data (Neeson, 1984; GSNI, 1997; 

Cooper et al., in press) on the NIC to constrain a new detailed zonation for the complex.  

 

4.1. Geochemistry 

Samples were reduced to approximately fist-sized blocks by removing weathered surfaces and 

sub-samples for petrological characterisation (see below).  All samples were then delivered to 

the British Geological Survey (BGS) in Keyworth, Unitied Kingdom to undergo whole rock 

geochemical analysis.  Samples were crushed and milled before analysis through lithium 

borate fused bead XRFS (0.9 g split) and sodium peroxide fusion ICP-MS (0.2 g split).  Loss 

on ignition was determined gravimetrically (1 g split).  Full details of geochemical analysis 

are provided in Appendix 2. 

  

4.2. Petrological classifications 

Whereas all samples are geochemically analysed, fifty two samples are additionally used to 

provide petrological classifications.  These were selected from particular areas of the NIC in 

order to better constrain surface composition where existing data was lacking or variable.  

Petrological classifications were made simply by visual estimation of approximate modal 

proportions of minerals within each sample and determining a relevant descriptive rock name 

(e.g., hornblende biotite granodiorite). 
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5. Results 

 

5.1. The Rathfriland pluton 

 

 The geochemistry of the ultramafic-intermediate Seeconnell Complex is variable (see 

Appendix 3), due to the range of lithologies previously mapped (Reynolds, 1934; Meighan 

and Neeson, 1979; Neeson, 1984).  However, the mean concentrations of various elements 

confirm that this is the most basic part of the NIC (Area 1 in Table 1 and Fig. 3).  Within the 

Seeconnell Complex, mean concentrations of the radiometric elements potassium (K20) and 

uranium (U) are relatively high (3.98 wt% and 3.5 ppm respectively) and thorium (Th) is 

moderate (12.4 ppm) in relation to other parts of the NIC (Fig. 4).  This is consistent with the 

interpretation of the Seeconnell Complex as a zone of ‘mixed’ radiometric signature from 

airborne data reported by Cooper et al. (in press).  

 Mean major element concentrations become generally more silicic towards the centre of 

the Rathfriland pluton (Fig. 3, Fig. 5).  Excluding the Seeconnell Complex, the most 

significant shift in geochemical concentration within the Rathfriland pluton occurs between 

the area of airborne Th elevation in the eastern part of the pluton (Areas 2 – 3 in Table 1 and 

Fig. 3) and the inner and southwestern parts of the pluton (Areas 4 – 6 in Table 1 and Fig. 3).  

Current results confirm that the area of airborne Th elevation also corresponds to geochemical 

Th elevation (mean concentration of 19.2 ppm – Fig. 4).  Geochemistry additionally reveals 

low SiO2 and high Fe2O3(t) in this area relative to the inner and southwestern parts of the 

pluton (Fig. 5).  These results support the compositional distinction of the eastern Rathfriland 

pluton rim indicated by the airborne radiometric data of Cooper et al. (in press) and suggest 

that the area is more basic than the inner and southwest parts of the pluton.  

 Current geochemistry also reveals significant variation within the eastern Rathfriland 

pluton rim (Areas 2 – 3 in Table 1 and Fig. 3).  This is shown in Fig. 5 through a number of 

samples containing particularly low SiO2 and high Fe2O3(t) that are labelled ‘anomalously 

basic samples’.  The samples cluster close to the Seeconnell Complex and intermediate bodies 

(including the quartz diorite).  The ‘anomalously basic samples’ in the northern part of the 

Rathfriland pluton can be separated from those in the south of the pluton due to their higher 

Fe2O3(t) concentrations (Appendix 1A and 3A). 

             

 Petrological classification shows that the quartz diorites in the eastern Rathfriland pluton 

(Area 3 in Fig. 3) correspond closely to the positive aeromagnetic signature in this area (Fig. 

6).  The location of these quartz diorites is also consistent with mapping of the pluton by 

Neeson (1984) (Fig 1 and Fig. 6).   
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 Within the inner part of the Rathfriland pluton (Areas 4 – 6 in Table 1 and Fig. 3) there is 

comparatively little geochemical change, in terms of both mean concentrations (Table 1 and 

Fig. 3) and mapped concentrations (Fig. 5).  Hence the prominent shift in aeromagnetic 

signature corresponding to the positively aeromagnetic ring does not appear to reflect a 

change in composition. 

  

5.2. The Newry pluton 

 

 The Newry pluton is less compositionally complex than the Rathfriland pluton, with much 

of the variation being determined by the presence of a distinctive porphyritic granodiorite 

facies (Fig. 1).  Geochemical and petrological results broadly confirm the reverse zoning of 

the Newry pluton (Areas 7 and 8 in Table 1 and Fig. 3; Fig. 5 and Fig. 6).  This is shown by 

an inward decrease in SiO2 (from 70.33 to 66.87 wt% in Fig. 3; also see Fig. 5A) 

concentrations and an inward increase in Fe2O3(t) (from 2.44 to 3.77 wt% in Fig. 3; also see 

Fig. 5B), together with a higher proportion of biotite and felsic granodiorites in the outer part 

of the pluton (Fig. 6).  Several porphyritic granodiorite samples are also observed close to 

where these are mapped by Neeson (1984) (Fig. 6).  Altogether these results broadly support 

the former division of the Newry pluton into an outer biotite granodiorite, a porphyritic 

granodiorite ring and inner hornblende granodiorite (Neeson, 1984), although significant 

compositional variation is also apparent throughout (Fig. 5 and Fig. 6). 

Cooper et al. (in press) show that the mapping of the porphyritic granodiorite by Neeson 

(1984) correlates with a prominent positive aeromagnetic ring.  However, in the eastern part 

of this pluton the shape of the aeromagnetic ring is inconsistent with Neeson’s mapping of the 

porphyritic granodiorite (Fig. 6).  Since exposure is poor in this area, aeromagnetic data is 

considered to outweigh former mapping in determining the general trend of the facies.   

 This study further elucidates the relationship between the porphyritic granodiorite and the 

positive aeromagnetic ring in the Newry pluton.  Petrological results show that the inner part 

of the aeromagnetic ring generally corresponds to porphyritic granodiorite, whereas the outer 

part of this ring generally corresponds to non-porphyritic facies (Fig. 6).  Hence the 

aeromagnetic signature of the porphyritic granodiorite is outward-shifted, rather than 

precisely matching the outcrop distribution of the facies.  This may be due to subsurface 

penetration of aeromagnetic data (Schetselaar et al., 2000), which would result in an outward-

shifted signature if the porphyritic granodiorite is outward-dipping (Fig. 7).  This 

interpretation is consistent with the outward-dipping fabrics within the pluton as shown in 

Fig. 1.  Exception occurs in the western part of the Newry pluton where the positive 

aeromagnetic anomaly correlates more closely with surface exposure and with former 

mapping of the porphyritic granodiorite.  Fabrics in this part of the pluton are also steep to 
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vertically-dipping (Fig. 1).  Hence, in this area it is likely that the porphyritic granodiorite unit 

is near-vertical in orientation.  Within Fig. 6, the porphyritic granodiorite is remapped 

according to these new data and interpretations.   

 

5.3. The Cloghoge pluton 

 

 Geochemistry confirms the broad separation of the Cloghoge pluton into a silica-poor 

outer part and a silicic off-centre core inferred by Neeson (1984).  This is apparent from mean 

SiO2 concentrations of the outer and core parts of the pluton, represented in Table 1 and Fig. 3 

by Areas 9 (63.65 wt% SiO2) and 10 (71.34 wt% SiO2) respectively.  However, mapped 

concentrations of individual samples reveal an area of anomalously high SiO2 and low Fe2O3(t) 

within the northernmost part of the outer pluton (labelled ‘anomalously silicic area’ in Fig. 5).  

 A new area of highly variable geochemisty is also reported here (labelled ‘area of variable 

geochemical concentrations’ in Fig. 5).  This variation corresponds to the occurrence of a 

number of steeply orientated sheets of mixed composition.  Petrological data shows that these 

sheets consist of granite, felsic granodiorite, hornblende granodiorite, mafic granodiorite, 

porphyritic diorite and dolerite (Fig. 6).  Some of the rock types resemble those observed 

within other parts of the Cloghoge pluton, as well as the adjacent Newry pluton.  In particular, 

the granite and mafic granodiorite are similar to the felsic granodiorite and hornblende 

granodiorite within the Cloghoge pluton, whilst the porphyritic diorite displays a textural 

resemblance to the porphyritic granodiorite of the Newry pluton (Fig. 6).  The sheets display 

variable contact relationships, which include straightforward cross cutting, mixing and 

mingling.  However, the implied age relationships between the units are inconsistent, 

suggesting that all were intruded penecontemporaneously. 

 Mean concentrations of the three radiometric elements, K2O and Th and U, within the 

Cloghoge pluton are notably higher (3.89 wt%, 12.6 ppm and 3.0 ppm, respectively) than they 

are in other parts of the NIC (Fig. 4).  These results are consistent with the interpretation of 

the Cloghoge pluton as an area of ‘mixed’ K2O/Th enrichment (Cooper et al., in press), and 

further suggest that U is also elevated in this area.   

 

6. Discussion 

 

6.1. Zonation of the NIC 

 

 Based on current and previous studies a total of 15 zones are inferred within the NIC (Fig. 

7).  These are interpreted to have been sequentially emplaced and are named Zones A-O to 
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denote this.  U-Pb ages from Cooper et al. (in press) are used to suggest that the zones range 

in age from ca. 414 to 407 Ma. 

 

6.1.1. The Rathfriland pluton 

 The Seeconnell Complex is distinguished within the NIC by its unqiue intermediate-

ultramafic composition, as well as its strong positive aeromagnetic anomaly and mixed K- 

and Th-elevated airborne radiometric signature.  .  Since geochronological data shows that the 

Seeconnell Complex is the oldest part of the NIC (414.02 ± 0.18 Ma), this area is defined as 

Zone A (Fig. 8).  

 The crescent-shaped area of Th-enriched radiometric signature (Fig. 2B and Fig. 4) and 

relatively basic geochemistry (Fig. 3 and Fig. 5) in the eastern part of the Rathfriland pluton is 

subdivided into Zones B – F on the basis of its internal geochemical variations (Fig. 8).  Zone 

B represents the intermediate bodies close to the Seeconnell Complex (Fig. 8).  This is due to 

the compositional similarity between these bodies and the Seeconnell Complex, which 

indicates a close relationship between the areas (Reynolds, 1934; Neeson, 1984).  The extent 

of this zone is mapped according to the work of Neeson (1984).   

 All other parts of the eastern Rathfriland pluton are more felsic than Zones A and B, yet 

are significantly more basic than the inner pluton.  Zone C represents the area of relatively 

basic geochemistry in the vicinity of Zones A and B (Fig. 8).  The hornblende granodiorite in 

this area exhibits more basic geochemistry than any of the other granodiorites within the NIC.  

Hence, this facies is termed basic granodiorite and is thought to reflect evolution of the 

intermediate magma supplying Zones A and B.  Compositionally, Zone C is distinguished 

from another basic granodiorite (Zone F – see below) through its higher Fe2O3(t) 

concentrations.   

 The area defined as Zone D is significantly more silicic than Zone C (Fig. 8).  Zone D also 

exhibits the next oldest U-Pb age (413.44 ± 0.37 Ma) after the Seeconnell Complex (Zones B 

and C are currently undated) and consists of hornblende granodiorite.  Therefore, Zone D may 

represent further evolution of the magma supplying Zones A to C. 

 Zone E is defined as the quartz diorite in the south of the Rathfriland pluton.  This is more 

basic than the Zone D granodiorite, although its geochronological age (412.53 ± 0.33 Ma) 

clearly suggests that it is the younger of the two facies (Fig. 8).  Hence, straightforward 

evolution of a single source by fractional crystallisation does not account for the variation 

between these zones, and mixing of more basic magma is thought to have produced the Zone 

E composition.  The quartz diorite (Zone E) is also distinguished by a prominent positive 

aeromagnetic anomaly (Fig. 2A).  Together with Neeson’s (1984) mapping, this anomaly is 

used to determine the extent of Zone E. 
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 Zone E is surrounded by another area of granodiorite displaying relatively basic 

geochemistry (Fig.8).  Xenoliths of quartz diorite have been observed within this adjacent 

basic granodiorite (Neeson, 1984), which is thus suggested to be younger than Zone E.  The 

area is defined as Zone F and is referred to as a second basic granodiorite (Fig. 8), which may 

represent evolution of the magma supplying Zone E.  Zone F is distinguished from the other 

basic granodiorite (Zone C) by its lower Fe2O3(t) concentrations.   

 The inner (including the southwestern), younger (ca. 412 to 411 Ma), more silicic parts of 

the Rathfriland pluton (Zones G – I) show comparatively little geochemical variation (Fig. 8).  

Thus, the entire area is thought to consist of biotite granodiorite, showing little or no inward 

change in composition.  This is consistent with the interpretation by Neeson (1984) that the 

Rathfriland pluton broadly consists of an outer hornblende granodiorite and inner biotite 

granodiorite, although the current study suggests that the boundary between these facies is 

abrupt.   

 Due to the consistent geochemistry of the inner Rathfriland pluton, the zonal divisions 

here are made according to aeromagnetic data.  Zone G represents the area outside of the 

Rathfriland pluton positive aeromagnetic ring, Zone H represents the positive aeromagnetic 

ring itself, and Zone I represents the area inside of this anomaly (Fig. 8).  Fabrics in the inner 

part of the pluton are steep to vertical (Fig. 1), hence aeromagnetic signature is thought to 

closely reflect surface extent of facies.  Radiometric dates for Zones G, H and I (411.94 ± 

0.34, 412.09 ± 0.36 and 411.09 ± 0.18 Ma, respectively) broadly suggest that this part of the 

pluton becomes younger towards the centre.  

 

6.1.2. The Newry pluton 

   Geochemistry is consistent with Neeson’s (1984) divisions of the Newry pluton, showing 

that the this pluton becomes more basic towards its centre (Fig. 5A and Fig. 5B).  Since cross 

cutting relationships and U-Pb geochronology demonstrate that the Newry pluton is slightly 

younger than the Rathfriland pluton (Neeson, 1984; GSNI, 1997), the three main divisions 

within the Newry pluton are defined as Zones J, K and L (Fig. 8). 

 The outermost biotite granodiorite represents Zone J (Fig. 8), as it has the older of the two 

U-Pb ages obtained from the pluton (411.00 ± 0.58 Ma).  Althiugh the adjacent porphyritic 

(hornblende - biotite) granodiorite ring is undated, it has been observed to crosscut the outer 

biotite granodiorite (Neeson, 1984); hence, the porphyritic granodiorite represents Zone K 

(Fig. 8).   

 The original location of the porphyritic granodiorite (Zone K) inferred by Neeson (1984) 

has been modified in this study through consideration of aeromagnetic data as discussed 

previously.  The relationship of the porphyritic granodiorite to the positive aeromagnetic ring 

allows for more accurate mapping of the Newry pluton than has previously been possible 
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(Fig. 8).  As a result the porphyritic granodiorite in the east of the pluton is now shown to be 

less marginal than it is suggested to be by Neeson (1984) (compare Fig. 1 and Fig. 8).  The 

inner hornblende granodiorite generated the younger of the two U-Pb ages obtained from the 

Newry pluton (410.29 ± 0.20 Ma) and is, therefore, designated Zone L.   

 

6.1.3. The Cloghoge pluton 

 The single U-Pb age from the Cloghoge pluton (407.23 ± 0.35 Ma) and the cross cutting 

relationship between this and the adjacent Newry pluton (Neeson, 1984) shows that the 

Cloghoge pluton is the youngest part of the NIC.  Consequently, the zones within the 

Cloghoge pluton are defined as M, N and O (Fig. 8).  The notably basic geochemistry (low 

SiO2)of the outerCloghoge pluton and the silicic geochemistry of its off-centre core (Fig. 5) is 

consistent with the broad division of this pluton into an outer (albeit relatively basic) 

hornblende granodiorite and a felsic granodiorite core (Reynolds, 1943; Neeson, 1984). 

 Part of the outer Cloghoge pluton as mapped by the GSNI (1997) is now thought to 

represent the outer Newry pluton (Fig. 8).  This area (labelled ‘anomalously silicic area’ in 

Fig. 5) exhibits high SiO2 and low Fe2O3(t) concentrations that are similar to those observed 

within the Newry pluton.  Furthermore, the area was originally mapped as part of the Newry 

pluton by Neeson (1984).  . 

 The previously unrecognised area of steeply-orientated sheets in the northeast of the 

Cloghoge pluton is defined as Zone M (Fig. 8).  This area is thought to predate other parts of 

the Cloghoge pluton due its marginal location.  Of the sheets in the area, those consisting of 

porphyritic diorite show similarity to the Newry pluton porphyritic granodiorite (Zone K), 

while those consisting of mafic granodiorite and granitic sheets show similarity to the 

remaining outer part and core area of the Cloghoge pluton respectively.  Hence it is possible 

that the sheeted margin of the Cloghoge pluton (Zone M) represents magmas that also 

supplied other parts of the NIC.    

 The outer hornblende granodiorite of the Cloghoge pluton is defined as Zone N (Fig. 8).  

Although this area is undated, it is tentatively assumed to be older than the pluton core due to 

the general inward younging relationships observed across the NIC.  Finally, the off-centre 

felsic granodiorite core of the Cloghoge pluton is defined as Zone O (Fig. 8).  U-Pb 

geochronology yields a significantly younger age for this area (407.23 ± 0.35 Ma).  The time 

gap between this and the next youngest age (for Zone L of the Newry pluton) is consistent 

with Zone O being the youngest part of the NIC. 

 

6.2. Incremental emplacement 
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 We suggest that the NIC was emplaced as a series of distinct magma pulses, which are 

represented by the inferred zones (Richey, 1928; Pitcher, 1997; Stevenson, 2007; Farina et al., 

2012).  Evidence for this incremental emplacement is provided by the abrupt changes in 

geochemical, aeromagnetic and radiometric signatures between the various zones.  

Understanding the mechanism through which these pulses were emplaced, and the siting of 

the NIC as a whole, will require further structural study of the complex and its host rocks. 

 

6.3. Parental magma 

    

Geochemical results show that zones within the NIC become broadly more silicic with 

younging, possibly reflecting evolution of the parental magma.  However, exceptions are 

observed between Zone D (hornblende granodiorite) and Zone E (quartz diorite) of the 

Rathfriland pluton, between Zone J (biotite granodiorite/) and Zones K/L (porphyritic 

granodiorite/hornblende granodiorite) of the Newry pluton, and between the Zone L 

(hornblende granodiorite) and Zone N (more basic hornblende granodiorite) of the adjacent 

Newry and Cloghoge pluton (Fig. 8).  We suggest that these compositional patterns were 

produced by variations in the parental magma, with fractional crystallisation causing 

evolution towards more silicic compositions, and with mixing of more basic magmas causing 

interruptions in this trend. 

 

6.4. The reliability of Tellus data in determining zonation 

Aeromagnetic data for the NIC (see Fig. 2A) corresponds in places to changes in facies at the 

surface.  This is apparent from the prominent positive aeromagnetic anomalies located at the 

Seeconnell Complex, the quartz diorite in the Rathfriland pluton and the porphyritic 

granodiorite in the Newry pluton (Figs. 2A).  However, the correlation between aeromagnetic 

signature and composition in other parts of the NIC is inconsistent (Fig. 5).  This is clearest 

from the positive aeromagnetic ring within the Rathfriland pluton, which shows no obvious 

relationship to geochemistry (fig. 5).  Hence, the origin of aeromagnetic anomalies within the 

NIC is not always clear. 

 The aeromagnetic anomalies that are linked to facies at the surface do not consistently 

correlate with these facies in terms of boundary locations.  This occurs for the anomalies 

corresponding to the quartz diorite in the Rathfriland pluton and the porphyritic granodiorite 

in the Newry pluton (Fig. 6).  Schetselaar et al., (2000) suggest that such inconsistencies 

between aeromagnetic and surface data reflect aeromagnetic detection of facies at depth.  This 

is thought to be the case for the porphyritic granodiorite, which shows an outward-shifted 

aeromagnetic signature in the east of the Newry pluton (Fig. 7).  
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 Airborne radiometric data for the NIC (Fig. 2B) corresponds to surface zonation more 

precisely.  For example, radiometric Th elevation in the eastern NIC can be correlated to 

distinct geochemical concentrations of various elements (Fig. 2B, Fig. 4 and Fig. 5).  The 

Seeconnell Complex also corresponds to an area of K elevation (Figs. 2B and Fig. 4).  The 

only apparent inconsistency between radiometric data and surface composition occurs to the 

east of the Rathfriland pluton, where an elevated Th signature characteristic of the pluton 

itself is observed for the host rocks, which are predominantly greywackes (Fig. 2B).  Cooper 

et al. (in press) suggest that glacial transport of rock material from the Rathfriland pluton 

occurs in this area and likely accounts for the anomaly. 

 

7. Conclusions  

 

 The following four main conclusions are drawn from this study: 

1. The NIC can be divided into 15 distinct zones (Fig. 8).  These are largely defined 

compositionally by current geochemistry results.  Zones are also distinguished by 

Tellus aeromagnetic and radiometric data.  Aeromagnetic data is particularly key to 

distinguishing zones within the central Rathfriland pluton, within which no 

compositional variation has been observed.  A thorium-elevated radiometric signature 

additionally helps to distinguish the more basic eastern part of the Rathfriland pluton.  

Zones are concentric within the three plutons, excluding the eastern part of the 

Rathfriland pluton, where several zones are distributed within the more basic 

crescent-shaped rim, and within the Cloghoge pluton, which exhibits a significantly 

off-centre core and a single sheeted margin.  Zones show a general evolution from 

intermediate (with associated ultramafic) to felsic throughout the NIC, although there 

are exceptions where this evolutionary trend is reversed. 

2. The 15 derived zones are likely to have been emplaced incrementally via at least this 

number of distinct magma pulses.  However, the mechanism of emplacement of these 

pulses and the siting of the NIC remains poorly understood and will require further 

structural study.   

3. The general evolutionary trend shown within the NIC is consistent with a magma 

supply that has undergone substantial fractional crystallisation (see Meighan and 

Neeson, 1979), together with occasional mixing of more basic magma.  

4. Aeromagnetic and radiometric data broadly resolve much of the zonation of the NIC.  

However, the boundaries of some aeromagnetic zones are inconsistent with surface 

exposure of the corresponding facies, and are interpreted to reflect dipping facies 

margins.  Radiometric data is thought to represent surface composition more reliably, 

although the southwestern boundary of the Rathfriland pluton is not accurately 
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resolved, due to glacial transport of material from the NIC.  Therefore, there would be 

a number of caveats associated with exclusive use of aeromagnetic and radiometric 

data to constrain zonation.  As has been previously suggested (e.g., Schetselaar et. al., 

2000), it is clear that field work and sampling is also required to obtain accurate 

interpretations of zonations within large igneous plutonic bodies.  
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Table 1 

Area No. of 

samples 

SiO2 TiO2 Al2O3 Fe2O3t Mn3O4 MgO CaO Na2O K2O P2O5 Rb Sr Zr Th U 

  wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% mg/kg mg/kg mg/kg mg/kg mg/kg 

1 26 53.31 1.38 14.62 8.29 0.14 6.76 6.77 3.05 3.98 0.80 123.0 1198 179 12.4 3.5 

2 13 62.65 0.85 15.47 5.06 0.09 3.63 4.07 3.75 3.55 0.29 138.7 579 275 19.6 4.1 

3 2 61.07 0.86 15.64 5.40 0.11 4.42 4.49 3.80 3.25 0.28 113.3 655 181 15.8 3.1 

4 13 66.93 0.51 15.57 3.35 0.06 2.37 2.84 4.07 3.31 0.17 115.4 506 158 12.8 2.7 

5 8 66.88 0.45 15.94 3.02 0.06 1.75 2.99 4.22 3.06 0.16 110.5 485 126 7.8 2.0 

6 4 67.59 0.49 15.71 3.21 0.06 1.71 2.50 4.22 2.94 0.15 107.0 399 120 9.1 2.5 

7* 15 70.21 0.38 15.22 2.56 0.05 1.30 2.50 4.22 2.94 0.15 123.2 313 127 10.7 2.7 

8* 14 66.87 0.63 15.73 3.77 0.08 1.92 2.70 4.09 3.28 0.19 105.4 426 129 10.3 2.6 

9 14 64.66 0.76 15.43 4.09 0.08 2.23 3.40 4.05 3.66 0.38 120.2 582 192 12.4 3.4 

10 12 71.34 0.30 14.60 2.20 0.05 0.96 1.29 3.87 4.33 0.12 159.0 216 138 13.3 2.7 

*This study shows that an area mapped as the inner Newry pluton by Neeson (1984) likely represents the outer Newry pluton (i.e., peripheral to the 

porphyritic granodiorite).  Due to this ambiguity samples from this area are not included in calculation of mean geochemical concentrations 
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Fig. 1: Geology and internal structure of the NIC based on former work (Reynolds, 

1934; Neeson, 1984; GSNI, 1997).  Surrounding host rocks and other nearby 

intrusions are also shown. 

Fig. 2: Recent Tellus geophysical data and U-Pb dates for the NIC.  The outline of the 

NIC is marked as a solid white line, as are faults showing significant displacement 

and labelled internal divisions of the NIC: (a) aeromagnetic data with superimposed 

U-Pb dates; (b) radiometric data with superimposed U-Pb dates (modified from 

Cooper et al. (in press)) 

Fig 3: Areas of the NIC for which representative concentrations (shown in Table 1) 

are determined, superimposed on recent Tellus aeromagnetic data published by 

Cooper et al. (in press).  Representative concentrations of SiO2 and Fe2O2(t) (wt %) are 

provided as annotations.  Areas of the NIC are labelled 1-10, which correspond to the 

following: 1: Seeconnell Complex; 2: Thorium-elevated Rathfriland pluton rim, 

excluding quartz diorite; 3: Quartz diorite; 4: Area inside of thorium-elevated 

Rathfriland pluton rim and outside of Rathfriland pluton positive aeromagnetic ring; 

5: Rathfriland pluton positive aeromagnetic ring; 6: Centre of Rathfriland pluton; 7: 

Outer Newry pluton; 8: Inner Newry pluton; 9: Outer Cloghoge pluton; 10: Off-centre 

Cloghoge pluton core.   

Fig. 4: Comparison between recent Tellus radiometric data published by Cooper et al. 

(2016) and mean concentrations of radiometric elements (K2O, Th, U) from current 

data.  Mean concentrations are calculated for the Seeconnell Complex, the thorium-

elevated Rathfriland pluton rim, the inner Rathfriland pluton, the Newry pluton and 

the Cloghoge pluton.  Pie charts show normalised concentrations of K2O, Th, U from 

current data (red = K2O, green = Th, blue = U). 

Fig. 5: Concentrations of: (a) SiO2 and (b) Fe2O3(t) from current geochemical results, 

superimposed on recent Tellus aeromagnetic data published by Cooper et al. (in 

press).  Concentrations of each element are represented by points that are shaded on a 

greyscale ranging from white (0 on the scale) to black (100 on the scale).  Key 

compositional changes occur within moderately silicic granodiorites (rather than 

between samples at the extremes of the concentration range), thus the shading range 

applied to sample points is set in order to emphasise variation in these.  This is 

achieved by displaying any concentration value that is at or below the 5
th

 percentile in 

the total concentration range for each element as a white point (i.e., a greyscale value 

of 0).  Any concentration value that is at or above the 95
th

 percentile in the total 

concentration range for each element is in turn displayed as a black point (i.e., a 

greyscale value of 100).  Thus the effect of any anomalously low or high 

concentrations in obscuring variation within the more common rocks of the complex 

is removed.  Further adjustment is also made in order to emphasise concentrations 

within the 25
th

 – 75
th

 percentile range.  Firstly, concentrations that are between the 5
th

 

and 25
th

 percentile in the total range are set a greyscale value of 0 to 25 according to 

the following equation: Greyscale Value = ((Sample concentration – 5
th

 Percentile 

concentration)/(25
th

 Percentile concentration – 5
th

 Percentile concentration)) x 25.  

Concentrations that are between the 75
th

 and 95
th

 percentile in the total range are set a 

greyscale value of 75 to 100 according to the following equation: Greyscale Value = 

100 – (((95
th

 Percentile concentration – Sample concentration)/(95
th

 Percentile 

concentration – 75
th

 Percentile concentration)) x 25).  Thirdly, concentrations that are 

between the 25
th

 and 75
th

 percentile in the total range are set a greyscale value of 25 to 

75 according to the following equation: Greyscale Value = 25 + (((Sample 

concentration – 25
th

 Percentile concentration)/(75
th

 Percentile concentration – 25
th

 

Percentile concentration)) x 50).  Therefore, changes in composition within the 
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‘middle range’ granodioritic samples within the complex are observed more easily 

than they would be if shading of points was entirely proportional to concentration.  

Fig 6: Petrological classifications for three parts of the NIC (the Quartz Diorite of the 

Rathfriland pluton, the Newry pluton and the eastern Cloghoge pluton margin).  

Shading of symbols represents the relative evolution of samples (shown in key). 

Fig. 7: Schematic NE-SW cross section of the Newry pluton, accounting for the 

observed aeromagnetic signature.     

Fig. 8: Derived zonation of the NIC, shown in relation to recent U-Pb dates of Cooper 

et al. (in press). 

 

Table 1: Representative geochemical concentrations for Areas 1 – 10 of the NIC 

(labelled in Fig. 3).  Refer to Appendix 1A/1B for sampling locations and Appendix 

3A/3B for geochemical concentrations of individual samples within each area.  Mean 

concentrations are calculated using data from all samples, apart from those close to 

the ambiguous porphyritic granodiorite boundary (Samples N20A – N24 in Appendix 

3A/3B).   
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Highlights 
 

 

 This study uses geochemical, petrological and recent geophysical data 

 The data provides a comprehensive zonation for the Newry Igneous Complex 

 The Newry Igneous Complex was emplaced incrementally through at least 15 pulses 

 The source of the Newry Igneous Complex underwent fractional crystallisation and 

magma mixing 

 Aeromagnetic and radiometric data provides useful information on zonation but 

requires validation by supporting field evidence 


