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BEHAVIOUR OF THE BRASCAMP–LIEB CONSTANT

J. BENNETT, N. BEZ, M.G. COWLING, AND T.C. FLOCK

Abstract. Recent progress in multilinear harmonic analysis naturally raises questions
about the local behaviour of the best constant (or bound) in the general Brascamp–Lieb
inequality as a function of the underlying linear transformations. In this paper we prove
that this constant is continuous, but is not in general differentiable.

1. Introduction

The Brascamp–Lieb inequality is a far-reaching common generalisation of well-known multi-
linear functional inequalities on euclidean spaces, such as the Hölder, Loomis–Whitney and
Young convolution inequalities. It is typically written in the form

(1)

∫

H

m∏

j=1

(fj ◦ Lj)
pj ≤ C

m∏

j=1

(∫

Hj

fj

)pj

,

where m ∈ N, H and Hj denote euclidean spaces of finite dimensions n and nj where nj ≤ n,
equipped with Lebesgue measure for each 1 ≤ j ≤ m. The functions fj : Hj → R are assumed
to be nonnegative. The maps Lj : H → Hj are surjective linear transformations, and the
exponents pj satisfy 0 ≤ pj ≤ 1.

Following the notation in [8] we denote by BL(L,p) the smallest constant C for which (1)
holds for all nonnegative input functions fj ∈ L1(Hj), 1 ≤ j ≤ m. Here L and p denote the
m-tuples (Lj)

m
j=1 and (pj)

m
j=1 respectively. We refer to (L,p) as the Brascamp–Lieb datum,

and BL(L,p) as the Brascamp–Lieb constant.

The Brascamp–Lieb inequality has been studied extensively by many authors, and the delicate
questions surrounding the finiteness and attainment of the constant have found some useful
answers. Most notably, it was shown by Lieb [21] that in order to compute BL(L,p) it is
enough to restrict attention to gaussian inputs fj, leading to the expression

(2) BL(L,p) = sup

∏m
j=1(detAj)

pj/2

det(
∑m

j=1 pjL
∗
jAjLj)1/2

,

where the supremum is taken over all positive definite linear transformations Aj on Hj,
1 ≤ j ≤ m. However, this expression (which of course involves a supremum over a non-
compact set) retains considerable complexity in the context of general data. Nevertheless, a
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concise characterisation of finiteness is available, specifically BL(L,p) < ∞ if and only if

(3)

m∑

j=1

pjnj = n

and

(4) dim(V ) ≤

m∑

j=1

pj dim(LjV )

hold for all subspaces V ⊆ H; see [8] where a proof of this is given based on (2), or [9] for an
alternative.

In recent years a variety of generalisations of the Brascamp–Lieb inequality have emerged in
harmonic analysis, and have found surprising and diverse applications in areas ranging from
combinatorial incidence geometry, to dispersive PDE and number theory – see for example
[10, 12], and perhaps most strikingly [13]. These generalisations, which include the multilinear
Fourier restriction and Kakeya inequalities (see for example [6] for further discussion), may
be viewed as “perturbations” of the classical Brascamp–Lieb inequality, and naturally raise
questions about the local behaviour of BL(L,p) as a function of L. While seemingly quite
innocuous given the formula (2), very little is known about the regularity of BL(·,p) in
general. In [6] it was shown that the function BL(·,p) is at least locally bounded – a fact
that already has applications in multilinear harmonic analysis and beyond; see [6, 12, 13].
We note that the analysis in [6] also reveals the relatively simple fact that the finiteness set
{L : BL(L,p) < ∞} is open. The main theorem in this paper is the following:

Theorem 1.1. For each p, the Brascamp–Lieb constant BL(·,p) is a continuous function.

For L0 such that BL(L0,p) = ∞, Theorem 1.1 should be interpreted as “For any sequence
approaching L0, the associated Brascamp–Lieb constants approach infinity”. Simple, yet
instructive examples reveal that this continuity conclusion cannot in general be improved to
differentiability.

In contrast, for so-called “simple” data – that is, data for which (4) holds with strict inequality
for all nontrivial proper subspaces V of H – Valdimarsson showed in [22], that BL(·,p) is
differentiable.

We conclude this section by stating one of the conjectural generalisations of the Brascamp–
Lieb inequality that inspired our work. The so-called nonlinear Brascamp–Lieb inequality
replaces the linear surjections Lj : R

n → R
nj with local submersions Bj : U → R

nj , defined
on a neighbourhood U of a point x0 ∈ R

n. In [5] (see also [6]) it is tentatively conjectured
that if dBj(x0) = Lj for linear maps L such that BL(L,p) < ∞, then for some U ′ ⊆ U , there
exists C such that

(5)

∫

U ′

m∏

j=1

(fj ◦Bj)
pj ≤ C

m∏

j=1

(∫

R
nj

fj

)pj

.

For somewhat restrictive classes of data (L,p) this can indeed be achieved (see [11, 5, 3] for
details and applications), while for general data (5) is known to hold if the input functions
fj are assumed to have an arbitrarily small amount of regularity (see [6]). Global versions of
this inequality are also of interest, see [7, 20].
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It is natural to formulate a more quantitative version of this conjecture as follows:

Conjecture 1.2. Given ε > 0 there exists δ > 0 (depending on the maps Bj) such that

∫

B(x0,δ)

m∏

j=1

(fj ◦Bj)
pj ≤ (1 + ε)BL(L,p)

m∏

j=1

(∫

R
nj

fj

)pj

.

This conjecture is intimately related to the continuity of the general Brascamp–Lieb constant.
Indeed an elementary scaling and limiting argument (as in [7]) shows that, if it were true,
then for every ε > 0 there would exist δ > 0 such that

(6) |BL(L(x),p) − BL(L(x0),p)| < ε

whenever |x − x0| < δ; here L(x) denotes the family of linear surjections (dBj(x))j . (We
clarify that one of the two implicit inequalities in (6) is a consequence of the elementary
lower semicontinuity of the Brascamp–Lieb constant.)

One possible application of Conjecture 1.2 would be in establishing best constants for local
versions of Young’s inequality for convolution on noncommutative Lie groups, which is inti-
mately related with best constants for the Hausdorff–Young inequality; this topic has been
studied by several authors (see, for example, [2, 19, 15, 14]). The Baker–Campbell–Hausdorff
formula suggests that, for functions supported on small sets, convolution resembles convolu-
tion in R

n. If true, Conjecture 1.2 would put this on a firm footing.

We refer the reader to [4, 6, 23] for further discussion and a description of some rather different
Kakeya-type and Fourier-analytic generalisations of the Brascamp–Lieb inequality.

Since the writing of this paper we have learnt that Garg, Gurvits, Oliveira and Wigderson
have recently discovered a link between Brascamp–Lieb constants and the capacity of quan-
tum operators (as defined in [18]) which, using ideas from [16], leads to another proof of the
continuity of the Brascamp–Lieb constant in the case of rational data, as well as a quantita-
tive estimate in this case [17]. We thank Kevin Hughes for bringing this to our attention, and
Avi Wigderson for clarifying the connection with this independent work. Lastly, we thank
the referee for many thoughtful comments on the original manuscript.

Structure of the paper. In Section 2 we prove Theorem 1.1 in the relatively straightforward
situation where the surjections Lj have rank one (that is, when nj = 1 for each j) using a
well-known formula of Barthe [1]. In Section 3 we establish a certain general-rank extension
of Barthe’s formula, which we then combine with the rank-one ideas to conclude Theorem
1.1 in full generality. Finally, in Section 4, we present a simple counterexample to the claim
that the Brascamp–Lieb constant is everywhere differentiable.

2. Structure of the proof and the rank-1 case

In this section we provide a simple proof of Theorem 1.1 in the case of rank one maps Lj .
Our argument is based on the availability of a simpler formula for BL(L,p) due to Barthe [1]
in that case. This is a natural starting point since our proof in the general-rank case proceeds
by first establishing a suitable Barthe-type formula which holds in full generality.
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Proof. We begin by setting up some notation. As each Lj has rank one, there exists a vector
vj such that Lj(x) = 〈vj, x〉. We denote by v the m-tuple (vj)

m
j=1, and identify v with L. Set

I = {I : I ⊆ {1, 2, ...,m}, |I| = n}.

For each I ∈ I, set pI =
∏

i∈I pi and

dI = det((vi)i∈I)
2,

where the determinant of a sequence of n vectors in R
n is the determinant of the n×n matrix

whose ith column is the ith term in the sequence. Finally, let d = (dI)I . We view d as an
element in R

N where N =
(
n
m

)
.

Barthe’s formula [1] for the best constant is

(7) BL(v,p)2 = sup
λi>0

∏m
i=1 λ

pi
i∑

I dIpIλI
,

where λI =
∏

i∈I λi. By definition, for each I, dI is a continuous function of L, and so it is
enough to show that the right-hand side of (7) is a continuous function of d.

First, lower semicontinuity is immediate from the definition, as a supremum of lower semicon-
tinuous functions is itself lower semicontinuous. It thus suffices to prove upper semicontinuity.

Fix a point d̃ ∈ R
N . If for each I, d̃I = 0, then the right-hand side of (7) is infinite and

uppersemicontinuity is immediate. If not, then set D = min
I:d̃I 6=0

d̃I > 0. For δ ∈ (0,D) and

d ∈ R
N such that |d− d̃| ≤ δ,

sup
λi>0

∏m
i=1 λ

pi
i∑

I dIpIλI
≤ sup

λi>0

∏m
i=1 λ

pi
i∑

I:d̃I 6=0
dIpIλI

≤ sup
λi>0

∏m
i=1 λ

pi
i∑

I:d̃I 6=0
(d̃I − δ)pIλI

,

and so

sup
λi>0

∏m
i=1 λ

pi
i∑

I dIpIλI
≤ sup

λi>0

∏m
i=1 λ

pi
i∑

I:d̃I 6=0
d̃IpIλI

(
1− δ

∑
I:d̃I 6=0

pIλI
∑

I:d̃I 6=0
d̃IpIλI

)−1

.

Focusing on the second term in the product, for each I such that d̃I 6= 0,

pIλI

d̃IpIλI

≤
1

D
.

Thus the second term is bounded by (1− δ/D)−1, and so

lim
δ→0

sup
λi>0

∏m
i=1 λ

pi
i∑

I dIpIλI
≤ sup

λi>0

∏m
i=1 λ

pi
i∑

I:d̃I 6=0
d̃IpIλI

≤ sup
λi>0

∏m
i=1 λ

pi
i∑

I d̃IpIλI

.

This proves the required upper semicontinuity. �

3. A generalisation of Barthe’s formula and the proof of Theorem 1.1

To extend the proof from Section 2 to the general case we first need an analogue of Barthe’s
formula (7) for the best constant (2). A key step in obtaining such a formula is the parametri-
sation of positive definite matrices by a rotation matrix and a diagonal matrix of their (posi-
tive) eigenvalues. In the rank one case this is equivalent to Barthe’s parametrisation. In [22]
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Valdimarsson uses a related approach, although he parametrises positive definite matrices by
symmetric matrices, rather than by diagonal matrices and rotations.

It will be helpful to simplify notation so as to avoid double sums of the form
∑m

i=1

∑ni

j=1 aij .

To do so, we define K =
∑m

i=1 ni, and write aij as ak, where k = n0 + · · · + ni−1 + j,
n0 = 0, and 1 ≤ k ≤ K. Given this relationship between (i, j) and k, define qk = pi, so that
(q1, . . . , qK) is a K-tuple whose first n1 entries are p1, next n2 entries are p2, and so on.

We write I for the set of all subsets I of {1, . . . ,K} of cardinality n. For each I ∈ I define
qI =

∏
k∈I qk. Similarly, given a family λ1, . . . , λK > 0 we define λI =

∏
k∈I λk. In what

follows Ri will denote a rotation on R
ni for each 1 ≤ i ≤ m, and we denote by R the m-tuple

(Ri)
m
i=1.

Theorem 3.1.

BL(L,p)2 = sup

{ ∏K
k=1 λ

qk
k∑

I∈I λIqIdI
: λk ∈ R

+, Ri ∈ SO(ni)

}
,

where dI = dI(L,R) is a nonnegative continuous function for each I ∈ I.

Remark. The functions dI(L,R) will be specified in the proof. In the rank-1 case, each Ri = 1
and dI = det((vi)i∈I)

2 as before.

Proof. Recall from (2),

BL(L,p) = sup

∏m
i=1(detAi)

pi/2

det (
∑m

i=1 piL
∗
iAiLi)

1/2
.

Here Ai is a positive definite ni × ni matrix. Further, Ai is of the form R∗
iDiRi, where Ri

is a rotation matrix, with transpose R∗
i , and Di is a diagonal matrix, with positive diagonal

entries λ1
i , . . . , λ

ni

i . Using the notation introduced above,

m∏

i=1

(detAi)
pi/2 =

K∏

k=1

λ
qk/2
k .

Let the column vectors {eji : j = 1, . . . , ni} be the standard basis for R
ni , so that Di =∑ni

j=1 λ
j
ie

j
i (e

j
i )

∗, and let vji = L∗
iR

∗
i e

j
i . Then,

m∑

i=1

piL
∗
iAiLi =

m∑

i=1

piL
∗
iR

∗
iDiRiLi

=

m∑

i=1

piL
∗
iR

∗
i




ni∑

j=1

λj
ie

j
i (e

j
i )

∗


RiLi

=
m∑

i=1

pi

ni∑

j=1

λj
iL

∗
iR

∗
i e

j
i

(
L∗
iR

∗
i e

j
i

)∗

=

K∑

k=1

qkλkvkv
∗
k
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where the vk are the vji in our chosen order, the λk are the corresponding λj
i , and the qk are

the corresponding pi (as described above). Set

T =

K∑

k=1

qkλkvkv
∗
k.

To compute det(T ), we follow Barthe, and use the Cauchy–Binet formula. Define the n×K
matrices A and B to be the matrices whose kth columns are the vectors λkqkvk and vk,
respectively and the K × n matrix C to be B∗, the matrix whose kth row is the vector v∗k.
Recall that I denotes the set of all subsets of {1, . . . ,K} of cardinality n; write AI and BI for
the n × n matrices whose columns are the vectors λkqkvk and vk, respectively where k ∈ I,
and CI = B∗

I . Then

det(T ) = det(AC) =
∑

I∈I

det(AICI) =
∑

I∈I

(
∏

k∈I

λkqk

)
det(BICI) =

∑

I∈I

λIqIdI .

Here λI =
∏

k∈I λk, qI =
∏

k∈I qk and dI = det(BICI). Evaluating dI using the definition of

BI and CI yields dI = det((vk)k∈I)
2 where vk = vji = L∗

iR
∗
i e

j
i .

We conclude that

BL(L,p)2 = sup

{ ∏K
k=1 λ

qk
k∑

I∈I λIqIdI
: λk ∈ R

+, Ri ∈ SO(ni)

}
,

where each dI is manifestly nonnegative and continuous as a function of L and R. �

The argument presented in the rank-1 case in Section 2, combined with Theorem 3.1, quickly
leads to Theorem 1.1. Define the function F (d) by

F (d) = sup
λk>0

∏K
k=1 λ

qk
k∑

I∈I dIqIλI
.

Then
BL(L,p)2 = sup {F (d(L,R)) : Ri ∈ SO(ni)} .

Now, F (d) is continuous by the rank-1 argument in Section 2. As the supremum (as the
parameter varies) of a family of continuous functions continuously parametrised by a compact
set is continuous, the Brascamp–Lieb constant is as well.

4. A non-differentiable example

In general, Brascamp–Lieb constants are surprisingly difficult to compute. However, consider
the general 4-linear rank-1 case when p = (1/2, 1/2, 1/2, 1/2):

∫ 4∏

i=1

f
1/2
i (〈x, vi〉) dx ≤ C

4∏

i=1

(∫
fi

)1/2

.

Here we can exploit symmetry to compute:

(8) BL(v,p)2 = 2 (|det(v1v2) det(v3v4)|+ |det(v1v3) det(v2v4)|+ |det(v1v4) det(v2v3)|)
−1 ,

where again the determinant of a collection of 2 vectors in R
2 is the determinant of the 2× 2

matrix with columns vi.
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Indeed, by a change of variables and a rescaling, it is enough to consider the following case:
∫ ∫

f
1/2
1 (x)f

1/2
2 (y)f

1/2
3 (x− y)f

1/2
4 (x+ ay) dxdy ≤ C

4∏

i=1

(∫
fi

)1/2

.

Using the Cauchy–Schwarz inequality and a change of variables,
∫ ∫

f
1/2
1 (x)f

1/2
2 (y)f

1/2
3 (x− y)f

1/2
4 (x+ ay) dxdy

≤

(∫ ∫
f1(x)f2(y) dxdy

)1/2(∫ ∫
f3(x− y)f4(x+ ay) dxdy

)1/2

≤ |a+ 1|−1/2
4∏

i=1

(∫
fi

)1/2

.

This inequality is sharp whenever the application of the Cauchy–Schwarz inequality is sharp,
in this case when a > 0, as may be seen by considering suitable gaussians. Repeating this
argument for each possible pairing of functions yields the following formula for the sharp
constant when a 6= 0,−1:

min{1, |a|−1/2, |a+ 1|−1/2}

or, equivalently, (
2

|a|+ |a+ 1|+ 1

) 1

2

.

By Theorem 1.1 this formula must hold for all a. Changing variables back to the general
setting yields the general formula (8).

Remark. We suspect that in general the dependence of BL(L,p) on L is at least locally
Hölder continuous, and we hope to return to this in a subsequent paper.
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