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Kinematics-based estimation of contact constraints
using only proprioception

Valerio Ortenzi1 Hsiu-Chin Lin2 Morteza Azad2 Rustam Stolkin1 Jeffrey A. Kuo3 Michael Mistry2

Abstract— Robots are increasingly being required to perform
tasks which involve contacts with the environment. This paper
addresses the problem of estimating environmental constraints
on the robot’s motion. We present a method which estimates
such constraints, by computing the null space of a set of
velocity vectors which differ from commanded velocities during
contacts. We further extend this method to handle unilateral
constraints, for example when the robot touches a rigid surface.
Unlike previous work, our method is based on kinematics
analysis, using only proprioceptive joint encoders, thus there
is no need for either expensive force-torque sensors or tactile
sensors at the contact points or any use of vision. We first
show results of experiments with a simulated robot in a variety
of situations, and we analyse the effect of various levels of
observation noise on the resulting contact estimates. Finally
we evaluate the performance of our method on two sets of
experiments using a KUKA LWR IV manipulator, tasked with
exploring and estimating the constraints caused by a horizontal
surface and an inclined surface.

I. INTRODUCTION

The robotic revolution in manufacturing industries, over
the past four decades, predominantly relied on robots which
move payloads through unobstructed trajectories in free-
space. In contrast, a new generation of robots is now needed
which must cope with complex tasks, in uncertain environ-
ments, which frequently will involve forceful contacts be-
tween parts of the robot and surrounding objects or surfaces.

Many behaviours can be described as performing tasks
under a set of contact constraints. For example, when a robot
interacts with a horizontal surface (Fig 1), the end effector
cannot penetrate the table. Some examples of tasks involving
contacts includes: robotic grasping, active perception and
manipulation; foot contacts in legged walking robots; grind-
ing and polishing of cast parts in manufacturing; and tasks
needed for nuclear decommissioning, such as “disruption”
(cutting) or “scabbling” (grinding off the contaminated sur-
face of a concrete room or “cave” to make it safe).

Our previous work [1], [2] showed how contacts can
actually be exploited to enable robots to perform a desired
motion task more efficiently, with reduced torques and en-
ergy consumption. This work was motivated by the ways
in which humans exploit contacts. For example, an elderly
person sweeping the floor with a broom, might lean on
the broom handle to reduce loading on their lower back,
while simultaneously performing the desired motion task of
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Fig. 1: Our bi-manual half-humanoid platform, Boris, with
one of its end effectors in contact with a horizontal surface.
This contact prevents the end effector from moving in the
negative z direction of the task space.

moving the broom across the floor surface. In [1] and [2]
we used projected dynamics to decouple a motion task from
force control in the null-space of the desired motion. We
demonstrated this approach by tasking the robot with wiping
a whiteboard, while also resting some of its weight on the
whiteboard to reduce motor torques and energy consumption
at the joints. We also showed how to control a desired contact
force on the board, independently of controlling motion of
the end-effector in the plane of the board. However, that work
relied on prior knowledge of the position and orientation
of the whiteboard surface relative to the robot’s coordinate
frame. In contrast, this paper explores the problem of how
to detect and estimate the contact constraints by performing
exploratory motions and using proprioception.

Specifically, this paper presents a method for achieving
reliable estimations of the constraints arising from contacts
which limit the free motion space of the robot. We propose to
use only kinematic observations derived from basic proprio-
ception (rotation encoders at joints). Therefore, in contrast to
much of the related literature, no added sensors are needed
such as force-torque sensors or tactile sensors at the contact
points, or feedback from a vision system.

Our proposed method would therefore be particularly
useful for highly underactuated robotic arms, fingers or



legs which contain passive (e.g. spring-loaded) joints, pro-
vided that basic position/rotation sensing is available at
each joint. Such passive/underactuated robots are attracting
increasing attention from the research community, e.g. [3],
[4]. Additionally, in extreme environments such as nuclear
decommissioning, beta and gamma radiation can destroy
the delicate electronics needed for force, torque or tactile
sensing. While intense gamma radiation can also destroy
conventional proprioceptive rotation encoders (by causing the
glass of optical encoders to become opaque), these can be
replaced by electro-magnetic resolvers so that proprioception
of each joint’s rotation can still be reliably sensed in such
environments. Our method could therefore be used to help
such robots estimate the position and direction of constraint
surfaces, e.g. for tasks such as scabbling (described above).

There is an extensive body of literature on the use of
computer vision to infer object shapes and features, [5], [6],
[7], [8]. There is also rapidly growing interest in estimation
of object shapes and contacts using force-torque and tactile
sensors, [9], [10], [11], [12], [13], [14], [15]. Recent work,
[16], [17] has also begun exploring the fusion of visual
and tactile data. In [18] a quadrupedal robot estimates the
inclination of a planar surface on which it is trotting, by
fusing data from IMU accelerometers with optical force
sensors at each foot and the kinematics of each leg. In
the context of hybrid motion/force control, [19] proposed a
method for estimating the local shape of a constraint surface
by combining position and end-effector force measurements.
Another method for estimating constraints is proposed in
[20], however this method learns the null space projector
of an unknown task constraint from human demonstration.

In contrast to the above approaches, our method locally
estimates the kinematic constraints due to contacts, without
using any additional sensors (force, torque, tactile, vision)
other than basic proprioception (rotation encoders at each
joint). Specifically, we propose to perform a set of explo-
rative actions and then estimate the kinematic constraints by
observing the resulting motions. We present two variants,
based either on a Cartesian space analysis or on a joint
space analysis, and we also show how to discern unilateral
constraints (e.g. contact with a rigid surface which only
constrains motion in one direction). We first demonstrate
our method with a simulated redundant 3 DOF planar robot,
and show how it can detect and estimate various kinds of
constraints. Next we analyse the effect of different levels
of observation noise on the accuracy with which such con-
straints can be estimated. Finally we show the results of
experiments carried out using a KUKA LWR IV robot arm,
which is tasked with estimating the environmental constraints
when contacting surfaces of different inclinations.

Our lab currently lacks passively compliant, underactuated
robots. Therefore, for proof of principle we have instead used
an actively-compliant KUKA LWR IV robot to demonstrate
our method. We only make use of this robot’s proprioceptive
rotation encoders at each joint, and we do not explicitly
make any use of joint torque information in our experiments.
However, this robot does use torque sensing internally for

low level control, to achieve compliant behaviours when in
contact with environmental constraint surfaces.

The remainder of this paper is organised as follows.
Sect. II introduces the notation used thereafter. Sect. III
describes our method to estimate constraints. Sect. IV reports
the results of experiments with both real and simulated
redundant manipulators. Sect.V discusses the results and pro-
vides concluding remarks and suggestions for future work.

II. FUNDAMENTALS AND NOTATION

We assume a robot with n degrees of freedom operating
in an m-dimensional workspace W . Let q be the robot con-
figuration taking values in an nq-dimensional configuration
space C. A task is expressed in coordinates p and takes values
in an my-dimensional space Y . Task and robot configuration
are related through the kinematic map:

p = f(q) (1)

The differential kinematics relations are:

ṗ = J(q)q̇ (2)

where J(q) =
∂f
∂q is the task Jacobian, which relates joint

space velocities to task space velocities.
When the robot is in contact, motion is unfeasible in some

subspace due to the constraints originated by the contact. We
can describe the relationship between the constraint space
and the joint space as:

JC(q)q̇ = 0 (3)

where we denote the Jacobian of the constraints as JC(q).
In the example of Fig 1, the movement in the z-axis

toward the table surface is restricted since the table cannot be
penetrated. In that particular example, the constraint Jacobian
JC(q) would be a matrix that relates the joint velocities to
the end-effector velocities along the z-axis.

Using JC(q), it is possible to define a projector P (q)
which projects a vector into the null space of the constraints:

P (q) = I − J†C(q)JC(q) (4)

In particular, we can also write that:

P (q)JT
C(q) = 0 (5)

and
(I − P (q))q̇ = 0 (6)

Equations 5 and 6 are the fundamental equations of projected
dynamics [21] and represent respectively: the free motion
subspace of the workspace, i.e. P (q) is a projector into the
free motion subspace; and the force control subspace, i.e.
(I − P (q)) is a projector into the force control subspace,
which is orthogonal to the free motion subspace. These
two equations are particularly important when attempting to
simultaneously control both the forces applied by the robot
and its motion [1].



III. METHOD TO ESTIMATE THE CONSTRAINTS

First we propose a method to estimate kinematic con-
straints using exploration in the Cartesian space. Later we
extend this reasoning to: explorations conceived in the joint
space; and a method for handling unilateral constraints.

We consider that the contact Jacobian JC(q) can be
described as:

JC(q) = ΛJ(q) (7)

where Λ is a matrix that specifies which dimension(s) in the
task-space is (are) constrained due to contacts. Substituting
Eq. 7 into Eq. 3, we get:

JC(q)q̇ = ΛJ(q)q̇ = 0

or equivalently:

Λṗ = 0 (8)

Λ is independent of the dimensionality of the configuration
space of the robot and independent of the current configura-
tion of the robot. However, the number of independent rows
depends on the number of independent constraints.

In the example of Fig. 1, where the constraint is in the
z direction of the end effector (approaching axis for the
manipulator), Λ would have the form:

Λ =
[
0 0 1

]
(9)

such that:

Λṗ = Λ

ẋẏ
ż

 = ż = 0 (10)

i.e. the end-effector velocity along the z-axis is null.
In real-world tasks involving contacts, in general it will be

non-trivial to compute Λ. However, we know that Λṗ = 0
and equivalently, ṗTΛT = 0, from Eq. 8. Thus ΛT is the
solution to the homogeneous system:

ṗTΛT = 0 (11)

Let BṗT be a set of observed ṗT , i.e., the end-effector
velocities where the end-effector is in contact with the
constrained surface, then the solution set of the homogeneous
system in Eq. 11 can be found by computing the right null
space of BṗT , using singular value decomposition:

BṗT = USV T (12)

where U is the matrix of left singular vectors, S is a diagonal
matrix such that Si,i is the ith largest singular value, and V
is a matrix of the right singular vectors. ΛT can then be
computed by taking the columns of V with corresponding
singular values smaller than a threshold value ε.

A. Exploration

To compose this BṗT , we propose to perform an explo-
ration when the robot is in contact with the environment.
When the robot is in contact, the observed task-space veloc-
ities ṗobs will be different from the expected ṗexp since the
constraint restricts some subspace of the task space. Hence,
there are two possibilities for the expected ṗexp and the
observed ṗobs:

1) in the free motion subspace, i.e. when the motion is not
in the direction of any contact: ṗexp = ṗobs;

2) in the constrained motion subspace, i.e. when the mo-
tion is in the direction of any contact: ṗexp 6= ṗobs.

We collect a set ṗobs into BṗT from the latter case and
use the method based on Eq. 12 to estimate the selection
matrix Λ. Fig. 2a shows an example of exploration with
18 directions sampling velocities in the 2D Cartesian space.
When in contact with a horizontal surface (black line), some
Cartesian velocities cannot be performed. Fig. 2b shows the
set ṗexp 6= ṗobs in red, which go into BṗT , and the set of
ṗexp = ṗobs in blue.
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Fig. 2: An example of exploration with 18 directions. Fig. 2a
shows commanded velocities ṗexp, and Fig. 2b shows the re-
sulting velocities ṗobs, which are observed when a horizontal
surface (shown in black) constrains the robot’s motion. In
Fig. 2b, blue vectors denote observed velocities which match
the expected velocities, while red vectors denote observed
velocities which are different from the expected velocities.
In this case BṗT is composed from the red vectors.

B. Unilateral Constraints

Projected dynamics [21] typically assume bilateral con-
straints, i.e. motion is blocked in both positive and nega-
tive directions of the constraint vector. However unilateral
constraints are very common in real applications, i.e. con-
straints that limit motion in only one of these directions. For
example, the constraint in Fig. 1 limits the motion of the
end effector into the table, but does not constrain motion
away from the table. Aghili and Su [22] recently proposed
an extension to projected dynamics to handle unilateral
constraints and friction. Here, we also extend our formulation
to unilateral constraints. We model unilateral constraints as:

Λṗ ≥ 0 (13)



To find Λ for unilateral constraints, we follow the same
method as in the previous subsection, using the set of ṗobs

which do not match ṗexp. However, we introduce an addi-
tional check on the remaining observed motions which are
equal to those commanded, i.e. ṗexp = ṗobs. In particular,
we have to enforce:

Λṗ ≥ 0, ∀ṗ | ṗexp = ṗobs (14)

If this test holds false, then the sign of Λ is changed. This
is particularly useful once the exploration phase is over and
the robot can resume performing some other desired task.
Specifically, for each Cartesian command ṗcmd, if Λṗcmd ≥
0, then the command lies in the free motion subspace and can
be executed as-is. On the other hand, if Λṗcmd < 0, then the
command sent to the robot has to be projected using P (q)
as computed in Eq. 4.

C. Exploration in the Joint Space

The previous analyses were carried out in the Cartesian
space, however it is possible to derive equivalent equations
in the joint space. In particular, we define the constraints as:

Λq(q)q̇ = 0 (15)

In this case Λq(q) can be regarded not only as a selection
matrix, but also a constraint Jacobian. Moreover, Λq(q) is
dependent on the configuration of the robot, in contrast to
Eq. 8. Explorative movements can also be defined directly in
the joint space. Similar to the Cartesian case, there are two
possibilities for the expected q̇exp and the observed q̇obs:

1) in the free motion subspace: q̇exp = q̇obs;
2) in the constrained motion subspace: q̇exp 6= q̇obs.

We collect a set of q̇obs from the latter case, and use singular
value decomposition to estimate the selection matrix Λq(q).

IV. RESULTS

This section presents results from a number of experi-
ments with both real and simulated robots, and demonstrates
how our proposed method is able to successfully estimate
a variety of different kinds of constraint. First, we show
examples of Cartesian space exploration, and evaluate how
performance changes with various amounts of observation
noise. Understanding the degree of robustness to noise is
extremely important, because such observations are likely
to be noisy in real applications. We next show examples
of joint-space exploration, with an example task of using
such exploration to detect the unilateral constraints imposed
by joint limits. Later, we show another example of a robot
tasked with following a circular trajectory. The robot detects
a surface that blocks the trajectory, but is able to continue
following the trajectory after exploring and estimating that
constraint surface. Finally, we report on two experiments
conducted on our bi-manual platform Boris, Fig. 1, using
one of Boris’ KUKA LWR IV arms to detect and estimate
a horizontal surface and an inclined surface.

Exp. Ang. Error Real Λ Estimated Λ
1 0◦ [−0.6870,−0.7267] [−0.6870,−0.7267]
2 0◦ [0.0840,−0.9965] [0.0840,−0.9965]
3 0◦ [0.5194, 0.8545] [0.5194, 0.8545]
4 0◦ [0.7787,−0.6274] [0.7787,−0.6274]
5 0◦ [0.9758, 0.2185] [0.9758, 0.2185]
6 0◦ [0.8388, 0.5444] [−0.8388,−0.5444]
7 0◦ [0.9894,−0.1454] [0.9894,−0.1454]
8 0◦ [−0.1445, 0.9895] [−0.1445, 0.9895]
9 0◦ [0.6178, 0.7864] [−0.6178,−0.7864]
10 0◦ [−0.4631,−0.8863] [0.4631, 0.8863]

TABLE I: Results of simulations on 10 different constraint
surfaces in a 2D environment. For each experiment, the table
reports true and estimated Λ and the error (in degrees) of
the estimated constraint surface inclination angle. Opposite
signs in the estimated constraints are highlighted in blue.

A. Cartesian exploration without observation noise

We begin with a simplified example, in order to clearly
illustrate to the reader how our basic method works. We ran
10 simulations in a 2D environment, assuming frictionless in-
teraction between the end-effector and constraining surface,
and assuming perfect proprioception with zero observation
noise. Each simulation corresponded to a setup similar to
Fig. 2a, but with the constraint surface tilted at a different
angle in each of the ten trials. Table I shows that the
estimated constraint directions perfectly match the true con-
straint directions in every trial, however sometimes the sign
is reversed (experiments 6, 9 and 10). In these cases, despite
the sign difference, the estimated and true constraints have
identical null space, thus the estimated projector and the true
projector P (q) are also identical. Information on the sign
can be recovered using Eq. 14. Nevertheless, the information
about the sign is lost in P (q), due to its definition.

B. Robustness of Cartesian exploration to observation noise

In this section we explore how the accuracy of constraint
estimation degrades with increasing amounts of observation
noise during proprioceptive sensing. To analyse this perfor-
mance degradation, we added normally distributed noise, of
various magnitudes, to the observed velocity vectors used
for constraint estimation. We conducted 100 experiments for
each level of noise, with nine different (progressively larger)
normally distributed noise levels, ranging from σ = 0.1 up
to σ = 0.9 in terms of observed velocity noise magnitude
(as compared to true/commanded velocity magnitude). In
all experiments, the simulated 2D robot was tasked with
exploring the same 2D constraint vector [0, 1].

Fig. 3 plots how constraint estimation errors (and error
spread) increase with respect to increases in proprioceptive
noise magnitude. These results suggest that, given a fixed
number of exploratory movements, constraint estimation
errors increase linearly with proprioceptive noise magnitude.
However note that, even with very high levels of noise, a cor-
respondingly high number of exploratory robot movements
should still be able to recover an accurate estimate of the
constraint surface. Additional experiments, to explore how



errors decrease with increased amounts of exploration, will
be a subject of ongoing and future research.
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Fig. 3: Plot showing how errors in the estimation of the
constraint surface (angle of surface inclination) increase with
magnitude of observation noise (erroneous observed velocity
vectors). Results suggest that constraint estimation errors
increase linearly with observation errors, as expected.

C. Joint-space exploration to detect joint limits

As well as the Cartesian task-space method evaluated in
section IV-B above, section III-C showed how exploration
and estimation of constraints can also be performed in the
configuration (joint angle) space of the robot. Unlike the
Cartesian approach, the joint space approach estimates a
configuration-dependent constraint, and is therefore partic-
ularly well suited to explorative estimation of the robot’s
joint limits. Fig. 4 illustrates a simulation experiment, in
which a 3DOF planar arm is tasked with performing a
circular trajectory. When a joint limit is hit (detected by
observed joint angles deviating from commanded angles), an
exploration in the joint space is triggered and our approach
successfully understands which joint has hit its limit. In this
example, our method returns an estimated constraint in the
form [1, 0, 0], indicating that joint 1 has hit its upper bound.

D. Adapting a task to overcome a detected constraint surface

Estimated constraints can be used to project the task
motion onto the free motion subspace. After completing ex-
ploration and constraint estimation, if Λṗcmd ≤ 0, velocity
commands q̇cmd are projected using P (q), thus sending
modified commands P (q)q̇cmd to the robot’s motors. Fig.
5 shows an example of such behaviour. The robot begins
performing a circular trajectory task, but then collides with
a horizontal surface. This constraint is then estimated through
exploration. Once the constraint surface has been estimated,
the robot resumes performing the commanded circular tra-
jectory. During contact situations, the robot checks whether
the commands lie in the free motion space or not. If not,

Fig. 4: Estimation of a joint limit by performing exploratory
motions in the joint space. The robot starts executing a cir-
cular motion task, and then a deviation from the commanded
trajectory is detected when the robot hits a limit on its base
joint. The robot then quits the commanded task, and performs
a series of exploratory motions defined in the robot’s joint
space. Finally the constraint is correctly estimated. In this
example, the estimated constraint is Λq(q) = [1, 0, 0], which
means that joint 1 has hit its upper bound.

such commands are projected using P (q). This modifies
the trajectory to one which is as close as possible to the
commanded trajectory, given the environmental constraint.
Fig. 5 plots the resulting motion.

Fig. 5: Example of adapting a commanded trajectory to over-
come detected constraints. The robot modifies a commanded
circular trajectory, by projecting commanded velocities via
P (q), to comply as closely as possible with the commanded
trajectory, while respecting the detected horizontal surface.



E. Experiments with a real compliant robot arm
This section reports results of experiments using our bi-

manual half-humanoid robot Boris. Boris is tasked with
detecting and characterising constraints caused by a white-
board, firstly when the board lies flat in the horizontal plane,
Fig 1, and secondly when it is inclined at an angle of 47
degrees with respect to horizontal, Fig 6. In both cases, the
whiteboard and the materials that support it are significantly
flexible. This flexibility is unmodelled, thereby presenting
significant noise in the observed end-effector velocities. In
particular, this flexibility allows a significant amount of
perpendicular end-effector motion into the board surface.

In each experiment, Boris performed 64 exploratory mo-
tions in the 3D space. Each exploratory motion comprised a
5 cm movement of the end-effector, i.e. the sphere of explo-
ration had a 5 cm radius, and the azimuthal and altitudinal
angles of rotation (wrt the tool-space) were sampled 8 times
each. A contact situation was detected whenever observed
motions differed from commanded motions, and relative end-
effector velocity vectors were selected for the estimation.
Note, for proof of principle the computation of surfaces
from the selected observations was performed offline. The
video which accompanies this paper shows Boris’ explorative
motions on both surfaces.

47°

Fig. 6: Boris uses proprioception to explore a whiteboard
surface inclined at an angle of 47 degrees to the horizontal.
Top right inset, side view showing the angle of inclination
of the constraining surface.

For each surface, we performed 10 experiments (each
comprising 64 exploratory motions). The surface inclina-
tion angles were estimated with mean errors of 2.4484◦

(σ = 1.0921◦) for the horizontal surface, and 4.1772◦

(σ = 2.0684◦) for the 47◦ inclined surface. For the horizontal
and inclined surfaces respectively: Tables II and III report
angular errors and estimated Λ for all 10 experiments on
each surface; Figs. 7 and 9 illustrate the estimated Λ vectors
for all ten trials as red arrows, and the true Λ as a blue
arrow; Fig. 8 and Fig. 10 show an example set of observed
end-effector velocities for one of the ten experiments for

Experiment Angular Error Estimated Λ
1 3.0960◦ [−0.0458, 0.0286, 0.9985]
2 2.1548◦ [−0.0349, 0.0140, 0.9993]
3 2.6676◦ [−0.0464, 0.0031, 0.9989]
4 2.8165◦ [−0.0485,−0.0081, 0.9988]
5 2.8139◦ [−0.0487, 0.0062, 0.9988]
6 2.6441◦ [0.0453, 0.0087,−0.9989]
7 0.8245◦ [−0.0117,−0.0084, 0.9999]
8 1.6986◦ [−0.0296,−0.0005, 0.9996]
9 1.1103◦ [−0.0112,−0.0158, 0.9998]
10 4.6582◦ [−0.0795, 0.0168, 0.9967]

TABLE II: Estimated Λ and error in estimated surface
inclination angle (in degrees) for a horizontal contact surface
with true Λ = [0, 0, 1].

each surface. Note that, for both experiments, the largest
components of these velocity vectors lie in the planes of
the contact surfaces (as expected), however these observed
velocity vectors also have a small but significant component
in the direction orthogonal to the contact surface. This is due
to unmodelled flexibility of the whiteboard and its supporting
materials, which allow the robot to move slightly in the
constrained direction.

Fig. 7: Visualisation of results for the horizontal contact
surface. Blue arrow represents the true Λ vector, and the
green plane is the contact surface. Estimated Λ, for each of
ten trials, are represented by red arrows.

F. Discussion of results

We deliberately designed the experiments with the real
robot to test our method in non-ideal conditions, i.e. a
flexible, deforming contact surface. The results suggest that
our method performs robustly in these circumstances, with
mean errors of 2.4◦ for the horizontal surface, and 4.2◦ for
the inclined surface. Note that, due to the highly deformable
supporting structure and materials, as well as flexibility of
the whiteboard itself, the true angles of inclination of these
surfaces would not have been the same as those measured
prior to the robot making contact (horizontal in the first



Fig. 8: Observed velocity vectors (black arrows), estimated
Λ (red arrow), and true Λ (blue arrow) from experiment 7
on the horizontal contact surface. Note that some velocity
vectors have components in the negative z direction, due to
the flexibility of the whiteboard which allows the end effector
of the robot to move slightly in the negative z direction.

Experiment Angular Error Estimated Λ
1 3.1708◦ [−0.0509,−0.7155, 0.6968]
2 5.8918◦ [0.0726,−0.7770, 0.6253]
3 5.5162◦ [−0.0941,−0.7413, 0.6645]
4 5.3110◦ [0.0441,−0.7837, 0.6196]
5 6.4421◦ [0.0839,−0.7776, 0.6232]
6 5.9987◦ [−0.0986,−0.7038, 0.7035]
7 4.8269◦ [0.0324,−0.7817, 0.6228]
8 2.2875◦ [−0.0129,−0.7565, 0.6538]
9 0.5057◦ [0.0082,−0.7335, 0.6797]
10 1.8208◦ [0.0175, 0.7490,−0.6623]

TABLE III: Estimated Λ and error in estimated surface
inclination angle (in degrees) for an inclined (47◦) contact
surface with true Λ = [0,−0.7314, 0.6820].

experiment, and inclined at 47◦ in the second experiment).
It is therefore possible that the estimation errors with respect
to the real surfaces, deformed by the robot pushing on them
during the experiments, may actually be substantially less
than the figures reported above.

In comparison, [18] reports smaller errors of less than 1◦

in the angles of inclination estimated by their quadrupedal
trotting robot. However: their robot trots on a completely
rigid flat surface, as compared to our flexible and deformable
whiteboard structure; and they make use of optical force
sensors on all four feet to detect contacts, which are not
available in our case. Additionally note that [18] exploit
multiple contacts on the surface. In contrast, our method
can work with as little as one contact trajectory in the 2D
case (similar to the trotting robot’s surface that has only a
pitch angle with respect to the ground plane, with no roll or
yaw angles). In the case of a truly 3D surface of arbitrary
orientation, our method can work with as little as two (non-
parallel) observed contact trajectories.

The quadrupedal robot in [18] is assumed to be trotting
on a uniformly flat surface with constant slope, and all four

Fig. 9: Visualisation of results for exploring the inclined
surface. Blue arrow represents the true Λ vector, and the
green plane is the contact surface. Estimated Λ, for each of
ten trials, are represented by red arrows.

Fig. 10: Observed velocity vectors (black arrows), estimated
Λ (red arrow), and true Λ (blue arrow) from experiment 9 on
the inclined contact surface. Note that some velocity vectors
have components in the perpendicular direction penetrating
the whiteboard surface. This is due to the flexibility of the
whiteboard which allows the end effector of the robot to
move slightly in the penetrating direction into the surface.

feet must be trotting on the same slope. In contrast, our
method could be extended to more complex surfaces, where
the constraints can be modeled as:

Λ(p)ṗ = 0 (16)

where the dependency of the constraints on the position in
space is explicit. In such case, Λ(pi) could be estimated by
performing a local exploration around the point pi.

For the planar surfaces addressed in this paper, we chose
the vector of the V matrix associated to the smallest singular
value. However, if each contact provides constraints limiting



motion in more than one direction, i.e. contact with a non-
planar surface, this can be detected by the fact that multiple
singular values, in the decomposition of the set of observed
velocities, will be very close to 0.

Finally, our method is not limited to end-effector contacts
only. In principle, our method could be extended to include
multiple contacts on different parts of the robot body, having
one Λ per contact and devising explorative motions for
different parts of the robot, e.g. end effector and elbow.

V. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

This paper presented a method to estimate kinematic
constraints due to contacts, without the need for force-torque
or tactile sensors at the contact points, or other sensing
modalities such as vision. Our method is based only on
kinematics, and works by computing the null space of a set of
observed velocity vectors which differ from commanded ve-
locities during explorative motions. Additionally, we showed
how to extend this method to handle unilateral constraints,
and showed how an equivalent formulation, defined in the
joint space, is convenient for applications such as explorative
estimation of a robot’s joint limits.

We demonstrated the effectiveness of our method in a
number of simulations, where we also explored how the
accuracy of constraint estimations are affected by noisy ob-
servations of velocity vectors. We also conducted two sets of
experiments with our bi-manual half-humanoid robot Boris,
showing how it is possible to reliably detect and estimate
parameters for constraining contact surfaces positioned at
different angles of inclination with respect to horizontal. The
constraints were successfully estimated, with mean errors of
2.4◦ for the horizontal surface, and 4.2◦ for the inclined
surface, even though the surface itself was flexible and
deformed significantly during contacts.

Future work will address the problem of defining quicker
and smarter sets of explorative actions, where we will
also reduce the extent of space that needs to be covered
during exploration. We will also implement and demonstrate
extensions of this method to handle non-planar surfaces. The
questions of how to reason about, parameterise, characterise,
and explore highly deformable or soft surfaces, remain open
research problems.
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