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ABSTRACT
The protein product of the breast and ovarian cancer gene, BRCA1, is part of an obligate
heterodimer with BARD1. Together these RING bearing proteins act as an E3 ubiquitin ligase.
Several functions have been attributed to BRCA1 that contribute to genome integrity but which of
these, if any, require this enzymatic function was unclear. Here we review recent studies clarifying
the role of BRCA1 E3 ubiquitin ligase in DNA repair. Perhaps the most surprising finding is the
narrow range of BRCA1 functions this activity relates to. Remarkably ligase activity promotes
chromatin remodelling and 53BP1 positioning through the remodeller SMARCAD1, but the activity
is dispensable for the cellular survival in response to cisplatin or replication stressing agents.
Implications for therapy response and tumor susceptibility are discussed.

KEYWORDS
BRCA1; homologous
recombination; resection;
SMARCAD1; ubiquitin

Introduction

The BRCA1 protein plays several roles in genome sta-
bility: including check-point promotion, DNA cross-
link repair, replication fork stability and DNA double-
strand break (DSB) repair. In DSB repair it is associ-
ated with homologous recombination (HR). Here it
promotes DNA resection by two means: interacting
with the resection protein CtIP; and by opposing the
block on resection contributed by the p53 binding
protein 53BP1 and its effectors (reviewed in1,2). In
addition it aids RAD51 loading through interaction
with PALB2-BRCA2.3,4,5 In the absence of BRCA1,
DSBs are repaired by toxic non-homologous end join-
ing (NHEJ).6

The first 100 amino acids of BRCA1 encodes a
RING domain (Really Interesting New Gene) and
lengthy a helices. The latter form a hydrophobic bun-
dle with the similarly arranged N-terminal region of
BARD17 while the RING interacts with E2 Ub conju-
gating enzymes and promotes the transfer of ubiquitin
(Ub) from the E2 to a target protein.8,9 Here we review

recent insights into BRCA1-BARD1 function as an E3
Ub ligase and the role this activity is thought to play
in contributing to DNA repair.

How do RING E3 Ubiquitin ligases work?

Unlike the HECT family of E3 Ub ligases those of the
RING family do not form a catalytic intermediate
with Ub. Historically, RING E3 Ub ligases were con-
sidered passive players in Ub conjugation, providing
enzyme stability, substrate specificity to the E2 conju-
gating enzyme but having no active role in Ub trans-
fer. However, foundational work from several
laboratories revealed that RING-bearing Ub ligases
contribute by priming a loaded E2»Ub complex for
Ub transfer.10-15 Dimeric RING E3 Ubiquitin ligases
can be split into two structural classes16: those with an
interleaved “cross-brace” C-terminal tail sometimes
referred to as Type II (eg RNF4 and BIRC7); and those
with extended a-helical tails important for dimeriza-
tion, referred to as Type I (eg BRCA1-BARD1, the
Polycomb Repressor Complex 1(PRC1) Ligase
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RING1A/B-BMI1/MEL-18 and Rad18). In Type II
dimeric RINGs an additional E3-Ub interface lies
within conserved residues in the “cross-brace” tail
from the second non-E2 bound RING protomer11,14

(Fig. 1). This direct interaction restrains free move-
ment of Ub in the E2»Ub complex, thereby “locking”
Ub into a closed conformation primed to stimulate
Ub transfer. However since Type I dimeric RINGs
lack a “cross-brace” feature, any additional Ub binding
face from the second RING must necessarily differ.

Recently, the Ub-E3 binding face in Type I RING
E3 ligases was identified.17,18 In these structures a con-
served positive residue (R/K) at the base of the second
long a-helix is required for ligase activity. Strikingly,
this conserved residue is missing in the E2 bound part-
ner of the BRCA1-BARD1 and PRC1 complexes but
present in their inactive binding partners (eg. BARD1
and BMI1) in an arrangement similar to that described
for Type II active structures. Therefore, the need to
form a closed E3-E2»Ub complex via interaction with
the conserved Ub-binding face may explain the require-
ment of heterodimerisation for enzymatic activity in
these complexes. Indeed, in the case of the PRC1 ligase
complex, activity correlates with the accessibility of the
conserved R/K residue.18 In BMI1, the conserved resi-
due K73 forms a salt bridge with neighboring D77 cor-
relating with auto-inhibited low ligase activity.
Mutation of K73 to Arginine disrupts this internal salt
bridge and increases ligase activity. By selecting partners
with either a K or R at this conserved site, RING1A/B
can switch activity states from low to high. More
broadly, mutation of this E3-Ub binding interface in

dimeric RINGs can be applied to selectively control
ligase activity and interrogate enzyme function in the
context of a stable dimer. We recently utilized this
approach to explore the role of BRCA1-BARD1 ligase
activity in the DNA damage response.17

BRCA1-ligase activity acts to counter chromatin
barriers

BRCA1 has several roles in DNA repair (reviewed in19-
21), reflected in the sensitivities of cells lacking BRCA1
to a broad range of DNA damaging agents. It was
intriguing to discover that only a subset of these agents
require BRCA1-BARD1 ligase activity for full resis-
tance. Indeed, cells expressing a stable heterodimer
that lacks ligase activity showed sensitivity to olaparib,
camptothecin, etoposide and IR, but resistance to repli-
cation stressing agents, hydroxyurea and aphidicolin,
and resistance to ICL agent, cisplatin. Intriguingly
chicken DT40 cells expressing a form of BRCA1 defec-
tive for interaction with E2 conjugating enzymes also
showed camptothecin and etoposide sensitivity, but
was resistant to the ICL agent mitomycin-C.22

Ligase-defective cells showed reduced, but not elim-
inated, RPA and RAD51 foci in S-phase cells after IR.
Consistent with a defect in these foci signifying
reduced ssDNA and Rad51-filament formation
respectively, we found that the lengths of BrdU labeled
ssDNA, used as a direct measure of resection lengths,
were shortened in cells expressing ligase defective
BRCA1-BARD1. In normal S-phase cells, BRCA1 acts
to counter the 53BP1-mediated block on resection,

Figure 1. The Ubiquitin binding face on dimeric RING E3 ligases. There are two major types of dimeric RING E3 ligases. Type I dimerize
by interactions with extended a-helical tails, illustrated here by BRCA1-BARD1. Type II exhibit an interleaved “cross brace” structure,
illustrated here by RNF4. In both cases the second non-E2 bound RING provides an additional Ub binding interface that helps to “lock”
the E2»Ub complex into a closed conformation, and thereby promoting Ub transfer. (PDB: 1JM7,7 4PPE64 and 4AP411).
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thereby promoting HR.6,23,24 Since ligase defective
cells showed reduced resection in S-phase it was per-
haps unsurprising to find that co-depletion of 53BP1
circumvented the need for BRCA1-BARD1 ligase
activity in olaparib and camptothecin resistance,
RAD51 foci formation and in full length resection.

Previous reports have shown that at S-phase dam-
age foci, BRCA1 forms an internal “core” and is
required to direct 53BP1 to the foci periphery.25,26

This remodelling of 53BP1 correlates with the appear-
ance of RPA in the foci core which is thought to indi-
cate permissive resection. Intriguingly, in cells
complemented with ligase defective BRCA1-BARD1,
53BP1 no longer occupies the periphery but instead
co-locates with BRCA1 at the core suggesting that E3
Ub ligase activity, rather than BRCA1 occupation
itself, is associated with 53BP1 repositioning.

Together these data place a role for BRCA1s ligase
activity at the heart of the BRCA1–53BP1 antagonistic
relationship to control resection - a key component in
determining HR pathway choice.

H2A as a BRCA1 ligase target is functionally related
to resection

The targets of BRCA1 E3 ligase activity identified to
date include histones (H2A, H2AX) RNA polII, TFIIE,
NPM1, CtIP, gamma-tubulin, ER-a and claspin
(reviewed in27). Histone ubiquitination in the DNA
damage directs the ordered recruitment of repair pro-
teins to damage sites28 (Fig. 2). RNF168 is responsible
for H2A K13/15 modification29,30 that contributes to

53BP1 interaction with nucleosomes around sites of
broken DNA.31 PRC1 is responsible for much of the
H2A ubiquitination in cells, but is also actively
recruited to sites of DNA damage32 through PRC233

and CBX434 where the K118/119 modification is asso-
ciated with local transcriptional repression,33,35 and
may also promote the ubiquitin signaling pathway
that subsequently recruits BRCA1 and 53BP1.32 Sev-
eral groups have shown H2A is a BRCA1 target,36-38

which our work confirmed.17 BRCA1-dependent con-
jugation sites have been mapped to the extreme C-ter-
minus of H2A at K125/127/129.38 Thus in the context
of DNA damage BRCA1 contributes the third Ub
modification on this histone in relation to the DDR.

Since the BRCA1-BARD1 Ub-modification site on
H2A lies at its extreme C-terminus, we and others37

have made use of H2A-Ub C-terminal fusion proteins
to try and rescue the phenotypes of BRCA1-BARD1
deficient cells. The laboratory of Inder Verma showed
that expression of such a fusion restored growth
defects and a measure of gene-conversion in BRCA1-
deficient cells.37 We extended these observations and
found a C-terminal H2A-Ub fusion, but not an N-ter-
minal fusion, was able to restore RAD51 foci forma-
tion and both Olaparib and camptothecin resistance
in cells lacking BRCA1-BARD1 suggesting that H2A
is a major target of BRCA1-BARD1 ligase activity.

H2A-Ub link to chromatin remodelling

H2A ubiquitination events contribute to transcrip-
tional repression and act as a platform for protein

Figure 2. DNA damage-induced H2A ubiquitination. H2A has three major sites of ubiquitination which targeted by specific E3
ligases29,38,65 and readers17,31,66,67 in the DNA damage response.
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complex formation. Since BRCA1-BARD1 ligase
activity promotes 53BP1 remodelling to the periphery
of damage foci, we considered the possibility that
chromatin remodellers mediate this process.

The human homolog of the yeast SWI/SNF-like
chromatin remodeller Fun30, SMARCAD1, has been
implicated in long-range resection.39 In yeast the need
for Fun30 is lessened if the resection-block provided
by the 53BP1 ortholog, rad9, is removed.40 We were
intrigued by the presence of two N-terminal ubiqui-
tin-binding CUE domains in SMARCAD141,42 and
examined whether SMARCAD1 links BRCA1-BARD1
ligase function and H2A modification to 53BP1 posi-
tioning and resection. SMARDCA1 recruitment to
laser-induced DNA damage was partially dependent
on both BRCA1-BARD1 and the CUE domains, and
depletion of SMARCAD1 was epistatic with BRCA1-
BARD1 loss showing reduced resection. Further,
SMARCAD1 promotes 53BP1 repositioning to foci
periphery in a manner that requires both the ATPase
and CUE domains. Together our data place SMAR-
CAD1 in a cascade down-stream of BRCA1-BARD1
histone ubiquitination and up-stream of the promo-
tion of 53BP1 positioning and long-range resection
(Fig. 3).

Not a pure reader of H2A-Ub

SMARCAD1 co-purifies nucleosomes in which H2A
carries a C-terminal Ub fusion from cell extracts.
However, further investigation of SMARCAD1
in vitro using recombinant core nucleosomes revealed
no increased binding affinity for Ub-modified H2A
compared with unmodified-H2A (pers. comm.
Michael Ucklemann & Titia Sixma, NKI Ntherlands)
as previously noted.43 This may indicate requirements
for additional nucleosome contacts (for example,
linker H144), bridging between nucleosomes, or added
specificity from another histone modification event
missing in vitro.

Chromatin in resection

The ATPase activity of SMARCAD1 is required for
53BP1 positioning and Olaparib resistance,17 but
whether this is due to nucleosome sliding or eviction
of H2A:H2B from nucleosomes is unclear. Fun30 is
able to promote both activities43 and either would be
expected to result in apparent repositioning of 53BP1.
Nucleosomes are themselves inhibitory to long range

resection in vitro,45 although removal of 53BP1 and its
associated factors, is sufficient to allow resection in
BRCA1-deficient or BRCA1-ligase defective cells, sug-
gesting they do not pose a significant block alone.
SMARCAD1 co-purifies with several other remodel-
ling factors46 associated with gene silencing and het-
erochromatin formation, some of which have also
been implicated in 53BP1 repositioning,47 perhaps
implying the existence of a larger complex or network.
An emerging theme in 53BP1 repositioning is an asso-
ciation with factors previously implicated in transcrip-
tional silencing.

What’s the limit?

Recently Ochs et al.48 suggested that 53BP1, in mark-
ing a limit to resection, both controls resection lengths
for HR and prevents excessive resection that leads to
RAD52-mediated single strand annealing and chro-
mosome re-arrangements.48 Thus the question of how
the spread of 53BP1 positioning is restricted arises.
One answer may be the limited spread of BRCA1 at
sites of damage which may geographically bound
resection. Another would be an opposing deubiquiti-
nation of the C-terminal H2A-Ub mark. Multiple
DUBs have been implicated in the removal of ubiqui-
tin from H2A (reviewed in49) whether one or several
of these contribute to resection inhibition remains to
be seen. Further, histone exchange may also play a
role. The incorporation of H2AZ at sites of damage
has been proposed to limit resection and define chro-
matin boundaries.50 Interestingly, H2AZ, like H2AX,
lacks the BRCA1-BARD1 K125/7/9 H2A Ub sites and
therefore, may provide a resection boundary that is
naturally refractory to SMARCAD1 remodelling – an
idea that remains to be tested.

We understand comparatively little about the rela-
tive positioning of many of the factors critical to the
regulation of resection including the 53BP1-binding
proteins responsible for the block on resection. It
would be intriguing to establish, for example, where
RNF168 and K63-Ub chains are in relation to periph-
eral 53BP1 and whether histone relationships are
altered prior to, or in conjunction with, resection.

Chromatin context and the requirement for ligase
activity

Ahead of the replication fork two nucleosomes are
normally destabilized.51 In the context of
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processing DSBs that occur as a consequence of
replication fork collision with ssDNA breaks or
protein-DNA complexes, formed as a result of
Topoisomerase or PARP poisoning, further chro-
matin remodelling is clearly required. Further, cells
treated with PARP inhibitor may be more

dependent on the BRCA1-BARD1 pathway to
recruit chromatin remodellers, since PARylation is
required for the recruitment of the chromatin
remodeller ALC1 to sites of DNA damage.52

Importantly while BRCA1 promotes ICL repair,
replication fork stability and restart, these processes

Figure 3. Proposed contribution of the BRCA1 ligase activity to steps in DNA resection. Limited resection occurs in the absence of
BRCA1-BARD1 activity dependent on CtIP-Mre11. BRCA1-BARD1 dependent Ub modification of H2A promotes SMARCAD1 interaction
with damage-proximal nucleosomes. SMARCAD1 activity repositions or evicts nucleosomes moving 53BP1 and its effector proteins to
release 53BP1-mediated inhibition of DNA resection. Long range resection can proceed.
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appear BRCA1-BARD1 ligase independent.17 Further,
neither expression of a H2A-Ub fusion nor co-
depletion of 53BP1 was able to rescue heterodimer-
deficient cell survival sensitivities to these agents,17,53

implying that a different chromatin context and alter-
native BRCA1-dependent pathways are required for
repair. Sensitivity to replication stalling agents, such as
hydroxyurea, occurs following a programmed break
generated by structure-specific endonucleases likely to
be active at a regressed fork in which nucleosomes are
assembled.54 Survival is mediated by HR-mediated
replication restart and new origin firing. ICL repair is
replication-dependent and occurs once two replication
forks converge, presumably producing an initial struc-
ture of a pair of regressed, chromatinized forks.55 After
the lesion is unhooked, translesion synthesis repairs
one strand and the other is repaired through HR.19

Currently we can only speculate why these contexts
do not require ligase activity. Perhaps the same level
of resection is not needed, or other factors direct
remodelling, or, alternatively, the underlying chroma-
tin state is sufficiently open to be permissive for resec-
tion. Intriguingly FANCJ can counteract chromatin
compaction associated with replication.56 Further it is
clear that SMARCAD1 is present behind the replica-
tion fork and interacts with PCNA46 where it may not
need BRCA1, or the H2A-Ub mark for its localization
and activity. Many other chromatin remodellers and
histone chaperones are also active in this context.
Finally, DNA topology may contribute to a refractory
or permissive state. The front of the fork is positively
supercoiled and factors such as the 53BP1 complex
may be more able to restrict nuclease access, whereas
behind the fork negatively supercoiled DNA may
lessen their repressive impact.

Links to epigenetic gene silencing?

Following replication SMARCAD1 acts to promote
deacetylation of newly synthesized histones in the res-
toration of heterochromatin.46 Its depletion reduces
markers of heterochromatin at satellite repeats.44

SMARCAD1 interacts with PCNA,46 but there is also
a contribution of the CUE-domain to localization,
which may or may not relate to PCNA.44 It is intrigu-
ing to note BRCA1 loss similarly impacts heterochro-
matin at satellite repeats and that expression of an
H2A-Ub fusion is able to restore satellite DNA silenc-
ing.37 For this reason it would be interesting to know

whether chronic SMARCAD1 recruitment and activ-
ity in replication contexts is influenced by BRCA1,
and whether this contributes to the altered hetero-
chromatin state reported in BRCA1 deficient cells.37

RING-Less BRCA1

Recent reports of RING-less forms of BRCA1,
expressed in cells using internal, downstream ATG
sites57-59 are intriguing in view of the role of the
BRCA1 E3 Ub ligase function, encoded by the RING
and by BARD1 interaction. These RING-less proteins
cannot interact with BARD1 yet are stable due to dele-
tion of the degron within the heterodimer interface
while expression of BARD1 itself is lost. We might
predict that these proteins would retain many of the
functions of full length BRCA1 but can have no ligase
activity and would be expected to lack the ability to
counter 53BP1 and promote long-range resection.

Mice lacking BRCA1 exon two die in early embryo-
genesis despite expressing a stable RING-less BRCA1,
produced from a down-stream ATG at Methionine
90/99. Their lethality is rescued on a 53BP1¡/¡ back-
ground indicating murine embryos without the RING
die due to the presence of 53BP1. Comparison of cells
bearing a conditional deletion of exon2 on a WT or
53BP1¡/¡ background after Olaparib treatment
showed excessive chromosome aberrations when
53BP1 was present.58 In a second murine model,
tumors expressing RING-less BRCA1 (on a 53BP1
WT background) exhibited levels of RPA recruitment
to sites of damage at levels similar to a full BRCA1
knockout indicating resection remains impaired.57

Moreover mice homozygous both for the exon 2 loss
and 53BP1 loss exhibited no tumor susceptibility.58

These observations are consistent with a critical
RING-encoded function of BRCA1 directing opposi-
tion to 53BP1, thereby promoting resection compe-
tence and preventing genome instability, embryonic
lethality and possibly tumor growth.

The founder mutation BRCA1–185delAG results in a
highly truncated protein but selection of tumors and cells
with DNA damaging agents does not induce secondary
mutations in BRCA1 or 53BP1 but instead promotes a
switch to expression of a RING-less BRCA1 initiated
from Methionine 90/99 in mouse and 279 in
humans.57,59 A human cell line bearing this mutation
SUMO1315, expresses a RING-less form of BRCA1 and
is cisplatin resistant57 and can be made more so by
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further overexpression of the RING-less BRCA1.59 The
majority of tumors from mice bearing BRCA1-
del185AG also rapidly became cisplatin resistant. These
observations are consistent with the ICL–repair function
of BRCA1 residing outside the RING portion of BRCA1.

These studies have also provided a considerable
surprise. Despite RING-less BRCA1 tumors exhibiting
defective RPA, RAD51 foci are present, albeit at
severely reduced intensities.57 Similarly, B cells condi-
tionally deleted for BRCA1 exon 2 exhibit RAD51 foci
and their levels of sister chromatin exchanges follow-
ing olaparib treatment are comparable to WT cells,
suggesting functional HR.58 In human cells the pro-
motion of RAD51 foci by RING-less BRCA1 is also
evident.57,59 This restoration of HR has implications
and murine tumors expressing RING-less BRCA1
show only a partial response to olaparib compared
with those lacking full length BRCA1. In cell models
comparing PARP inhibitor sensitivities, RING-less
contributes a fold less resistance then full length
BRCA1, but 30x more than cells without re-expres-
sion. In xenografts expression of RING-less BRCA1
results in a failure to respond to PARP inhibitor treat-
ment59 and in PDX models BRCA1-del185AG bearing
tumors show a poor response to olaparib.60

Whether resection remains defective in all these
RING-less models remains to be seen, but they indi-
cate that expression, and overexpression often seen in
adaptation,59 of a protein retaining the majority of
BRCA1 functions (such as CtIP interaction and
PALB2-binding), is sufficient to promote some HR.
We speculate that it is possible this occurs by utilizing
shorter ssDNA lengths. Alternatively a greater propor-
tion of lesions may be dealt with in a chromatin envi-
ronment where the ligase activity is not needed,
perhaps by awaiting replication fork convergence in
late S-phase. Both strategies would be likely to be
error-prone.

Role of ligase activity in tumor susceptibility?

Finally, whether the ligase activity of BRCA1-BARD1
alone is required to prevent tumor development
remains an open question. The data from animals
lacking exon 2, but expressing RING-less BRCA158

suggest chromosome aberrations may accumulate if
53BP1 is not lost, thereby providing a mechanism for
tumor development. They argue that resolved HR pro-
vided by RING-less BRCA1 is insufficient to restore

embryonic viability. Chronic loss of ligase activity
may also alter transcriptional repression, contributing
to tumor development.37 However the BRCA1 murine
model, BRCA1-I26A, in which BRCA1 interaction
with E2 Ub conjugating enzymes is reduced, is viable
and not tumor prone,61,62 and if the fidelity of HR pro-
moted by other regions of BRCA1 remains high this
may explain why tumor development is stymied. Sup-
porting this perspective SMARCAD1 knockout mice
have several defects, but are viable.63 Definitive evi-
dence for or against cancer protection denoted by
BRCA1-BARD1 Ub ligase activity awaits further
investigation.
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