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Abstract

The extent to which the spatial orientation of internally and translationally

cold ammonia molecules can be controlled as molecules pass out of a quadrupole

guide and through different electric field regions is examined. Ammonia molecules

are collisionally cooled in a buffer gas cell, and are subsequently guided by a

three-bend electrostatic quadrupole into a detection chamber. The orientation

of ammonia molecules is probed using (2+1) resonance-enhanced multiphoton

ionisation (REMPI), with the laser polarisation axis aligned both parallel and

perpendicular to the time-of-flight axis. Even with the presence of a near-zero

field region, the ammonia REMPI spectra indicate some retention of orientation.

Monte Carlo simulations propagating the time-dependent Schrödinger equation

in a full basis set including the hyperfine interaction enable the orientation of

ammonia molecules to be calculated – with respect to both the local field di-

rection and a space-fixed axis – as the molecules pass through different electric

field regions. The simulations indicate that the orientation of ∼95% of ammo-

nia molecules in JK = 11 could be achieved with the application of a small bias

voltage (17 V) to the mesh separating the quadrupole and detection regions.

Following the recent combination of the buffer gas cell and quadrupole guide
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apparatus with a linear Paul ion trap, this result could enable one to examine

the influence of molecular orientation on ion-molecule reaction dynamics and

kinetics.

Keywords: Cold molecules, quadrupole guide, alignment, ammonia,

polarisation

1. Introduction

A prevailing goal in the study of reaction dynamics is to develop a com-

plete understanding of the reaction process. Studying chemical reactions under

cold conditions can provide control over the internal quantum state population

distribution, which typically collapses down into the lowest few levels in small

molecules at temperatures ≤1 K. The long-range intermolecular forces expe-

rienced by slow-moving molecules can also affect the orientation of reactants

during the collision process – and thus influence the properties of the resulting

products [1, 2]. Over the past half century, the development of methodologies to

control the spatial orientation of reactants has seen the investigation of steric ef-

fects [3] as well as the direct measurement of “molecular-frame” photofragment

distributions [4, 5].

Spatially orienting molecules can allow one to control the outcome of reac-

tive collisions. This was demonstrated in 1976, with the introduction of molec-

ular beam scattering experiments: CH3I molecules were state-selected using a

hexapole and aligned with a static field, before reacting with K atoms. The

production of KI showed a strong dependence on whether the methyl group was

oriented towards or away from the K atom [6]. Orientation effects have been

demonstrated under ultracold conditions with KRb molecules held in an optical

lattice trap. The 2KRb → K2 + Rb2 reaction was suppressed when the dipoles

of the KRb molecules were aligned, such that only unfavourable “side-by-side”

collisions could occur; the reactive “head-to-tail” collisions were prevented and

the reaction rate constant was significantly reduced from that recorded with

no orientation of the reactants [7]. Recently, the total electronic angular mo-
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mentum of O(3P2), Ne(3P2) and He(3S1) beams emerging from a bent magnetic

guide have been found to exhibit a substantial degree of orientation to the quan-

tisation axis – in spite of the absence of additional uniform magnetic fields after

the guide [8]. A combination of weak fringe fields emanating from the guide,

stray magnetic fields, and the way that the species are transmitted through the

bent guide has been proposed as the cause of the observed orientation.

Electric fields serve to shift and split the energy levels of polar molecules,

in addition to orienting the dipole moment of the species. The orientation of

dipoles can be considered from a classical or a quantum mechanical perspective.

Classically, molecules tend to adopt the most stable (i.e. lowest energy) config-

uration, which sees the dipole moment orient parallel to the local electric field,

although the rotational kinetic energy may be sufficient to overcome the orienta-

tional force. Quantum mechanically, the orientation of the dipole is governed by

the change in the rotational wave function induced by the field [9]. The electric

fields in a quadrupole (or hexapole) guide enable one to state-select molecules

and to orient them in the local electric field, which is not uniform in direction

within the quadrupole. Typically, molecules exiting the guide enter a homoge-

neous field region provided by parallel electrodes. This post-quadrupole applied

field adiabatically reorients the molecules from the inhomogeneous field in the

quadrupole to a fixed laboratory axis, as molecules follow the direction of the

local field [6]. Thus symmetric top molecules can be state-selected and oriented

in the laboratory frame through the combination of a quadrupole guide and

static electric fields. However, if the transmission into the homogeneous field

region involves passage through a near-zero-field zone, non-adiabatic transitions

could lead to loss of orientation.

In this paper, we probe the orientation of cold ammonia molecules after they

exit a quadrupole guide and enter a reaction chamber, designed ultimately for

the study of cold ion-molecule collisions. (2+1) resonance-enhanced multipho-

ton ionisation (REMPI) spectroscopy is employed, with the laser polarisation

axis aligned both parallel and perpendicular to the time-of-flight (ToF) axis to

determine the molecular orientation. The extent to which ammonia molecules
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can be oriented in the experimental apparatus in this work, and the conditions

necessary to achieve orientation, is examined using Monte Carlo simulations.

The ultimate goal is to gain control over all ion-molecule reaction parameters.

While there is significant scrambling of the orientation of ammonia molecules

as they pass through the different electric field regions, amendments to the ex-

perimental apparatus present conditions for preserving the orientation of polar

symmetric top molecules. This presents the exciting prospect of controlling the

translational energy, rotational population distribution and orientation of polar

reactants as they undergo reactive collisions with cold ions confined in a linear

Paul trap.

2. Experimental Methods

2.1. Experimental apparatus

The experimental apparatus, based on the design of Sommer et al. [10],

has been described in reference [11], hence only a brief description is provided

here. Ammonia molecules, either NH3 or ND3, are injected into a quadrupole

guide after being collisionally cooled by helium buffer gas. A 20 × 40 × 40 mm

(length × height × width) buffer-gas cell is attached to the second stage of a

two-stage pulse-tube cryocooler. The buffer gas line thermalises with each of

the nested temperature stages, and helium enters the cell at 6 K. The molec-

ular line is thermally insulated from the cryogenic environment, with a small

heating block ensuring that ammonia molecules enter the cell at 210 K. Am-

monia molecules are cooled by collisions with helium buffer gas atoms in the

cell, and pass out of the cell through an exit aperture. A 2 m-long three-bend

electrostatic quadrupole then guides internally and translationally cold ammo-

nia molecules (in low-field seeking states) through two differentially pumped

regions and into a reaction chamber (see figure 1 of reference [11]). Previous

work [11] has shown that a low rotational temperature, ca. 10 K, is maintained

at the exit of the quadrupole guide. The transmission of the different JK states

through the quadrupole guide is discussed in detail in reference [11].
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The quadrupole is assembled from hand-polished stainless steel rods with a

circular cross section and 2 mm diameter. Voltages of ±5 kV are applied to the

quadrupole electrodes, achieving maximal field strengths of up to 90 kV cm−1

at the electrode surfaces. After exiting the guide, molecules pass through a

grounded Ni mesh covering an area with a 20 mm diameter. The ammonia

molecules subsequently pass through a repeller electrode (inner diameter 25 mm)

and are intersected by a REMPI laser between the repeller and extractor plates

(see figure 1). The resulting ions are accelerated into a flight tube and onto

microchannel plates (MCPs) for detection.

quadrupole (±5 kV)  

mesh 

(0 V) 

repeller 

(300 V) 

extractor 

(217 V) 

flight tube 

detection 

laser 

x 

buffer-gas 

cooled source 

cold NH3/ND3 

Figure 1: Schematic illustration of the detection region in the experimental apparatus.

2.2. Orientation of molecules

Electric (magnetic) fields are commonly used to orient molecules that have

a permanent electric dipole moment (magnetic moment). For a symmetric top

molecule, the interaction energy between a permanent dipole, µ, and an external

electric field, E, can be expressed in scalar terms as −µE 〈cosθ〉, where 〈cosθ〉 =

KM/J(J + 1) and θ is the angle between the dipole and the field axis [12]. J is

the total angular momentum quantum number excluding nuclear spin, K is the

projection of J onto the molecular axis, and M is the projection of J onto the

external field axis. Hence orientation effects are molecule and state dependent.

The magnitude of the electric field in the quadrupole guide, which near the axis
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varies linearly with distance from the axis and is approximately independent of

azimuthal angle, is more than sufficient to influence the orientation of ammonia

molecules (except very close to the axis).

Between the quadrupole guide and the point of ionisation – specifically, at the

entrance to the mesh – the quantisation axis is rapidly rotated from the inhomo-

geneous electric field in the quadrupole (perpendicular to the quadrupole axis)

to the homogeneous field between the repeller and extractor plates (parallel to

the quadrupole axis). The extent to which ammonia molecules remain oriented

to the field as they pass through these regions is dependent on the properties

of the electric fields. Polar molecules typically follow the field adiabatically,

and the adiabatic eigenstates can be quantized with respect to the axis of the

electric field vector. The probability of a nonadiabatic transition occurring as

molecules pass through different electric fields is dependent on a number of fac-

tors. Nonadiabatic transitions can occur when a molecule is not able to follow

the changes in the electric field direction, such as when the frequency at which

an electric field is rotated is comparable to the splitting between neighbouring

M states, or when the molecule passes rapidly through a zero-field crossing, as

described in Landau-Zener theory. Such situations are generally avoided inside

the quadrupole guide, as the rate of rotation of the field is orders of magnitude

slower than the minimum splitting between states (1.9 × 109 rad s−1 in ND3,

at a field of 2 kV cm−1) [13]. However, in situations where the magnitude of

the electric field is minimal, there is a near-degeneracy in states differing only

in their orientation with respect to the electric field. At zero field, the ammonia

energy levels are no longer split by the Stark effect – although the manifold is not

entirely degenerate, owing to the presence of inversion and hyperfine splittings.

To maintain their orientation to the local field, molecules must follow the

field adiabatically. It has been demonstrated that nonadiabatic transitions can

be largely suppressed in an ensemble of trapped ammonia molecules through the

use of an electrostatic trap with a non-zero field minimum at the trap centre

[14]. This study also notes that nonadiabatic transitions are minimised when

only the magnitude of the field – and not the direction – changes rapidly [14].
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Hence the longer the molecules spend in near-zero field regions, and the higher

the rate at which the field direction changes, the greater the probability of a

nonadiabatic transition occurring and thus a loss of orientation to the local field.

To probe the orientation of ammonia molecules, (2+1) REMPI spectra are

recorded using linearly polarised light. The polarisation of the REMPI laser

can be controlled such that it is parallel or perpendicular to the ToF axis, using

a λ/2 waveplate and a polarising beam splitter. The use of linearly polarised

light facilitates the probing of the M distribution, and thus the orientation of

molecules at the point of spectroscopic probing. For a two-photon transition,

∆M = 0,±2 transitions are excited by photons polarised perpendicular to the

field gradient; only ∆M = 0 transitions are excited by parallel light.

3. Results and Discussion

3.1. Quantum state populations

(2+1) REMPI spectra are recorded by exciting the B̃(v′2 = 5)← X̃(v′′2 = 0)

transition in ND3 and NH3. As can be seen in figure 2, there are clear differences

in the intensities of many of the transitions when comparing spectra recorded

with parallel and perpendicular linearly polarised light. These consistent and

significant differences in intensity arise due to the preferential orientation of

ammonia molecules to the local field at the point of spectroscopic probing. The

laser polarisation axis is the only parameter that is changed between the two

spectra, and no other known factor is believed to affect the intensities in this

manner. If the M -state distribution was entirely isotropic then there would be

no differences in peak intensities between the parallel and perpendicular po-

larisations. Numerous repeat scans have been recorded over a shorter spectral

range; the 63008− 63028 cm−1 (two-photon energy) region of the ND3 REMPI

spectrum is chosen for examination as it exhibits several isolated transitions and

the peak intensities display a strong dependence on the laser polarisation direc-

tion. ND3 also has a greater transmission efficiency through the electrostatic

guide, yielding spectra with an enhanced signal-to-noise ratio when compared

to NH3 [15], hence the analysis focuses on ND3.
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Figure 2: Experimental (2+1) REMPI spectra of ND3 and NH3, recorded with the laser
polarisation axis aligned parallel (black) and perpendicular (red) to the electric field axis.
Each of the four spectra are normalised to the total integrated intensity in the spectral region,
and transitions are labelled as JK .

The PGOPHER spectral fitting and simulation software package [16] is employed

to simulate spectra under different polarisation conditions and thus determine

the distribution over J , K and M . The simulations are performed assuming a

very small static electric field (1 V m−1), which has a negligible effect on its

own on line positions or overall intensities, but forces each M component to be

calculated separately. A small addition to the PGOPHER program was required to

extract the desired information from the spectra shown here, and the need for

this can be seen by considering the spherical tensor form of the interaction of a

molecule with an electric field,

−
∑
k

Tk(µ) ·Tk(E) = −
∑
k

∑
p

(−1)pT k
p (µ)T k

−p(E). (1)

Here, k is the rank of the interaction and p the component; for this work we only

require k = 2, and ignore any quantum number dependence of the ionisation

step. T k
p (E) describes the laser field and T k

p (µ) is the transition moment opera-

tor, whose matrix elements give rise to the quantum number dependence of the

transition intensity – which includes a dependence on M . This M dependence
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is independent of molecule type, and is simply given by a 3-j symbol involving

M and the total angular momentum, J .

While typically unimportant (providing the distribution of population over

M states is uniform), the M dependence must be specifically included here.

The selection rule on M is determined by p (as M ′ −M = p), and for rank

2 transitions three values of p must be included: −2, 0 and +2. The relative

weightings must also be considered, and these can be found by considering the

Cartesian forms of the second rank electric field tensor formed by coupling the

first rank electric field vector with itself if only one component of the field is

non-zero. If only Ez 6= 0 (described as a parallel transition), then

T 2
0 (E) =

2E2
z√
6
. (2)

If only Ex 6= 0 (described as a perpendicular transition), then

T 2
0 (E) =

−E2
x√

6
;T 2
±2(E) =

E2
x

2
. (3)

(Note that Ey has a different sign for p = ±2, but is otherwise identical to Ex.)

An important difference here is that two different values of |p| must be included

for perpendicular polarisation, in contrast to the one photon case where only

one is required. This more general case, including the relative weightings shown

above, has been added to version 10 of the PGOPHER program for the calculation

of the polarisation dependent, M -dependent REMPI intensities – in fact, in a

more general form using the formula for coupling tensor operators to allow for

arbitrary rank.

The simulations are completed by specifying the population of each level as a

separate (fitted) parameter, rather than using the Boltzmann default. A contour

fit is performed for spectra recorded over the 63008− 63028 cm−1 region, with

the spectroscopic constants fixed to literature values [17, 18] and the rotational

populations floated. The only variable in fitting the experimental spectra is

the population of each J , K and M state. The populations that are returned

from this fitting procedure are robust – as illustrated by the excellent agreement

9



  

between the experimental and simulated spectra (see figure 3).

In
te

n
si
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 /
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63008 63012 63016 63020 63024 63028
‐1Two‐photon wavenumber / cm

Figure 3: Experimental (above) and simulated (inverted, below) ND3 (2+1) REMPI spectrum,
recorded over the region 63008− 63028 cm−1 (two-photon energy) with the laser polarisation
axis parallel to the local electric field.

The MK-state populations obtained from the experimental spectra are pro-

vided in table 1, normalised within each JK state, and the relative populations

of the different states MK within a given JK state. Note that states with the

same product MK (i.e. −1 + 1 and +1− 1) are degenerate and so are not dis-

tinguished in our analysis. The data provide a straightforward comparison with

the statistical MK-state populations (i.e. the population expected if there is no

orientation of molecules to the external field axis). It should be emphasised that

the “perpendicular” and “parallel” spectra provide independent measurements

– in excellent agreement – of the |J,K,M〉 population distribution. Very con-

servative uncertainties are reported for the experimental populations, arising

from the weak M -state dependence of the transitions. The error bounds are

determined by varying the populations until an integrated peak area ±5% of a

given experimental peak area is achieved, to ensure that the extent of variation

in the experimental intensities over numerous runs is completely accounted for.

The agreement of the independently measured “perpendicular” and “parallel”

population distribution is well within the stated uncertainty in all instances.

However, a clear difference is evident and consistently reproducible when com-

paring the experimental MK-state populations with the statistical distribution,

providing further evidence that the residual orientation observed in the spectra

is a real effect.
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Table 1: Relative ND3 rotational state populations established from PGOPHER fits to the
experimental spectra recorded with different laser polarisations. Populations are normalised
such that the population within each JK state sums to 1. Statistical populations are provided
for comparison.

|J, |K|,MK〉 Perpendicular Parallel Statistical
|1, 1,−1〉 0.22(15) 0.20(16) 0.33
|1, 1, 0〉 0.38(8) 0.39(8) 0.33
|1, 1, 1〉 0.40(13) 0.40(14) 0.33
|2, 1,−2〉 0.28(11) 0.34(16) 0.20
|2, 1,−1〉 0.21(8) 0.18(3) 0.20
|2, 1, 0〉 0.12(11) 0.11(11) 0.20
|2, 1, 1〉 0.13(10) 0.11(10) 0.20
|2, 1, 2〉 0.26(8) 0.26(8) 0.20
|2, 2,−4〉 0.26(3) 0.25(5) 0.20
|2, 2,−2〉 0.21(8) 0.18(6) 0.20
|2, 2, 0〉 0.17(8) 0.18(8) 0.20
|2, 2, 2〉 0.14(7) 0.14(7) 0.20
|2, 2, 4〉 0.22(4) 0.26(8) 0.20

To interpret how the molecules maintain some residual orientation, and to

establish whether a more complete orientation could be achieved, trajectory sim-

ulations are performed. TheMK-state distribution at the exit of the quadrupole

is established, and the orientational probability distribution is calculated as the

molecules pass through the post-quadrupole field regions, by propagation of the

time-dependent Schrödinger equation (TDSE).

3.2. Simulations

The electric fields that the ammonia molecules experience as they pass

through the quadrupole guide and into the ionisation region are modelled using

SIMION [19], and are depicted in figure 4. Voltages are applied to each ele-

ment of the experimental apparatus (see figure 1) and the Laplace equation is

solved, enabling the electric fields to be calculated. Three potential arrays are

used to model the experimental components of interest: the final section of the

quadrupole guide, the grounded mesh, and the time of flight tube. The Ni mesh

(wire width 12.7 µm, pore area 0.042 mm2, 88% transmittance) is described

fully to account for any micro-focusing and fringe fields. Voltages are applied

to the quadrupole guide and the repeller and extractor plates throughout the
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simulations, in accordance with the experimental conditions.

A MATLAB [20] program propagates ND3 molecules with a pre-defined initial

quantum state and velocity through the fields of the experimental apparatus.

The quantum state of each ND3 molecule, determined from the TDSE propa-

gation, is monitored as a function of time, facilitating an analysis of the effect

that different field regions have on the orientation of the molecules. The elec-

tric fields within the quadrupole are inhomogeneous, with the local field vectors

perpendicular to the ToF axis (the z-axis); the quantization axis of the static

field in the detection region is parallel to the z-axis.

Figure 4: 2D slices showing the electric fields in the apparatus, with a bias of 17 V applied
to the mesh (left) and with the mesh held at 0 V (right). The regions enclosed within the
dashed yellow lines are provided enlarged beside each plot, to better show the influence of
applying a small positive voltage to the mesh (left) and holding the mesh at ground (right).
The quadrupole guide exit is at 0 mm, with the mesh located at 6.05 mm and the repeller
plate at 8.00 mm.

An ensemble of 105 ND3 molecules in the rotational states JK = 11, 21 and

22 (corresponding to the states observed experimentally in the spectral region of

interest) and with a velocity of 70.29 m s−1 (corresponding to the modal veloc-

ity determined experimentally [11]) is propagated through the different electric

field regions. The symmetric top basis set is employed, with the inclusion of

inversion doubling and hyperfine interactions. The hyperfine parameters within

the Hamiltonian are taken from van Veldhoven et. al [21], enabling the split-

ting and shifting of the various energy levels in the manifold (in the presence

of an external electric field) to be calculated using a tensor coupling scheme

[21, 22]. The time-dependent Schrödinger equation is solved in a co-ordinate
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system that rotates with the field direction, as this is more efficient than con-

sidering a rotating field in a fixed co-ordinate system, as demonstrated by Wall

et. al [13]. This is achieved through the use of a rotation operator, with the

time evolution of the Schrödinger equation in the rotating frame subsequently

expressed in a basis set of the instantaneous eigenvectors. As set out by Wall

et. al [13], such an approach enables the effect of the rotation of the electric

field and changes in the field magnitude to be evaluated. As the rate of rota-

tion of the field experienced by a molecule as it moves through the apparatus is

generally very low compared to the rotational frequency of the molecule or the

Stark frequency differences of the M states, the field rotation does not induce

population changes except when the field is very low, i.e. the states follow the

field direction adiabatically. However, as discussed below, the region near the

entry to the mesh is an exception in that the field rotates relatively rapidly in

a near-zero field situation.

The time evolution of the Stark Hamiltonian is tracked at time steps of

20 ns, enabling the M -state population evolution to be recorded. This yields

the orientation of the molecules to the local electric field. (Note that the quan-

tum number M is the projection of J , while the time evolution is calculated

for a basis set defined in terms of an MF quantum number [see below]; a back-

transformation is therefore required to determine the M -state populations.)

Within the quadrupole guide, ND3 molecules are oriented by an inhomogeneous

local electric field. The orientation of molecules with respect to a fixed lab-

oratory axis can be established by transforming the angular momentum from

a local field frame to a space-fixed frame [23], as set out in the orientational

probability distribution functions introduced by Choi and Bernstein [24]. When

a rotation acts on the eigenstate |JM〉 of J2 and JZ , it transforms |JM〉 into

a linear combination of other M values using a rotation matrix. A rotation

transforms the system from the original (X,Y, Z) frame to a new (X ′, Y ′, Z ′)

frame, with a common origin. This allows the probability of J making the pro-

jection M ′ onto new axis Z ′ (corresponding to the fixed laboratory z axis) to

be calculated using rotation matrices, as described by Zare [23].
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The orientation of ND3 molecules (MK-state description) is plotted as a

function of position in figure 5, showing how the molecular orientation changes

as particles pass through the various regions. The MK-state distributions are

presented in the local field frame (i.e. where the molecules are oriented to the

local electric field), alongside the orientation of molecules with respect to the

fixed laboratory z axis, parallel to the quadrupole axis. The simulations show

that the M -state distribution within the quadrupole guide is retained as the

molecules exit the guide (0 − 6 mm), but is rapidly lost as the molecules pass

through the grounded mesh (located 6.05 mm beyond the guide exit). This

is because of nonadiabatic transitions, due primarily to the very rapid field

rotation that occurs (radial to axial) as the molecule enters the near-zero field

region and subsequently due to the significant length (and hence time) over

which the molecules are held near zero field.

While the mesh itself is very thin, with the Ni wire only 0.1 mm thick, the

mesh holder has a width of 1.0 mm. Both the mesh and the mesh holder are held

at ground during the experiments. As a result, molecules experience regions of

near-zero electric field for a z-axis distance of up to 1.1 mm. The potentials

around the region of the mesh are depicted in figure 6, where the magnitude of

the electric field can be seen to fall to ≤ 50 mV cm−1 within 200 µm of entering

the mesh.

After passing through the mesh, molecules in the 11 state experience com-

plete loss of orientation; i.e. a statistical population distribution is seen at a

distance of 7.15 mm after the guide exit. It is interesting to observe that the

transfer of population from the |1,−1〉 state to either the |1, 0〉 state or the

|1, 1〉 state occurs at the same rate. One might expect, due to the inversion

splitting and thus lack of total degeneracy at zero field, that population would

be transferred to the |1, 0〉 state in preference to the |1, 1〉 state. This is, in fact,

the behaviour observed if an artificially large inversion splitting is implemented.

Employing the inversion splitting reported for NH3, 0.792 cm−1 [25], sees the

majority of molecules oriented to the local field: the population in |1,−1〉 is

∼74% at the point of ionisation, with 23% in the |1, 0〉 state and 3% in |1, 1〉.
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Figure 5: The orientation of ND3 molecules as they pass through the experimental apparatus is
monitored using trajectory simulations. The guide exit is located at 0 mm, with the grounded
mesh located from 6.05 to 6.15 mm, with the mesh holder extending a further 1.0 mm. The
repeller plate extends from 8.00 to 9.20 mm. Molecules are probed by the REMPI laser
14.85 mm beyond the guide exit. The top row represents the |J,MK〉 populations in the local
field frame, providing the orientation of molecules with respect to the local electric field. The
bottom row illustrates the orientation of molecules with respect to a fixed laboratory axis,
parallel to the quadrupole axis. As M is defined with respect to the local electric field, and
not a space-fixed axis, the lower panel plots the M ′ distribution. (At distances beyond the
repeller, M ′ ≡M as the electric field vector aligns with the z axis.)

(The Stark shifts for the J = 1 and J = 2 states in NH3 and ND3 are provided

in figure 7.) Thus the small magnitude of the inversion splitting in ND3 (at only

0.053 cm−1 [25]), in addition to the very rapid field rotation, also plays a role

in determining the extent of de-orientation as molecules pass through regions of

near-zero field.

Some molecules in J = 2 maintain their orientation in the local field frame,

with the population in |J,MK〉 = |2,−2〉 and |2,−4〉 at 7.15 mm greater than

that expected from a purely statistical distribution. While inspection of figure 7

reveals that the inversion splitting in the 22 state of ND3 is the same as for the

11 state, the magnitude of the Stark splitting in the |2,−4〉 level is greater

than that observed for the |1,−1〉 level, at a given electric field. However, the

picture is not quite as straightforward as this; the J = 2 Stark map has the
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Figure 6: 2D slice illustrating the near-zero electric fields in the region around the mesh, with
all voltages applied as in the experiments (i.e. with the mesh grounded). The distance axis is
depicted with respect to the position of the mesh, with the y axis directly comparable to that
in figure 4. Note that the colour scale has been altered from that adopted for figure 4, as the
fields here are on the order of tens to hundreds of mV cm−1.

added complexity of additional MK states. Within the JK = 22 manifold,

population appears to initially decay fastest from the |J,MK〉 = |2,−2〉 state,

but after a short distance the loss rate from this state reduces significantly.

The change in population of a given low-field seeking state is unlikely to be

described by a single exponential decay rate (given the complicated hyperfine

structure of ND3). Nonetheless, the population change in the |2,−2〉 state is

more complicated than for the |1,−1〉 or |2,−4〉 levels – owing to the added

possibility of population transferring into the |2,−2〉 state from the adjacent

|2,−4〉 state.
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Figure 7: The Stark splitting in the J = 1 and J = 2 states of NH3 (red) and ND3 (black),
plotted as a function of electric field, with states labelled as |J,MK〉.
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At a distance of 8.00 mm beyond the quadrupole guide exit, molecules pass

through a repeller plate and into a region of uniform electric field. The repeller

plate is held at a constant voltage of 300 V, with the extractor plate (located

at 23.00 mm) held at 217 V. There are minor changes to the orientation of

molecules in the uniform field of the ionisation region – in the case of JK = 11

resulting in a slight enhancement in the MK = 0 population over the MK = ±1

states. This is in agreement with the populations obtained from the fits to the

spectra, where a higher population is seen in the |J, |K|,MK〉 = |1, 1, 0〉 state

compared to the |1, 1,−1〉 level.

At the point of spectroscopic probing, our calculations confirm the exper-

imental observation: that ammonia molecules exhibit some orientation to the

local field. Molecules in the 22 state retain some orientation from the quadrupole

guide, and molecules in the 11 state exhibit minor orientation to the static re-

peller and extractor fields. As the magnitude of fringe fields emanating from

the quadrupole guide – and the extent to which they can penetrate beyond the

mesh – is small, they are insufficient to maintain the orientation of the major-

ity of ammonia molecules for any appreciable distance beyond the mesh. The

calculations appear to under-estimate the degree of orientation that is seen ex-

perimentally. This could arise if, for example, the voltage on the mesh is not

exactly zero in the experiments, as any small positive voltage applied to the

mesh has a significant effect on the orientation of ammonia molecules.

3.3. Maintaining orientation through the detection region

The orientation of molecules as they exit a hexapole guide and enter a region

of uniform field has been previously studied, with fields as low as 3 V cm−1

sufficient to orient CH3I molecules to the external field axis [12, 26]. While the

behaviour of ND3 under such conditions has not been reported, ND3 exhibits

many similar properties to CH3I: both molecules are symmetric tops with C3v

symmetry and have comparable permanent dipole moments (1.6 D for ND3 and

1.5 D for CH3I) [27, 28], although ND3 exhibits a far more complex manifold of

hyperfine states with the added complication of inversion splitting.
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In the simulations undertaken in this work, varying voltages can be applied

to the mesh to establish the minimum field needed to orient ammonia molecules

at the point of ionisation. With the application of a small bias voltage to

the mesh – resulting in a field of just 1 V cm−1 at the position of the mesh

(measured using SIMION, with the voltages applied to all other elements as in

the experiments) – 84% of ND3 molecules in JK = 11 adiabatically follow the

field and retain their orientation through to the point of ionisation. The electric

potentials are plotted in figure 4, illustrating the fields both with the mesh held

at ground and with a bias voltage of 17 V applied to it (corresponding to a

field of 3 V cm−1 at the mesh). The region around the mesh is shown in greater

detail in figure 8. When the almost zero-field region at the mesh is removed, the

near-homogeneous fields beyond the mesh rotate the local field experienced by

the molecules, from the inhomogeneous field in the quadrupole to the uniform

direction of the ionisation region field. This can be seen in figure 9, where the

orientation of ND3 molecules in the molecular frame is preserved as they move

through the different electric field regions.

Figure 8: 2D slices showing the electric fields in the region around the mesh, again with a
bias of 17 V applied to the mesh (left) and with the mesh held at 0 V (right). While the
mesh itself is not depicted, the effect of the mesh can be seen in the change in the field lines
at 0 µm. Note that the colour scale has again been altered from those adopted for figures 4
and 6, to highlight the difference that a 17 V bias applied to the mesh makes to the fields in
this region.

These simulations are in agreement with the significant orientation effects
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Figure 9: Simulated fraction of total JK = 11 population in the |J,MK〉 = |1,−1〉, |1, 0〉 and
|1, 1〉 states (in the local field frame) as the molecules pass through the different field regions,
with a bias voltage of 17 V applied to the mesh. It can be seen that the molecules follow the
electric fields throughout the apparatus, resulting in almost complete orientation of molecules
– over 95% of population in the |1,−1〉 state – in the uniform field of the ionisation region.
As such, orientation of > 95% of ND3 molecules in the laboratory frame is achieved at the
point of ionisation.

observed by Bernstein et al. with CH3I molecules in fields as low as 0.3 V cm−1

[29, 30]. As shown in figure 10, fields on the order of a few V cm−1 are sufficient

to maintain >90% of population in the |1,−1〉 state. The simulations suggest

that over 95% of population will be retained in the |1,−1〉 state when a 17 V

bias voltage is applied to the mesh – in accordance with the observations of

Harland et al. in their CH3I study [26]. While the field rotation occurs just

as rapidly with the removal of the near-zero field region, at a higher field the

splitting between states is larger, hence nonadiabatic transitions are suppressed.
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Figure 10: Simulated fraction of total JK = 11 population in the |1,−1〉 state at the point of
ionisation, monitored as a function of the magnitude of the electric field at the mesh.
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An alternative approach could see the mesh holder – currently made of

stainless steel – replaced with an insulating material. The mesh itself has a width

of only 0.1 mm; replacing the 1.00 mm-width mesh holder with an insulating

material will significantly reduce the length of the near-zero field region along

the z axis. As a result, molecules will spend less time in near-zero fields, reducing

the probability of nonadiabatic transitions in this region and thus curtailing the

loss of orientation to the local field – although losses due to the rapid rotation

of the field between the quadrupole and the mesh will still occur. Simulations

indicate that replacing the mesh holder with an insulating material will result in

the orientation of 70% of ammonia molecules at the detection region, as depicted

in figure 11.
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Figure 11: Simulated fraction of total JK = 11 population in the |J,MK〉 = |1,−1〉, |1, 0〉 and
|1, 1〉 states (in the local field frame) as the molecules pass through the apparatus, with the
previously stainless steel mesh holder replaced by an insulating material. Only the 0.1 mm-
thick mesh is held at 0 V, resulting in a reduced near-zero field region and retention of over
70% of population in the |1,−1〉 state.

4. Conclusion

Ammonia molecules exiting an electrostatic quadrupole guide and passing

through a grounded mesh into a reaction chamber exhibit some orientation to

the local electric field. It is, however, easy to lose orientation when molecules

pass through near-zero field regions; fields need to be designed to preserve the

orientation of molecules throughout the apparatus. Simulations indicate that

the application of a small bias voltage to the (typically grounded) mesh could
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result in full orientation of ND3 molecules at the point of interrogation. A linear

Paul ion trap has been installed in place of the repeller and extractor plates to

facilitate the study of cold, controlled ion-molecule reactions. In the combined

quadrupole guide-ion trap experiments, the mesh will serve an important role

in shielding the ion trap from the significant voltages applied to the quadrupole

electrodes. Simulations are underway to establish the effect that applying a

small bias voltage to the mesh will have on the trapping fields applied to the

ion trap electrodes. An alternative approach could see the replacement of the

stainless steel mesh holder with an insulating material, which will curtail the

loss of orientation by reducing the length of the near-zero field region.

To preserve the orientation of molecules as they enter the ion trap, one would

need to prevent the radiofrequency trapping fields from inducing nonadiabatic

transitions. This could be achieved through the use of digital trapping wave-

forms (also termed square-wave or pulsed waveforms), whereby a rectangular

waveform of period T and pulse width τ is employed. The digital waveform is

zero when τT/2 < |t| ≤ (1 − τ)T/2 and (1 + τ)T/2 < |t| ≤ (2 − τ)T/2. This

“off time” can be extended by switching off the trapping fields for a short time,

allowing the oriented molecules to be admitted to the trapping region with-

out adverse fields being present, although there are still challenges associated

with molecules entering the trap at zero field. If a compromise can be achieved

between shielding the ion trap from external fields and maintaining the orienta-

tion of the ammonia molecules as they pass through the region, this will enable

the examination of ion-molecule reactions with unprecedented control over the

reaction parameters.
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Highlights 

 Spatial orientation of ND3 molecules measured using (2+1) REMPI spectroscopy 

 Some orientation observed, even though molecules pass through grounded mesh 

 Partial loss of orientation due to near-zero field region and rapid field rotation 

 Simulations suggest complete orientation achievable with additional small bias field 


