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Richard. D. Horniblow,1 Daisy Henesy,1 Tariq H. Iqbal,1 and Chris Tselepis*1 

1  
Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, England UK. 

* Address for correspondence: Dr Chris Tselepis, Institute of Cancer and Genomic Sciences, 

University of Birmingham, Vincent Drive, Birmingham, B15 2TT England.   

Email: c.tselepis@bham.ac.uk. Tel: +44 121 414 8665 

 

Abbreviations: C3G (Cyanidin-3-O-glucoside), FER (Ferritin), GPX4 (Glutathione 

peroxidase 4), IBD (Inflammatory Bowel Disease), IRP2 (Iron Regulatory Protein 2), ITC 

(Isothermal Titration Microcalorimetery), LIP (Labile Iron Pool), M (Media), Q (Quercetin), 

ROS (Reactive Oxygen Species), TfR1 (Transferrin Receptor 1). 
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ABSTRACT  

SCOPE:  Excess free-iron is detrimental to health through its ability to participate in free 
radical generation and amplification of oncogenic pathways. The study aims were to identify 
polyphenols with iron-chelating potential. 

METHODS AND RESULTS: Of four polyphenols tested quercetin demonstrated potent iron 
binding with the physiological outcome dictated by the location of interaction. In the presence 
of extracellular iron and quercetin, ferritin expression and cellular iron concentrations 
decreased suggesting the resulting quercetin-iron complex is not internalised. However, in 
the relative absence of extracellular iron, quercetin becomes internalised and complexes 
with both intracellular iron, and iron which subsequently becomes absorbed as indicated by 
increased cellular 59Fe post pre-culture with quercetin. This increased intracellular iron 
complexed to quercetin does not associate with the labile iron pool and cells behave as 
though they are iron-deficient (increased transferrin receptor-1 and iron regulatory protein-2 
expression and low ferritin expression). Additionally, a suppression in reactive oxygen 
species was observed. 

mailto:c.tselepis@bham.ac.uk
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CONCLUSION:  Quercetin, an exogenous iron chelator, is able to render the cell functionally 
iron-deficient which not only provides a therapeutic platform for chelating excess free luminal 
iron but also may be of use in limiting processes like cancer-cell growth, inflammation and 
bacterial infections, which all require iron. 

 

 

INTRODUCTION 

Whilst iron is essential for life, excess free-iron is linked to a range of disorders including 

neurodegenerative diseases, cardiovascular disease and cancer.[1-3]  The mechanism of 

free-iron (non-ligated/ non-chelated iron) toxicity is attributed to its ability to react with 

peroxide and superoxide under physiological conditions and catalyse the formation of the 

pro-inflammatory hydroxyl radical.[4]  Thus, unsurprisingly, high levels of free-iron in the 

gastro-intestinal tract is associated with disease.[5-7]  Since 0.7 – 22.9 % of ingested dietary 

iron is absorbed at the small bowel for nutrition, the remaining iron resides within the lumen 

of the bowel for hours to days.[8]  As a consequence, this ‘luminal pool’ of iron has been 

identified as a toxic agent implicated in intestinal disease.[9, 10]  Most notably two murine 

studies have shown that removal of dietary iron from models of inflammatory bowel disease 

(IBD) and intestinal cancer resulted in a suppression of disease phenotype, whilst 

consumption of excess dietary iron exacerbated the conditions.[5, 9]  However, how this pool 

of iron is involved in disease is less clear, though it seems likely that iron-mediated reactive 

oxygen species (ROS) generation is a contributing factor.[11-14]  Previous reports have also 

implicated iron in the Wnt signalling pathway, where iron has been demonstrated to amplify 

Wnt signalling and iron chelators inhibit.[15, 16] Thus, the use of a compound that 

neutralises this pool of free-iron, through iron chelation, represents a therapeutic 

platform in the prevention of these gastro-intestinal diseases.  If such compounds 

elicited additional, intracellular iron modulation effects, such a strategy could also be 

useful in treating a number of other pathologies (including cancer, hereditary 
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haemochromatosis and malaria) since the processes which underpin these conditions 

(cell growth, inflammation and infection) are reliant upon free-iron.[1, 17, 18]  

There are a number of dietary agents including polyphenolic compounds which are able to 

either bind iron and/or have anti-oxidant properties.[19, 20]  Polyphenols found in fruits and 

vegetables possibly have multiple actions in preventing disease by; i) chelating iron to stop 

the catalysis of ROS, ii) binding iron to supress iron-mediated processes and iii) scavenging 

any ROS present in a direct anti-oxidant manner.[21-23]  Polyphenolic compounds have a 

range of chemical moieties, and previous literature suggests that iron chelation is likely to 

take place when i) ortho-dihydroxyl groups; ii) C5-OH and/or C3-OH moieties in conjunction 

with a C4 keto-group; and iii) a large number of OH groups are present.[24] In addition, there 

is a plethora of evidence highlighting their usefulness as anti-oxidants.[21, 25-27]  Whether 

this radical-scavenging activity would occur within colonic cells is unknown and their impact 

on iron metabolism within colonocytes is also yet to be determined.  Polyphenolic 

compounds have been documented to be unstable and labile towards microbial metabolism 

within the gastro-intestinal tract, hence any compounds identified with iron chelating 

properties would need to be administered as a supplement, and targeted solely to the colon 

to ensure bioactivity and avoid interfering with small bowel iron absorption.[28] 

Thus the aim of this study was to examine four polyphenols all found in the human diet  

(quercetin, rutin, cyanidin-3-O-glucoside and catechin) with documented evidence of 

presence within the colon[29] and determine their iron binding capacity, impact on 

colonocyte iron metabolism and effect on iron mediated free radical generation.  This 

experimental approach will provide insight into the selection of a polyphenol that could be 

used to combat free-iron mediated disease, including gastro-intestinal disease. 

MATERIALS AND METHODS 

Isothermal Titration Microcalorimetry  
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Quercetin, rutin, and catechin were dissolved in Dimethyl Sulphoxide (DMSO), whilst 

cyanidin-3-O-glucoside was reconstituted in Deionised (DI) H2O producing a 0.05 M stock 

solution. Polyphenols (0.05 mM) were diluted in potassium phosphate buffer (0.1 M, pH = 7).  

Both iron chloride and ferrous sulphate solutions (0.5 mM) were prepared by dissolving 

FeCl3∙6H2O and FeSO4∙7H2O in aqueous HCl (0.1 M) respectively.  Measurements were 

performed on a VPITC MicroCalorimeter and were analysed using MicroCal LLC ITC/Origin 

software package.[30] 

Cell culture  

RKO cells (ATCC), an established colon carcinoma derived cell line of epithelial origin, were 

grown in Dulbecco’s Modified Eagles Medium (DMEM) supplemented with Foetal Calf 

Serum (10 % v/v), penicillin (100 U ml -1) and streptomycin (0.1 mg mL -1) and were routinely 

checked for mycoplasma infection.  The iron within the FCS supplemented media is bound 

to transferrin and other iron-binding proteins, and thus there is negligible free-iron available.  

Cells were seeded into either 6, 12 or 96 well plates at 1 X 105 cells mL-1 (2 mL, 1 mL and 

100 µL  for each well type respectively) and cultured in growth medium for 24 hours prior to 

experimentation.  

In order to manipulate polyphenol and iron culturing regimens, two variations were 

performed:  

i) Iron and polyphenol simultaneously present within the culture media: 

RKO cells were challenged with iron supplemented growth media containing 

iron (FeSO4∙7H2O, 100 μM) and sodium ascorbate (5 mM) with or without 

polyphenol supplementation (0 - 200 μM) simultaneously.   

ii) Cells were pre-cultured with polyphenol prior to culture with iron: RKO 

cells were co-cultured with polyphenol (200 μM) for 12 hours before this 
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media was removed, cells washed, and then co-cultured with iron 

(FeSO4∙7H2O, 100 μM) and sodium ascorbate (5 mM) for 24 hours.   

After these subsequent incubation periods, cells were washed in Phosphate Buffered 

Saline (PBS) and lysed for further analysis according to the specific experiment.  The 

use of sodium ascorbate with iron in a 50:1 iron: ascorbate ratio ensures that all 

supplemented iron is in a soluble ‘free’ state and not precipitated as aggregates. 

 

 

Western blotting  

Cells were lysed in RIPA lysis solution (4-Nonylphenyl poly(ethylene glycol) (1 % w/v), 

sodium deoxycholate (0.5 % w/v), sodium dodecyl sulphate (0.1 % w/v)) on ice.  Cell lysates 

were sonicated for 5 sec and protein concentrations determined using a protein assay 

(Pierce, BCA assay).  Cell lysates were then subject to Western blotting as previously 

described.[31] Primary antibodies used were Ferritin light-chain (Abcam AB69090, 1:5000 

dilution), β-actin (Abcam AB8226, 1:5,000 dilution), TfR1 (Invitrogen, H68.4, 1:1000), IRP2 

(Cell Signalling Technology, #37135, 1:200) and GPX4 (Abcam, AB125066, 1:1000). 

59Fe radioisotope studies  

Cells were seeded into 12 well plates and incubated for 24 hours before growth medium was 

replaced with conditioned media as described above (for radioisotope studies the iron 

supplemented growth media was spiked with 59FeCl3 to reach ca. 10,000 counts per minute 

(CPM) per well.).  After this incubation period, cells were washed in Versene (0.2 g L-1 in 

PBS) and lysed in HEPES-saline lysis buffer (150 μL, 10 mM, pH 7.4, NaCl (0.9 % w/v)).  

Radioactivity was counted by mixing cell lysate sample with scintillation fluid (PerkinElmer) 

and radiation CPM were normalised to protein concentration as determined using a protein 

assay.  
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Reactive oxygen species assay  

Two variations of this experiment were carried out as follows 

i) Iron and Polyphenol simultaneously present within the media: RKO cells (1 

X 104) were incubated for 24 hours with standard growth medium in 96 well 

plates. Cells were then washed with PBS after which the ROS ligand (Cm-

H2DCFDA, Lifetechnologies, 5 μM, 100 μL) was added for 1 hour.  A baseline 

reading was taken (t=0) at λ = 485/535 nm.  The ROS ligand conditioned media 

was then removed, and cells washed with PBS before the addition of the 

quercetin (20 μM) containing media with or without iron.  Samples were analysed 

at 3, 12 and 24 hours.  

ii) Iron pre-culture followed by quercetin incubation:  RKO cells (1 X 104) were 

incubated for 12 hours with standard growth medium in 96 well plates before the 

addition of iron supplemented media (FeSO4∙7H2O,100 μM) with sodium 

ascorbate (5 mM) and cultured for a further 12 hours.  The iron supplemented 

medium was then removed, cells washed and ROS ligand added to cells for 1 

hour. Cells were then treated as above in (i).  

In each experiment, a control plate containing polyphenol only with no cells was prepared 

such that the absorption arising from the polyphenols could be subtracted. 

Labile Iron Pool Fluorescence-activated cell sorting  

RKO cells (1 X 104) were incubated for 24 hours with standard growth medium in 6 well 

plates.  Prior to experimentation, cells were loaded with the fluorescent dye Calcein AM 

(Corning).  Cells were cultured with Calcein AM (0.0625 μM) for 15 mins at 37 °C in PBS.  

Calcein-AM was removed from the cells, washed X2 with PBS and subsequently co-cultured 

with either quercetin (200 μM) or FeSO4∙7H2O (100 μM) as described above.  At the end of 

the culture period media was removed, cells washed X2 with PBS, trypsinised and 
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centrifuged (600 RPM, 5 min). The cell pellet was re-suspended in PBS and re-centrifuged. 

The cell pellet was then finally re-suspended in PBS (150 µL), and analysed for mean 

fluorescence intensity in FL-1 on an Accuri-C6 flow cytometer (BD).   

Data and statistical analysis 

All experiments were performed in triplicate unless otherwise stated.  ITC data fitting was 

performed using the MicroCal LLC ITC/Origin software package according to the model of 

best fit for each data set.[30]  Data were analysed by Student’s t-test and analysis of 

variance where appropriate.  Values are presented as the means of triplicates with error bars 

representing standard error of the mean (SEM). 

RESULTS 

Characterisation of iron binding to polyphenols as assessed by isothermal titration 

microcalorimetry 

To probe the interaction of iron with the polyphenols Isothermal Titration Micro-Calorimetry 

(ITC) was employed under physiological conditions.  Ferric iron or ferrous iron was titrated 

into polyphenol at a temperature of 37 °C.  Isotherms were fitted using models of host-guest 

interactions (Figure 1).  Results demonstrate that quercetin binds both ferrous and ferric iron 

and the number of binding sites on quercetin was calculated to be N = 0.63 ± 0.0163 and 

1.16 ± 0.0261 (for ferrous and ferric iron respectively), indicating one preferred iron binding 

site on quercetin (Figure 1A).  Iron binding constants were estimated to be K = 8.3 x 105 M-1 

and 3.86 x 106 M-1 for ferrous and ferric iron binding respectively.  Iron binding by rutin could 

only be demonstrated with ferrous iron with no evidence of ferric iron binding (Figure 1B).  

Isotherms for ferrous iron interactions with rutin indicated two binding sites with K values of K 

= 3.2 x 108 M-1 and K = 2.2 x 104 M-1.  For both cyanidin-3-O-glucoside and catechin, no 

appreciable iron binding parameters could be obtained (Figure 1C-D).  Table 1 summarises 

the iron binding properties found under these physiological conditions. 
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Effect of polyphenol on cellular ferritin expression  

To assess effects of polyphenols on cellular iron metabolism, colonic epithelial (RKO) cells 

were challenged with iron in the presence or absence of polyphenols (quercetin, rutin, 

catechin and cyanidin-3-O-glucoside) at a range of concentrations (0-200 μM).  In these 

experiments, iron and polyphenols were both simultaneously present in the media. After 24 

hours, cellular ferritin protein expression was evaluated as a surrogate marker for 

intracellular iron concentrations by Western blotting (Figure 2).  As expected, treating cells 

with iron in all cases resulted in significant increases in ferritin protein expression (p < 0.001 

for all) (Figure 2A-D).  This iron mediated induction in ferritin protein expression was 

significantly suppressed by 51 % when cells were co-cultured with quercetin at 200 μM 

compared to the iron only control (p < 0.05) (Figure 2A). Similarly co-culture with rutin at 200 

μM also significantly suppressed the iron mediated ferritin response by 54 % (p < 0.05) 

(Figure 2B). In support of the isothermal titration microcalorimetry results the polyphenols 

cyanidin-3-O-glucoside and catechin had no effect on the iron mediated induction in ferritin 

expression (Figure 2C-D), since they demonstrated no iron binding ability under these 

conditions. 

Effect of quercetin and rutin on intracellular iron 

To delineate whether the binding observed between the polyphenols quercetin and rutin 

impacted on intracellular iron levels in colonocytes, RKO cells were challenged with 59Fe and 

as before cells cultured with or without quercetin and rutin (Figure 3).  Analogous to above, 

iron and polyphenols were both simultaneously present in the media. 

Co-culturing with quercetin at 200 μM and 59Fe demonstrated a suppression in intracellular 

iron acquisition compared to cells challenged with iron alone (21 %, p < 0.05) (Figure 3A). 

However, co-culture with rutin at 200 μM resulted in a significant induction in cellular iron 

acquisition compared to cells cultured with iron alone (78 %, p < 0.05) (Figure 3B). 
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Effect of quercetin pre-culture on cellular iron levels 

Co-culture of quercetin in the presence of iron reduces cellular iron concentrations and 

consequently results in a diminished iron-induced ferritin response presumably by binding 

iron extracellularly and inhibiting its cellular import.  However, in subsequent experiments the 

effect quercetin might have on cellular iron metabolism when there is no extracellular iron 

present was examined.  To address this, cells were pre-cultured with quercetin, cells washed 

and then subsequently co-cultured with iron.  Exposure of colonocytes to quercetin and then 

subsequent co-culture with 59Fe increased the total intracellular 59Fe concentrations 

compared to cells that were a) pre-cultured with media alone followed by culturing with 59Fe 

(64 % p < 0.0001) and b) pre-cultured with iron followed by further culture with 59Fe (30 % p 

< 0.01) (Figure 4A).  

Since pre-culture with quercetin induced total cellular iron we next investigated whether the 

labile iron pool was similarly impacted. Quercetin co-culture alone (with no exogenous iron) 

resulted in a marked suppression in the labile iron pool (125 %, p < 0.005) as assessed 

using FACS (Figure 4B).  Pre-culture with quercetin followed by iron for 24 hours surprisingly 

resulted in a significant reduction in the labile pool relative to cells not exposed to a quercetin 

pre-culture (38 %, p < 0.005) (Figure 4C) and as expected, treating cells with iron alone 

significantly increased the labile iron pool relative to unchallenged cells (28 %, p < 0.01) 

(Figure 4C). 

Effect of quercetin on the expression of iron metabolism proteins by Western blotting 

Since pre-culture with quercetin elevated intracellular iron levels but suppressed the labile 

iron pool, the impact on cellular iron transport machinery was examined by Western blotting 

(Figure 5A-D). 

TfR1 Protein Expression 
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Exposure to quercetin and subsequent co-culture with iron resulted in increased TfR1 

protein expression compared to cells a) pre-cultured with media alone and then co-cultured 

with iron (49 %, p < 0.01) and b) pre-cultured with iron followed by further culture with iron 

(44 %, p < 0.05).  Continuous culture with quercetin also resulted in increased TfR1 protein 

expression compared to unchallenged control cells (68 %, p < 0.05) (Figure 5A). 

Ferritin Protein Expression 

Exposure to quercetin and then subsequent co-culture with iron resulted in decreased ferritin 

protein expression compared to cells a) pre-cultured with media alone and then co-cultured 

with iron (44 %, p < 0.05) and b) pre-cultured with iron followed by further culture with iron 

(57 %, p < 0.05).  Continuous culture with iron as expected resulted in a significant induction 

in ferritin protein expression compared to control cells cultured in media alone (112 %, p < 

0.001) (Figure 5B)  

IRP2 Protein Expression 

Since both TfR1 and ferritin protein expression are known to be regulated by the iron 

regulatory protein 2 (IRP2) the expression of IRP2 was also examined.  Exposure to 

quercetin and then subsequent co-culture with iron resulted in increased IRP2 protein 

expression compared to cells a) pre-cultured with media alone followed by iron (55 %, p < 

0.05) and b) pre-cultured with iron followed by further culture with iron (28 %, p < 0.05).  

Continuous culture with quercetin also resulted in increased IRP2 protein expression 

compared to unchallenged control cells (137 %, p < 0.0001) (Figure 5C).  

GPX4 Protein Expression 

Glutathione Peroxidase 4 (GPX4) a known anti-oxidant enzyme associated with ROS was 

examined.  Culture with quercetin and then subsequent co-culture with iron resulted in 

decreased GPX4 protein expression compared to cells a) pre-cultured with media alone 

followed by iron (33 %, p < 0.005) and b) pre-cultured with iron followed by further culture 
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with iron (17 %, p < 0.05). Continuous culture with quercetin also resulted in decreased 

GPX4 protein expression compared to unchallenged control cells (36 %, p < 0.05) (Figure 

5D). 

Quercetin anti-oxidant effects  

To examine the antioxidant effects of quercetin and to address whether its antioxidant nature 

was attributed to its iron chelating potential, the cellular levels of ROS (Figure 6A-C) and 

expression of GPX4 were determined (Figure 6D) using both FACS and Western blotting 

respectively.  RKO cells were co-cultured with quercetin or media only and intracellular ROS 

levels measured (Figure 6A).  Quercetin significantly reduced intracellular ROS by 67, 45 

and 33 % (at 3, 12 and 24 hours respectively) compared to control (all p < 0.05) (Figure 6A).  

When quercetin was co-cultured in the background of exogenous iron, quercetin was still 

able to suppress intracellular ROS concentration by 45 and 20 % (at 3 and 12 hour time 

points) compared to the iron supplemented media control (p < 0.05) (Figure 6B) (at 24 hours 

this reduction was 9 %, p = 0.06). When cells were pre-cultured with iron followed by culture 

with quercetin the level of ROS was dramatically reduced by 58, 44 and 44 % at 3, 12 and 

24 hours respectively (all p < 0.05) compared to cells pre-cultured with iron alone (Figure 

6C). These changes in detectable levels of cellular ROS were reflected in the expression of 

GPX4 (Figure 6D).  Levels of GPX4 protein were significantly lower when comparing cells 

pre-cultured with iron and then challenged with quercetin compared to cells continually 

cultured with iron (49 %, p < 0.01)). In addition the levels of GPX4 protein were significantly 

suppressed when cells were cultured with quercetin compared to unchallenged cells (46 %, 

p < 0.005) (Figure 6D). 

DISCUSSION  

Previous reports in murine models have shown that the cytotoxic effects of excess dietary 

iron contribute to an inflammatory state within the lumen of the colon.[5, 9]  The detrimental 

properties of free-iron can be attributed to its ability to catalyse the formation of reactive 
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oxygen species.[12]  A recent report suggests that iron in conjugation with bile acids, K-

vitamins and oxygen interact to induce an oncogenic effect in the colon, via the generation of 

free radicals.[11]  Not only can free-iron take part in cytotoxic reactions within the lumen of 

the colon, free-iron has also been implicated in cancer-cell growth, inflammatory processes 

and fuelling bacterial infections.[1, 17, 18]  A method of inhibiting this reactive nature of free-

iron is through chelation.  Polyphenolic compounds have the ability to both chelate iron and 

sequester ROS.[20, 32]  For this reason, four polyphenolic dietary iron chelators were 

chosen (quercetin, rutin, cyanidin-3-O-glucoside and catechin), to assess their effects on 

colonocyte iron metabolism and levels of intracellular ROS.  

Quercetin has previously been reported to bind iron, with the 1:2 Fe: quercetin complex 

found to be the most energetically stable and iron binding constants calculated to be 

between K = 1 x 106 – 1012 M-1 - M-2 using spectroscopic methods.[33-35]  These results are 

in agreement with the calorimetry data presented herein, which demonstrated that quercetin 

had iron binding constants of K = 8.3 x 105 M-1 and 3.86 x 106 M-1 for ferrous and ferric iron 

respectively.  With respect to rutin, the di-rutin iron complex has been shown to have iron 

binding constants of K = 4 x 1011 – 1 x 1012 M-2 by spectroscopy, with results presented 

herein only establishing rutin-ferrous iron binding with a two-site binding mechanism; the 

calculated iron binding constants were K = 3.2 x 108 M-1 and K = 2.2 x 104 M-1 for the two 

sites.  Interestingly, the calorimetry experiments identified that quercetin does indeed have 

two iron binding sites as predicted, with one site being the preferred site for coordination by 

iron.   When this site is blocked as in the case for rutin, two other iron binding sites are 

consequently utilised for iron chelation as predicted by Khokhar et al.[24]  For both cyanidin-

3-O-glucoside and catechin no ferric or ferrous iron binding could be detected; neither of 

these compounds contain the preferred C3-keto group for iron chelation.  This limited 

capacity for iron chelation was verified in vitro where neither of the compounds reduced iron 

induced ferritin protein expression.  
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There are a number of contrasting studies that have examined how quercetin can modulate 

cellular iron concentrations in vitro, acting as both an inhibitor of iron uptake and as an iron 

‘shuttle’ (i.e. able to load cells with iron).[22,35,36]  Experiments performed herein are able 

to explain why these opposing phenomena have been observed by altering the cellular 

exposure to ‘free’ (uncomplexed) quercetin.  When cells were co-cultured with quercetin and 

iron simultaneously and using a Fe: quercetin molar concentration of 100:200 there would be 

no free quercetin available to enter the cell (since the 1:2 Fe: quercetin complex is most 

stable) and hence acts as an (extracellular) inhibitor of iron uptake. On the other hand, if any 

‘free’ quercetin remained, it would be able to enter the cell and capture endogenous and any 

subsequent exogenous iron, trapping the iron and hence increasing intracellular iron 

concentrations.   

When iron and polyphenol were simultaneously present in the culture media it was found 

that both quercetin and rutin do indeed inhibit iron-mediated ferritin protein expression and 

that quercetin statistically decreased intracellular 59Fe concentrations.  These results support 

the ferritin protein expression findings, suggesting that quercetin is indeed chelating iron 

extracellularly and the subsequent iron-quercetin complex does not become internalised.  

Co-incubation of rutin alongside iron increased 59Fe compared to the iron only control.  This 

infers that despite the fact that rutin is chelating iron, as evidenced by decreased ferritin 

expression, the chelated iron becomes intracellular.  The subsequent rutin-iron complexes 

are unlikely to be contributing to the labile iron pool and thus not sensed by IRPs since a 

reduction in the iron-induced ferritin expression was observed. 

It has previously been reported that quercetin iron complexes can readily efflux cells and 

experiments performed here do not rule out this possibility.[36]  Such observations would 

suggest that quercetin and its complexes with iron are indeed cell-permeable.  To address 

whether this was the case in colonocytes, the cellular exposure to quercetin was modified in 

such a way that quercetin-iron complexes could not form extracellularly and iron and 

quercetin would only interact intracellularly.  The results of these experiments demonstrate 
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that the ability of quercetin to act as an extracellular or intracellular iron chelator is 

dependent on the location of the quercetin iron interaction.  Specifically, when colonocytes 

were exposed to quercetin (with no extracellular iron) for 12 hours and then co-cultured with 

iron, intracellular 59Fe concentrations increased.  This is in contrast to when quercetin and 

iron are able to interact extracellularly, where decreased intracellular iron concentrations 

were observed.  Co-culture of cells with quercetin alone for 12 hours decreased the 

concentration of the basal labile iron pool compared to cells cultured in media only.  

Following subsequent exposure to iron, cells pre-loaded with quercetin demonstrated 

significantly decreased LIP levels over a 24 hour time period despite there being higher 

levels of total cellular iron (as assessed by radioisotope studies). These results further 

support the hypothesis that intracellular quercetin is binding iron imported into the cell 

rendering it unavailable and not contributing to the LIP.  In addition, changes in TfR1, IRP2 

and ferritin were also observed and the changes are consistent with this suppression in the 

LIP.  The influence of either i) the localisation of quercetin or ii) the concentration of free 

quercetin in quercetin and iron supplemented media may rationalise why a ‘shuttling’ effect 

has been reported.[36]   

Whether the anti-oxidant effects of quercetin are in part through its iron-modulatory effects is 

unclear,[20, 37] and a variety of experiments performed herein aimed to delineate this.  Co-

culture of cells with quercetin for 36 hours significantly decreases GPX4 (an anti-oxidant 

enzyme produced in response to ROS-generating potential) expression compared to cells 

co-cultured with iron only.  This suggests two possible mechanisms i) that quercetin is 

having a direct anti-oxidant effect (i.e. directly sequestering ROS) or ii) that quercetin is 

chelating the endogenous iron within cells (which has been demonstrated by increased IRP2 

and increased TfR1 protein expression) which is dampening iron-mediated ROS production.  

To delineate the two possibilities, cells were pre-loaded with iron for 12 hours or co-cultured 

in control growth media and then exposed to quercetin for 24 hours before assessment of 

GPX4 protein expression.  Quercetin was able to reduce the ROS-generating potential of 
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iron within cells compared to those exposed to iron only, suggesting that quercetin acts to 

reduce ROS by directly chelating iron, disabling iron’s ability to take part in redox reactions.  

This anti-oxidant effect was evident in the presence of sodium ascorbate, which is known to 

promote Fenton-mediated production of ROS in the presence of iron.[38]  These results 

were also mirrored when direct levels of ROS were measured, where quercetin was able to 

reduce ROS concentration directly through the chelation of basal endogenous iron, 

exogenous iron within the media and the chelation of absorbed iron.  It is clear that the 

action of quercetin as an anti-oxidant is directed through its iron chelating potential and 

within our cell studies, quercetin is targeting solely this free-iron as the media was 

supplemented with sodium ascorbate. 

These studies demonstrate that quercetin can bind extracellular iron and the resultant 

quercetin-iron complex remains extracellular.  However, in the absence of extracellular iron, 

quercetin is likely to become internalised and upon exposure to iron, forms an intracellular 

complex which remains intracellular.  The intracellular quercetin-iron complex is not able to 

contribute to the labile iron pool and neither is it able to modulate ferritin, TfR1 and IRP2 

expression as non-ligated iron normally would.  Likewise, quercetin chelated iron is unable to 

participate in ROS-generating redox reactions, and this anti-oxidant ability of quercetin is 

attributed to its iron-chelation ability.  A schematic mechanism of this model is outlined in 

Figure 7.  

The polyphenol quercetin is as an ideal candidate as a dietary iron chelator and thus may 

possess anti-cancer activity.  These data identify quercetin as an ideal agent to chelate free 

‘luminal iron’ within the gastrointestinal tract, and, owing to its intracellular iron-modulating 

effects in broader applications throughout the body where intracellular iron sequestration is 

required.  If quercetin were to be used as a therapeutic agent in the chelation of free-iron 

within the lumen of the colon, several pharmacological factors must be considered.  This 

includes the effective dose of quercetin that would reach the colon at the concentration that 

we have observed efficacy (200 µM).  Although bioavailability of quercetin is low, colonic 
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concentrations of quercetin have also been found to be low (0.63 µM) in subjects consuming 

average daily servings of fruits and vegetables.[27, 39]  Such low levels would warrant the 

need for quercetin-supplementation to obtain the higher efficacious concentrations.  Another 

factor to consider is the metabolism of quercetin by the colonic microbiome which has been 

documented.[40, 41]  The metabolism of quercetin within the colon would reduce the 

effective concentrations present.  Supplementing quercetin within colonic-delivery systems 

would deliver much higher doses of quercetin directly to the colon, allowing iron chelation to 

take place before considerable breakdown is observed.[42] Despite this, downstream 

metabolites of quercetin have also been reported to bind iron and many other polyphenolic 

compounds are metabolised into quercetin itself.[43, 44]  In addition, whether iron-

complexes of quercetin are metabolised similarly to native quercetin is unknown, yet many 

flavonoids have altered chemical properties and biological interactions when complexed with 

a metal which are distinct from the parent flavonoid.[45]  A colonic delivery would also 

ensure that the quercetin does not interfere with iron absorption within the duodenum, 

minimising the risk of any subsequent iron deficiency developing. 

In support of such a therapeutic approach by chelating free-iron within lumen of the colon, 

there have been murine studies highlighting quercetin as an anti-cancer agent.  In one study, 

administration of a 0.2 % quercetin diet decreased total intestinal polyp formation by 67 % 

compared to a placebo cohort in a spontaneous murine model (ApcMin/+) of intestinal 

cancer.[46]  In a separate study employing azoxymethane- induced rat colon cancer model, 

quercetin administration resulted in a four-fold suppression in aberrant crypt foci.[47]  In light 

of results generated here, it could be envisaged that this anti-carcinogenic function maybe a 

result of iron-chelation, such that iron is unable to modulate oncogenic pathways such as 

Wnt and/or participate in Fenton type reactions in the generation of ROS.   
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TABLES 

Table 1 Iron binding properties calculated by isothermal titration microcalorimetery 

under physiological conditions. 

Polyphenol Quercetin Rutin 

Number of 
binding sites on 
polyphenol (N) 

Fe(II) 1 2 

Fe(III) 1 - 

Iron binding 
constant (K) 

Fe(II) 8.3 x 105 M-1 
3.2 x 108 M-1 

2.2 x 104 M-1 

Fe(III) 3.86 x 106 M-1 - 

 

FIGURE LEGENDS 

Figure 1:  Thermograms and corresponding isotherms for ferrous iron (FeSO4∙7H2O, 0.5 

mM in aqueous HCl (0.1 M)) binding to (A) quercetin, (B) rutin, (C) cyanidin-

3-O-glucoside and (D) catechin, and ferric iron (FeCl3∙6H2O, 0.5 mM in 

aqueous HCl (0.1 M)) binding to (Ai) quercetin, (Bi) rutin, (Ci) cyanidin-3-O-

glucoside and (Di) catechin.  The solid lines represent the curve fitting results 

using the model of best fit. 

Figure 2: Ferritin protein expression in RKO cells co-cultured with iron (FeSO4∙7H2O, 

100 μM) in the presence or absence of polyphenols ((A) quercetin, (B) rutin, 

(C) cyanidin-3-O-glucoside and (D) catechin) between 0 - 200 μM for 24 

hours as assessed by Western blotting. (E) Representative Westerns blots 

used for densitometry.  Data points represent mean fold change in protein 

expression normalised to β-actin, relative to iron only control.  Error bars 

donate ± SEM with * indicating statistical significance with p < 0.05 and ◊ 

denoting p < 0.001, n = 3. 

Figure 3: Intracellular 59Fe concentrations in RKO cells treated with (A) quercetin and 

(B) rutin, at between 0 – 200 μM concentrations.  * denotes statistical 
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significance (p < 0.05) vs. iron only control.  ◊ denotes statistical significance 

p < 0.001. Error bars denote ± SEM, n = 12. 

Figure 4: (A) Intracellular 59Fe concentrations for RKO cells treated with quercetin (200 

μM) or iron for 12 hours and after this time period, incubation in 59Fe 

supplemented media (FeSO4∙7H2O, 100 μM + 10,000 59Fe CPM/mL media) 

for 24 hours.  * denotes statistical significance (p < 0.05) vs. iron only 

controls.  Error bars denote ± SEM, n = 8.  (B) Changes in the LIP  in RKO 

cells co-cultured with quercetin (200 μM) or media control.  (C) Changes in 

the LIP in RKO cells pre-cultured with or without quercetin (200 μM) for 12 

hours prior to co-culture with iron (FeSO4∙7H2O, 100 μM) for 24 hours.  * 

denotes statistical significance (p < 0.05), error bars denote ± SEM, n = 8.  Q 

= quercetin and M = Media only 

Figure 5: (A) TfR1, (B) Ferritin, (C) IRP2 and (D) GPX4 expression in RKO cells co-

cultured with or without quercetin (200 μM) for 12 hours prior to co-culture 

with iron (FeSO4∙7H2O, 100 μM) for 24 hours as assessed by Western 

blotting.  (E) Representative Westerns blots used for densitometry  Data 

points represent mean fold change in protein expression normalised to β-

actin.  Error bars denote ± SEM with * indicating statistical significance with p 

< 0.05, n = 3.  Q = quercetin and M = Media only. 

Figure 6: (A) Intracellular ROS concentrations in RKO cells co-cultured with quercetin 

(20 μM) for 3, 12 and 24 hours.  (B) Intracellular ROS concentrations in RKO 

cells co-cultured with quercetin (20 μM) and iron (FeSO4∙7H2O, 100 μM) for 3, 

12 and 24 hours.  (C) Intracellular ROS concentrations in RKO cells when 

preloaded with iron (FeSO4∙7H2O, 100 μM) prior to co-culture with quercetin 

3, 12 and 24 hours.  * denotes statistical significance, p < 0.05.  Error bars 

denote ± SEM, n = 12.  (D) GPX4 protein expression in RKO cells co-cultured 
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with or without iron (FeSO4∙7H2O, 100 μM) for 12 hours prior to co-culture 

with quercetin (200 μM) or further iron for 24 hours.  Data points represent 

mean fold change in protein expression normalised to β-actin, relative to iron 

only control.  Q = quercetin and M = Media only 

Figure 7: Schematic representation of the intracellular and extracellular actions of  

   quercetin in the presence and absence of iron.  (Fe = Iron, LIP = Labile Iron  

  Pool, ROS= Reactive Oxygen Species). 
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