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ABSTRACT 
 
Transcranial direct current stimulation (tDCS) combined with a cognitive task can enhance targeted 

aspects of cognitive functioning in clinical populations. The movement disorder Huntington’s disease 

(HD) is associated with progressive cognitive impairment. Deficits in working memory (WM) can be 

apparent early in the disease and impact functional capacity. We investigated whether tDCS 

combined with cognitive training could improve WM in patients with HD, and if baseline clinical or 

cognitive measures may predict efficacy. Twenty participants with HD completed this crossover trial, 

undergoing 1.5mA anodal tDCS over left dorsolateral prefrontal cortex and sham stimulation on 

separate visits. Participants and assessor were blinded to condition order, which was randomised 

across participants. All participants completed baseline clinical and cognitive assessments. Pre- and 

post-stimulation tasks included digit reordering, computerised n-back tests and a Stroop task. During 

15 minutes of tDCS/sham stimulation, participants practiced 1- and 2-back WM tasks. Participants 

exhibited an increase in WM span on the digit re-ordering span task from pre- to post-stimulation 

after tDCS, but not after sham stimulation. Gains in WM were positively related to motor symptom 

ratings and negatively associated with verbal fluency scores. Patients with more severe motor 

symptoms showed greatest improvement, suggesting that motor symptom ratings may help identify 

patients who are most likely to benefit from tDCS. Conclusions: Dorsolateral prefrontal tDCS appears 

well tolerated in HD and enhances WM span compared to sham stimulation. Our findings strongly 

encourage further investigation of the extent to which tDCS combined with cognitive training could 

enhance everyday function in HD. 

ClinicalTrials.gov; NCT02216474  Brain stimulation in Movement Disorders; 

https://clinicaltrials.gov/ct2/show/NCT02216474 

Key words: cognition; dorsolateral prefrontal cortex; Huntington’s disease; movement disorder; 

tDCS; working memory 
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1. INTRODUCTION  
 

The inherited neurodegenerative movement disorder Huntington’s disease (HD) frequently features 

cognitive impairment from around middle age (Ho et al, 2003). One aspect of cognition frequently 

impaired in HD (Papp et al, 2011) is working memory (WM), which is used to maintain, manipulate 

and update information (Baddeley, 1992). Everyday skills such as comprehension (Daneman and 

Carpenter, 1980) and reasoning (Kane et al, 20014) rely on WM. In HD, WM deficits can precede 

motor symptom onset (You et al, 2014) and are correlated with reduced functional capacity (Eddy 

and Rickards, 2015a). We therefore conducted a double-blind, sham-controlled, randomised cross-

over trial of electrical brain stimulation for WM in HD.  

Transcranial direct current stimulation (tDCS) passes a mild electrical current between two 

electrodes on the surface of the skull. This can enhance cortical excitability for a short period after 

stimulation, increasing neuronal firing rates, and influencing processes such as long term 

potentiation (Pelletier and Cicchetti, 2014). Anodal stimulation over the cortical area that underpins 

a targeted cognitive skill can enhance that skill in both healthy and clinical populations (Coffman et 

al, 2014; Tortella et al, 2015). For example, tDCS can improve executive functions in stroke (You et 

al, 2011), Alzheimer’s disease (Hsu et al, 2015) and Parkinson’s disease (Doruk et al, 2014). TDCS is 

very safe, with a low incidence of reported side-effects (Tortella et al, 2015; Brunoni et al, 2012; 

Poreisz et al, 2007). 

Neuroimaging studies implicate dorsolateral prefrontal cortex (DLPFC) in WM (Courtney, 

2004), and previous studies have enhanced WM through anodal stimulation over left DLPFC (Fregni 

et al, 2005; Zaehle et al, 2011). Indeed, anodal tDCS over this area (but not sham stimulation) 

improves WM in stroke (Jo et al, 2009) and major depression (Oliveira et al, 2013). The effectiveness 

of tDCS may be influenced by stimulation intensity and duration. For example, Boggio et al. (2006) 

reported that continuous tDCS for 20 min at 2mA (but not 1mA) enhanced WM in Parkinson’s 

disease. The behavioral effects of 20-30 minutes 1mA anodal tDCS over left DLPFC can still be 
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observed 30 minutes after stimulation ends (Ohn et al, 2008), although repeated administration may 

lead to stronger and longer lasting effects (Richmond et al, 2014). The likelihood that tDCS may 

influence WM via modulation of brain activity is supported by studies that indicate anodal tDCS 

increases task-related activation of the DLPFC (e.g. Stagg et al, 2013). However, individual 

anatomical differences could affect efficacy (e.g. Kim et al, 2014). 

The effects of tDCS appear greatest when applied during an ‘online’ task involving the 

targeted cognitive function (Mancuso et al, 2016). Andrews et al. (2011) showed that anodal DLPFC 

tDCS paired with one WM task (n-back task) resulted in improved performance on a different WM 

task (digit span), but no improvement was apparent without a concurrent online task. These authors 

suggest that their findings demonstrate how an adjunctive task can enhance the effect of tDCS, and 

that this could involve the mechanism of long-term potentiation i.e. when a brief period of strong 

synaptic activation results in longer-term strengthening of synaptic transmission. Pairing tDCS with 

tasks may result in selective alterations in brain activity, and this is likely to depend on the extent to 

which the adjunctive tasks engage the targeted cognitive skill and related brain networks (Gill et al., 

2015). Some studies have found that stimulation is not effective without concurrent cognitive 

training (e.g. Filmer et al, 2016) and that tDCS induced brain plasticity is task dependent (e.g. 

Bortoletto et al, 2015). Other studies have indicated that tDCS in conjunction with WM training 

appeared to augment learning beyond the training paradigm leading to a more generalised effect on 

cognition (Richmond et al, 2014). Enhancing WM could therefore have the potential to benefit 

cognition more generally. 

One review with a focus on tDCS and WM found that consistent data suggestive of robust 

effect combined anodal stimulation of left DLPFC with n-back tasks across both healthy and clinical 

populations (Berryhill et al, 2014). TDCS related improvement was concluded to be constant across a 

range of populations, simulation intensities and durations. In addition, a meta-analysis showed 

reliable evidence for an improvement in n-back reaction time for active tDCS over the DLPFC in 

healthy participants, with more evidence for increases in accuracy in clinical samples (Brunoni & 
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Vanderhasselt, 2014). In contrast, another review of tDCS studies (Horvath et al, 2015) concluded 

that there were no reliable effects on cognitive functions including WM. However, use of pooled 

data (in relation to e.g. electrode placement, task etc.) which could weaken results where there are 

heterogeneous effects reported across studies relating to other factors. 

Evaluating the efficacy of TDCS can be complex, as there may be contrasting effects within 

an inhomogeneous population (Berryhill et al, 2014). For example, the impact of left DLPFC tDCS 

may depend on baseline performance on the task in question (e.g. Hsu et al, 2016; Kim et al, 2014; 

London & Slagter, 2015). Task difficulty is an important methodological consideration. One study of 

tDCS effects on visual WM in healthy participants (Jones & Berryhill, 2012), showed that when 

including tasks of varying difficulty, effects may only be found on the more difficult task. In addition, 

it has been shown that anodal right DLPFC tDCS may help with WM by helping prevent stress 

induced deficits, in comparison to cathodal or sham stimulation (e.g. Bognadov & Schwabe, 2016). 

This raises the potential mediating effects of stress or anxiety on performance and could help to 

explain some of the variability in response across subjects with perhaps greatest relevance to clinical 

samples.  

In summary, previous studies indicate individual differences may be related to the efficacy of 

tDCS when applied to improve cognitive functions such as WM (e.g. Talsma et al, 2016), and 

emphasise the importance of using multiple tasks to test outcome and careful consideration of the 

potential influence of factors such as baseline test performance. Additional insights into the efficacy 

of tDCS will be gained through well controlled studies in clinical populations containing individuals 

with a range of ability. The current study used an n-back task (which involves attending to a stream 

of letters and indicating when the current letter matches the letter presented ‘n’ letters earlier) 

before, during and after tDCS and sham stimulation. This measure has been linked to more robust 

evidence of improvement with anodal tDCS based on previous reviews (e.g. Berryhill et al, 2014). 

Both reaction time and accuracy were assessed. The offline measure of WM was a digit reordering 

task (Werheid et al, 2002; Cooper et al, 1991) already shown to be sensitive to impairment in HD 
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(Eddy et al, 2012; Eddy and Rickards, 2015b) and associated with functional capacity (Eddy and 

Rickards, 2015a). We investigated whether tDCS, as opposed to sham stimulation, improved 

performance on these measures of WM, and the Stroop task as a non-WM control. We included two 

training tasks of varying difficulty (1-back and 2-back), and because factors such as baseline ability 

(Kim et al, 2014) may be related to outcome, we collected a range of data to characterise our sample 

and considered the relationships between tDCS efficacy and there variables in our analyses. As this 

may be the first trial of tDCS in HD, we explored the tolerability and efficacy of one 15-minute 

session of 1.5 mA anodal tDCS over left DLPFC. All participants underwent both tDCS and sham 

conditions with patient and assessor blinded to condition order. Given the findings of previous 

studies involving healthy participants and patients with Parkinson’s disease (e.g. Andrews et al., 

2011; Boggio et al., 2006), we anticipated that WM measures would reveal improvement after tDCS 

but not after sham stimulation. More specifically, we anticipated an overall group improvement in 

performance on the offline measure (DOT-A) after tDCS but not after the sham session. In addition, 

we also expected to see improved performance on the more difficult training task (2-back) after 

tDCS but not after sham. Furthermore, we expected to identify relationships between efficacy and 

baseline characteristics, such that improved digit reordering span would be more likely to reach 

significance in patients who exhibited more severe WM deficits at baseline. 

 

2. METHOD 

 

2.1 Patient population 

 

Twenty volunteers diagnosed with HD, which was confirmed via positive genetic test, took part. 

Exclusion criteria included severe motor and cognitive problems; history of seizure or migraine; and 

current involvement in any drug trial (screened by HER, enrolled by CME February-December 2015). 

DCL ranged from 1-4 (1=1; 2=7; 3=8; 4=4; where 1 suggests no clear clinical signs or symptoms; 2 
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indicates subtle motor and/or cognitive signs; 3 and 4 indicate more significant motor and cognitive 

signs that impact functioning. See Reilman et al., 2014). All participants exhibited some motor 

symptoms (Table 1) as assessed by the Unified Huntington’s Disease Rating Scale (UHDRS: 

(Huntington Study Group, 1996) which measures core motor signs of HD. Some patients also 

exhibited evidence of anxiety or depression as assessed using the Hospital Anxiety and Depression 

Scale (HADS: Zigmond and Snaith, 1983). Including patients at different disease stages allowed us to 

explore how baseline clinical characteristics may influence the effect of tDCS. Sample size was 

determined based on the novelty of the trial and lack of existing data on tDCS in this population (i.e. 

ethics), the rarity of the condition and the likelihood of sufficient power based on previous studies 

(e.g. Eddy and Rickards, 2015a).  

 

Table 1. Patient clinical characteristics and baseline assessment scores 

AMY: amitriptyline; CMZ: carbamazepine; FLX: fluoxetine; HADS: Hospital Anxiety and Depression Scale; MTZ: 
mirtazapine; OLZ: olanzapine; RSP: risperidone; SRT: sertraline; TBZ: tetrabenazine; VFX: venlafaxine; WAIS: 

Patient Age Disease 
burden 

UHDRS 
motor 
score 

Medication Baseline 
WAIS 

forward 

Baseline 
WAIS 

backward 

Baseline 
verbal 
fluency 

Baseline 
semantic 
fluency 

HADS 
depression 

HADS 
anxiety 

1a 54 513 62 MTZ 5 3.5 45 36 5 5 

2 65 422.5 59 TBZ 5.5 3 12 24 4 4 

3 50 425 49 CMZ 5.5 3 18 25 2 3 

4 50 225 42 AMY/MTZ 3.5 2.5 16 33 11 8 

5 a 62 279 58 FLX 5.5 1.5 19 25 21 14 

6 65 422.5 58 FLX 6.5 4 26 24 5 7 

7 56 364 12 N 6.5 4 65 52 5 0 

8 62 527 56 N 5 3 22 25 7 0 

9 50 275 19 N 8 3 53 51 11 13 

10 a 58 377 21 N 6.5 5.5 42 46 8 8 

11 48 120 20 SRT 6 6 35 28 5 10 

12 a 61 457.5 73 RSP/SRT 6.5 3 13 15 6 12 

13 43 279.5 16 AMY/CTL 8 8 57 53 13 16 

14 50 375 30 N 4.5 2.5 11 20 5 11 

15 68 374 42 CTL 5 3 19 33 7 9 

16 72 396 62 N 5.5 4 27 35 5 13 

17 46  55 OLZ/VFX 7 3 20 28 2 4 

18 48 216 13 N 7 3.5 50 56 2 1 

19 58 319 23 N 6 4.5 38 41 2 7 

20 a 45 202.5 5 N 6.5 7 39 44 5 4 
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Wechsler Adult Intelligence Scale. astimulation procedure aborted and restarted during one session (due to 
skin resistance).  
 

 

2.2 Study design 

 

The study received local and regional ethical approvals and all participants gave written informed 

consent. Participants attended the study centre (National Centre for Mental Health, and University 

of Birmingham, Birmingham, UK) on two occasions to receive anodal tDCS and sham stimulation. 

This within-participants design was double-blind: both patient and assessor (CME) were blinded to 

condition order (determined at random by AC) during data collection. The stimulation protocol was 

piloted on three healthy volunteers. 

Visit one commenced with consent and demographic interview, followed by baseline clinical 

and cognitive assessments (see below). A trained rater assessed motor symptoms. Participants next 

completed pre-stimulation tests on the primary outcome measures: computerised 1-back test; Digit 

Ordering Test-Adapted (DOT-A); computerised 2-back test; Stroop test (control task). They then 

received (blinded) anodal or sham stimulation, while completing further blocks of n-back. 

Immediately after the stimulation, participants completed post-stimulation tests on the above four 

outcome measures in the same order. Finally, participants were interviewed about side-effects. Visit 

two was identical except that participants received the other stimulation condition, and were 

debriefed at the end. Nineteen of the twenty participants attended visit two after the planned one 

week washout period. One participant was unable to attend until approximately one month later.  

 

2.2.1 Baseline assessments 

 

Unified Huntington’s Disease Rating Scale: Motor Subscale (Huntington Study Group, 1996) 
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Each participant was examined for motor signs using standard tests (e.g. finger tapping, tongue 

protrusion, tandem walking). Scores were summed to generate a total motor score 

(possible range 0–124). Higher scores indicate more severe symptoms. 

 

Hospital Anxiety and Depression Scale (Zigmond and Snaith, 1983) 

This brief measure contains seven items to assess depression, and seven to measure anxiety. Scores 

were summed for each subscale. A clinically relevant cut-off of ≥8 has been proposed (e.g. Olssøn et 

al, 2005). 

 

Verbal Fluency Tasks (Lezak, 1995) 

To assess phonological fluency, participants were asked to say as many words as they could 

beginning with a given letter in one minute. The letters F, A and S were used in turn. People’s names 

and repeats were not counted. Semantic fluency was assessed using the prompts fruit, animals and 

vegetables. Scores reflect the total number of items generated over the three letters/categories.  

Verbal fluency is likely to involve a combination of verbal control and executive ability (Shao et al., 

2014). These tasks were included as a baseline measure as they are frequently impaired in HD, even 

at an early stage (e.g. Eddy and Rickards, 2015b), and use of a semantic fluency task as part of 

clinical assessment may offer insight into functional capacity (Eddy & Rickards, 2015a). 

 

WAIS forward and backward digit span tasks (Wechsler, 1997) 

Participants listened to a series of numbers and repeated them back immediately after presentation, 

with strings ranging from 2-9 digits in length. For the backward span task, participants began with 

the last number they heard and finished with the first (strings ranged from 2-8 digits). Pairs of trials 

were presented at each length. When a participant answered both trials of one length incorrectly 

testing ended. Half a point was deducted from the total span where only one trial from a pair was 

answered correctly. 
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2.2.2 Outcome measures (pre and post-tests) 

 

Digit Ordering Test-Adapted (Werheid et al, 2002; Cooper et al, 1991) 

Participants listened to mixed strings of digits spoken by the experimenter (e.g. 3-8-4-7) and then 

immediately recalled these digits in ascending order. String length ranged from 3-8 digits, with two 

of each length. When a participant responded incorrectly to both strings of one length testing was 

terminated. Half a point was deducted from the maximum span when only one string of that length 

was answered correctly. Two sets of stimuli were used to reduce any practice effects. 

 

1-back and 2-back tests 

This task was a modified version of the n-back task in PEBL version 0.14 (http://pebl.sf.net.). Blocks 

were 151 seconds long and contained 50 ‘randomly’ generated stimuli, including 10 targets. 

Participants pressed the space key to initiate the block, and watched a series of white uppercase 

letters (from the set “C”,“H”,“K”,“N”,“R”,“W”,“X”,“Y”) randomly appearing one-by-one on a black 

background with an inter-stimulus interval of 3.0s. Visual presentation was coincident with an 

audioclip of the letter being sounded out by the program. For 1-back, the instructions were to 

respond using the spacebar key whenever the current letter matched the immediately preceding 

letter (e.g. K,K). For the 2-back task, participants responded for a match to two stimuli previous (e.g. 

K,N,K). The header “1-back” or “2-back” was shown at the top of the screen throughout the block. At 

the start of each block, standardised instructions were shown onscreen. Example series of letters 

were provided and participants watched the experimenter complete short demonstration blocks 

before they completed three practice blocks. After practice and a short break, participants 

completed three blocks (pre-stimulation test). During the stimulation procedure, participants 

completed 2 blocks of 1-back, followed by 2 blocks of 2-back with a 2 minute break between tasks. 

Post-stimulation tests consisted of 3 additional blocks of each n-back task. Hit rates (out of 30) were 
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calculated as percentages for each n-back for pre- and post-test. Reaction times for correct 

responses and total errors for three blocks (misses plus false alarms) were also recorded. 

 

Stroop test (Stroop, 1935) 

The Stroop task is considered to measure response inhibition. It requires participants to name the 

ink color in which stimuli are printed, along rows from left to right. We used the incongruent 

condition in the current study: stimuli were color names that were inconsistent with the color of the 

ink in which they were presented (e.g., the word ‘red’ printed in green ink). Errors and the time 

taken to complete the task were recorded. 

 

Tolerability interview 

Participants were asked if they thought stimulation had led to any change in concentration, memory 

or mood. They were also asked about the following side-effects: Headache; neck pain; itching; 

sleepiness; trouble concentrating; acute mood change; fatigue; nausea; muscle twitches in face or 

neck (not motor symptoms); tingling sensation on head/scalp; burning sensation on head/scalp; 

seizure; light flashes; or other uncomfortable feeling. 

 

2.2.3 Stimulation protocol 

 

Stimulation was provided by a NeuroElectrics device. After the stimulation procedure was explained, 

participants were fitted with the appropriate sized cap, to which the electrodes and battery-driven 

stimulator were attached. Saline solution was used to soak the electrode pads (anodal 25mm, return 

35mm). The anode was placed over F3 to stimulate left DLPFC (based on the 10-20 EEG system), and 

the cathode was placed over the contralateral orbital area (FP2). When the patient was ready, the 

current ramped up over 60 seconds, during which participants were asked to relax and report any 

sensations. When the current reached 1.5mA, participants were asked to begin the n-back tasks. 
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TDCS Stimulation and sham sessions were managed by Neuroelectrics Instrument Controller 

software (neuroelectrics.com). For the tDCS session, 1.5mA tDCS was sustained for 15 minutes, 

followed by a 60-second ramp down. For the sham session, after the 60 second ramp up, stimulation 

was programmed to ramp down again (this was obscured to the patient and assessing 

experimenter). The initial ramp-up causes the same sensations in both conditions. After completion 

of the 17 minute procedure, the equipment was removed, and post-stimulation tests were initiated. 

For five participants, stimulation aborted early due to skin resistance. On these occasions, 

assistance was given by a second un-blinded experimenter (AC). Additional saline was applied, and 

on some occasions the cap was removed in order to do this. This second experimenter then 

restarted the NeuroElectrics software to ramp up and sustain 1.5mA stimulation (or re-run sham 

template) for the remaining time. This experimenter observed a satisfactory maintenance of 

conduction during ramp up into the first minute of sustained stimulation, before leaving the blinded 

experimenter to continue the protocol.  The total amount of stimulation time was maintained at 

approximately 15 minutes (plus ramp up/down) across all participants. All participants completed at 

least four ‘online’ n-back blocks. To ensure that concealment of condition order was maintained, the 

stimulation software was pre-programmed (by AC) so that on a few occasions it would abort during 

a sham session. 

 

2.2.4 Data analysis 

 

To test for differences in the means for pre- and post-intervention sessions for the two intervention 

conditions, 2 (session: pre-intervention, post-intervention) x 2 (intervention: tDCS, sham stimulation) 

ANOVAs were calculated for the primary outcome measures (DOT-A span; 1- and 2-back mean 

reaction times and percentage correct; and Stroop interference for completion times and errors). 

Given the exploratory nature of the study, follow-up paired t-tests were conducted (Table 2).  
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To aid interpretation of any significant t-test results (p<.05), three further stages of analysis 

were carried out. First, in order to check for pre-intervention differences in baseline task 

performance, we compared pre-intervention scores for tDCS versus sham. As a verification step, we 

compared post-intervention scores for tDCS versus sham. Finally, to check for order effects, we 

investigated differences between participants undergoing tDCS on visit one (and sham on visit two) 

versus those receiving the opposite order using 2 (session: pre, post) x 2 (intervention: tdcs, sham) x 

2 (testing order; tdcs-sham, sham-tdcs) ANOVA.  

To determine whether baseline clinical measures predicted treatment efficacy, we 

calculated correlations between task scores (i.e. difference before and after stimulation) and the 

baseline measures: phonological and semantic fluency scores, WAIS forward and backward span, 

UHDRS motor symptom scores, HADS anxiety and depression scores, and disease burden (using the 

formula of Penney et al, 1997). Post-hoc tests were conducted based on significant correlations. As 

this study is the first of its kind, we discuss all values at p<.05 with a view to informing further 

research. 

 

3. RESULTS 

 

 All 20 recruited participants completed both tDCS and sham stimulation. The 2 x 2 anovas 

(interaction results) and paired t-tests are shown in Table 2 (for individual results see Supplementary 

Table 1). Significant t-tests were apparent for three measures: DOT-A scores, 2-back scores and 

Stroop times.  

Table 2. Effect of tDCS and sham on outcome measures 
 

Measure Condition Pre Post Change Paired t-test Anova 
 Mean (SD) Mean (SD) Mean (SD) T(19), p F(1, 19), p 

DOT-A 
span 

tDCS 4.6 (1.12) 5.05 (1.00) +0.45 
(0.78) 

2.592, 0.018 2.979, 0.101 

Sham 4.65 (0.92) 4.73 (1.07) +0.08 
(0.69) 

0.513, 0.614 

1-back RT tDCS 1247 1170 -77 -1.419, 0.172 1.999, 0.174 
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 (489.84) (376.86) (242.71) 
Sham 1241 

(379.67) 
1263 

(357.45) 
+21.7 

(197.07) 
0.492, 0.628 

1-back % 
correct 
 

tDCS 93.67 
(12.98) 

95.34 
(7.13) 

+1.67 
(11.37) 

0.655, 0.521 1.085, 0.311 

Sham 96.34 
(5.50) 

95.34 
(7.67) 

-1 (6.95) -0.644, 0.527 

2-back RT tDCS 1379 
(441.84) 

1343 
(341.25) 

-36.1 
(227.35) 

-0.710, 0.486 0.072, 0.792 

Sham 1323 
(315.27) 

1307 
(390.30) 

-15.95 
(194.71) 

-0.366, 0.718 

2-back % 
correct 

tDCS 66.50 
(23.05) 

74.84 
(20.71) 

+8.35 
(16.90) 

2.208, 0.040 3.662, 0.072 

Sham 72.34 
(20.76) 

70.67 
(24.02) 

-1.68 
(15.70) 

0.477, 0.639 

Stroop CT tDCS -48.79 
(31.36) 

-34.44 
(23.31) 

-14.43 
(23.40) 

2.742, 0.012 0.011, 0.917 

Sham -46.42 
(25.51) 

-32.75 
(16.17) 

-13.66 
(16.80) 

3.63, 0.002 

Stroop 
Errors 

tDCS -3.35 (3.95) -2.40 (2.50) -0.95 (3.31) 1.281, 0.216 0.217, 0.647 
Sham -2.80 (3.17) -2.25 (2.55) -0.55 (2.19) 1.124, 0.274 

 
KEY: CT: completion time; DOT-A: Digit Ordering Test-Adapted; RT: reaction time; %: percentage correct hits. 
ANOVA column shows only interaction between session (pre;post) and intervention (tdcs;sham) 

 
 
3.1 DOT-A intervention and session effects 

 
For DOT-A scores (i.e. the main outcome measure), the 2 (session: pre, post) x 2 (intervention: tDCS, 

sham) ANOVA revealed a main effect of session (F(1,19)=4.93, p=.039). Scores were higher at post-

intervention testing than in the pre-intervention session. However, the intervention x session 

interaction only approached a trend towards significance (Table 2). Follow-up t-tests revealed a 

significant improvement from pre- to post-intervention for tDCS (Cohen’s d=0.424, nearing medium 

effect size) but not for sham (Table 2). While there was no difference in DOT-A score between tDCS 

and sham on the first day of intervention (i.e., no initial baseline performance differences: t(19)=-

0.3258, p=.748), the DOT-A score after tDCS was significantly higher than after sham on the second 

intervention day (t(19)=2.096, p=.0497). Importantly, this suggests that the improvement for tDCS 

(but not sham) is unlikely to simply reflect lower baseline scores for the tDCS condition. On average, 

WM span as measured by the DOT-A task increased by half a point from pre- to post-intervention for 

the tDCS condition (Fig 1; Supplementary Table 1).  
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Figure 1. Performance on the Digit Ordering Test-Adapted 

Left axis: Mean score, pre-intervention (Pre) and post-intervention (Post) in the sham-stimulation 

(Sham) and real stimulation (tDCS) conditions. Right axis: The difference between the pre and 

post-intervention mean scores for the sham and tDCS conditions. Error bars represent 95% 

confidence intervals. 

 

3.2 DOT-A order effects 

 

In checking for possible effects of the order in which the intervention conditions were given, the 2 

(session: pre, post) x 2 (intervention: tDCS, sham) x 2 (testing order: sham-tDCS, tDCS-sham) ANOVA 

also revealed a main effect of session (F(1,18)=4.74, p=.042): scores were higher in the post-

intervention session than at pre-intervention testing. However, we noted that testing order 

interacted with intervention (F(1,18)=7.79, p=.012). Examining this interaction revealed that among 

the participants who received sham stimulation on visit one and tDCS on visit two, performance was 

significantly improved on the tDCS day (main effect of intervention: F(1,9)=18.58, p=.001). However, 

if tDCS was applied on visit one and sham stimulation on visit two, scores were not different 
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between the interventions (F(1,9)=0.58, p=.46). This could suggest that sufficient familiarity with or 

practice on the administered tasks was necessary prior to treatment with tDCS, and that practice 

alone is not responsible for the observed improvement in DOT-A scores.  

 

3.3 DOT-A correlations and subgroup effects 

 

The change in DOT-A WM span was positively related to baseline motor symptom score (Pr=.573, 

p=.008), and negatively related to both semantic (Pr=-.541, p=.014) and phonological (Pr=-.485, 

p=.030) fluency scores. Patients with motor scores above 30 showed most improvement in WM after 

tDCS (Fig 2; Supplementary Table 1).  

 

 

Figure 2. Correlation between change in working memory span on the DOT-A pre to post-

test and UHDRS motor score at baseline  
Change in working memory span is in number of digits on the Digit Ordering Test-Adapted; motor 

symptom severity is as measured using the Unified Huntington’s Disease Rating Scale. 
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As change in WM span correlated with baseline motor symptom score, we conducted post-hoc 

testing on DOT-A scores after splitting the patient sample into two groups based on UHDRS motor 

score (>30 n=11; ≤ 30 n=9). A repeated measures 2 (motor score: high, low) x 2 (intervention: tDCS, 

sham) x 2 (session: pre, post) ANOVA revealed two significant main effects and two significant 

interactions. The higher motor symptom group exhibited lower WM spans than the lower motor 

symptom group (main effect of motor score: F(1,18)=10.968, p=.004); and WM spans post-

intervention were higher than pre-intervention (main effect of session: F(1,18)=4.740, p=.043). 

Moreover, the session x intervention interaction was significant (F(1,18)=6.035, p=.013): scores were 

higher at post-intervention testing than at pre-intervention for tDCS, but not for sham. There was 

also a three way interaction (F(1,18)=20.488, p=.043). While post-intervention scores were higher 

than pre-intervention in the tDCS condition (and not sham) for the higher motor symptom group, 

they were not for the lower motor symptom group. This could imply a greater placebo effect in this 

latter group who exhibited higher scores for post-test in the sham condition.  

 

3.4 N-back tasks 

 

Analysis of scores on the 1-back task revealed no significant effect of session, intervention, or 

interaction, which is unsurprising given that performance was near ceiling for all session-

intervention combinations (ranging from 93.67% to 96.34%). For 2-back scores, the session x 

intervention interaction neared significance (F(1,19)=3.453, p=.079). Follow-up paired t-tests 

showed a significant improvement from pre- to post-intervention (Cohen’s d=0.381, approaching 

medium effect size) for tDCS, but not for sham (Table 2). The order of stimulation had no significant 

effect (t(18)=1.160, p=.261), and changes in 2-back scores were not significantly correlated with any 

baseline variables. 

 

3.5 Stroop task 
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Analysis of Stroop times revealed a significant main effect of session (F(1,19)=19.220, p<.001), but 

no interaction with the intervention. Both tDCS and sham conditions were associated with faster 

post-intervention performance compared to pre-intervention test. There were no significant effects 

in the analysis of Stroop errors. 

 

3.6 Tolerability 

 

There were no drop-outs and no evidence that side-effects were more common with tDCS 

than sham (no reported effects: anodal tDCS n=7; sham n=7). The most commonly reported effects 

were mild, and included tingling (anodal tDCS n=6; sham n=6), itching (anodal tDCS n=5; sham n=3), 

or feelings of increased/decreased alertness and concentration (anodal tDCS n=5; sham n=5). 

Questioning of participants suggested that they were no better than chance at identifying which 

session involved real stimulation. 

 

 

4. DISCUSSION 

 

The current study was a double-blind, randomised, within-participants, sham-controlled trial of tDCS 

plus cognitive training for WM in HD. A single session of anodal tDCS over left DLPFC combined with 

training on the n-back task improved patients’ performance on a digit reordering task. This effect 

was not seen for sham, and pre-stimulation scores were no different for the two conditions. An 

average increase of half a point in digit reordering span is an encouraging finding, and suggests that 

future interventions combining tDCS and cognitive training could have significant effects on 

cognition. While the scope of the current study did not accommodate investigation of either carry-
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over to other tasks, or effects on everyday function, it has previously been found that DOT-A scores 

are significantly related to patients’ functional capacity (Eddy and Rickards, 2015a). 

There was some evidence that tDCS also led to small improvements in the online WM 

measures (i.e. 2-back scores). However, given that the n-back test was used as a training measure, 

and used adjunctive to stimulation, we place less emphasis on these findings than on those for the 

transfer task (DOT-A). Both 1-back and 2-back tests were included because participants were 

expected to demonstrate a range of ability. However, near-ceiling baseline performance on the 1-

back task probably prevented detection of any improvement. Importantly, the study design, plus the 

observed combination of selective improvements on the WM tasks, coupled with no significant 

improvements in the sham condition, suggests that observed effects were not due to practice, but 

rather a result of tDCS.  

We aimed to identify clinical and cognitive factors which may predict behavioral responses 

to tDCS. Disease burden and baseline mood ratings were not found to be related to outcomes. 

However, participants who showed most improvement in WM span exhibited lower scores on 

baseline tests of verbal fluency. Semantic fluency can be mildly impaired in premanifest HD (Eddy 

and Rickards, 2015b) and is linked to functional capacity in manifest patients (Eddy and Rickards, 

2015a). Data for the verbal fluency measures suggested that patients unable to achieve around 40 

words across each task (most of the sample) benefitted from tDCS. However, those patients scoring 

above this were less likely to show a significant improvement in DOT-A score after tDCS, with a few 

showing a slight decline in performance. Importantly, post-hoc testing indicated that patients with 

baseline motor symptom scores above 30 points on the UHDRS (Huntington Study Group, 1996) 

were more likely to show a statistically significant benefit of tDCS over sham. As motor symptom 

scores on the UHDRS can range from 0 to 120, a motor score of 30 is relatively low, and may still give 

an impression of manifest early stage HD. Therefore, motor symptoms and verbal fluency score are 

useful criteria for identifying patients who are most likely to benefit from tDCS. 
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A decline in cognitive function in premanifest HD patients (which tends to increase with 

proximity to motor symptom onset) is associated with reduced activation of left DLPFC (Paulsen et 

al, 2004). This may imply that tDCS could augment brain activity such that processes contributing to 

WM are more efficient. However, as motor symptoms become apparent, patients with manifest HD 

can show an increase in prefrontal activation which may in some cases allow them to achieve a same 

level of cognitive performance as controls (Gray et al, 2013). Therefore natural compensation effects 

may make the interpretation of the effects of tDCS more complex. It is possible that tDCS combined 

with cognitive training could augment these natural compensation effects in manifest patients, or 

reduce declining cognitive performance when applied at premanifest stage (see Andrews et al, 

2015). Future studies combining tDCS with neuroimaging would offer valuable insight into the neural 

mechanisms underlying changes in WM performance after tDCS in HD. 

Limitations of the current study include that we did not explore the effect of right DLPFC 

stimulation. However, the left side may be most appropriate to target when the WM task is verbal 

rather than spatial. Another possible limitation is the selection of the Stroop task as a control 

measure. Although the Stroop task used in the current study did not show a specific effect relating 

to active tDCS, while other (WM) measures did, recent studies have suggested that this task can 

activate the DLPFC (e.g. Xu et al., 2016). Our protocol was informed by previous research which 

reported a specific effect of anodal left DLPFC tDCS on WM in healthy participants (Andrews et al, 

2011) and participants with Parkinson’s disease (Boggio et al, 2006). To the authors’ knowledge this 

is the first trial of tDCS in HD, therefore ethical and practical issues were taken into account when 

restricting the trial to one active stimulation session. TDCS was well tolerated, there were no drop-

outs, and only mild side effects were reported which were as common for sham. Stimulation was 

interrupted on some occasions due to skin resistance or movement. Nevertheless, we believe the 

total dose of stimulation was successfully delivered in all participants, and software programming 

maintained blinding. Although t-tests indicated that WM improved with tDCS but not sham, the 

interaction between session and condition did not reach significance. We suggest that future studies 
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focused on patients most likely to benefit from stimulation (i.e. those with more severe motor 

symptoms) would be more likely to show a significant interaction. As participants received cognitive 

training with both anodal tDCS and sham, our results suggest that combining an online task with 

tDCS can have significantly more effect on WM. However, we cannot determine how much effect 

tDCS would have when given alone, or how long any effects would last. Furthermore, some 

participants were taking medications, which could have affected baseline cortical excitability. 

A final limitation of the current study relates to the use of online and offline tasks. A recent 

review and meta-analysis (Hill et al, 2016) exploring the effects of anodal tDCS on WM revealed 

different effects in healthy and neuropsychiatric samples, such that only performance on offline 

tasks (tests used after stimulation) improved in healthy participants, whereas patient groups tended 

to show evidence of improvement on the online tasks (tasks used during stimulation). The current 

study tested performance on both the training task (used for online training) and the predetermined 

main outcome measure (DOT-A, only used offline), however we did not investigate potential 

improvements in performance on the training task during the stimulation period itself. 

 

5. CONCLUSION 

 

Our findings indicate that combining tDCS over the left DLPFC with n-back training can enhance 

performance on certain measures of WM span in HD. Larger longitudinal studies, involving repeated 

administration of tDCS will be necessary to determine whether this intervention could exert lasting 

effects which impact everyday cognitive function. In Parkinson’s disease, a current strength of 2 mA 

may be needed to lead to more obvious effects on WM (Boggio et al, 2006). Therefore given that 1.5 

mA was well tolerated by our sample, increasing to 2 mA in future studies could be more likely to 

yield significant results. More generally, tDCS may be beneficial for mood disorder (Poreisz et al, 
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2007) which is also frequent in HD. Our findings strongly encourage further evaluation of whether 

tDCS alone or in combination with tasks or therapy, could demonstrate a range of clinical benefits.  
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Supplementary Table 1. Individual change (pre – post) on outcome measures by patient 
 

 
KEY: CT: completion time; DOT-A: Digit Ordering Test-Adapted; RT: reaction time; %: percentage correct hits. 
 

 

Patient DOT-A 1-back % 1-back RT 2-back % 2-back RT Stroop 
error 

Stroop CT 

1 +1 -13.3 -240 +6.7 -394 -6 -40 
2 +0.5 +36.7 -521 +10 +56 -10 -17.17 
3 +1 0 -138 +10 -348 +1 +3.75 
4 0 -3.4 -161 +63.3 +133 -1 -19.6 
5 +1 0 +44 0 -69 +3 -5.59 
6 +2 0 -51 -3.3 -96 +2 +38.51 
7 -1.5 0 +43 0 -92 -3 -13.92 
8 +1 0 +76 +13.3 -385 0 -20.86 
9 +0.5 0 +312 +6.7 +357 +1 -3.61 

10 -0.5 -6.7 +81 +43.4 +338 -2 -63.87 
11 -0.5 0 -48 0 +162 0 -23.65 
12 +1.5 -3.4 -406 +3.3 +35 +3 +2.84 
13 +0.5 0 +75 -3.3 -40 0 +10.11 
14 +0.5 +30 -637 +3.3 -239 -4 -29.52 
15 +0.5 -3.3 +248 +3.4 +232 -1 -1.38 
16 0 0 -222 -6.6 +8 +1 -20.91 
17 +0.5 -3.3 +5 -10 +12 -1 -29.71 
18 0 0 +49 +13.3 -17 -2 -0.49 
19 0 0 -190 +6.7 -397 -3 -26.04 
20 +1 0 +141 +6.7 +22 -1 +1.89 

SHAM 
1 -0.5 -16.7 +15 -20 -2 -5 -13.86 
2 0 +10 +274 -6.7 -102 +2 -24.29 
3 0 0 -319 0 -9 -2 -137.3 
4 0 -10 +371 +13.4 -77 -4 -21.77 
5 -0.5 +3.4 -131 +13.4 +423 -3 -39.89 
6 0 0 -203 -10 -60 +2 +23.36 
7 -1 0 +280 +16.6 +53 0 -6.97 
8 0 -16.7 -229 -36.7 +148 0 +11.41 
9 +1 0 +56 +3.3 -333 +3 +0.94 

10 0 0 +62 -23.4 +210 -1 -8.09 
11 +0.5 +10 +36 +26.7 -203 -3 -39.85 
12 +0.5 +3.4 -72 -13.3 +42 +1 -29.08 
13 +0.5 0 -25 +10 -56 -1 -18.38 
14 0 -6.7 -125 +6.6 -8 +2 +3.8 
15 -1.5 0 -99 -16.7 -238 -2 -4.82 
16 0 0 +165 -3.3 -93 -3 -26.72 
17 +1 0 +277 -3.4 +399 0 -21.32 
18 +0.5 0 -41 +6.7 -214 0 -9.95 
19 +1.5 +3.3 -139 +13.3 -27 -2 -15.35 
20 +0.5 0 +281 -10 -172 +2 -3.67 
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