
 
 

University of Birmingham

PRMT5-dependent methylation of the TIP60
coactivator RUVBL1 is a key regulator of
homologous recombination
Clarke, Thomas; Sanchez-Bailon, Maria; Chiang, Kelly; Reynolds, John; Herrero Ruiz,
Joaquín Andrés; Banderias, Tiago; Matias, Pedro; Maslen, Sarah; Shekel, Mark; Stewart,
Grant; Davies, Clare
DOI:
10.1016/j.molcel.2017.01.019

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Clarke, T, Sanchez-Bailon, M, Chiang, K, Reynolds, J, Herrero Ruiz, JA, Banderias, T, Matias, P, Maslen, S,
Shekel, M, Stewart, G & Davies, C 2017, 'PRMT5-dependent methylation of the TIP60 coactivator RUVBL1 is a
key regulator of homologous recombination', Molecular Cell, vol. 65, no. 2, pp. 900–916.e7.
https://doi.org/10.1016/j.molcel.2017.01.019

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 30. Apr. 2024

https://doi.org/10.1016/j.molcel.2017.01.019
https://doi.org/10.1016/j.molcel.2017.01.019
https://birmingham.elsevierpure.com/en/publications/29689e6f-8ff1-435a-b773-a1ff03bcad89


Article
PRMT5-Dependent Methy
lation of the TIP60
Coactivator RUVBL1 Is a Key Regulator of
Homologous Recombination
Graphical Abstract
Highlights
d PRMT5 is a regulator of homologous recombination-

mediated double-strand break repair

d PRMT5 methylates RUVBL1 at R205, regulating TIP60-

mediated histone acetylation

d Loss of RUVBL1 methylation leads to 53BP1 retention at

break ends

d Arginine methylation crosstalks with histone acetylation to

regulate repair pathway choice
Clarke et al., 2017, Molecular Cell 65, 900–916
March 2, 2017 ª 2017 The Authors. Published by Elsevier Inc.
http://dx.doi.org/10.1016/j.molcel.2017.01.019
Authors

Thomas L. Clarke,

Maria Pilar Sanchez-Bailon,

Kelly Chiang, ..., J. Mark Skehel,

Grant S. Stewart, Clare C. Davies

Correspondence
c.c.davies@bham.ac.uk

In Brief

Clarke et al. show that methylation of

RUVBL1 by the arginine

methyltransferase PRMT5 is required for

homologous recombination-mediated

double-strand break repair by promoting

TIP60-mediated histone H4K16

acetylation. Loss of PRMT5 activity and

defective RUVBL1 methylation leads to

53BP1 retention, increased sensitivity to

DNA damaging agents, and genome

instability.

mailto:c.c.davies@bham.ac.�uk
http://dx.doi.org/10.1016/j.molcel.2017.01.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molcel.2017.01.019&domain=pdf


Molecular Cell

Article
PRMT5-Dependent Methylation
of the TIP60 Coactivator RUVBL1 Is
a Key Regulator of Homologous Recombination
Thomas L. Clarke,1 Maria Pilar Sanchez-Bailon,1 Kelly Chiang,1 John J. Reynolds,1 Joaquin Herrero-Ruiz,1

Tiago M. Bandeiras,2 Pedro M. Matias,2,3 Sarah L. Maslen,4 J. Mark Skehel,4 Grant S. Stewart,1 and Clare C. Davies1,5,*
1Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
2Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
3Instituto de Tecnologia Quı́mica e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
4MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
5Lead Contact

*Correspondence: c.c.davies@bham.ac.uk
http://dx.doi.org/10.1016/j.molcel.2017.01.019
SUMMARY

Protein post-translationmodification plays an impor-
tant role in regulatingDNA repair; however, the role of
arginine methylation in this process is poorly under-
stood. Here we identify the arginine methyltransfer-
ase PRMT5 as a key regulator of homologous recom-
bination (HR)-mediated double-strand break (DSB)
repair, which is mediated through its ability to meth-
ylate RUVBL1, a cofactor of the TIP60 complex. We
show that PRMT5 targets RUVBL1 for methylation
at position R205, which facilitates TIP60-dependent
mobilization of 53BP1 from DNA breaks, promoting
HR. Mechanistically, we demonstrate that PRMT5-
directed methylation of RUVBL1 is critically required
for the acetyltransferase activity of TIP60, promoting
histone H4K16 acetylation, which facilities 53BP1
displacement from DSBs. Interestingly, RUVBL1
methylation did not affect the ability of TIP60 to facil-
itate ATM activation. Taken together, our findings
reveal the importance of PRMT5-mediated arginine
methylation during DSB repair pathway choice
through its ability to regulate acetylation-dependent
control of 53BP1 localization.

INTRODUCTION

The genome is constantly being challenged with exogenous and

endogenous stresses that induce DNA lesions that must be re-

paired to maintain genomic stability. An inability to do so leads

to mutagenic events that predispose individuals to numerous

pathological conditions, including cancer and neurological

dysfunction. Cells have therefore developed a complex array

of systems that can rapidly sense, respond to, and repair a large

number of distinct DNA lesions. Of these, the most deleterious

form of DNA damage is the double-strand break (DSB), which,

if left unresolved, can result in a loss of genetic material. DSB

repair is achieved through two main pathways: homologous
900 Molecular Cell 65, 900–916, March 2, 2017 ª 2017 The Authors.
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recombination (HR) and non-homologous end joining (NHEJ).

NHEJ can occur throughout the cell cycle and can be error

prone, while HR is error free but requires a sister chromatid as

a template and, therefore, only occurs during late S/G2. The

main determinant for HR-mediated repair is resection of the

DNA DSB end, which is controlled by a 53BP1-containing pro-

tein complex containing Rif1, PTIP, and Rev7 (Panier and Boul-

ton, 2014). While 53BP1 has been implicated in potentiating

NHEJ-dependent repair of distally located DSBs, its primary

function is to protect DSB ends from over-processing by the

DNA end resection machinery (Anderson et al., 2001; Mallette

et al., 2012; Schultz et al., 2000). If the damage is too complex

and a sister chromatid is present, CDK2-mediated phosphoryla-

tion of CtIP facilitates the recruitment of BRCA1, displacing

53BP1, enabling end processing and the generation of long

stretches of single-stranded DNA (ssDNA). These structures

are first coated by replication protein A (RPA), which is later dis-

placed by the RAD51 protein, the main facilitator of strand inva-

sion and recombination (Panier and Boulton, 2014).

While the complexity and sheer number of proteins involved in

NHEJ- and HR-mediated DSB repair has long been appreciated,

there is a growing understanding that higher-order chromatin

structure significantly impacts DSB repair. In this respect,

chromatin can have a dual role, sometimes acting as a physical

barrier impeding repair or, conversely, offering a platform for

DNA repair protein complex recruitment. Thus, chromatin re-

modeling and post-translational modification of histones and

chromatin-bound proteins are now being recognized as impor-

tant mechanisms integrating local chromatin architecture with

repair pathway choice. This is perhaps most clearly illustrated

by the recruitment of 53BP1. 53BP1 possesses a Tudor domain

in tandem with a UDR domain that is specifically able to read

H4K20me2 marks in combination with ubiquitylated histone

H2A (Fradet-Turcotte et al., 2013). However, H4K20me2 is a

highly abundant, stable histone mark (Pesavento et al., 2008);

therefore, to prevent inappropriate recruitment of 53BP1 in the

absence of DSBs, H4K20me2 is shielded by a second Tudor

domain-containing protein, JMJD2A. DSB formation induces

activation of the ATM-signaling pathway, leading to the re-

cruitment of the E3 ligases RNF8 and RNF168, which polyubiqui-

tylate both H2A and JMJD2A, the latter of which triggers its
Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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degradation (Mallette et al., 2012). Subsequently, 53BP1 is

rapidly recruited within minutes to DSB ends via the exposed

H4K20me2 and ubiquitylated H2A marks in an RNF8- and

RNF168-dependent manner (Doil et al., 2009; Mailand et al.,

2007; Panier and Boulton, 2014; Stewart et al., 2009). Chromatin

modifications also play a central role in HR-mediated ejection of

53BP1. A key player regulating this process is the TIP60 DNA

repair complex, which has core chromatin remodeling and ace-

tyltransferase activity (Ikura et al., 2000; Sun et al., 2005) and ap-

pears to havemultiple roles in regulating 53BP1 ejection. Histone

H3K9me3 recruits TIP60, promoting the acetylation of histone

H4K16, which disrupts 53BP1 binding by affecting salt bridge

formation between unmodified H4K16 residues and the 53BP1

Tudor domain (Sun et al., 2009; Tang et al., 2013). In addition

to this, it has been shown that a combination of TIP60-mediated

H2AK15 acetylation and recruitment of the TIP60 complex

component MBTD1 to H4K20me2 facilitates 53BP1 mobilization

from break ends (Jacquet et al., 2016). It is therefore becoming

increasingly clear that protein modifications act as dynamic plat-

forms promoting the assembly and disassembly of protein com-

plexes, modulating enzymatic activity, and signaling pathway

choice.

One modification that we know very little about, particularly

within the context of the DNA damage response, is arginine

methylation. Protein arginine methyltransferases (PRMTs)

catalyze mono- and dimethylation of the guanidino group of

the arginine residue using S-adenosyl methionine (SAM) as

a methyl donor. Dimethylation can occur asymmetrically

(ADMA), with two methyl groups placed onto one of the termi-

nal nitrogen atoms of the guanidino group, or symmetrically

(SDMA), where one methyl group is placed onto each of the

terminal nitrogen atoms. Recently, a number of studies have

demonstrated a role for the main asymmetric arginine methyl-

transferase PRMT1 in the maintenance of genomic stability

and the DNA damage response (Auclair and Richard, 2013).

In contrast, only three proteins associated with DNA repair

and replication have been identified as PRMT5 substrates (Au-

clair and Richard, 2013), and a direct role for PRMT5 in regu-

lating DNA repair has not been determined. To address this,

we took a systemic approach to analyze the contribution of

PRMT5 to DSB repair, and we identified the AAA+ ATPase

RUVBL1 (Pontin/Tip49) as a PRMT5 interactor. RUVBL1 and

its binding partner RUVBL2 are present in a number of sepa-

rate high molecular weight nuclear complexes, containing

TIP60, SRCAP, or INO80, that regulate a variety of cellular
Figure 1. PRMT5 Is Required for Effective Double-Strand Break Repai

(A) HeLa-shCTRL, shPRMT5 hairpin 1 (1), and shPRMT5 hairpin 2 (2) cells were stim

indicated.

(B and C) Quantification of (A) is shown (mean ± SEM; n = 3).

(D) Reconstitution of PRMT5-depleted HeLa cells with wild-type or catalytically in

(mean ± SEM; n = 3).

(E) Primary, non-immortalized prmt5f/f and prmt5f/f;CreERT2 mouse embryonic

tamoxifen (4-OHT; 500 nM for 24 hr), followed by 4 days in 4-OHT-deficient med

(F–H) Cells were stimulated with 5Gy IR and co-stained for gH2AX and 53BP1 foc

is shown (mean ± SEM).

(I) HeLa-shPRMT5 cells were exposed to increasing doses of IR and cell viability

(J) Analysis of chromatid gaps and breaks per metaphase is shown (mean ± SEM

(K) Quantification of 53BP1 foci in mitosin-positive (late S/G2) cells 24 hr after 3G
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processes, including the DSB response (Alatwi and Downs,

2015; Dong et al., 2014; Gospodinov et al., 2011; Ikura et al.,

2000; Jha et al., 2008; Murr et al., 2006; Sun et al., 2005;

Tang et al., 2013; Wu et al., 2007). Significantly, we found

that PRMT5-dependent methylation of RUVBL1 was required

for DSB repair by promoting TIP60-mediated acetylation of

H4K16 and 53BP1 removal from sites of damage. Our results

thus demonstrate the importance of arginine methylation for

DSB pathway choice, and we identify a mechanism by which

arginine methylation can specifically direct the activity of a crit-

ical DNA repair complex that is known to have multiple roles

within the DNA damage response.

RESULTS

PRMT5 Regulates Homologous Recombination-
Mediated DSB Repair
Recent reports have indicated a role for PRMT5-dependent argi-

nine methylation in Okazaki fragment maturation and replication

stress (Guo et al., 2010; He et al., 2011). However, very little is

known about whether PRMT5 plays a role in regulating DSB

repair. To address this, we generated two PRMT5-knockdown

HeLa cell lines each expressing distinct small hairpin shRNA se-

quences targeting PRMT5 (shPRMT5 [1] and shPRMT5 [2]; Fig-

ure S1A), exposed them to ionizing radiation (IR), and then

monitored DSB repair by gH2AX/53BP1 foci resolution, two

well-established markers of DNA DSBs. As expected, within

24 hr, control cells were able to effectively repair IR-induced

DNA lesions, as indicated by the clearance of gH2AX and

53BP1 foci. In contrast, silencing of PRMT5 resulted in a

persistence of gH2AX and 53BP1 foci at early (4 hr) and late

(24 hr) time points, suggesting a role for PRMT5 in regulating

DNA repair processes (Figures 1A–1C and S1B). These effects

were also observed in cell lines transiently depleted for PRMT5

(Figure S1C), indicating that this phenotype is unlikely to be

attributable to shRNA off-target effects. Importantly, this defect

in DNA damage foci clearance could be restored by re-express-

ing wild-type PRMT5, but not catalytically inactive PRMT5

(PRMT5-G367A/R368A) (Pal et al., 2004), implying that the cata-

lytic activity of PRMT5 is required for effective DSB repair (Fig-

ures 1D and S1D). Consistent with shRNA-mediated depletion

of PRMT5, genetic deletion of PRMT5 also resulted in delayed

clearance of gH2AX and 53BP1 foci after exposure to IR (Figures

1E–1H, S1E, and S1F). Importantly, although PRMT5-null

mouse embryonic fibroblasts (MEFs) exhibited spontaneous
r

ulated with 3Gy IR and co-stained for gH2AX and 53BP1 foci at the time points

active (MD) PRMT5. Quantification of 53BP1 foci 24 hr after IR (3 Gy) is shown

fibroblasts (MEFs) were cultured in the absence or presence of 4-hydroxy-

ia, and then immunoblotted for PRMT5.

i at the time points indicated (F). Quantification of gH2AX (G) and 53BP1 (H) foci

was determined by colony survival assay (mean ± SD; n = 3).

; **p < 0.0098; n = 3).

y IR is shown (mean ± SEM; n = 3). Scale bar, 10 mm. See also Figure S1.
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DNA damage, as evident from gH2AX and 53BP1 foci formation

in undamaged cells (Figures 1F–1H), the number of unrepaired

foci per cell was far higher in PRMT5-null MEFs 24 hr after IR

(Figures 1G and 1H), again indicating a defect in DSB repair. In

keeping with this, PRMT5-depleted cells exhibited an increased

sensitivity to IR (Figures 1I and S1H) and a failure to properly

repair IR-induced chromatid breaks (Figures 1J and S1G).

The proportion of PRMT5-depleted cells retaining unre-

paired DSBs at 24 hr post-irradiation was more reminiscent

of a HR defect than aberrant NHEJ-mediated DSB repair

(Beucher et al., 2009; Shibata et al., 2011). To examine this

more closely, we assessed the resolution of IR-induced

DSBs only in G2 cells, using aphidicolin to block the transit

of any damaged S-phase cells into G2. Strikingly, PRMT5

knockdown led to a significant defect in the ability to repair

G2 DSBs, as judged by the presence of 53BP1 foci at 24 hr

following the exposure of cells to a low dose of IR (Figure 1K).

This observation is consistent with PRMT5 playing a role in

HR-dependent DSB repair.

A key step in the decision to proceed with HR-mediated DSB

repair is the 50-30 resection of DNA ends. Eviction of 53BP1 en-

ables DNA resection and the production of long stretches of

ssDNA that are first coated by RPA, which is later displaced by

RAD51 (Panier and Boulton, 2014). To investigate the proposed

role for PRMT5 in promoting HR, we determined what impact the

loss of PRMT5 had on the ability of cells to generate ssDNA at

sites of DSBs and to recruit RAD51 and BRCA1. Notably,

PRMT5 depletion significantly reduced RAD51 and BRCA1

recruitment to sites of DNA damage (Figures 2A, S2A, and

S2B), without affecting RAD51 expression levels and cell-cycle

distribution (Figures S2C and S2D). To ascertain whether the fail-

ure of PRMT5-depleted cells to efficiently form IR-induced

RAD51 foci resulted from reduced DSB resection or an inability

to load RAD51 onto ssDNA generated during resection, we

examined the capability of these cells to form RPA foci, as a

marker of resection-dependent ssDNA. In support of the former

hypothesis, depletion of PRMT5 greatly reduced the number of

cells displaying RPA foci, with a concurrent defect in ATR-

signaling events, such as RPA S4/S8 and CHK1 phosphorylation

(Figures 2B and 2C), suggesting that arginine methylation is

regulating DNA DSB end resection. In contrast, activation of

the ATM-signaling cascade, determined by the phosphorylation

of ATM and its downstream substrates CHK2 and KAP1, was

unaffected by PRMT5 depletion (Figures 2C and S2E). In keeping

with this, PRMT5 depletion retained the ability to activate the

ATM-dependent G2/M checkpoint (Figure S2F). Thus, ATM
Figure 2. PRMT5 Promotes Homologous Recombination-Mediated DS

(A) HeLa-shCTRL and shPRMT5 cells were stimulated with 3Gy IR and RAD51 fo

shown below (mean ± SEM; **p = 0.006; n = 3).

(B) Quantification of RPA foci in CENPF-positive (late S/G2) cells 8 hr after 3Gy I

(C) Time course of phosphorylated and total protein levels is shown.

(D) U2OS-DR3 cells were treated with siRNA as indicated before transfection of I

determined by flow cytometry (mean ± SD; n = 3).

(E) PRMT5-depleted cells were treated with increasing doses of camptothecin (C

assay (mean ± SD; n = 3).

(F) Cells were treated with CPT (1 mM) for the time points indicated and immu

Figure S2.

904 Molecular Cell 65, 900–916, March 2, 2017
activation appears to be independent of PRMT5 after IR. Finally,

by using the I-SceI GFP HR reporter assay (Gunn and Stark,

2012), we observed a significant decrease in HR-dependent

repair in cells lacking PRMT5 expression that could be restored

with ectopic expression of small interfering RNA (siRNA)-resis-

tant myc-PRMT5 (Figure 2D).

To further substantiate that PRMT5 is an important compo-

nent of HR-mediated repair, we treated cells with camptothecin

(CPT) and Olaparib, two genotoxic agents that induce DNA

lesions specifically repaired by HR (Arnaudeau et al., 2001;

McCabe et al., 2006). Analogous to IR-induced damage, knock-

down of PRMT5 sensitized cells to both CPT and Olaparib

(Figure 2E) and reducedCPT-induced RPA andCHK1 phosphor-

ylation (Figure 2F). Together, these data indicate that PRMT5

functions to promote DNA DSB end resection and HR-depen-

dent DSB repair.

The AAA+ ATPase RUVBL1 Is a Substrate of PRMT5
Having established that PRMT5 is an important component of

HR-mediated DSB repair, we sought to identify PRMT5 sub-

strates that could explain the mechanism by which this occurs.

Enzyme-substrate interaction is often transient in nature;

consequently, the identification of interactions can be particu-

larly challenging. We therefore employed a substrate-trapping

methodology using enzymatically inactive PRMT5 coupled

with TAP-tag purification and mass spectrometry. While this

approach enriched for a well-established PRMT5 cofactor

(MEP50), it also identified the AAA+ ATPase RUVBL1 as a po-

tential binding protein/substrate (Figure 3A). RUVBL1 and its

binding partner RUVBL2 can form homohexameric assemblies

(Matias et al., 2006; Petukhov et al., 2012) as well as a large do-

decamer complex consisting of two hetero-hexameric rings

with alternating RUVBL1 and RUVBL2 monomers (Gorynia

et al., 2011; Lakomek et al., 2015). This protein complex pre-

dominantly functions as part of a number of high molecular

weight nuclear complexes involved in chromatin remodeling,

histone tail modification, and histone exchange. Importantly,

RUVBL1-containing TIP60, SRCAP, and INO80 complexes

are known to be involved in the DSB response (Alatwi and

Downs, 2015; Dong et al., 2014; Gospodinov et al., 2011; Ikura

et al., 2000; Jha et al., 2008; Murr et al., 2006; Sun et al., 2005;

Tang et al., 2013; Wu et al., 2007). We therefore decided to

further investigate the significance of the PRMT5/RUVBL1

interaction.

Ectopic expression of catalytically inactivemyc-tagged PRMT5

in conjunction with FLAG-tagged RUVBL1 or RUVBL2 confirmed
B Repair Independently of ATM Activation

ci analyzed 6 hr later. Quantification of number of cells with >10 RAD51 foci is

R is shown (mean ± SEM; **p = 0.006; n = 3).

-Sce1 and myc-PRMT5. The number of GFP-positive cells (HR proficient) was

PT; left panel) or Olaparib (right panel), and survival was determined by colony

noblotted for phosphorylated and total proteins. Scale bar, 10 mm. See also
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our initial mass spectrometry findings (Figure 3B). This was

verified by reciprocal co-immunoprecipitation of endogenous

RUVBL1with endogenousPRMT5 (Figure 3C).Wenext examined

the in vivo methylation status of RUVBL1 and/or RUVBL2 by

labeling cells with radioactive [3H]-methyl methionine. The incor-

poration of radiolabeled methionine via de novo protein synthesis

was efficiently blocked by the addition of cycloheximide and

chloramphenicol, as indicated by the low levels of methyl-labeled

GFP protein in FLAG-GFP-transfected cells (Figure S3A, lane 1).

In cells, the [3H]-methyl methionine serves as a precursor for the

in vivo synthesis of [3H]-SAM, which in turn functions as the

essential methyl donor for all methylation reactions. Immunopre-

cipitated RUVBL1 and RUVBL2 exhibited substantial incorpora-

tion of the radioisotope (Figure S3A, top panel), indicating that

both RUVBL1 and RUVBL2 are post-translationally modified via

the addition of methyl groups in vivo. However, RUVBL1 and

RUVBL2 also are methylated by the lysine methyltransferase

G9a (Lee et al., 2010, 2011). We therefore repeated the in vivo

[3H]-methyl methionine labeling using PRMT5-depleted cells,

and we observed that the methylation of RUVBL1, but not

RUVBL2, was significantly reduced by PRMT5 depletion (Figures

3D and S3B). Moreover, arginine methylation of RUVBL1 ap-

peared to be specific to PRMT5, as recombinant PRMT1, the

main mammalian asymmetric dimethyltransferase, failed to cata-

lyze RUVBL1 methylation in vitro (Figure S3E).

PRMTs often direct methylation to arginine residues that

reside within glycine-rich regions, the so-called RGG/RG motif

(Thandapani et al., 2013). The RUVBL1 sequence contains

three RG motifs, however, mutation of arginine to lysine within

these sequences failed to prevent RUVBL1 methylation (data

not shown). We therefore employed a non-biased mass

spectrometry approach to facilitate residue identification. In

five independent experiments, digestion with Asp-N consistently

detected the presence of a methyl group on a single residue,

R205 (Figure S3F). Residue R205 is highly conserved among

higher and lower eukaryotes (Lakomek et al., 2015), implying

functional significance. We therefore mutated R205 to lysine

and validated our mass spectrometry finding of R205 as a site

of methylation by in vivo [3H]-methyl methionine labeling of cells

(Figure 3E). To verify that RUVBL1 is symmetrically dimethylated

in cells, we generated a methyl-specific antibody (R205me2s).

Methylation could be detected on FLAG-RUVBL1 wild-type,
Figure 3. PRMT5 Binds to and Methylates RUVBL1 at R205

(A) SYPRO Ruby stain of PRMT5 protein complexes isolated from 293T cells stab

(PRMT5 MD) is shown.

(B) Co-immunoprecipitation of myc-PRMT5 MD with FLAG-tagged RUVBL1/RUV

(C) Endogenous immunoprecipitation of RUVBL1 from HeLa cells co-immunopre

(D) Transfected HeLa-shCTRL or shPRMT5 cell lines were treated with CHX/CA

cipitated, and incorporated methyl groups were detected by SDS-PAGE followed

immunoprecipitation (IP) and normalized to shCTRL is shown (mean ± SD; *p = 0

(E) Autoradiograph and immunoblots of 293T cells transfected with FLAG-RU

[3H]-methyl methionine. Quantification of [3H]-methyl signal intensity adjusted fo

(F) Immunoblot analysis of endogenous RUVBL1-R205me2s in HeLa-shCTRL or

(G) Immunoblot analysis of endogenous RUVBL1-R205me2s in HeLa cells treate

(H) Transfected 293T cells were damaged with 10Gy IR and myc-PRMT5MD imm

(I) Autoradiograph and immunoblots of 293T cells transfected with FLAG-RUVBL1

treating with 10Gy IR are shown.

(J) Immunoblot analysis of whole-cell lysates transfected with FLAG-RUVBL1 an

906 Molecular Cell 65, 900–916, March 2, 2017
but not FLAG-RUVBL1-R205K, implying antibody specificity

(Figure S3D). More importantly, endogenous RUVBL1-

R205me2s was substantially reduced by treating cells with the

pan-methyltransferase inhibitor Adox, by PRMT5 depletion, or

through specific inhibition of PRMT5 activity with GSK591

(Chan-Penebre et al., 2015) (Figures 3F and 3G). Thus,

RUVBL1-R205me2s occurs on endogenous RUVBL1 in a

PRMT5-dependent manner. Although we were unable to show

that PRMT5 directly catalyzes the dimethylation of RUVBL1

in vitro using recombinant proteins (data not shown), our obser-

vations that both the interaction of PRMT5 with RUVBL1 and

methylation at R205 increase following exposure to IR (Figures

3H–3J), coupled with our comprehensive analysis using the

RUVBL1-R205me2s antibody, strongly suggest that RUVBL1 is

a direct substrate of PRMT5.

Strikingly, in silico analysis of R205 positioning using the

solved crystal structure of hexameric RUVBL1 and the hetero-

hexameric RUVBL1/RUVBL2 complex (Gorynia et al., 2011;Mat-

ias et al., 2006) designates R205 as surface facing within domain

II, hence protruding from the hetero-hexameric ring (Figure S4A).

Domain II has been proposed as a protein-protein interaction

domain modulating the activity rather than the formation of the

RUVBL1/RUVBL2 hetero-hexameric complex (Gorynia et al.,

2011; López-Perrote et al., 2012; Matias et al., 2006). In agree-

ment with this, ectopic expression of RUVBL1-R205K had no ef-

fect on the ability of RUVBL1 to co-immunoprecipitate RUVBL2

(Figure S5A). Importantly, these findings demonstrate that the

R205-to-lysine conservative mutation does not disrupt the fold

of monomeric RUVBL1 or its ability to interact with its binding

cofactor, RUVBL2.

RUVBL1-R205 Methylation Is a Critical Component of
HR-Mediated DSB Repair
Several lines of evidence have implicated the importance of

RUVBL1 as a regulator of the DNA damage response (Gospodi-

nov et al., 2009; Jha et al., 2008; Tang et al., 2013). To verify that

RUVBL1 plays a role in the DSB repair pathway, we carried out

colony survival assays using RUVBL1-depleted cells in combi-

nation with IR-induced DNA damage. In a manner similar

to PRMT5 depletion (Figure 1I), silencing of RUVBL1 rendered

cells hypersensitive to IR-induced DNA damage (Figure 4A). In

keeping with hypersensitivity of RUVBL1-depleted cells to IR,
ly expressing tetracycline-regulated TAP-tagged catalytically inactive PRMT5

BL2 is shown.

cipitates endogenous PRMT5.

M and labeled with [3H]-methyl methionine. FLAG-RUVBL1 was immunopre-

by autoradiograph. Quantification of [3H]-methyl signal intensity adjusted for

.03 and ***p = 0.0009).

VBL1 or FLAG-RUVBL1-R205K, treated with CHX/CAM and labeled with

r IP and normalized to wild-type is shown (mean ± SD; n = 3).

shPRMT5 cell lines is shown.

d with Adox (100 mM; 24 hr) or GSK591 (5 mM; 24 hr) is shown.

unoprecipitated. Associated RUVBL1 was detected by FLAG immunoblotting.

, treatedwith CHX/CAM, and labeledwith [3H]-methyl methionine for 4 hr before

d damaged with 10Gy IR. See also Figures S3–S5.
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Figure 4. Mutation of RUVBL1 at R205 Impedes DSB Repair after Ionizing Radiation

(A) Cells were exposed to increasing doses of IR and cell viability was determined by colony assay. Representative images are displayed under quantification, and

the inset immunoblot depicts RUVBL1 knockdown (mean ± SD; n = 3).

(legend continued on next page)
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silencing RUVBL1 expression hindered the clearance of gH2AX

and 53BP1 foci at 24 hr post-irradiation, implying defective repair

(Figure 4C). Since both PRMT5 and RUVBL1 are necessary for

an effective DNA damage response after IR and given that

PRMT5 is required for the methylation of RUVBL1 at R205, we

hypothesized that arginine methylation of RUVBL1 could be an

important regulatory event during HR. To address this, we gener-

ated cell lines stably expressing wild-type (WT) or methyl-defi-

cient RUVBL1 (RUVBL1-R205K) that were resistant to siRNA to

allow the depletion of endogenous, but not exogenous, RUVBL1

(Figure 4B). Importantly, reconstitution of RUVBL1-depleted

cells with wild-type RUVBL1, but not the methyl-defective

mutant, completely restored gH2AX and 53BP1 foci clearance

(Figures 4C and 4D). Moreover, methyl-deficient RUVBL1

demonstrated increased retention of 53BP1 at early time points

(4 hr) (Figure S5B). Together, these findings suggest that

PRMT5-dependent methylation of RUVBL1 is essential for its

role in promoting DSB repair. In agreement with this, the increase

in unrepaired chromatid gaps/breaks exhibited by cells depleted

of endogenous RUVBL1 was completely restored by ectopic

expression of wild-type RUVBL1, but not the R205Kmutant (Fig-

ure 4E). Significantly, the cellular hypersensitivity to IR and

defective resolution of 53BP1 foci from the loss of RUVBL1-

R205 methylation were completely epistatic with a loss of

PRMT5, indicating that the function of PRMT5 in promoting the

repair of DNA DSBs after IR is primarily mediated through its

ability to methylate RUVBL1 (Figures 4F and 4G). Taken

together, these data indicate that methylation of RUVBL1 at

R205 by PRMT5 is a critical post-translational modification

required for regulation of the cellular DNA damage response

invoked by DSBs.

To investigate this further, we used our RUVBL1 siRNA

knockdown/complementation system (Figure 4B) to determine

whether PRMT5-dependent methylation of RUVBL1 plays a

role in DSB resection. Compared to control cells, silencing

of RUVBL1 greatly reduced the appearance of RPA foci, which

could be restored by ectopic expression of wild-type, but not

R205K, RUVBL1 (Figure 5A), suggesting that methylation of

RUVBL1 is critical for the generation of regions of ssDNA at

sites of DSBs. Consistent with this, silencing RUVBL1 also

reduced the formation of IR-induced RAD51 foci, which again

could be rescued by wild-type, but not R205K, RUVBL1 (Fig-

ure 5B). Finally, loss of RUVBL1 methylation on R205 led to a

similar delay in RPA phosphorylation in response to IR, without

affecting the ability of ATM to be activated, and an increased

sensitivity to CPT and Olaparib comparable to PRMT5-

depleted cells (Figures 5C–5E and S5C). Collectively, these

data demonstrate that PRMT5 promotes HR-mediated repair

of DSBs through its ability to regulate the methylation of

RUVBL1 on R205.
(B) Generation of siRNA-resistant RUVBL1 wild-type (WT) or RUVBL1 methyl-de

(C and D) Cells were transfected with siRUVBL1, exposed to 3Gy IR, and the num

n = 3).

(E) Quantification of chromatid gaps and breaks after 2Gy IR is shown (mean ± S

(F and G) HeLa-RUVBL1 WT or HeLa-RUVBL1-R205K cells were transfected w

by colony assay (F) (mean ± SD; n = 3). Number of cells with >10 53BP1 foci w

Figure S5.
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PRMT5-Dependent Methylation of RUVBL1-R205
Regulates TIP60 HAT Activity and HR through the
Removal of 53BP1
RUVBL1 is an integral component of the TIP60, INO80, and

SRCAP complexes, all of which have been implicated in various

DNA repair processes (Alatwi and Downs, 2015; Dong et al.,

2014; Gospodinov et al., 2011; Ikura et al., 2000; Jha et al.,

2008; Murr et al., 2006; Sun et al., 2005; Tang et al., 2013; Wu

et al., 2007). We therefore performed epistasis analysis to

dissect out which RUVBL1-containing complex was regulated

in a PRMT5-dependent manner. Interestingly, increased sensi-

tivity of PRMT5-depleted cells to IR, retention of 53BP1 foci,

and defective RPA recruitment were epistatic with the loss of

TIP60 (Figures 6A–6C and 6F). In contrast, co-depletion of

PRMT5 and SRCAP resulted in a synergistic reduction in RPA

recruitment (Figure S6A), while depletion of INO80 resulted in

defective recruitment of 53BP1 at early time points after dam-

age, a phenotype not exhibited after PRMT5 depletion (Fig-

ure S6B). These observations suggest that the methylation of

RUVBL1 by PRMT5 is specifically targeted to complexes con-

taining TIP60 and not SRCAP or INO80. Consistent with this,

the DSB end resection defect observed in cells expressing the

methyl-deficient RUVBL1 was also epistatic with the loss of

TIP60 (Figures 6D and 6E).

One mechanism by which the TIP60 acetyltransferase com-

plex has been implicated in regulating HR is through its ability

to modulate the retention of 53BP1 at sites of DSBs; TIP60-

mediated acetylation of histone H4K16 blocks the Tudor domain

of 53BP1 from binding to methylated H4K20 (Tang et al., 2013).

Since RUVBL1 is an essential TIP60 cofactor, allowing proper

assembly and catalytic activity of the complex (Jha et al.,

2008, 2013), and both PRMT5 and RUVBL1-R205K are epistatic

with TIP60 for 53BP1 mobilization (Figures 6B and 6D), we hy-

pothesized that the failure of cells lacking PRMT5 or RUVBL1

methylation to efficiently resect DSBs could arise as a conse-

quence of an inability to remove the inhibitory effect of 53BP1.

To investigate this, we co-depleted 53BP1 in cells stably

depleted of PRMT5, and we evaluated RAD51 and RPA localiza-

tion after IR in late S/G2 cells. Strikingly, the depletion of 53BP1

completely restored the resection defect resulting from PRMT5

depletion, allowing RAD51 and RPA localization comparable to

that of control cells (Figures 6G–6I). Indeed, the finding that

further co-depletion of 53BP1 could restore the epistatic defect

in RPA foci formation (Figures 6C and 6E) supports our hypoth-

esis that PRMT5 and methylated RUVBL1 are functioning in the

same pathway as TIP60, which is required for effective 53BP1

mobilization from DNA break ends.

Based on these findings, we rationalized that if methylation

of RUVBL1 is required for histone acetylation, inhibiting histone

deacetylases (HDACs) should restore the defect in 53BP1
ficient (R205K) HeLa cell lines is shown.

ber of cells with >10 gH2AX (C) or 53BP1 (D) foci were quantified (mean ± SEM;

EM; n = 3).

ith the indicated siRNAs and exposed to 3Gy IR. Cell survival was assessed

as scored (G) (mean ± SEM; **p = 0.0095; n = 3). Scale bar, 10 mm. See also
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mobilization and RPA foci formation. Consistent with this prem-

ise, exposure of cells expressing the RUVBL1-R205K mutant to

Trichostatin A (TSA) rescued the defect in 53BP1 mobilization

and RPA foci formation after IR (Figures 7A and 7B). Given that

TIP60 is required to evict 53BP1 from chromatin surrounding a

DSB through its ability to acetylate K16 on histone H4 (Tang

et al., 2013), we postulated that the methylation of RUVBL1

may be required for this activity. In keeping with this, we

observed that the expression of methyl-deficient RUVBL1

reduced the HAT activity of TIP60 in vitro (Figure 7C), and,

more importantly, this resulted in a reduction of H4K16 acetyla-

tion following the depletion of MOF, which alongside TIP60 is the

principle HAT that catalyzes this histone modification (Figures

7D and S6D). Interestingly, loss of RUVBL1 methylation did not

affect the TIP60-dependent acetylation of H4 on K5 and K12 or

histone H2A on K5, indicating that this post-translational modifi-

cation of RUVBL1 is specific to H4K16 acetylation.

To strengthen our hypothesis that the increased presence of

53BP1 at sites of DSBs in cells lacking PRMT5 or expressing

methyl-deficient RUVBL1 is due to a failure to remove 53BP1

from the surrounding chromatin, rather than merely being a

marker of unrepaired DNA breaks, we utilized the mCherry-

LacI-FokI nuclease system to create a DSB within a single

genomic locus, enabling the direct quantification of chro-

matin-bound 53BP1 through chromatin immunoprecipitation

(ChIP). In this system, treatment of control cells with 4-hy-

droxy-tamoxifen (4-OHT) and the Shield-1 ligand induces

DNA damage, as evident by a single 53BP1 focus, and an

enrichment of H4K16 acetylation at break ends (Figures S7A

and S7B) (Shanbhag et al., 2010; Tang et al., 2013). In contrast,

PRMT5 depletion or expression of methyl-deficient RUVBL1

suppressed H4K16 acetylation while promoting 53BP1 reten-

tion (Figures 7E, 7F, and S7C–S7E). Interestingly, both wild-

type and methyl-deficient RUVBL1 were effectively recruited

to DSB ends, suggesting that arginine methylation does not

regulate TIP60 chromatin association (Figure 7G). Collectively,

these findings highlight the importance of arginine methylation

as a mechanism to control DNA repair pathway choice via its

ability to regulate the enzymatic activity of TIP60 and H4K16

acetylation at DSB ends.

DISCUSSION

While the critical role of protein modifications in the control of the

DNA damage response is becoming increasingly apparent, the

majority of studies have focused on how this is regulated by

phosphorylation, ubiquitylation, sumoylation, and lysine methyl-

ation. In this study, we have demonstrated the importance of the

symmetric arginine methyltransferase, PRMT5, for homologous

recombination-mediated repair and themaintenance of genomic
Figure 5. Methylation of RUVBL1 Is Required for HR, but Not ATM Sign

(A and B) HeLa-RUVBL1-WT and HeLa-RUVBL1-R205K cells were transfected w

CENPF/mitosin-positive cells were scored for RPA (A) and RAD51 (B) foci forma

(C) HeLa-RUVBL1-WT and HeLa-RUVBL1-R205K cells were transfected with si

immunoblot analysis.

(D and E) HeLa-RUVBL1-WT and HeLa-RUVBL1-R205K cells were transfected

survival was assessed by colony survival assay (mean ± SEM; n = 3). Scale bar,
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stability. Critically, we have discovered that PRMT5 regulates

the methylation of RUVBL1 and that this event is crucial for the

coordination of RUVBL1-mediated DSB repair activity by pro-

moting TIP60 activity and H4K16 acetylation. Consequently,

cells depleted of PRMT5, or expressing a form of RUVBL1 that

cannot be methylated, are unable to efficiently undergo DSB

end resection, are defective in HR, and display increased

genome instability when treated with genotoxic agents (Fig-

ure 7H). Given that the DNA repair response defects in cells lack-

ing PRMT5 or RUVBL1 methylation can be reversed by the

concomitant depletion of 53BP1, our data suggest that arginine

methylation is a critical determinant for regulating the decision of

whether a DSB is channeled into an NHEJ- or HR-dependent

repair pathway.

The role of PRMT5 in the DNA damage response has been

largely unexplored, with only three knownDNA repair substrates,

p53, Fen1, and Rad9 (Guo et al., 2010; He et al., 2011; Jansson

et al., 2008). However, while these studies addressed the conse-

quence of expressing a methyl-deficient form of these proteins,

none investigated the significance of PRMT5 per se during the

DNA damage response. Our comprehensive analysis clearly

demonstrates a critical role for PRMT5 during HR-mediated

DSB repair. Interestingly, we observed elevated levels of sponta-

neous DSBs, as measured by gH2AX/53BP1 foci after genetic

deletion of PRMT5 in primary, non-immortalized MEFs (Figures

1F–1H), implying a role for PRMT5 in maintaining genome stabil-

ity, potentially in response to endogenous damage such as repli-

cation fork stalling and collapse. While this could potentially be

mediated by Fen1 and/or Rad9 methylation, RUVBL1, TIP60,

and H4K16 acetylation also have been implicated in the repair

of DNA interstrand crosslinks (Rajendra et al., 2014; Renaud

et al., 2016). This suggests that the identified mechanism of

DNA end resection involving the methylation of RUVBL1 may

be required for the effective processing of different types of

endogenous replication-associated DNA lesions.

While we were unable to show direct methylation of RUVBL1

by PRMT5 in vitro, it is clear that PRMT5 is required for in vivo

RUVBL1 methylation, and this implies that PRMT5-dependent

methylation of RUVBL1 in cells is more complex than a simple

enzyme-substrate interaction. Very little is known about the

regulation of PRMT5; however, our finding that RUVBL1 methyl-

ation is enhanced post-IR implicates dynamic regulation down-

stream of the initial DSB response. Understanding this could

reveal important insights into how PRMT5 activity is controlled

in a temporal and spatial manner.

Our observation that R205 of RUVBL1 is methylated by

PRMT5, but not the corresponding residue in RUVBL2 (R206),

which is conserved both at the sequence and structural

levels, highlights an interesting divergent function between these

two highly related proteins. Recent insights into the solved
aling

ith siRUVBL1, exposed to 3Gy IR, and harvested at the time points indicated.

tion (mean ± SEM; n = 3).

RUVBL1, exposed to 10Gy IR, and harvested at the time points indicated for

with siRUVBL1, treated with increasing doses of CPT (D) or Olaparib (E), and

10 mm. See also Figure S5.
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hetero-hexameric structure of chaetomium thermophilum (ct)

full-length RUVBL1/RUVBL2 complex revealed that the domain

II (DII) region, containing R205 in human RUVBL1 and its equiv-

alent R206 in human RUVBL2, can adopt widely different orien-

tations with respect to the ATPase core (Lakomek et al., 2015),

confirming the flexibility originally inferred from the homohexa-

meric RUVBL1 structure (Matias et al., 2006). In human and

ct RUVBL1, R205 is exposed to the solvent and is therefore

accessible to PRMT5 for methylation (Figure S4A). In contrast,

in the ADP-bound form of ct RUVBL2, R206 is found somewhat

buried and capped by the side chain of Met187 (Figures S4B

and S4C). This suggests that R205 of RUVBL1 has evolved to

provide a regulatory function to RUVBL1/2-containing protein

complexes.

While RUVBL1 is an integral component of the TIP60,

INO80, and SRCAP complexes, all of which have been impli-

cated in various stages of the DSB and HR-mediated repair

(Alatwi and Downs, 2015; Dong et al., 2014; Gospodinov

et al., 2011; Ikura et al., 2000; Jha et al., 2008; Jha and Dutta,

2009; Murr et al., 2006; Sun et al., 2005; Tang et al., 2013; Wu

et al., 2007), our findings identify a specific function for

RUVBL1 methylation in regulating the activity of the TIP60

complex. Moreover, the TIP60 complex also is known to

have multiple roles during the DNA damage response. Sur-

prisingly, very little is understood about how specific TIP60

activities are controlled in a temporal and spatial manner.

Here we have shown that methylated RUVBL1 is an important

regulator of a subset of TIP60 activities, namely H4K16 acet-

ylation and 53BP1 eviction, and not others, such as ATM acti-

vation and H2A.Z mobilization (Figure S6C) (Choi et al., 2009;

Kusch et al., 2004). The underlying reasons for this are un-

clear. However, interestingly, the location of R205 within DII

could be of significance, as DII contains an OB fold proposed

to act as a nucleotide/protein-binding interface; thus, one po-

tential mechanism by which methylation of RUVBL1 could be

modulating TIP60 activity is by altering the binding of specific

cofactors. Indeed, while methylation does not change the

overall charge of the residue, it does alter the availability of

hydrogen donors and increases van der Waals interactive

forces (Liu et al., 2010; Yang et al., 2010). Despite the

fact that methylated residues are principally read by Tudor

domain-containing proteins, none of the known components

of the human TIP60 complex possesses a Tudor domain.

This raises the intriguing possibility that additional regulatory

components of the TIP60 complex may exist, which can spe-

cifically bind to methylated arginine residues using alternative

protein domains. Indeed, an important constituent of the DNA
Figure 6. PRMT5-Dependent Methylation of RUVBL1 at R205 Regulate

(A) HeLa-shCTRL or shPRMT5 cells were siRNA transfected, exposed to 3Gy I

normalized to the respective non-treatment control (mean ± SD; n = 3).

(B and C) HeLa-shCTRL or shPRMT5 cells were siRNA transfected, exposed to

damage, respectively (mean ± SEM; n = 3).

(D and E) HeLa-shCTRL or RUVBL1-R205K cells were siRNA transfected, expose

damage, respectively (mean ± SEM; n = 3).

(F) Validation of siTIP60 knockdown is shown.

(G) Cells were transfected with si53BP1 and the number of mitosin-positive cells

(H) Cells were transfected with si53BP1 and the number of CENPF-positive cells

(I) Validation of 53BP1 siRNA SMARTpool. See also Figure S6.
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damage TIP60 complex is TRRAP. TRRAP is not required for

the activation of ATM or its downstream signaling cascade,

but it is required for chromatin recruitment of TIP60, histone

H4 acetylation, chromatin relaxation, and loading of RAD51

to sites of DNA damage (Murr et al., 2006). Since

these observations are remarkably similar to those we have

observed for methylated RUVBL1, it would be interesting to

ascertain if the methylation of RUVBL1 modulates TRRAP

incorporation or function.

In summary, our findings reveal the importance of arginine

methylation in the temporal and spatial regulation of the TIP60

complex, coordinating substrate specificity and activity. Our

study further supports the notion that regulation of events at

chromatin after DNA damage is exquisitely controlled through

a combination of protein complex recruitment and post-transla-

tional modification and highlights the importance of crosstalk

between arginine methylation and histone acetylation for

appropriate DNA repair pathway choice and HR-mediated

repair.
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Artemis promote homologous recombination of radiation-induced DNA dou-

ble-strand breaks in G2. EMBO J. 28, 3413–3427.

Butler, L.R., Densham, R.M., Jia, J., Garvin, A.J., Stone, H.R., Shah, V.,

Weekes, D., Festy, F., Beesley, J., and Morris, J.R. (2012). The proteasomal

de-ubiquitinating enzyme POH1 promotes the double-strand DNA break

response. EMBO J. 31, 3918–3934.

Chan-Penebre, E., Kuplast, K.G., Majer, C.R., Boriack-Sjodin, P.A., Wigle,

T.J., Johnston, L.D., Rioux, N., Munchhof, M.J., Jin, L., Jacques, S.L., et al.

(2015). A selective inhibitor of PRMT5 with in vivo and in vitro potency in

MCL models. Nat. Chem. Biol. 11, 432–437.

Choi, J., Heo, K., and An, W. (2009). Cooperative action of TIP48 and TIP49 in

H2A.Z exchange catalyzed by acetylation of nucleosomal H2A. Nucleic Acids

Res. 37, 5993–6007.

Doil, C., Mailand, N., Bekker-Jensen, S., Menard, P., Larsen, D.H., Pepperkok,

R., Ellenberg, J., Panier, S., Durocher, D., Bartek, J., et al. (2009). RNF168

binds and amplifies ubiquitin conjugates on damaged chromosomes to allow

accumulation of repair proteins. Cell 136, 435–446.

Dolinsky, T.J., Nielsen, J.E., McCammon, J.A., and Baker, N.A. (2004).

PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electro-

statics calculations. Nucleic Acids Res. 32, W665–667.

Dong, S., Han, J., Chen, H., Liu, T., Huen, M.S.Y., Yang, Y., Guo, C., and

Huang, J. (2014). The human SRCAP chromatin remodeling complex pro-

motes DNA-end resection. Curr. Biol. 24, 2097–2110.

Fradet-Turcotte, A., Canny, M.D., Escribano-Dı́az, C., Orthwein, A., Leung,

C.C.Y., Huang, H., Landry, M.-C., Kitevski-LeBlanc, J., Noordermeer, S.M.,

Sicheri, F., and Durocher, D. (2013). 53BP1 is a reader of the DNA-damage-

induced H2A Lys 15 ubiquitin mark. Nature 499, 50–54.

Gorynia, S., Bandeiras, T.M., Pinho, F.G., McVey, C.E., Vonrhein, C., Round,

A., Svergun, D.I., Donner, P., Matias, P.M., and Carrondo, M.A. (2011).

Structural and functional insights into a dodecameric molecular machine -

the RuvBL1/RuvBL2 complex. J. Struct. Biol. 176, 279–291.

Gospodinov, A., Tsaneva, I., and Anachkova, B. (2009). RAD51 foci formation

in response to DNA damage is modulated by TIP49. Int. J. Biochem. Cell Biol.

41, 925–933.

Gospodinov, A., Vaissiere, T., Krastev, D.B., Legube, G., Anachkova, B.,

and Herceg, Z. (2011). Mammalian Ino80 mediates double-strand break

repair through its role in DNA end strand resection. Mol. Cell. Biol. 31,

4735–4745.

Gunn, A., and Stark, J.M. (2012). I-SceI-based assays to examine distinct repair

outcomes of mammalian chromosomal double strand breaks. Methods Mol.

Biol. 920, 379–391.
Acetyltransferase Activity

ted with TSA (0.5 mM) for 16 hr before exposure to 3Gy IR. The number of cells

lls with >10 RPA foci 8 hr after damage (B) were quantified (mean ± SEM; n = 3).

ith the TIP60 piccolo complex (TIP60/EPC1/ING3) and wild-type or methyl-

inant H4 acetylation.

etylated histone marks were determined by immunoblotting.

es in the presence of mCherry-Lac1-Fok1-DD-induced DSBs, in U20S-265-

ge percentage input across the four primer pairs expressed relative to RUVBL1

pair. PRMT5 symmetrically dimethylates RUVBL1 at R205, which stimulates

NA breaks. After end resection, RPA loading, and subsequent displacement

ror-free HR-mediated repair of DSBs. Removal of PRMT5 results in hypo-

cetylation and 53BP1 retention. Consequently, end resectioning is greatly

uitment, inappropriate error-prone NHEJ, and genomic instability. See also

http://dx.doi.org/10.1016/j.molcel.2017.01.019
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref1
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref1
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref2
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref2
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref2
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref3
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref3
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref3
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref3
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref4
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref4
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref5
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref5
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref5
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref6
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref6
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref6
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref6
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref7
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref7
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref7
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref7
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref8
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref8
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref8
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref8
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref9
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref9
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref9
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref10
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref10
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref10
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref10
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref11
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref11
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref11
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref12
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref12
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref12
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref13
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref13
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref13
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref13
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref14
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref14
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref14
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref14
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref15
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref15
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref15
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref16
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref16
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref16
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref16
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref17
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref17
http://refhub.elsevier.com/S1097-2765(17)30045-X/sref17


Guo, Z., Zheng, L., Xu, H., Dai, H., Zhou, M., Pascua, M.R., Chen, Q.M., and

Shen, B. (2010). Methylation of FEN1 suppresses nearby phosphorylation

and facilitates PCNA binding. Nat. Chem. Biol. 6, 766–773.

He, W., Ma, X., Yang, X., Zhao, Y., Qiu, J., and Hang, H. (2011). A role for the

arginine methylation of Rad9 in checkpoint control and cellular sensitivity to

DNA damage. Nucleic Acids Res. 39, 4719–4727.

Ikura, T., Ogryzko, V.V., Grigoriev, M., Groisman, R., Wang, J., Horikoshi, M.,

Scully, R., Qin, J., and Nakatani, Y. (2000). Involvement of the TIP60 histone

acetylase complex in DNA repair and apoptosis. Cell 102, 463–473.

Jacquet, K., Fradet-Turcotte, A., Avvakumov, N., Lambert, J.-P., Roques, C.,

Pandita, R.K., Paquet, E., Herst, P., Gingras, A.-C., Pandita, T.K., et al. (2016).

The TIP60 complex regulates bivalent chromatin recognition by 53BP1 through

direct H4K20me binding and H2AK15 acetylation. Mol. Cell 62, 409–421.

Jansson, M., Durant, S.T., Cho, E.-C., Sheahan, S., Edelmann, M., Kessler, B.,

and La Thangue, N.B. (2008). Argininemethylation regulates the p53 response.

Nat. Cell Biol. 10, 1431–1439.

Jeong, K.W., Kim, K., Situ, A.J., Ulmer, T.S., An, W., and Stallcup, M.R. (2011).

Recognition of enhancer element-specific histone methylation by TIP60 in

transcriptional activation. Nat. Struct. Mol. Biol. 18, 1358–1365.

Jha, S., and Dutta, A. (2009). RVB1/RVB2: running rings around molecular

biology. Mol. Cell 34, 521–533.

Jha, S., Shibata, E., and Dutta, A. (2008). Human Rvb1/Tip49 is required for

the histone acetyltransferase activity of Tip60/NuA4 and for the downregula-

tion of phosphorylation on H2AX after DNA damage. Mol. Cell. Biol. 28,

2690–2700.

Jha, S., Gupta, A., Dar, A., and Dutta, A. (2013). RVBs are required for assem-

bling a functional TIP60 complex. Mol. Cell. Biol. 33, 1164–1174.

Kusch, T., Florens, L., Macdonald, W.H., Swanson, S.K., Glaser, R.L., Yates,

J.R., 3rd, Abmayr, S.M., Washburn, M.P., and Workman, J.L. (2004).

Acetylation by Tip60 is required for selective histone variant exchange at

DNA lesions. Science 306, 2084–2087.

Lakomek, K., Stoehr, G., Tosi, A., Schmailzl, M., and Hopfner, K.-P.

(2015). Structural basis for dodecameric assembly states and conforma-

tional plasticity of the full-length AAA+ ATPases Rvb1 $ Rvb2. Structure

23, 483–495.

Lee, J.S., Kim, Y., Kim, I.S., Kim, B., Choi, H.J., Lee, J.M., Shin, H.-J.R., Kim,

J.H., Kim, J.-Y., Seo, S.-B., et al. (2010). Negative regulation of hypoxic re-

sponses via induced Reptin methylation. Mol. Cell 39, 71–85.

Lee, J.S., Kim, Y., Bhin, J., Shin, H.-J.R., Nam, H.J., Lee, S.H., Yoon, J.-B.,

Binda, O., Gozani, O., Hwang, D., and Baek, S.H. (2011). Hypoxia-induced

methylation of a pontin chromatin remodeling factor. Proc. Natl. Acad. Sci.

USA 108, 13510–13515.

Liu, K., Chen, C., Guo, Y., Lam, R., Bian, C., Xu, C., Zhao, D.Y., Jin, J.,

MacKenzie, F., Pawson, T., and Min, J. (2010). Structural basis for recognition

of argininemethylated Piwi proteins by the extended Tudor domain. Proc. Natl.

Acad. Sci. USA 107, 18398–18403.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

H2AX Millipore 05-636

53BP1 Millipore MAB3802

PRMT5 Millipore 07-405

PRMT5 Cell Signaling Technologies 2252

Actin Sigma A2228

Tubulin Sigma T6199

Mitosin BD 610768

Rad51 Millipore PC130

RPA (34-19) Calbiochem NA18

CENPF Abcam AB5

P-ATM (ser1981) R&D Systems AF1655

ATM GeneTex GTX70103

P-RPA (ser 4/8) Bethyl A300-245A

P-Chk1 (ser 345) Cell Signaling Technologies 2348

Chk1 Santa Cruz SC8408

P-Chk2 (T68) Abcam Ab32148

Chk2 Steve Elledge N/A

Symmetric Dimethyl Arginine Cell Signaling Technologies 13222

P-KAP1 Bethyl A300-767-AM

KAP1 Bethyl A300-274-AM

Flag-HRP Cell Signaling Technologies 2044

RUVBL1 Thermo Scientific PA5-29278

RUVBL1 Sigma SAB4200194

RUVBL2 Thermo Scientific PA5-29871

GFP Roche 11 814 460 001

c-myc (9E10) Santa Cruz SC-40

H4 Penta Acetyl Millipore 06-946

Histone H4 Abcam AB7311

Histone H4 Bethyl A2300-647A-T

Tip60 Millipore 07-038

H4K16Ac Bryan Turner N/A

H4K5Ac Bryan Turner N/A

H4K8Ac Bryan Turner N/A

H2AK5Ac Bryan Turner N/A

H4K16Ac Abcam AB109463

H4K16Ac Millipore 07-329

H4K12Ac Cell Signaling Technologies 13944

Anti-Rabbit IgG Millipore 12370

Anti-Mouse IgG Cell Signaling Technologies 54155

BRCA1 Santa Cruz SC6954

Dylight Goat-Anti Rabbit 488 Thermo Scientific 35552

Alexa Fluor anti-mouse 594 Life Technologies A11-032

Phospho Histone H3 (Ser10) Cell Signaling Technologies 9701

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

H2A.Z Abcam AB4174

RUVBL1-R205me2s This paper

Anti-Rabbit IgG HRP DAKO P0399

Anti-mouse IgG HRP DAKO P0447

Chemicals, Peptides, and Recombinant Proteins

4-OHT Sigma H7904

Olaparib Selleck Chemicals S1060

Camptothecin Sigma C9911

Interferin PolyPlus 409-10

JetPei PolyPlus 101-10N

Lipofectamine 2000 Thermo Fisher 11668027

Tetracycline Sigma 87128

Methylene Blue Sigma M9140

Trichostatin A (TSA) Sigma T8552

Progold Antifade Mounting Reagent (With DAPI) Life Technologies P36935

KaryoMax Colcemid GIBCO 15212-012

Poly-D-Lysine Sigma P7886

Giemsa Staining Solution Sigma GS500

Propidium Ioidide Sigma P4170

Aphidicolin Sigma A4487

Cycloheximide Sigma 01810

Chloramphenicol Sigma C0378

IgG Sepharose 6 fast flow GE Healthcare GE17-0969-01

Calmodulin resin Agilent 214303

Protein G Sepharose GE Healthcare 17-0618

Protein G Agarose Roche 11719416001

anti-Flag M2-affinity beads Sigma A2220

TEV protease Promega V6101

SYPRO Ruby Lonza LZ50562

Recombinant Histone H4 NEB M2504S

GSK591 SGC N/A

Adox Sigma A7154

L-Methyl-3H methionine Perkin Elmer NET061X

S-[methyl-3H]–adenosyl-L-methionine Perkin Elmer NET155H

EN3HANCE Perkin Elmer 6NE970C

Shield-1 Clontech 632189

Experimental Models: Cell Lines

U20S HR reporter cell lines Professor J. Stark (City of Good

Hope Hospital, CA) Gunn and Stark,

2012

U20S-265 cell line Professor Roger Greenberg (University

of Pennsylvania) Tang et al., 2013

HeLa ATCC CCL-2

293T ATCC CRL-3216

Experimental Models: Organisms/Strains

Mouse: Prmt5tm1a(EUCOMM)Wtsi European Mouse Mutant Archive (EMMA) MGI:4432546

Mouse: B6.129-Gt(ROSA)26Sortm1(cre/ERT2)Tyj/J The Jackson Laboratory 008463

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

pCMV2B-Flag-RUVBL1-R205K This paper

pHIV-zsGreen-Flag-RUVBL1-siRNA resistant This paper

pHIV-zsGreen-Flag-RUVBL1-siRNA resistant-R205K This paper

pNIC28-Bsa4-6X His-TEV RUVBL1 Dr. Walid Houry (University

of Toronto, Canada)

p11-6X His-TEV RUVBL2 Dr. Walid Houry (University

of Toronto, Canada)

pLKO.1-TRC (plasmid no. 10878) Dr. David Root (Moffat et al., 2006) Addgene

pLKO.1-TRC-shPRMT5 (1) This paper

pLKO.1-TRC-shPRMT5 (2) This paper

pcDNA 4/TO-C-TAP-PRMT5 G367A/R368A This paper

Sequence-Based Reagents

siRUVBL1 (50-GUUUACUCAACUGAGAUCA-30) Broad Institute GPP Web Portal http://portals.broadinstitute.org/

gpp/public

siTIP60 (50-CCUCAAUCUCAUCAACUAC-30) Jeong et al., 2011

siPRMT5 (50- CGAAAUAGCUGACACACUA-30) Broad Institute GPP Web Portal http://portals.broadinstitute.org/

gpp/public

siSRCAP (50- CGGAUAGACAUGGGUCGAUUU-30) Broad Institute GPP Web Portal http://portals.broadinstitute.org/

gpp/public

shCTRL (50 CCTAAGGTTAAGTCGCCCTCG-30) Sarbassov et al., 2005

shPRMT5 (1) (50-GCGTTTCAAGAGGGAGTTCAT-3) Broad Institute GPP Web Portal http://portals.broadinstitute.org/

gpp/public

shPRMT5 (2) (50-AGGGACTGGAAT ACGCTAATT-30) Broad Institute GPP Web Portal http://portals.broadinstitute.org/

gpp/public

siBRCA1 (50-GCUCCUCUCACUCUUCAGU-30) In house design

si53BP1 Dharmacon L-003548-00

siINO80 Dharmacon L-003548-00

siBRCA2 Dharmacon L-003462

siMOF Dharmacon L-014800-02

MISSON siRNA Universal Negative Control No.1 Sigma SIC001

Software and Algorithms

Scaffold Proteome Software http://www.proteomesoftware.com/

products/scaffold

Velocity Software (V4.1) Improvision, Perkin Elmer

PDB2PQR for electrostatic interactions Dolinsky et al., 2004 http://www.poissonboltzmann.org

APBS for electrostatic interactions Baker et al., 2001 http://www.poissonboltzmann.org

Other
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to the corresponding author, Dr. Clare Davies (c.c.davies@bham.

ac.uk)

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Mice
prmt5f/f;CreERT2 mouse embryonic fibroblasts (MEFs) were generated by breeding prmt5f/f and CreERT2tg/+ mice. Embryos were

harvested at embryonic day 13.5 (E13.5) as described previously (Nilausen and Green, 1965). Gene deletion of Prmt5 in cultured
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prmt5f/f;CreERT2 MEFs was induced by a 24 hr treatment of 500nM 4-hydroxy-tamoxifen (4-OHT; Sigma Aldrich). All experiments

were conducted 120 hr later to ensure complete gene deletion. Animals were maintained in a pathogen-free facility at the University

of Birmingham, and all animal experiments were carried out under license in accordance with the UKHomeOffice Animals (Scientific

Procedures) Act (1986) and institutional guidelines.

Cell Culture and Cell Lines
HeLa, Human Embryonic Kidney 293T cells (HEK293T), U2OS HR reporter cells and U2OS-265 (Tang et al., 2013) were grown in Dul-

becco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) (GIBCO) and penicillin/streptomycin

(Sigma Aldrich). Mouse Embryonic Fibroblasts were grown in Dulbecco’s modified Eagle’s medium supplemented with 10%

heat inactivated fetal bovine serum (FBS) (GIBCO) and penicillin/streptomycin. U20S HR reporter cell lines were obtained from

Professor Jeremy Stark (City of Good Hope Hospital, CA, USA), U20S-265 from Professor Roger Greenberg (Perelman School of

Medicine, University of Pennsylvania, USA).

METHODS DETAILS

siRNA Transfections and Establishment of Stable Cell Lines
siRNA sequences were synthesized by Sigma unless otherwise stated. siRNA transfections (30nM – 160nM/transfection) were

carried out using Interferin (Polyplus) according to the manufacturer’s instructions, with total siRNA not exceeding 160nM. All

experiments were performed at least 48 hr after knockdown. See Key Resource Table for siRNA sequences. siRNA resistant

Flag-tagged RUVBL1 constructs were generated by mutating the sequence complementary to siRUVBL1 from GTT-TAC-TCA-

ACT-GAG-ATC-A to GTC-TAT-AGC-ACT-GAG-ATC-A using the Q5 site-directed mutagenesis kit (NEB). To generate stable

PRMT5-depleted cells, shPRMT5 sequences were obtained from the Broad Institute GPP Web Portal and cloned into pLKO.1-

TRC, followed by selection with 1 mg/ml puromycin. All experiments were conducted on low passage cells to minimize effects

of chronic PRMT5 depletion. To enable expression of ectopic RUVBL1 WT or R205K with concurrent depletion of endogenous

RUVBL1, HeLa cells were lentivirally infected with pHIV-zsGreen-Flag-RUVBL1-siRNA resistant constructs. GFP positive popula-

tions were isolated by flow cytometry.

Colony Survival Assays
Cells were plated at low density 24 hr prior to treatment with increasing doses of ionizing radiation, Camptothecin (Sigma) or Olaparib

(Selleck Chemicals). Cell densities were adjusted in accordance with increasing dose of damaging agent. Cells were treated with

Camptothecin for 4 hr before being washed once in PBS followed by supplementation with fresh complete media. For Olaparib treat-

ment, drug was supplemented to media every three days. Colonies were fixed and stained after 14 days with 2% methylene blue

(Sigma Aldrich) in 50% ethanol. Data expressed is normalized to respective non-treatment control.

Metaphase Spreads
Chromosomal aberrations were scored in Giemsa stained metaphase spreads. For chromosome aberrations, demecolcine

(Sigma) was added 3-4 hr prior to harvesting at a final concentration of 0.2 mg/ml. Cells were harvested by trypsinization, sub-

jected to hypotonic shock for 1 hr at 37�C in 0.3M sodium citrate and fixed in 3:1 methanol:acetic acid solution. Cells were drop-

ped onto acetic acid humidified slides, stained for 15 min in Giemsa-modified (Sigma) solution (5% v/v in H2O) and washed in

water for 5 min.

Immunofluorescence, Microscopy and Image Analysis
Cells were plated on poly-D-Lysine coated coverslips (50 mg/ml) (Sigma Aldrich) 24 hr prior to treatment with ionising radiation. For

HDAC inhibitor studies, cells were pretreated for 16 hr with TSA (0.5 mM) before 3Gy irradiation. Coverslips were placed into ice-

cold pre-extraction buffer for 7 min (10mM PIPES pH 6.8, 300mM sucrose, 20mM NaCl, 3mM MgCl2 0.5% Triton X-100), then

fixed for 10 min in 4% PFA. After washing in phosphate-buffered saline (PBS) and 1 hr block (10% FCS in PBS), cells were incu-

bated in primary antibody overnight at 4�C and secondary antibody at 1:200 for 1hr at room temperature. Cells were washed three

times with PBS and mounted onto glass slides with Prolong gold anti-fade reagent with DAPI (Life Technologies). Staining was

assessed using a Nikon ECLIPSE E600 immunofluorescent microscope and Velocity software. Cells with > 10 foci per cell

were classed as foci positive. A minimum of 300 cells were counted for each experimental repeat. Representative images were

taken with x100 magnification. Antibodies used include: gH2AX (mAB, Millipore), 53BP1 (Rabbit, Novus), RAD51 (Calbiochem),

RPA (Calbiochem).

Cell Cycle Analysis and HR assay
HeLa cells were rinsed three times with phosphate buffered saline (PBS), and all media and wash buffer was retained to salvage

mitotic cells. Cells were fixed dropwise in 70% ethanol (�20�C) while being gently vortexed, and incubated for at least one hour

in 70%ethanol. DNAwas stained with 25 mg/ml propidium iodide containing 0.1mg/ml RNase A. Cells were analyzed using an Accuri

flow cytometer (BD Biosciences) in conjunction with CFlowplus software. For analysis of G2/M checkpoint via phospho-Histone H3
e4 Molecular Cell 65, 900–916.e1–e7, March 2, 2017



(Ser10) (marker of mitotic cells), all cells (including mitotic cells) were harvested at specified time points and fixed in 70% ethanol

prior to permeabilization with 0.25% Triton X-100 in 1% BSA/PBS. Cells were washed and incubated with pH3-Ser10 antibody

(CST) for one hour at room temperature, followed by goat anti-rabbit-488 nm (Dylight) for 30 min. Cells were subsequently incubated

in 25 mg/ml propidium iodide/0.1mg/ml RnaseA solution for 30 min and analyzed by flow cytometry. HR assays were performed as

described previously (Butler et al., 2012).

TAP-Tag affinity purification
Catalytically inactive PRMT5 (G367A/R368A; PRMT5 MD) (Pal et al., 2004) was cloned into pcDNA 4/TO-C-TAP, and clonal

tetracycline-regulated 293T/TR-C-tap PRMT5 MD cell lines generated. After 24 hr tetracycline treatment (1 mg/ml), cells were

lysed in LB (150mM NaCl, 50mM Tris-HCl pH 8.0, 1mM EDTA, 1% NP40, 1mM Na3VO4, 50mM NaF, 1mM b-glycero-phos-

phate, 100 mM phenylmethylsulfonyl fluoride (PMSF), 10 mg/ml leupeptin, 10 mg/ml aprotinin), sonicated three times, and

freeze/thawed twice. After clarification, lysates were incubated with IgG Sepharose 6 fast flow beads (GE Healthcare) for

4 hr at 4�C, washed three times in LB minus protease and phosphatase inhibitors, and once with TEV cleavage buffer

(150mM NaCl, 10mM Tris pH 8.0, 0.5mM EDTA, 0.1% NP40, 1mM DTT). Complexes isolated by IgG Sepharose pull-

down were released by two rounds of TEV protease cleavage (50 units; Promega) equating to a total time of 24 hr cleavage.

IgG Sepharose beads were washed three times in CaBIND buffer (150mM NaCl, 50mM Tris pH 8.0, 2mM CaCl2, 1mM

MgOAc, 1mM Imidazole, 0.1% NP40, 10mM b-mercaptoethanol) to ensure effective release of complexes, and elutions sub-

jected to a second round of affinity purification using Calmodulin resin (Agilent). After three washes with CaBIND buffer, pro-

tein complexes were eluted with two rounds of EDTA buffer (150mM NaCl, 50mM Tris pH 8.0, 5mM EDTA, 0.1% NP40) at

4�C for 30 min. Proteins were precipitated with TCA, complexes resolved by SDS-PAGE, fixed and stained with SYPRO

Ruby (Lonza).

Immunoprecipitation
For preparation of lysates for immunoprecipitation (IP), cells were washed three times in ice cold phosphate-buffered saline (PBS)

and lysed in 0.1% NP40 Lysis buffer (150mM NaCl, 20mM Tris pH 7.5, 0.5mM Ethylenediaminetetraacetic acid (EDTA), 1mM

Na3VO4, 50mM NaF, 1mM b glycero-phosphate, 100 mM phenylmethylsulfonyl fluoride (PMSF), 10 mg/ml Leupeptin, 10 mg/ml Apro-

tinin). Cells were sonicated twice at 25%amplitude for 5 swith a thin probe, and lysates cleared by centrifugation.Where appropriate,

antibodies were added at a concentration of 1 mg/mg of lysate and incubated overnight at 4�C, followed by antibody-protein complex

capture with Protein G Sepharose beads (GE Healthcare) for at least one hour at 4�C. Alternatively, lysates were directly incubated

with anti-Flag M2-affinity beads (Sigma Aldrich). After extensive washing in NP40 lysis buffer, complexes were eluted and analyzed

by SDS-PAGE and immunoblotting.

Mass Spectrometry
Polyacrylamide gel slices (1-2mm) containing the purified proteins were prepared for mass spectrometry analysis using the

Janus liquid handling system (PerkinElmer). Briefly, the excised protein gel pieces were placed in a well of a 96-well microtiter

plate and destained with 50% v/v acetonitrile and 50 mM ammonium bicarbonate, reduced with 10 mM DTT, and alkylated with

55 mM iodoacetamide. After alkylation, proteins were digested with 6 ng/mL endoproteinase Asp-N (Promega) overnight at 37�C.
The resulting peptides were extracted in 2% v/v formic acid, 2% v/v acetonitrile. The digest was analyzed by nano-scale capil-

lary LC-MS/MS using an Ultimate U3000 HPLC (ThermoScientific Dionex) to deliver a flow of approximately 300 nL/min. A C18

Acclaim PepMap100 5 mm, 100 mm x 20 mm nanoViper (ThermoScientific Dionex), trapped the peptides prior to separation on a

C18 Acclaim PepMap100 3 mm, 75 mm x 250 mm nanoViper (ThermoScientific Dionex). Peptides were eluted with a 60 min

gradient of acetonitrile (2% to 80%). The analytical column outlet was directly interfaced via a nano-flow electrospray ionization

source, with a hybrid quadrupole orbitrap mass spectrometer (Q-Exactive Plus Orbitrap, ThermoScientific). Data dependent

analysis was carried out using a resolution of 30,000 for the full MS spectrum, followed by ten MS/MS spectra. MS spectra

were collected over a m/z range of 300–2000. MS/MS scans were collected using a threshold energy of 27 for higher energy

collisional dissociation (HCD). LC-MS/MS data were then queried against a protein database (UniProt KB) using the Mascot

search engine program (Matrix Science) (Perkins et al., 1999). Database search parameters were set with a precursor tolerance

of 10 ppm and a fragment ion mass tolerance of 0.8 Da. One missed enzyme cleavage was allowed and variable modifications

for oxidized methionine, carbamidomethyl cysteine, pyroglutamic acid, phosphorylated serine, threonine, and tyrosine, and

methyl arginine were included. MS/MS data were validated using the Scaffold program (Proteome Software). All data were addi-

tionally interrogated manually.

Immunoblotting
Cells were treated with the pan methyltransferase inhibitor Adox (100 mM, Sigma) or the PRMT5 specific inhibitor GSK591 (5 mM,

SGC, Oxford) (Chan-Penebre et al., 2015) for 24 hr prior to lysis. Whole cell extracts were obtained by lysis in UTB buffer (8 M

Urea, 50 mM Tris, 150 mM b-mercaptoethanol), or in 0.1% NP40 lysis buffer (150mM NaCl, 20mM Tris pH 7.5, 0.5mM

EDTA, 1mM Na3VO4, 50mM NaF, 1mM b-glycero-phosphate, 100 mM phenylmethylsulfonyl fluoride (PMSF), 10 mg/ml leupeptin,

10 mg/ml aprotinin). Cell extracts were sonicated twice followed by centrifugation to clarify lysate. Protein concentration was
Molecular Cell 65, 900–916.e1–e7, March 2, 2017 e5



determined by Bradford Assay according to manufacturer’s instructions (BioRad). Protein lysates were resolved by SDS-PAGE,

transferred on to PVDF and incubated with primary antibody overnight, followed by HRP-linked secondary antibody for 1hr at

room temperature. The signal was detected using ECL western blotting substrate (Pierce).

In vitro PRMT1 methylation assay
All GST and His-tagged proteins were generated in-house using standards protocols. Histone H4 obtained from Cell Signaling

Technologies. Purified recombinant GST–PRMT1 was incubated with 2 mg substrate and 1 mL S-[methyl-3H]–adenosyl-L-methionine

(3[H]-SAM) (specific activity: 55–85Ci/mmol, PerkinElmer) in a total volume of 60 mL supplemented with 100mM sodium phosphate

(pH 7.5) buffer. Reactions were incubated at 37�C for 1 hr and denatured protein resolved by SDS–PAGE. Protein was transferred

onto nitrocellulose membrane, and the tritium signal enhanced by treating membranes with EN3HANCE (PerkinElmer). Membranes

were exposed to autoradiography film for at least 1 month at �80�C.

In vivo methylation assays
Transfected cells were cultured in methionine-free DMEM (Sigma Aldrich) supplemented with 10% fetal calf serum (FCS) and

1% glutamine. To inhibit de novo protein synthesis, cycloheximide (100 mg/ml) and chloramphenicol (40 mg/ml) were added

for one hour prior to labeling with L-[Methyl-3H]-methionine (specific activity 70-85Ci (2.59-3.145 TBq)/mmol, 10 mCi/ml media;

Perkin Elmer) for four hours. Cells were harvested and lysed in RIPA buffer (50mM Tris pH 7.4, 150mM NaCl, 1mM EDTA, 1%

NP40, 0.5% sodium deoxycholate 0.1% SDS, 10% glycerol, 1mM PMSF, 50mM NaF, 10mM Na3VO4, 1 mg/ml leupeptin and

1 mg/ml aprotinin), and Flag proteins immunoprecipitated overnight using anti-Flag M2 affinity beads (Sigma). After four washes

with RIPA buffer, immunoprecipitates were denatured, resolved by SDS-PAGE and transferred onto nitrocellulose membrane.

To verify equal immunoprecipitation, one-tenth of the immunoprecipitation was retained for western blot analysis. To enhance

tritium signal, membranes were treated with EN3HANCE (Perkin Elmer), and exposed to autoradiography film for 2-4 weeks

at �80�C.

In vitro HAT assay
TIP60 HAT assays were conducted as described (Jacquet et al., 2016). Briefly, 293T cells were transfected with the TIP60 piccolo

complex (plasmids were a kind gift from Bruno Amati, European Institute of Oncology, Milan) and Flag-TIP60 immunoprecipitated

from cell lysates. HAT assay was conducted at 37�C for 1 hr with 1 mg recombinant Histone H4 and 150 mMacetyl CoA in assay buffer

(50mM Tris pH 8.0, 10% glycerol, 1mM EDTA, 1mM DTT, 1mM PMSF, 10mM sodium butyrate). Acetylated H4 was detected by

immunoblotting with penta-H4-Ac (Abcam).

Quantitative PCR
RNA was extracted from cells using the QIAGEN RNeasy mini kit, DNase treated (Ambion) and cDNA synthesized using Superscript

III (Invitrogen) according to the manufacturer’s instructions. QPCR was performed using a Stratagene Mx3005P detection system

with SYBR Green incorporation with primers indicated below.
Gene Forward Primer Reverse Primer

TIP60 50-CAATGTGGCCTGCATCCTA-30 50-ATGAACTCTCCAAAGTGGAAGG-30

MOF 50-AAGTCACGGTGGAGATCGG 50- GCTGAAGTGATCCAGTCTCG-30

actin 50-CTCTTCCAGCCTTCCTTCCT-30 50- GAAGTGTGACGTGGACATCC �30

INO80 50-GCCCCCTTCCATGTGGTTAT-30 50-GGATCTTCCAACGAACACTGG-30

BRCA2 50-CCTGATGCCTGTACACCTCTT-30 50-GCAGGCCGAGTACTGTTAGC-30

SRCAP 50-CTACTCCAGGGCCCACTACT-30 50-AATGGGCGTCTTTACCTGGG-30
All primer pairs spanned exon-intron boundaries and generated a single product as determined by dissociation curve analysis.

Chromatin Immunoprecipitation
Chromatin immunoprecipitation was performed as described (McNee et al., 2016). Briefly, U20S-265 cells treated for 4 hr with 4-OHT

(10 mM, Sigma) and the Shield-1 ligand (0.5 mM, Promega) were crosslinked with 1% formaldehyde before neutralization with 0.125M

glycine. After lysis and sonication, chromatin was pre-cleared using normal rabbit IgG (Millipore), or mouse IgG (Cell Signaling Tech-

nology), and Protein G-Sepharose (Roche) before co-immunoprecipitation with either H4K16Ac (Millipore), 53BP1 (Novus) or

RUVBL1 (Sigma SAB4200184). After washing and elution of protein-DNA complexes from the beads (100 mM NaHCO3, 1%
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SDS), crosslinks were reversed by heating, and treated with proteinase K. Associated DNA was quantified by qPCR analysis using

the primers listed below (Tang et al., 2013).
p1 50-GGAAGATGTCCCTTGTATCACCAT-30 50-TGGTTGTCAACAGAGTAGAAAGTGAA-30

p2 50- GCTGGTGTGGCCAATGC-3 50-TGGCAGAGGGAAAAAGATCTCA-30

p3 50-GGCATTTCAGTCAGTTGCT CAA-30 50- TTGGCCGATTCATTAATGCA

p4 50-CCACCTGACGTCTAAGAAACCAT-30 50-GATCCCTCGAGGACGAAAGG-30
All primer pairs generated a single product as determined by dissociation curve analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis was carried out using Student’s t test. Unless stated, *p < 0.05; **p < 0.005; *** p < 0.0005; **** p < 0.00005, as

stated within the figure. n = number of experimental replicates.
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