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Abstract

Starting from the dynamic factor model for non-stationary data we derive the

factor-augmented error correction model (FECM) and its moving-average representa-

tion. The latter is used for the identification of structural shocks and their propaga-

tion mechanisms. We show how to implement classical identification schemes based on

long-run restrictions in the case of large panels. The importance of the error-correction

mechanism for impulse response analysis is analysed by means of both empirical exam-

ples and simulation experiments. Our results show that the bias in estimated impulse

responses in a FAVAR model is positively related to the strength of the error-correction

mechanism and the cross-section dimension of the panel. We observe empirically in a

large panel of US data that these features have a substantial effect on the responses of

several variables to the identified permanent real (productivity) and monetary policy

shocks.
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1 Introduction

Large dimensional factor models have received considerable attention in the recent econo-

metric literature, starting with the seminal papers by Forni, Hallin, Lippi and Reichlin

(2000) and Stock and Watson (2002a, 2002b). While the early applications were mostly re-

duced form analyses, following the publication of Bernanke, Boivin and Eliasz (2005) more

and more attention has been devoted to structural analyses based on Factor Augmented

VARs (FAVARs) - see also Stock and Watson (2005).

With few notable exceptions, such as Bai (2004), Bai and Ng (2004) and Barigozzi,

Lippi and Luciani (2016a, 2016b), this entire literature does not take into account the

possibility of cointegration among the variables under study. Banerjee and Marcellino

(2009) suggested including factors extracted from large non-stationary panels in small

scale error correction models (ECMs) to proxy for the missing cointegration relations.

They labelled the resulting model as the Factor Augmented ECM (FECM). Banerjee,

Marcellino and Masten (2014a) showed that FECMs often outperform both FAVARs and

standard small scale ECMs in terms of forecasting macroeconomic variables, given the

property that FECMs nest both FAVARs and ECMs.

In this paper we focus on the use of FECMs for structural analysis. We start from a

dynamic factor model for nonstationary data as in Bai (2004) and Bai and Ng (2004), and

show it can be reparameterized to yield a FECM. We then extend the Johansen version of

the Granger representation theorem (see, e.g., Johansen, 1995, Theorem 4.2) to derive the

moving-average representation of the FECM. The latter can be used to identify structural

shocks and their propagation mechanism, using similar techniques as those adopted in

the structural VAR literature. In particular, our paper provides the first analysis of the

long-run scheme for identification of structural shocks in nonstationary panels.1

When assessing the properties of the FECM with respect to the FAVAR, we focus

on the effects that including the error-correction terms have on the impulse response

functions. Using simulation experiments with a design similar to the estimated model in

the empirical applications, we consider which features increase the bias in the impulse

responses of the FAVAR with respect to those from the FECM. Not surprisingly, the

strength of the error-correction mechanism matters. Moreover, as we show in the paper,

since the FECM can be approximated to some extent by the FAVAR with a large lag

order, over-parameterization and the associated estimation uncertainty also play a role.

Finally, we develop two empirical applications. The first one uses our proposed long-

run restrictions to identify structural stochastic trends and the effects of their associated

shocks on a large set of US economic variables. The FECM impulse responses are in

1Forni, Giannone, Lippi and Reichlin (2009) provide an empirical illustration of the stochastic trends
analysis of King, Plosser, Stock and Watson (1991) in the context of large stationary panels. Eickmeier
(2009) works with a nonstationary panel and identification of structural shocks with sign restrictions.
Forni, Gambetti and Sala (2014) also consider a factor model for nonstationary data. The FECM model is
also related to the framework used recently to formulate testing for cointegration in panels (see for example
Bai, Kao and Ng (2009) and Gengenbach, Urbain and Westerlund (2015).
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line with economic theory and comparable to the responses to permanent productivity

shocks obtained from an estimated DSGE model (Adolfson, Laseen, Linde and Villani,

2007), which validates our identification scheme. The second application is to the analysis

of monetary policy shocks, similar to Bernanke et al. (2005). In both cases our results

indicate important effects of omitting the error-correction terms in the FAVAR. According

to the Olivei and Tenreyro (2010) test, about 30% of the FECM impulse responses result

to be statistically significantly different from FAVAR responses in case of a permanent

productivity shock, while the corresponding share for the monetary policy shock is above

40%.

The rest of the paper is structured as follows. In Section 2 we discuss the representation

of the FECM and its relationship with the FAVAR. In Section 3 we derive the moving-

average representation of the FECM and discuss structural identification schemes. In

Section 4 we deal with estimation. In Section 5 we present the results of the Monte Carlo

experiment. In Section 6 we discuss the two empirical applications. Finally, in Section 7

we summarize the main results and conclude. Appendices A and B present, respectively,

an analytical example comparing the FAVAR and FECM responses and a comparison of

the empirical FECM and DSGE based responses.

2 The Factor-augmented Error-Correction Model (FECM)

Consider the following dynamic factor model (DFM) for the I(1) scalar process Xit:

Xit =

p∑
j=0

λijFt−j +
m∑
l=0

φilct−l + εit

= λi(L)Ft + φi(L)ct + εit, (1)

where i = 1, ..., N , t = 1, ..., T , Ft is an r1-dimensional vector of random walks, ct is

an r2-dimensional vector of I(0) factors, Ft = ct = 0 for t < 0, and εit is a zero-mean

idiosyncratic component. Both Ft and ct are latent, unobserved variables. λi (L) and

φi (L) are lag polynomials of finite orders p and m respectively.

The loadings λij and φij are either deterministic or stochastic and satisfy the following

restrictions. For λi = λi(1) and φi = φi(1) we have E ‖λi‖4 ≤M <∞, E ‖φi‖4 ≤M <∞,

and 1/N
∑N

i=0 λiλ
′
i, 1/N

∑N
i=0 φiφ

′
i converge in probability to positive definite matrices.

Furthermore, we assume that E (λijεis) = E (φijεis) = 0 for all i, j and s.

As in Bai (2004), the idiosyncratic components εit are allowed to be serially and weakly

cross correlated:

εt = Γ(L)εt−1 + vt,

where εt = [ε1t,..., εNt]
′, and the vector process vt = [v1t,..., vNt]

′ is white noise.

To derive the FECM and discuss further assumptions upon the model that ensure

consistent estimation of the model’s components, it is convenient to write first the DFM
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in static form. To this end, we follow Bai (2004) and define

λ̃ik = λik + λik+1 + ...+ λip, k = 0, ..., p.

Let us in addition define

Φ̃i = [φi0, ..., φim] .

We can then obtain a static representation of the DFM which isolates the I(1) factors from

the I(0) factors:

Xit = ΛiFt + ΦiGt + εit, (2)

where

Λi = λ̃i0,

Φi =
[
Φ̃i,−λ̃i1, . . . ,−λ̃ip

]
,

Gt =
[
c′t, c

′
t−1, ..., c

′
t−m,∆F

′
t , ...,∆F

′
t−p+1

]′
.

Introducing for convenience the notation Ψi = [Λ′i,Φ
′
i]
′, the following assumptions are

needed for consistent estimation of both the I(1) and I(0) factors: E ‖Ψi‖4 ≤ M < ∞
and 1/N

∑N
i=0 ΨiΨ

′
i converges to a (r1(p + 1) + r2(m + 1)) × (r1(p + 1) + r2(m + 1))

positive-definite matrix.

Grouping across the N variables we have

Xt = ΛFt + ΦGt + εt (3)

where Xt = [X1t, ..., XNt]
′,Λ = [Λ

′
1, ...,Λ

′
N ]′,Φ = [Φ

′
1, ...,Φ

′
N ]′ and εt = [ε1t, ..., εNt]

′.

As noted above, the idiosyncratic component in (3) is serially correlated. This serial

correlation can be eliminated from the error process by premultiplying (2) by

I − Γ (L)L

where

Γ (L) =


γ1 (L) · · · 0

...
. . .

...

0 · · · γN (L)

 .
Following this transformation, we obtain

Xt = (I − Γ (L)L) ΛFt + (I − Γ (L)L) ΦGt + Γ (L)Xt−1 + vt.

Note that Γ (L) can be conveniently factorized as

Γ(L) = Γ(1)− Γ1(L)(1− L), (4)
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which allows us to rewrite the previous expression as

Xt = ΛFt + ΦGt − (Γ(1)− Γ1(L)(1− L))(ΛFt−1 + ΦGt−1)

+ (Γ(1)− Γ1(L)(1− L))Xt−1 + vt. (5)

With further manipulation we get

Xt = ΛFt + ΦGt − Γ(1)ΛFt−1 + Γ1(L)Λ∆Ft−1 − Γ(1)ΦGt−1

+ Γ1(L)ΛΦ∆Gt−1 + Γ(1)Xt−1 − Γ1(L)∆Xt−1 + vt (6)

or

∆Xt = ΛFt + ΦGt − Γ(1)ΛFt−1 + Γ1(L)Λ∆Ft−1 − Γ(1)ΦGt−1

+ Γ1(L)Φ∆Gt−1 − (I − Γ(1))Xt−1 − Γ1(L)∆Xt−1 + vt (7)

The ECM form of the DFM, i.e., the factor-augmented error-correction model (FECM),

then follows directly as

∆Xt = −(I − Γ(1))(Xt−1 − ΛFt−1)︸ ︷︷ ︸
Omitted in the FAVAR

+ Λ∆Ft + Γ1(L)Λ∆Ft−1

+ ΦGt − Γ(1)ΦGt−1 + Γ1(L)Φ∆Gt−1 − Γ1(L)∆Xt−1 + vt. (8)

Equation (8) is a representation of the DFM in (1) in terms of stationary variables.

It contains the error-correction term, −(I − Γ(1))(Xt−1 −ΛFt−1), which is omitted in the

standard FAVAR model that therefore suffers from an omitted variable problem, similar

to the case of a VAR in differences in the presence of cointegration.

Note that it follows from (3) that

Xt−1 − ΛFt−1 = ΦGt−1 + εt−1, (9)

such that it would appear at first sight that the omitted error-correction terms in the

FAVAR could be approximated by including additional lags of the I(0) factors. However,

by substituting the previous expression into (8) and simplifying we get

∆Xt = Λ∆Ft + Φ∆Gt + ∆εt, (10)

which contains a non-invertible MA component. This is problematic from two points

of view. Firstly, the structural identification schemes analyzed by Stock and Watson

(2005) (see also the survey in Lütkepohl, 2014) rely on inverting the MA process in the

idiosyncratic component, and on estimation of vit, the i.i.d. part of the idiosyncratic

component. In (10) the presence of a non-invertible MA process implies that vit cannot be
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identified since the omission of the error-correction terms cannot be approximated with a

finite number of lags of the I(0) factors (see on-line Appendix A). Secondly, even if the

identification of structural shocks is based only on innovations to the factors and does not

require estimation of vit, as in Bernanke et al. (2005), inversion of the MA component is

needed to get the endogenous lags in the equations for ∆Xit. These capture the variable-

specific autoregressive dynamics that are unrelated to the common factors but affects the

impulse responses of ∆Xti.

To elaborate this point further consider the following example. Representation (10)

can be alternatively written as

∆Xt = Λ∆Ft + Φ(Gt −Gt−1) + εt − εt−1,

which, by using (9) becomes

∆Xt = −(Xt−1 − ΛFt−1) + Λ∆Ft + ΦGt + εt. (11)

At first sight, this is a model that contains an error-correction term, but has a much

simpler structure than the FECM in (8). If the identification of structural shocks are

based on innovations to dynamic factors, then such a model would appear to account for

the omitted error-correction term in the FAVAR. Note, however, that in order to compute

consistent impulse responses to innovations either to Ft or Gt, one still needs to invert

the process εt so as to get the variable-specific autoregressive dynamics. By doing so, one

obtains the FECM representation (8).

In sum, whenever we deal with I(1) data, and many macroeconomic series exhibit

this feature, the standard FAVAR model potentially produces biased impulse responses

unless we use an infinite number of factors as regressors, or account explicitly for the non-

invertible MA structure of the error-process. The analytical example in on-line Appendix

A elaborates this point further, and our simulation and empirical analyses below confirm

that the omission of the ECM term in the FAVAR may potentially have an important

impact on the impulse response functions obtained in typical macroeconomic applications.

To complete the model, we assume that the nonstationary factors follow a vector

random walk process

Ft = Ft−1 + εFt , (12)

while the stationary factors are represented by

ct = ρct−1 + εct , (13)

where ρ is a diagonal matrix with values on the diagonal in absolute term strictly less

than one. εFt and εct are independent of λij , φij and εit for any i, j, t. As in Bai (2004),

it should be noted that the error processes εFt and εct need not necessarily be i.i.d.. They
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are allowed to be serially and cross correlated and jointly follow a stable vector process:[
εFt

εct

]
= A(L)

[
εFt−1

εct−1

]
+

[
ut

wt

]
, (14)

where ut and wt are zero-mean white-noise innovations to dynamic nonstationary and

stationary factors, respectively. Under the stability assumption, we can express the model

as [
εFt

εct

]
= [I −A(L)L]−1

[
ut

wt

]
. (15)

Using (12), (13) and (15) we can write the VAR for the factors as[
Ft

ct

]
=

[[
I 0

0 ρ

]
+A(L)

][
Ft−1

ct−1

]
−A(L)

[
I 0

0 ρ

][
Ft−2

ct−2

]
+

[
ut

wt

]
(16)

= C(L)

[
Ft−1

ct−1

]
+

[
ut

wt

]
,

where the parameter restrictions imply that C(1) is a block-diagonal matrix with block

sizes corresponding to the partition between Ft and ct.

The FECM is specified in terms of static factors F and G, which calls for a corre-

sponding VAR specification. Using the definition of Gt and (16) it is straightforward to
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get the following representation

I 0 . . . . . . 0

0 I . . . . . . 0
...

...
...

...

0 . . . I 0 . . . 0

−I . . . 0 I 0 . . . 0

0 . . . 0 0 I . . . 0
...

...

0 . . . . . . . . . I





Ft

ct

ct−1

...

ct−m

∆Ft

∆Ft−1

...

∆Ft−p+1



=



C11(L) C12(L) 0 . . . . . . 0

C21(L) C22(L) 0 . . . . . . 0

0 I 0 . . . . . . 0
... . . . . . .

...

0 . . . . . . I 0 . . . 0

−I . . . . . . . . . 0

0 . . . I . . . 0
...

...

0 . . . . . . I 0





Ft−1

ct−1

ct−2

...

ct−m−1

∆Ft−1

∆Ft−2

...

∆Ft−p



+



I 0

0 I

0 0

...
...

...
...

0 0



[
ut

wt

]
(17)

Using the definition of Gt, the VAR for the static factors, and premultplying the

whole expression by the inverse of the initial matrix in (17), the factor VAR can be more

compactly written as[
Ft

Gt

]
=

[
M11(L) M12(L)

M21(L) M22(L)

][
Ft−1

Gt−1

]
+Q

[
ut

wt

]
, (18)

where the (r1(p + 1) + r2(m + 1)) × (r1 + r2) matrix Q accounts for dynamic singularity

of Gt. This is due to the fact that the dimension of the vector process wt is r2, which is

smaller than or equal to q = r1p + r2(m + 1), the dimension of Gt. Let us assume that

the order of the VAR in (18) is n.

We conclude this section with a few remarks on the generality and empirical relevance

of our framework. First, the model contains both I(1) factors - common trends, and I(0)

factors - common cycles. As we show in our empirical examples (see Section 4.2), the

presence of I(0) factors in non-stationary data is well supported by the data, making

our formulation more relevant to the identification, estimation and structural analysis

undertaken in the paper. Moreover, the idiosyncratic errors can also be either I(0) or I(1).

Second, Bai (2004) shows that the model accommodates potential cointegration among

non-stationary factors Ft. If Ft are cointegrated, then there exists a full-rank matrik P
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such that PFt = [ξ′t, η
′
t]
′, where ξt is a vector of non-cointegrated I(1) factors, while ηt are

I(0) linear combinations of Ft. One can then simply redefine ξt as Ft and include ηt into Gt.

In other words, model (1) and a model with explicitly cointegrated Ft are observationally

equivalent and there is no loss of information when moving from the latter to the former as

long as the space spanned by the I(1) and I(0) factors can be consistently estimated. This

fact is very convenient for our analysis. Namely, the focus of our analysis is on impulse

responses of observable variables to structural innovations to factors, where the structural

innovations are identified by imposing restrictions on the effects of factors on observable

variables Xt. Model (1) in such a case produces consistent responses to structural shocks,

allowing us to focus on the effect of error-correction mechanism in observable variables as

incorporated in the FECM (8) on impulse responses to identified structural shocks.

Third, Barigozzi et al. (2016a, 2016b) focus on the case of cointegrated factors and

develop a detailed and interesting representation and estimation theory based on more

primitive assumptions that those in Bai (2004) and Bai and Ng (2004). Instead, as men-

tioned, we simply rely on Bai (2004) and Bai and Ng (2004), and focus more on evaluating

the practical relevance for applied econometrics of accounting for cointegration in a large

factor model context.

Finally, by comparing the dynamic factor model (1) to the static factor representation

(3) one observes that stochastic singularity of the factor space is confined to the subspace

spanned by the stationary factors.

3 Moving-average representation of the FECM and the Struc-

tural FECM

The identification of structural shocks in VAR models usually rests on imposing restrictions

upon the parameters of the moving-average representation of the VAR. An analogous

approach is used in the FAVAR model, where the moving-average representation is derived

jointly for the observable variables and the factors (Stock and Watson, 2005; Lütkepohl,

2014). In the case of I(1) and cointegrated variables it is useful to work with the VAR in

vector-error correction form as the Wold moving-average representation will not exist in

general for the VAR in levels (Lütkepohl, 2005). In this respect, Johansen (1995, Theorem

4.2) proves that the moving-average representation of the VECM exists and its structure

can be conveniently exploited for the development of identification schemes based on long-

run restrictions (King et al. 1991; Lütkepohl, 2005). The motivation for Johansen’s

approach to the derivation of the Granger representation theorem is straightforward. The

VAR model, and not the moving-average model, is usually fitted to the data. Under

cointegration, the VAR can be conveniently reparameterized as a VECM and the moving-

average form obtained.

The FECM is a generalization of error-correction models to large dynamic panels. In
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the derivation of the corresponding moving-average representation we follow a similar logic

as above. A VAR is commonly fitted to the estimated factors in the FAVAR analysis and it

thus presents a natural starting point for the analysis. With I(1) factors it is convenient to

work with the corresponding error-correction form. Because of the importance of the error-

correction mechanism for the observation equations, we argue that the FECM equations

(8) are best fitted to the data. By combining the VECM representation of VAR (for

the factors) and the FECM equations we derive the moving-average representation of the

FECM, which represents a generalization of the Johansen (1995) version of the Granger

representation theorem to cointegrated non-stationary panels. Based on it, we then discuss

shock identification.

3.1 The MA representation of the FECM

To start with, we conveniently reparameterize the factor VAR process (18). It contains

r1 unit roots pertaining to Ft, while Gt is an I(0) process. In the exposition of the model

it is useful to consider the possibility that only the space jointly spanned by Ft and Gt

can be estimated, and not the corresponding spaces of Ft and Gt separately. On the

other hand, since our interest is in identifying structural shocks, estimation of Ft and Gt

separately is not even necessary. To this end, we introduce the following joint vector of

factors F̃t = [F ′t , G
′
t]
′ of dimension r = r1 + q, while the corresponding factors loadings are

stacked as Λ̃ = [Λ′,Φ′]′. With this notation (18) can be written as

F̃t = M(L)F̃t−1 + ũt (19)

where ũt = Q[u′t, w
′
t]
′. Because the matrix [I −

∑
iMi(1)] has rank q = r − r1 we can

rewrite (19) in error-correction form

∆F̃t = αFβ
′
F F̃t−1 +M∗(L)∆F̃t−1 + ũt (20)

where the coefficient matrices of the matrix polynomials M∗ij(L) are defined from the

coefficient matrices in (18) as:

M∗ijl = −(Mijl+1 + ...+Mijn), l = 1, . . . , n− 1. (21)

and αF and βF are full rank r × q matrices respectively. For future reference let αF,⊥

and βF,⊥ be their corresponding orthogonal complements, which can be determined as

α⊥ = [Iq − c(β′−1
F β′]c⊥, where c = [Iq, 0]′ and c⊥ = [0, Ir1 ]′, and similarly for βF,⊥.

Estimation of parameters of (20) is discussed below. At this point we can state the

following proposition.

Proposition 1 (Moving-average representation of the FECM) Given the error-correction

representations of the dynamic factor model (8) and (20), the moving-average representa-
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tion of the factor-augmented error-correction model is[
Xt

F̃t

]
=

[
Λ̃

Ir

]
CF

t∑
i=1

ũi + C1(L)

[
vt + Λ̃ũt

w̃t

]
. (22)

where CF = βF,⊥ωα
′
F,⊥ and

ω =
(
α′⊥Ξβ⊥

)−1
=
[
α′F,⊥(Ir −M∗(L))βF,⊥

]−1
.

A necessary and sufficient condition for the existence of this representation is |ω| 6= 0.

Proof. The FECM (8) can be rewritten as

∆Xt = α̃(Xt−1 − Λ̃F̃t−1) + Λ̃∆F̃t + Γ1(L)Λ̃∆F̃t−1 − Γ1(L)∆Xt−1 + vt, (23)

where α̃ = −(I − Γ(1)). Using (20) we can stack the equations for ∆Xt and the factors

into a single system of equations as[
∆Xt

∆F̃t

]
= αβ′

[
Xt−1

F̃t−1

]
+

[
−Γ1(L) B(L)

0 M∗(L)

][
∆Xt−1

∆F̃t−1

]
+

[
vt + Λ̃ũt

w̃t

]
(24)

where B(L) = Λ̃M∗(L) + Γ1(L)Λ̃ and

α
(N+r)×(N+q)

=

[
α̃ Λ̃αF

0 αF

]
and β′

(N+q)×(N+r)
=

[
I −Λ̃

0 βF

]
.

We can observe that (24) has a structure similar to a standard ECM model with some

restrictions imposed. There are N + r1 + q variables driven by r1 common stochastic

trends and therefore there are N+q cointegration relations. The model conforms with the

assumptions of the Johansen’s version of the Granger representation theorem (Johansen,

1995, Theorem 4.2). In particular

β⊥ =

[
Λ̃

Ir

]
βF,⊥, α⊥ =

[
0N×r1

αF,⊥

]
, Ξ = IN+r −

[
−Γ1(1) B(1)

0 M∗(1)

]

and

ω =
(
α′⊥Ξβ⊥

)−1
=
[
α′F,⊥(Ir −M∗(L))βF,⊥

]−1

is a full rank matrix by the assumption that the data are at most I(1).2 Then the generic

moving-average representation by the Granger representation theorem can be written as3

[
Xt

F̃t

]
= C

t∑
i=1

ũi + C1(L)

[
vt + Λ̃ũt

ũt

]
,

2Xit are assumed to be at most I(1). If the data were I(2) processes, ω would be singular.
3The result obtains from replication of the proof of Theorem 4.2 in Johansen (1995).
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with

C = β⊥
(
α′⊥Ξβ⊥

)−1
,

which simplifies to (22).

The derivation of (22) is also instructive to compare our modelling framework to that

of Barigozzi et al. (2016a). Their starting point is the moving-average representation for

F̃t from which they derive (20) by replicating the proof of Theorem 4.5 in Johansen (1995).

Our starting point is instead the VAR representation for F̃t (19), which can be reparame-

terized as the VECM representation of the common components (20). We combine it with

the FECM representation for observable variables (23) to obtain a moving-average repre-

sentation for observable variables, as in Johansen’s Theorem 4.2. Therefore, we focus on

studying the effects of the error-correction mechanism on the observable variables, which

is particularly convenient to develop an identification scheme for structural shocks based

on the long-run effects of innovations to dynamic factors on observable variables.

3.2 Structural FECM

Our model contains I(1) and I(0) factors with corresponding dynamic factors innovations.

From the moving-average representation (22) we can observe that the innovations in the

first group have permanent effects on Xt, while the innovations in the second group have

only transitory effects. The identification of structural dynamic factor innovations can be

performed separately for each group of structural innovations or on both simultaneously.

As is standard in SVAR analysis, we assume that structural dynamic factor innovations

are linearly related to the reduced-form innovations

ϕt =

[
ηt

µt

]
= H

[
ut

wt

]
, (25)

where H is a full-rank (r1 +r2)× (r1 +r2) matrix. ηt are r1 permanent structural dynamic

factor innovations and µt are r2 transitory structural dynamic factor innovations. It is

assumed that Eϕtϕ
′
t = Ir1+r2 such that HΣu,wH

′ = Ir1+r2 .

The moving average representation of the FECM in structural form can be obtained

by inserting the two linear transformations above of reduced-form innovations to dynamic

factors into the moving-average representation of the FECM given by (22).

3.3 Identifying structural shocks through long-run restrictions

The three most common classes of identification restrictions in the SVAR literature are

contemporaneous restrictions, long-run restrictions and sign restrictions. Even though we

provide also an example of identification of monetary policy shocks through contempo-

raneous restrictions, the focus of this paper is on long-run restrictions. Specifically, we

extend the analysis of structural common stochastic trends of King et al. (1991) to the
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case of large nonstationary panels.4

The identification of structural innovations by means of long-run restrictions can be

obtained by imposing constraints on the matrices Λ and ω in the moving-average represen-

tation of the FECM (22). By doing this, we replace the long-run effects of reduced-form

innovations to factors ut, i.e.,

ΛCF

t∑
i=1

ui,

with the long-run effects of structural innovations denoted ηt, i.e.,

Λ∗C∗F

t∑
i=1

ηi,

where the matrices Λ∗ and C∗F contain restrictions motivated by economic theory.

A common economically motivated identification scheme of permanent shocks, origi-

nally proposed by Blanchard and Quah (1989), uses the concept of long-run money neu-

trality. In this respect, their identification scheme distinguishes real from nominal shocks

by imposing zero long-run effects of the nominal shock on real variables.

In a cointegration framework such an identification approach was formalized by King

et al. (1991) (see also Warne, 1993). King et al. (1991) analyzed a six-dimensional system

of cointegrated real and nominal variables. By imposing a particular cointegration rank,

they determined the subset of innovations with permanent effects. Within this subset, they

restricted the number of real stochastic trends to one, and identified it by imposing zero

restrictions on real variables of all other permanent shocks in the subset. The remaining

permanent shocks were allowed to have non-zero effects only on the subset of nominal

variables in the cointegrated VAR. We extend the identification approach of King et al.

(1991) to large-dimensional panels of non-stationary data using the FECM.

The FECM contains r1 stochastic trends. Consider the case where r1 = 2. We have

two I(1) factors and want to identify the innovations to the first as real permanent shocks

and innovations to the second as nominal permanent shocks. Accordingly, partition the

variables in Xt such that N1 real variables are ordered first and the remaining N2 = N−N1

nominal variables are ordered last. The group of real variables contains various measures

of economic activity measured in levels, e.g. indexes of industrial production, which are

treated as I(1). The identifying restrictions would thus be that the innovations to the

nominal stochastic trend have a zero long-run effect on these variables. Since nominal

variables, for example, the levels of different price indexes and nominal wages, are grouped

at the bottom of the panel, the restricted loading matrix Λ∗ would have the following

4Barigozzi et al. (2016b) also provide an empirical example of a long-run identification scheme in a
large-scale modelling framework. In their empirical application they impose long-run restrictions on two
real variables only (GDP and investment), so that some nominal shocks could still have a non-zero long-run
effect on some of the other observable real variables. Instead, our identification scheme imposes zero-long
run effects of nominal shocks on all observable real variables in the data.
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structure:

Λ∗ =

[
Λ∗11 0

Λ∗21 Λ∗22

]
,

where Λ∗11 is N1 × 1 and Λ∗21 and Λ∗22 are N2 × 1. More generally, if the objective were

to identify only the real permanent shocks with r1 > 2, the dimension of Λ∗22 would be

N2 × (r1 − 1).

The matrix Λ∗ can be identified in the following way. First, the real stochastic trend is

allowed to load on all observable variables. This implies that Λ∗11 and Λ∗21 can be identified

as loadings to the first factor - F rt - extracted from the whole dataset. Second, we can

estimate the residuals from a projection of Xt on F rt . Denote these as εrt . Then Λ∗22 is

identified as the loadings to the (r1 − 1) factors - denoted Fnt - extracted from the lower

N2-dimensional block of εrt .

Note that block diagonality of Λ∗ alone does not ensure that nominal shocks do not

affect real variables, but we also need to impose the corresponding zero restrictions on

C∗F since it is the product Λ∗C∗F that determines the long-run effects of structural factor

innovations to observable variables. This implies that zero long-run effect restrictions

require Λ∗C∗F to be lower block diagonal, which is achieved by imposing restrictions on

C∗F in addition to lower (block) diagonality of Λ∗.

Restrictions on C∗F are imposed in the following way (see Lütkepohl (2005) for details).

There are q stationary factors in the system. Their corresponding innovations have zero

long-run effects. This implies that C∗F has q columns of zeros. On the parameters of the

remaining r1 columns we need to impose r1(r1−1)/2 zero restrictions. Just identification of

structural innovations to factors is obtained by imposing additional q(q−1)/2 restrictions

on H. For a discussion of estimation of C∗F under such restrictions see Section 4.2.

In sum, the identification scheme of structural stochastic shocks assumes that factors

are unconditionally uncorrelated, which combined with the imposed structure on Λ∗ and

C∗F allows us to identify the innovations to the first estimated factor as the permanent real

(productivity) shocks. Note also that such an identification scheme is based on long-run

effects of innovations to dynamic factors on observable variables, which means that it is

essential to derive it from the moving-average representation of the FECM in (22). Given

that economic theory motivates the use of identifying restrictions in relation to observables

this is a practical advantage of our approach with respect to other applications where

restrictions are specified in terms of latent variables, as e.g. in Barigozzi et al. (2016b).

4 Estimation of the FECM

In the dynamic factor model, the idiosyncratic components εit are allowed to be serially and

weakly cross correlated as in Bai (2004) and Bai and Ng (2004). Specifically, along the time

series dimension, εit = γi(L)εit−1 +vit. If γi(L) contains a unit root for some i, for those i,

Xit and Ft do not cointegrate. However, the factorization of Γ (L) in (4) remains valid, so
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that the derivation of the FECM does not need the assumption of stationary idiosyncratic

components. Yet, allowing for the possibility of I(1) idiosyncratic errors requires some

modifications in the estimation procedure. Therefore, we now discuss FECM estimation

first assuming all idiosyncratic errors are I(0), and then relax this assumption to allow for

some I(1) errors.

4.1 Estimation of the FECM with stationary idiosyncratic components

There are several reasons for making the hypothesis of I(0) idiosyncratic errors. From an

economic theory point of view, integrated errors are unlikely as they would imply that

the integrated variables can drift apart in the long run, contrary to general equilibrium

arguments. Empirically, integrated variables that drift apart are likely to be few and of

marginal importance.5

Stationarity of εit implies that Xit and Ft cointegrate for all i. Naturally, this does

not imply that all bivariate pairs of variables Xit and Xjt, j 6= i, cointegrate mutually. In

fact, when the idiosyncratic errors are I(0), if there are N variables and r I(1) common

factors, r ≤ N − 1, then all subsets of r + 1 variables are cointegrated.

With stationary idiosyncratic components the FECM model is consistent with the

specification of the dynamic factor model analyzed by Bai (2004), which accommodates

the presence of I(0) factors along with I(1) factors. Our assumptions are consistent with

Bai’s (2004) and we can therefore rely on Bai’s (2004) results on the asymptotic properties

of the principal component based factor (and loadings) estimators.

Specifically, the space spanned by the factors can be consistently estimated using

principal components. The estimators of the space spanned by Ft, denoted F̃ , are the

eigenvectors corresponding to the largest r1 eigenvalues of XX ′ normalized such that

F̃ ′F̃ /T 2 = I. The space spanned by the stationary factors Gt, denoted G̃, can be estimated

as the eigenvectors corresponding to the next q largest eigenvalues normalized such that

G̃′G̃/T = I (Bai, 2004). Corresponding estimators of the loadings to I(1) factors are then

Λ̃ = X ′F̃ /T 2, and those to the I(0) factors Φ̃ = X ′G̃/T.6 Moreover, with spaces spanned

by Ft and Gt estimated separately, we have E
∥∥εFt ∥∥4 ≤ M < ∞, which implies that

1/T 2
∑T

t=1 FtF
′
t , 1/T

∑T
t=1GtG

′
t, and the cross-product matrices 1/T 3/2

∑T
t=1 FtG

′
t and

1/T 3/2
∑T

t=1G
′
tFt converge. The elements of the matrix composed of these four elements

5In the empirical application discussed in Section 6 we use a monthly US dataset for the period 1959
- 2014 (McCracken and Ng, 2015). The dataset contains 128 series, of which 114 are treated as non-
stationary. When applying the ADF unit root test to the estimated idiosyncratic components, the unit-
root null is not rejected at the 5% significance level for only 8 out of the 114 series, and for only 4 of
them at the 10% level. Simulation evidence in Westerlund and Larsson (2009) shows that for T >> N ,
which is the case of our empirical application, ADF tests on estimated idiosyncratic components behaves
well, but can in many other cases behave poorly in terms of size and power. For this reason we discuss
the estimation of the FECM under both specifications of the order of integration of εit. Moreover, the
estimators used in our empirical application allow for I(1) idiosyncratic components.

6In a model similar to ours, Choi (2011) analyzes the generalized principal components estimator that
offers some efficiency gains over the classic principal components estimator. Simulation evidence presented
below, however, shows that Bai’s estimator performs very well even with small sample sizes. For this
reason we stick to the standard principal components estimator in this paper.
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jointly converge to form a positive definite matrix.

Using the estimated factors and loadings, the estimates of the common components

are Λ̃F̃t, Φ̃G̃t, Λ̃∆F̃t and Φ̃∆G̃t, while for the cointegration relations it is Xt−1 − Λ̃F̃t−1.

Replacing the true factors and their loadings with their estimated counterparts is permit-

ted as long as N is large relative to T and the assumptions discussed above and those in

Bai (2004) (see Bai (2004) Lemma 2) are valid, so that there is no generated regressor

problem.7

The estimated common components and cointegrating relations can be then used in

(8) to estimate the remaining parameters of the FECM equation by equation by OLS.

Banerjee, Marcellino and Masten (2014b) demonstrate by means of a Monte Carlo ex-

periment that such an approach has very good finite sample properties both in terms of

estimation of the factors space and impulse responses to structural shocks.

Finally, the number of I(1) factors r1 can be consistently estimated using the criteria

developed by Bai (2004) applied to data in levels. The overall number of static factors

r1(p+ 1) + r2(m+ 1) can be estimated using the criteria of Bai and Ng (2002) applied to

the data in differences.

It is worth noting that the fact that we can separately estimate the spaced spanned

by Ft and Gt under the I(0) εit assumption simplifies the structure and estimation of the

FECM. In particular, we have

αF =

[
0

αM

]
, β′F =

[
0 Ir2

]
, CF =

[(
Ir1 − M̂11(1)

)]−1
.

4.2 Estimation of the FECM with some I(1) idiosyncratic components

While I(1) idiosyncratic errors are unlikely, their presence cannot be a priori ruled out.

Therefore, it is convenient to have a more general estimation method that allows for them.

Luckily, our framework easily accommodates such a feature.

With some of the εit being I(1) the (I − Γ(1)) matrix in (8) contains rows of zeros

for all those variables with I(1) idiosyncratic components. The result is expected. A non-

stationary idiosyncratic component implies no cointegration between the corresponding

Xit and Ft. In such a case, there is also no corresponding error-correction mechanism in

the equation for ∆Xit in (8) for those i whose γi(L) contain a unit root.

Consistent estimation of the factor space and the corresponding loading matrices can

proceed as in Bai and Ng (2004). Namely, the principal components based estimator is

applied to data transformed to I(0), and then cumulated to obtain the estimate of the

r-dimensional space spanned by Ft and Gt, where r can be determined by the above-

mentioned criteria of Bai and Ng (2002). This procedure does not, however, deliver the

estimates of the spaces spanned by Ft and Gt separately. Yet, the use of the FECM does

7These assumptions are essentially (1) the common factor structure of the data, (2) heterogeneous
loadings with finite fourth moments, (3) mutual orthogonality between ut, wt, εit, λit and φit,, (4) weak
dependence of idiosyncratic errors, and (5) N large compared with T for the I(0) factors (

√
T/N → 0).
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not rely on separate estimation of the spaces spanned by Ft and Gt. It is definitely not

needed either for forecasting or structural analysis. For the identification of structural

shocks based on long-run restrictions we only need the estimates of some rotation of αF

and βF in (20). In empirical applications below we choose to set the upper q × q block of

βF to the identity matrix Iq.

Moreover, estimation and testing in the model (20) can be based on the methodology

developed by Johansen (1995). This implies that we can apply the Johansen trace test

to determine the cointegration rank q, and then the number of I(1) factors is r1 = r − q.
Alternatively, r1 can be determined directly by the MQ statistics proposed by Bai and Ng

(2004). In this case, the parameters of (20) can be estimated by reduced-rank regression

(Anderson, 1951).

The matrix Q that accounts for the dynamic singularity of innovations to static factors

can in principle be estimated along the lines proposed in Stock and Watson (2005). After

normalizing the variance-covariance matrix of ũt to an identity matrix, they estimate Q as

the sample eigenvectors of the long-run variance-covariance matrix of Xt accounted for by

the common components Λ̃F̃t. For the FECM such a procedure is easy to apply. Given the

moving-average representation of the FECM (22) the estimator of Q would be the largest

r1+r2 eigenvectors of the sample estimates of the (r1+r2)×(r1+r2) matrix C ′F Λ̃′Λ̃CF . To

apply the estimator we can determine the total number of innovations to dynamic factors

r1 + r2 by the criteria proposed by Bai and Ng (2007) applied to the sample estimate of

the variance-covariance matrix of innovations to the static factors. Alternatively, one can

apply the Bai and Ng (2002) criteria the estimate of the variance-covariance matrix of vt,

as proposed by Stock and Watson (2005) and Amengual and Watson (2007).

As discussed in Section 3.3, identification of structural shocks involves imposing zero

restrictions on C∗F and H. The estimates of these matrices can then be obtained by

maximum likelihood, as discussed in Vlaar (2004), see also Lütkepohl (2005).

The remaining parameters of the FECM can then be estimated as discussed above.

The use of estimated factors rather than true factors does not create a generated regressor

problem, as long as the longitudinal dimension grows faster than the temporal dimension;

the precise condition is T 1/2/N is o(1), see Bai and Ng (2006).

5 An evaluation of the effects of the error-correction terms

on impulse response analysis

In this section we analyze the effects of omitting the error-correction terms on impulse

response analysis by means of simulation experiments, focusing on the role of the strength

of error correction and of the sample size, along both the time series and cross section

dimensions. In the design of the data-generating process we draw from the empirical

analysis of real stochastic trends that is presented in detail in the next section. Given that
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the FECM and the FAVAR are set up such that the only difference between the two is the

presence of the error-correction terms, the simulation evidence presented in this section

also facilitates the discussion of the empirically observed differences.

The experiment is designed as follows. We estimate the FECM model (23) for the

subset of I(1) variables in the US data panel and use the estimated parameters as DGP.

The only exceptions are the loading coefficients of the cointegration relations, α. These

are drawn from a uniform distribution around mean values [−0.5,−0.25,−0.125] in order

to assess the effects of error-correction strength. The idiosyncratic components of the data

are treated as serially independent and randomly drawn with replacement from empirical

residuals. The data are driven by factors simulated with the parameters from the estimated

factor VAR, combined with randomly drawn factor VAR residuals.

Our panel contains 54% of real variables and 46% of nominal variables. This relative

share is also preserved in the artificially generated data, i.e. out of N generated variables,

54% have parameters that are randomly drawn from the parameters pertaining to real

variables. The rest are randomly drawn from the parameters of the subset of nominal

variables.

We consider five different parameter configurations. The benchmark sample setup is

with T = 500 and N = 100, which corresponds to the dataset from which the parameters

used in the DGP are estimated. The benchmark mean value of the error-correction coeffi-

cient α is set to -0.50. We then vary the strength of error correction by setting the mean

α to -0.25 and -0.125 respectively. The remaining two modifications alter the sample size.

First, we halve the time series dimension to 250, and second we halve the cross-section

dimension to 50. The number of Monte Carlo replications is set to 100.

Comparison between the FECM and the FAVAR impulse responses is done in three

ways. First, we follow Olivei and Tenreyro (2010) who propose the use of the following

two statistics8

D = sup
t∈[1,h]

|IRFECM,t − IRFAV AR,t|, CD = |
∑
t∈[1,h]

IRFECM,t − IRFAV AR,t|.

We set h = 60 and compute the bootstrapped p-values of D and CD statistics using 100

bootstrap replication within each Monte Carlo iteration. In the bootstrap procedure we

first generate the factors by resampling the estimated innovations from the factor VAR

(keeping the other coefficients fixed). Resampled factors are then used in the FAVAR

equations with resampled idiosyncratic errors to generate the resampled observable vari-

ables that are used to estimate the FECM and the FAVAR parameters. The numer of

factors and the structure of the factor-VAR model and FECM equations are kept fixed in

the bootstrap procedure.

The second comparison is based on relative mean squared errors (MSE) of impulse

8We thank an anonymous referee for suggesting this test to us.
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responses to a permanent productivity shock.9 The third comparison is based on the

share of FECM impulse responses outside the bootstrapped FAVAR confidence intervals.

Table 1: Importance of the error-correction term - results of the Monte Carlo experiment
Horizon (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
α -0.50 -0.25 -0.125 -0.50 -0.50
T 500 500 500 250 500
N 100 100 100 100 50

Panel A: Olivei and Tenreyro test
Rejection frequency of equality of impulse responses

Sig. level (%) 5 10 5 10 5 10 5 10 5 10
D statistic 99.92 99.96 99.94 99.97 99.97 99.98 99.93 99.98 99.94 99.98
CD statistic 99.81 99.86 99.80 99.90 99.67 99.76 99.54 99.68 99.76 99.82

Panel B:Relative MSE - FECM/FAVAR
3 0.097 0.116 0.107 0.161 0.100
6 0.047 0.066 0.074 0.085 0.048
12 0.055 0.065 0.070 0.115 0.052
18 0.073 0.076 0.079 0.165 0.068
24 0.095 0.095 0.093 0.218 0.087
36 0.148 0.142 0.134 0.328 0.135
48 0.205 0.195 0.181 0.427 0.189
60 0.256 0.243 0.225 0.507 0.239

Panel C:% of FECM responses outside the FAVAR conf. intervals
Confidence interval coverage (%)

67 90 67 90 67 90 67 90 67 90
3 78.14 56.93 77.69 56.31 71.53 46.67 72.83 50.27 82.6 66.56
6 94.05 89.08 92.73 86.18 90.91 83.64 90.90 84.85 94.8 91.62
12 97.62 95.66 96.83 94.7 96.46 93.89 96.29 93.68 98.24 96.70
18 98.27 96.98 98.23 96.75 97.52 95.83 97.83 96.23 98.76 97.62
24 98.85 97.99 98.61 97.58 98.05 96.72 98.2 96.73 99.04 98.38
36 99.10 98.29 99.09 98.23 98.53 97.35 98.73 97.85 99.36 98.72
48 99.22 98.53 99.00 98.28 98.97 97.96 98.89 98.23 99.52 99.04
60 99.28 98.84 99.21 98.71 99.02 98.18 99.08 98.45 99.48 99.04

The results of the Monte Carlo experiment are presented in Table 1. The Olivei

and Tenreyro (2010) tests are reported in Panel A, which shows the rejection frequencies

of the hypothesis that the FECM and the FAVAR produce the same impulse responses

at bootstrapped 5% and 10% critical values respectively. For both statistics the rejec-

tion frequencies are close to 100%, which clearly outlines the importance of the error-

correction mechanism for impulse response analysis.10 The effect of the strength of the

error-correction can be evaluated by comparing the benchmark parameter specification in

columns 1 and 2 to columns 3 to 6 that report the simulation results with weaker degree of

error correction. As expected, we can observe that the shares of FECM impulse responses

and the rejection frequencies of the Olivei and Tenreyro test uniformly decrease with the

strength of error-correction. These reductions, however, are not large, which indicates that

even a relatively weak but genuine error-correction mechanism significantly affects impulse

response analysis. The rejection frequencies of the Olivei and Tenreyro test marginally

decrease with both N and T according to the CD statistic, and even slightly increase for

the D statistic.

9Computation of relative mean-squared errors is based on 1000 Monte Carlo replications.
10As a robustness check, we considered some modifications to the basic data-generating process. In

particular, the FECM in the simulation experiment contains 3 endogenous lags (uniform across equations),
while the factors enter contemporaneously and with one lag. We repeated the same experiment also with
one and three of both endogenous lags and lags of factors. The results, available upon request, are robust
and fully in line with those presented in Table 1.
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Panel B of Table 1 reports relative MSEs averaged over impulse responses of N vari-

ables to an identified permanent productivity shock. The FECM in general produces

considerably lower MSEs, which can be largely attributed to the fact that the FAVAR

impulse responses are biased due to omission of the error-corrections terms. With weaker

error-correction strength relative MSEs increase uniformly across the impulse response

horizons. The same is the effect of sample size, both along the time-series and cross-

section dimensions, which is also in line with expectations.

Finally, Panel C of Table 1 reports the share of FECM responses outside the FAVAR

confidence intervals. While this exercise does not take into proper account the uncertainty

around the FECM responses, it provides additional evidence of the severe effects of omit-

ting error correction terms in FAVARs. At short horizons over 78% of FECM responses

lie outside the FAVAR 67% confidence intervals for the benchmark DGP specification,

while the corresponding share for the 90% confidence interval is 56%. The shares increase

with the horizon towards almost 100%. The effect of error-correction strength is again as

expected: weaker error-correction results in smaller shares of FECM responses outside the

FAVAR confidence intervals. The effect of sample size is not uniform across dimensions.

Smaller T results in less pronounced differences between the models, while for a smaller

N the differences appear to be more frequent.

Overall, this simulation experiment confirms the relevance of the inclusion of error

correction terms in FAVAR models, suggesting that their omission can have sizeable effects,

also in rather small panels and with error-correction mechanisms of moderate strength.

6 Empirical applications

In this section we illustrate the use of the FECM in identification of permanent productiv-

ity shocks using the identification scheme proposed in Section 3.3. The use of the FECM

for structural analysis is illustrated further with an example of identification of monetary

policy shocks using contemporaneous restrictions as in Bernanke et al. (2005). In both

applications we focus on the empirical importance of the error-correction mechanism for

the analysis of structural shocks.

We use a US dataset containing 128 monthly series over the period 1959:1 - 2014:7.11

The source of data is FRED (see McCracken and Ng, 2015). In determining the order

of integration of variables we follow McCracken and Ng (2015). The only exception are

prices, for which we follow Bernanke et al. (2005) and treat them as I(1) instead of

I(2). However, our main results about the importance of error-correction, available upon

request, are robust to treating prices as I(2). Overall, the dataset contains 114 I(1) series

11The results in Bai and Ng (2006) for the use of estimated factors not to lead to a generated regressor
bias requires N to be relatively large with respect to

√
T . In our dataset T > N and

√
T/N approximately

0.2. We use the dataset as it is, as representative of large panels of macroeconomic data. A detailed
investigation of a potential generated regressor problem for our particular empirical analysis is beyond
the scope of the paper, but given the dimensions of our dataset we think it is not likely to represent a
significant problem.
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and 14 I(0) series. Each series is also tested for the presence of a deterministic trend and,

if detected, the series are detrended prior to estimating the FECM equations.12

The space spanned by Ft and Gt is estimated by the method of Bai and Ng (2004)

that is consistent in presence of I(1) idiosyncratic components. Principal components are

extracted from the data transformed to I(0) and then cumulated. The Bai and Ng (2002)

criteria provided a relatively poor guide to selection of the total number of static factors q,

signalling the maximum number in the search range. For comparability with our previous

analysis with US data in Banerjee et al. (2014a) we set the total number of factors to

4. As a robustness check we replicated our analysis with up to 7 static factors. In all of

the cases the Amengual and Watson (2007) approach indicates the number of dynamic

factors to be equal to the number of static factors. Impulse response functions turn out to

be broadly robust to the number of factors used in the analysis (see next Section 6.1 for

more details and on-line Appendix B). Applying the Johansen trace test (Johansen, 1995)

to system (19) indicates two non-stationary factors, i.e. r1 = 2. This results is robust

to the choice of the total number of factors r. Moreover, applying the Bai (2004) IPC2

information criterion to I(1) data also indicates r1 = 2. Overall, these results indicate that

working with two I(1) factors in our empirical application appears to be a sensible choice.

Our data contain both I(1) and I(0) variables, which we model in the following way.

Denote by X1
it the I(1) variables and by X2

it the I(0) variables. The empirical FECM is

then

∆X1
it = αi(X

1
it−1 − ΛiFt−1) + Λ1

i (L)∆Ft + Φ1
i (L)Gt + Γ1(L)∆X1

it−1 + v1
it (26)

X2
it = Λ2

i (L)∆Ft + Φ2
i (L)Gt + Γ2(L)∆X2

it−1 + v2
it (27)

The model for the I(1) variables in (26) is the FECM, while the model for the I(0) variables

in (27) is a standard FAVAR. The FAVAR model does not contain the error-correction

mechanism in the ∆X1
it equations

∆X1
it = Λ1

i (L)∆Ft + Φ1
i (L)Gt + Γ1(L)∆X1

it−1 + v1
it,

while the equations for X2
it are the same as those in (27).

The lag structure of the models is the following. Both the FAVAR model and the FECM

contain three endogenous lags, while the factors enter contemporaneously and with one

additional lag. This additional lag of factors serves to proxy for potentially omitted lags

of Xj variables in equations for Xi, i 6= j. Robustness of the results has been checked

by varying the number of endogenous lags from 1 to 6, and lags of factors from 0 to 3.

Results turn out to be robust and are available upon request.

For the VAR for the factors we set the number of lags to 4 as indicated by the HQ

12The data are seasonally adjusted at source. In addition, we screened the data for outliers. Observations
exceeding six times the inter-quartile range were removed and replaced by the median of 5 preceding
observations.
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Figure 1: Impulse responses to real stochastic trend in the US- FAVAR Vs FECM
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and BIC information criteria. This resulted in a statistically well-specified model without

residual autocorrelation.

To provide prima facie evidence of the importance of the error-correction terms in

(26) we tested their significance with a standard t-test equation by equation. 77 and 91

out 114 equations have a statistically significant αi at the 5% and 10% significance level

respectively.

6.1 Impulse responses to permanent productivity shocks

We first present the analysis of structural permanent productivity shocks with correspond-

ing impulse responses in Figure 1. The top left panel contains the response over time of

the real permanent productivity trend.13 Each sub-plot contains the impulse responses

obtained with the FECM (solid line) and the FAVAR (dashed line) together with 90%

bootstrapped confidence intervals of the FAVAR impulse responses.14

The impulse responses are broadly in line with economic theory. Along the adjustment

path the real factor exhibits a hump-shaped response and after four years it levels off at

the new higher steady state. Similar in shape are the positive responses of industrial

production and measures of real private consumption and orders. Prices increase, which

is in line with the DSGE evidence on the effect of permanent productivity improvements

(Adolfson et al, 2007). The feature is exhibited also for other prices in the panel, but the

corresponding impulse responses are not presented in Figure 1. Interest rates gradually

13Impulse responses for the remaining 107 variables of the panel are available upon request.
14The bootstrap procedure resamples factors and the observation equations as described in Section 5.

In the construction of confidence intervals we follow Hall (1992) (see also Lütkepohl, 2005). We tried also
bias correction as in Killian (1998), which resulted to perform rather poorly. The reason is the fact the the
factor VAR in our case contains exactly r1 unit roots, which are not preserved in general, which results in
inconsistency of the bias correction procedure.
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increase both in the short and longer end of the yield curve, reflecting an increase in real

rates associated with an increase in productivity. The responses of money related variables

are negative, but with quite pronounced differences between the FECM and the FAVAR.

Consistently with higher interest rates, the dollar appreciates. Employment increases

along the adjustment path, while unemployment rate temporarily decreases. The average

wage rate also steadily increases in line with increased productivity. The positive effect

on housing starts and the stock market index is only temporary, probably reflecting the

effect of higher interest rates.

Figure B.1 in on-line Appendix B presents a robustness check of our results with

respect of the number of estimated factors. In particular, we considered 4 to 7 factors.

Results reveal a high degree of robustness of impulse responses of all major variables

that measure output, demand, prices and labor market variables. Some heterogeneity is

observed predominantly for financial variables.

To facilitate a structural interpretation of the identified real permanent shocks, one

can compare our impulse responses with the impulse responses reported by Adolfson et

al. (2007) for an estimated DSGE model. The model of Adolfson et al. (2007) contains

a stochastic productivity trend, which allows them to estimate the model on raw, non

detrended data. Their impulse responses to a positive and permanent productivity shock

(see Figure 5a in Adolfson et al., 2005) share a great degree of similarity with our impulse

responses. The signs of responses are matched for most of the variables we report in

Figure B.2 in on-line Appendix B. Measures of economic activity respond positively, as do

prices and interest rates, wages increase and, finally, the real exchange rate appreciates.

The stochastic trend response for the US case is different in its basic shape, namely,

hump-shaped, but conditional on this feature, the adjusting dynamics of other variables

are very comparable. Such direct comparability of basic shapes of the responses allows

us to interpret the real permanent shocks identified with our approach as the structural

permanent productivity shocks.15

6.2 Impulse responses to monetary policy shocks

The FECM can be used with other identification schemes. We illustrate this by replicating

the analysis of Bernanke et al. (2005) in our framework. In particular, the federal funds

rate is imposed as an observed factor in a 4-dimensional factor space. To account for

the zero-lower bound, from mid-2009 the federal funds rate is replaced by the shadow

short rate estimated by Wu and Xia (2016), who use it in an extension of the analysis of

Bernanke et al. (2005). The identification of monetary policy shocks is obtained with a

15Barigozzi et al. (2016b) provide impulse responses of GDP, consumption and investment to a perma-
nent real shock using quarterly US data and one I(1) factor. Their identification scheme differs from ours
as it does not involve restrictions on long-run effects on observable variables. Their responses (presented
with narrower, 68% confidence intervals) exhibit very pronounced hump-shaped responses reaching a peak
one quarter after the shock, subsequently sharply decreasing and levelling off at a level lower than the
initial change. Relative to the FECM such impulse responses show a smaller degree of similarity with the
DSGE evidence.
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Figure 2: Impulse responses to a monetary policy shock in the US - FAVAR Vs FECM
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lower-triangular structure for the matrix H in (25), with the federal funds rate ordered

last in the factor VAR (20).16

What we observe is coherence in terms of the basic shape of the impulse responses be-

tween the FAVAR and the FECM and in line with economic priors about the effects of a

contractionary monetary policy shock. Industrial production, private consumption capac-

ity utilization and employment decline, while the unemployment rate increases. Housing

investment and manufacturing orders also decline, as expected from monetary contrac-

tions. The impulse response of the CPI exhibits an initial price puzzle, but prices eventu-

ally significantly and permanently decline. A decline in the wage rate is also in line with

economic theory. We can also observe that the change in the federal funds rate strongly

feeds into the yield curve, while the dollar appreciates.

6.3 Empirical relevance of the error-correction mechanism

From Figures 1 and 2 we can already observe that for some variables the impulse re-

sponses of the FECM and the FAVAR can be different, confirming the importance of

error-correction mechanisms for impulse response analysis. This is especially evident for

16The purpose of presenting the analysis of monetary policy shocks is to provide an additional illus-
tration of the importance of the error-correction mechanism for structural analysis with dynamic factor
models. Our aim is not a discussion of schemes for identification of monetary policy shocks. The weakness
of the Bernanke et al. (2005) scheme is that the contemporaneous restrictions are imposed on the latent
factors and not observable variables. Forni and Gambetti (2010) overcome this deficiency and identify
monetary policy shocks by imposing contemporaneous restrictions on a small number of observable vari-
ables. Barigozzi et al. (2016b), alternatively, identify monetary policy shocks by imposing sign restrictions
on the contemporaneous responses of the federal funds rate, GDP and CPI.
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the case of the monetary policy shock. The figures, however, report impulse responses for

only a small subset of variables in the panel, and do not show the confidence bands for

the FECM. Fuller account of the empirical effects of the error-correction terms is given in

Table 2, which presents a summary of the results of the Olivei and Tenreyro (2010) test

for impulse responses of all 114 variables for both the case of real permanent shock and

the monetary policy shock. Entries to the Table are the percentages of variables within

a given group of variables for which the impulse response obtained with the FECM are

statistically differenct from those of the FAVAR at 10% significance level.

Across all 114 variables about 34% of impulse responses to a permanent productivity

shock are significantly different according to the D statistic and 29% according to the

CD statistic. For the case of the monetary policy shocks these shares are even higher,

almost 50% and 43% respectively. Such test results clearly indicate the importance of the

error-correction mechanism in impulse response analysis.

Table 2 also indicates that the importance of error-correction mechanism is not uniform

across variables. In the case of the permanent productivity shock, above-average shares

of statistically significant differences in impulse responses are detected for employment

indicators, private consumption, monetary aggregates and wages. Little or no differences

are detected for interest rates and housing variables. For output and prices about a quarter

of responses are statistically different. Higher shares of statistically different responses of

employment and wages are evidenced also in the case of the monetary policy shock. More

importantly, however, we can observe substantial differences also for groups of variables

of key interest in the analysis of the transmission mechanism of monetary policy: interest

rates and prices indexes. For these two groups of variables the shares of significantly

different responses exceeds 50%.

Table 2: Olivei and Tenreyro (2010) test of the difference between FECM and FAVAR
impulse responses (share of statistically different response at 10% significance level (in %))

Permanent Monetary
productivity shock policy shock

Variables D statistic CD statistic D statistic CD statistic

All 34.2 28.9 49.6 43.4
Output 26.7 26.7 46.7 26.7
Employment 44.8 41.4 65.5 62.1
Consumption 80.0 50.0 20.0 20.0
Housing 14.3 14.3 28.6 28.6
Interest rates 0.0 0.0 62.5 62.5
Exchange Rates 25.0 25.0 25.0 25.0
Stock Prices 25.0 25.0 0.0 25.0
Money 38.5 38.5 38.5 23.1
Wages 33.3 33.3 100.0 100.0
Prices 25.0 15.0 60.0 50.0
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7 Conclusions

In this paper we analyse the implications of cointegration for structural FAVAR mod-

els. Starting from a dynamic factor model for non-stationary data, we derive the factor-

augmented error-correction model (FECM), its moving-average representation, and dis-

cuss estimation of the model parameters and of the impulse response functions, relying

on the asymptotic theory developed in Bai and Ng (2004), which allows for some I(1)

idiosyncratic components.

Structural analysis in the FECM can be conducted as in structural VARs. We provide

the first analysis of long-run restrictions to identify a permanent productivity shock in

the context of large cointegrated panels. Accounting for cointegration has important

effects on the impulse responses to this shock as it reveals significant differences between

the FECM and the FAVAR for about one third of the variables. Moreover, the FECM

generates responses broadly in line with the theoretical DSGE analysis of, e.g., Adolfson

et al. (2007). For the case of impulse responses to an identified monetary policy shock

the share of significant differences between the FECM and the FAVAR is even higher.

The relevance of the error correction terms to avoid biases in FAVAR responses to

shocks is also confirmed by means of simulations experiments. Simulation results show

that the differences between the impulse response functions obtained by the FECM and the

FAVAR are on average more pronounced the higher is the strength of the error-correction

and the higher are the cross-section and the time series dimensions of the panel. Moreover,

the differences in impulse responses are frequent also in samples of moderate size and with

moderate strength of the error-correction mechanism.

Overall, these results suggest that the FECM that exploits the information in the levels

of nonstationary variables to explicitly model cointegration provides an empirically impor-

tant extension of classical FAVAR models for structural modelling. Other identification

schemes such as sign restrictions could be also adopted in a FECM context. A detailed

analysis of these is beyond the scope of this paper but provides an interesting topic for

further research.
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