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Abstract. We present a polyfill solution for replacing inaccessible im-
ages of molecules with fully web-accessible chemistry diagrams. Thereby
marked up bitmap images on a client web site are extracted, server side
recognised and semantically enriched to generate scalable vector graph-
ics (SVG) with embedded chemical information. These graphics are then
re-inserted into the original web page providing readers with accessibil-
ity features such as speech output and interactive exploration together
with synchronised highlighting and magnification. Our solution works
for most combinations of browsers and screen reading software on all
major desktop platforms, and while it is currently only implemented for
chemical diagrams, it is extensible to other STEM subject areas.

1 Introduction

Diagrams are an important means of conveying information in STEM subjects
and they are ubiquitous in teaching material. Since they need to be understood in
fine detail, their precise description is often very difficult and they thus present
a major hurdle for inclusive education. Even in electronic teaching material,
diagrams present an obstacle as they are generally given in raster-based image
formats (e.g. gif, png, and jpeg), leaving them inaccessible for visually impaired
learners: Screen readers can only pick up alternative texts that is usually not
enough to convey a full description; and magnification tools struggle to deal with
diagrams since magnification does not proportionally increase resolution leading
to a loss of image quality.

To overcome this problem on the web, we present a new approach for making
chemical diagrams accessible by automatically replacing inaccessible bitmap for-
mats with fully web accessible scalable vector graphics (SVG) in web pages. The
idea is implemented as a polyfill solution, that is, a JavaScript library that can
be injected into any client web site, where marked up images are recognised and
transformed server side into accessible SVG and re-inserted into the web page.
In addition to recognising bitmap images, it can also exploit standard chemical
markup notation to produce SVG diagrams.

The library draws on our work in fully automatically generating web ac-
cessible chemical diagrams, without the need for specialist tools for authoring
or reading the accessible diagrams [8]. Instead it employs image analysis to
recognise diagrams, semantic enrichment to derive detailed information on their



content, and regeneration into an annotated graphics format that makes them
amenable to assistive technology. Web browsing software allows readers to in-
teractively engage with diagrams by exploring them step-wise and on different
layers, enabling aural rendering of diagrams and their individual components
together with highlighting and magnification to assist readers with low vision or
learning difficulties. And although originally developed as an assistive technol-
ogy tool, the approach could also be exploited as a general teaching tool as well
as extended to other STEM subject areas.

2 Producing Accessible Chemical Diagrams

Our approach is based on a procedure to recognise chemical diagrams from
bitmap images and transform them into semantically enriched, fully web ac-
cessible SVG graphics. The procedure is fully automatic and combines three
independent computational steps into a single software pipeline:

(1) Image analysis recognises molecule diagrams.
(2) Semantic enrichment computes detailed information on chemical molecules.
(3) Reproduction of diagrams in navigatable Scalable Vector Graphics (SVG).

We summarise how each of these steps proceeds in this section.
For more details on the process see also [8]. As a running ex-
ample we use the recognition and semantic enrichment of the
chemical molecule for Aspirin, which is originally given as the
bitmap image presented on the right.

2.1 Image Analysis

The Image analysis that recognises molecule diagrams is based on our previous
work [5], which has shown itself superior in a number of international recognition
competitions [4, 6]. It proceeds in two stages: Image Segmentation decomposes
diagrams into a set of geometric primitives. Diagram Recognition uses chemical
knowledge to assemble a basic representation of the diagram.

In the Image Segmentation step an image is vectorised in order to segment it
into the main constituents making up the diagram, resulting in a set of distinct
primitives like lines, circles, solid triangles, arcs, or character groups together
with their geometric location in the original image. This process is robust not
only with respect to the type of bitmap images (e.g., jpeg, png, tiff), but also
with respect to differences in authoring styles or potential problems stemming
from the image origin. For example, noise introduced by image capturing tech-
niques such as scanning is removed in a pre-processing step. The result of the
segmentation is then a textual representation of the geometric primitives. For
our Aspirin example we get a set of 22 geometric primitives: 18 lines and 4
character groups. These are given partially in Fig. 1.

In the subsequent Diagram Recognition step the actual recognition of the
molecule is performed by a rule engine, in which largely disjoint rules are re-
peatedly applied to the initial set of geometric primitives, rewriting it into a



60;4;336;279;188.992693;206.825861

chargroup;O;258;223;287;257

chargroup;O;195;114;224;148

chargroup;O;6;5;35;39

chargroup;OH;132;5;192;39

line;normal;82;62;85;56;4;4611686018427387904.0

line;normal;83;130;82;63;4;4611686018427387904.0

line;normal;83;276;145;240;4;-0.577093

line;normal;20;239;82;276;4;0.578389

line;normal;274;166;269;166;4;0.000000

line;normal;267;220;268;167;4;4611686018427387904.0

...

line;normal;81;62;34;36;4;0.575445

line;normal;86;56;127;32;4;-0.575723

line;normal;85;55;39;28;4;0.580944

Fig. 1. Abbreviated list of geometric primitives for Aspirin.

<molecule id="m1" xmlns="http://www.xml-cml.org/schema">
<atomArray>

<atom id="a1" elementType="C" x2="1.4301" y2="-0.6083" hydrogenCount="3"/>
<atom id="a2" elementType="C" x2="-0.4599" y2="-1.6683" hydrogenCount="1"/>
....

</atomArray>
<bondArray>

<bond id="b1" atomRefs2="a3 a1" order="S"/>
<bond id="b2" atomRefs2="a5 a4" order="S"/>
<bond id="b3" atomRefs2="a6 a5" order="S"/>
<bond id="b4" atomRefs2="a7 a4" order="D"/>
....

</bondArray>
</molecule>

Fig. 2. Abbreviated CML for Aspirin molecule.

graph representation of the given molecule diagram. Rules are defined in terms
of preconditions and consequences. A rule is applicable if there exist geometric
objects that satisfy its preconditions. Executing its consequence results in the re-
moval of existing geometric objects and the addition of elements to the graph as
well as possibly the addition of new geometric objects. In general, preconditions
of different rules are mutually exclusive, and thus the order of rule application
is irrelevant.

The graph structure resulting from the rewriting step serves as a basis from
which efficient electronic representation formats can be generated. While these
formats are largely equivalent, we concentrate on generating standard chemical
file formats such as MOL and CML (Chemical Markup Language [2]), as well as
InChI (International Chemical Identifier). For Aspirin the InChI is given as

InChI=1S/C9H8O4/c1-6(10)13-8-5-3-2-4-7(8)9(11)12/h2-5H,1H3,(H,11,12)

while the corresponding CML is given in parts in Fig. 2.
It is worth noting that the image segmentation is fully generic, that is, it is

independent of the actual type of diagrams analysed. Only the diagram recogni-



Fig. 3. Functional groups and abstraction graph for Aspirin molecule.

tion actually uses information on the domain (i.e., chemistry). Consequently, the
approach is portable other STEM diagrams using similar geometric primitives
simply by replacing the set of rules used for recognition and graph rewriting.

2.2 Semantic Enrichment

While the result of the image analysis is sufficient to reproduce the diagram and
to distinguish molecules, the extracted information is still only sufficient for a
flat representation, in the sense of describing single components of a diagram
and their relationship to their direct neighbours. However, they lack sufficiently
rich semantic that would be necessary to provide meaningful explanations of the
diagram. Therefore the most challenging part is to enrich this representation
with sufficient semantic meaning to allow the automatic generation of diagram
descriptions that emulate human reading behaviour in its different facets, such
as taking a casual glance at a drawing, getting an initial abstract overview of its
components, before diving deeper into single components.

In our semantic enrichment we analyse the graph representing the molecule
structure in order to identify chemically interesting compounds such as ring
systems, aliphatic chains and functional groups exploiting cheminformatics algo-
rithms implemented in the Chemistry Development Kit (CDK) [9]. This imposes
a hierarchical structure on the molecule that we can later exploit for navigation.
In addition identified substructures are being automatically named using on-
line web services (e.g., [3, 10]) that generate common chemical names given a
specification of a compound.

For the Aspirin molecule we identify three major components: a Benzene ring,
two functional groups, Carboxylic Acid and Ester. These are depicted in Fig. 3
on the left. Once identified these components are combined and represented in
the abstraction graph given in Fig. 3 on the right and names for them as well
as for the overall molecule, i.e. Aspirin, are computed via ChemSpider [3]. The
computed information is then represented as an XML structure to extend the
basic CML representation to an enriched CML format that contains the admin-
istrative information for the abstraction graph as well as sufficient information
on later generating speech strings for the diagram.



2.3 Annotated SVG Generation

Already the non-enriched, generated CML representation of a molecule can serve
as the basis to compute the corresponding diagram as SVG. Although there exist
a number of solutions for this, these are exclusively geared towards rendering a
diagram, discarding all chemical information in the process. That is, they will set
all the geometric components, lines and characters, in a flat structure, losing in-
formation about bonds or atoms. As making a connection between the geometric
component of the SVG and the bonds and atoms in the input CML file is im-
portant for the purpose of highlighting and magnification, we have implemented
our own SVG renderer. It exploits SVG facilities to group elements together as
well as to add attributes reflecting their chemical purpose and connecting them
to their origins in CML.

3 Web Integration and Front End

The SVG resulting from the recognition process can directly be included into the
rendered page. However, we also want to exploit the abstraction graph structure
to overlay the SVG with a navigation model to enable users to explore diagrams
interactively. Unfortunately, this is not doable by embedding the navigation
structure into the SVG alone, as SVG is a tree structure, while the abstrac-
tion graph is a hierarchical graph with shared elements. Consequently, we need
this structure independently in the web page, and connect it to the SVG via
JavaScript functionality.

More technically, we employ AJAX to import the SVG together with the se-
mantically enriched chemical information as an SVG+XML media type into the
web page. Some injected JavaScript code then enables interactive exploration of
diagrams. The main idea is that a user can enter a diagram and interactively
browse through its components on different levels and in different granularity.
The components are presented to the reader by making descriptions available for
aural rendering by a screen reader through pushing text strings into a ARIA live
region. Parts of the molecule structure can be focused, both by highlighting and
optionally via magnification. These functions are implemented via CSS changes
and moving the SVG viewport, respectively. All interactions and voicing oper-
ations are thus implemented browser, screen reader, and platform independent,
exploiting HTML5, CSS and WAI-ARIA standards.
Considering again our example molecule Aspirin, its
CML structure allows us to generate an SVG diagram
that can be imported into any modern web browser.
On the right is an image of the SVG diagram already
highlighted on the top molecule level, that corresponds
to the entire Aspirin molecule. When browsing the
molecule highlighting is adjusted via CSS and focused
parts are magnified using the SVG viewport.



Browsing the molecule diagram allows us to move ver-
tically between the different levels of the abstraction
graph as well as horizontally between nodes on a single
level of the graph. For example, one can move from the
top level Aspirin molecule, down to the major compo-
nent level and around this level. The image on the right
depicts a move on the major component level, from the
Benzene ring to the functional group Carboxylic Acid.
This step is voiced as “Benzene ring with Carboxylic
Acid at substitution 1”.

4 Polyfilling Diagrams on the Web

Polyfills are a technology that aims to mask the discrepancy in provision of
functionality and APIs from different web browsers and platforms by provid-
ing uniform APIs, allowing developers to implement a homogeneous user ex-
perience in a platform independent way [7]. While often intended to be of a
temporary nature, to fill the gap between new web standards and their lack of
browser implementation, and in particular ensuring backwards compatibility for
old browsers, many have become permanent solutions over time. A prominent
example is MathJax [1], that was originally designed as a stop gap for displaying
mathematics on the web until the MathML standard would be implemented in
all browsers. However, since only very few browsers implement MathML (and
even then only incomplete), MathJax has become the de facto rendering solu-
tion for Mathematics. Moreover, it can deal not only with MathML but with the
more prevalent formats of LATEX and ASCIIMath, replacing those expressions in
web pages by DOM components that produce the correct visual rendering.

We have chosen a similar approach to tackling the problem of inaccessible
diagrams on the Web. The basic idea is to provide a polyfill solution in form of
a JavaScript library called DIAGcess that can replace inaccessible chemical dia-
grams or notation by fully accessible SVG diagrams upon page load. DIAGcess
can be included via a script tag into a website and bitmap images of chem-
ical molecules can be marked for transformation. The actual transformation is
performed server side and its result, the accessible SVG diagram, replaces the
original bitmap image in the page, using the described AJAX functionality.

We thereby support three different types of transformations, depending on
the markup of an image element. Figure 4 displays the HTML element for in-
cluding Aspirin as a bitmap in a web page. The element contains three dedicated
data attributes data-chemistry-access, -cas, and -inchi. If the former at-
tribute is set to true, the image will be transformed and replaced. How exactly
the transformation works depends on which of the two latter attributes are given:

– If only data-chemistry-access is given, DIAGcess will run the entire recog-
nition process starting in step (1) of the procedure presented in Sec. 2.

– If data-chemistry-inchi is provided with a legal InChI code DIAGcess will
directly generate the accessible SVG diagram, effectively starting at step (2)
of the process, omitting image analysis.



<img src="aspirin.png" alt="Aspirin Molecule" width="200" height="175"
data−chemistry−access="true" data−chemistry−cas="50-78-2"
data−chemistry−inchi=
"InChI=1S/C9H8O4/c1-6(10)13-8-5-3-2-4-7(8)9(11)12/h2-5H,1H3,(H,11,12)"
/>

Fig. 4. HTML element for including Aspirin image in page.

<div class="ChemAccess-element" tabindex="0" role="application"
aria−label="Navigatable molecule" has−cml="true" has−svg="true">

<div class="cml" aria−hidden="true">
<molecule id="m1" xmlns="http://www.xml-cml.org/schema">

...
</molecule>

</div>
<div class="svg" aria−hidden="true">

<svg xmlns="http://www.w3.org/2000/svg" width="200" height="175" ...>
....
</svg>

</div>
</div>

Fig. 5. HTML element for including accessible SVG diagram of Aspirin in page.

– If only data-chemistry-cas is given, the attribute contains the unique reg-
istry number of the molecule provided by the American Chemical Society.
DIAGcess will then call ChemSpider [3] to determine the corresponding
InChI code and proceed as in the previous case.

Starting in either of the latter two steps has the obvious advantage that they will
always yield fully correct diagrams as no recognition errors can be introduced.
In all cases, the original image element in the web site will be replaced by a
container element presented in Fig. 5 that wraps together both the semantically
enriched CML structure (i.e., an augmented version of the one presented in
Fig. 2) and the annotated SVG, tagged the appropriate ARIA elements.

5 Conclusions

The presented work flow transforms inaccessible molecule images into accessi-
ble interactive SVG diagrams without the need for manual intervention. It nei-
ther relies on authors to produce accessible content nor requires users to install
and learn additional software tools. We have integrated this process into the
JavaScript library DIAGcess that acts as a polyfill solution, allowing automatic
transformation of images in web pages and easy inclusion into web content.

As the image analysis phase can introduce errors, we believe that the ability
to generate accessible SVG from unique chemical identifiers is of great advan-
tage in the context of DIAGcess, where we assume that web page authors have
knowledge on the molecules included in a page and can thus provide the correct
identifiers. The advantage of using a polyfill solution rather than immediately



integrating the accessible SVG is, that it allows to exploit updates and im-
provements made in the library. Moreover, certain browsers do not support the
inclusion of XML document structures, necessary for navigation, directly from
source. In addition, the code for navigation does not need to be provided locally.

We have carried out user testing for the diagram navigation via a demonstra-
tor page with a collection of accessible molecules. The feedback we have received
was primarily positive, particularly commending the simplicity of the navigation
model, but results are not yet statistically significant. However, we hope that
making DIAGcess available will lead to more feedback, as it allows users to easily
work with material they are interested in.

DIAGcess has been implemented as a platform independent tool, and can run
in all major modern browsers that support SVG. Similarly the browser front-
end that supports navigation, highlighting and aural rendering, works with the
majority of modern screen readers that support ARIA live regions, on all major
desktop platforms. The library has to be installed and included locally for now,
however, we aim to eventually distribute it via content distribution network.

Although the server back-end has currently been realised for chemical dia-
grams, only, the approach is not restricted to chemistry but extensible to dia-
grams in other STEM subjects. In fact, both the image analysis and the semantic
enrichment procedure are separated into a generic and a domain specific part,
where the latter can be parameterised by providing rule sets for syntactic recog-
nition and semantic interpretation, respectively. Consequently future work will
consist of extending our ideas to diagrams in other STEM subjects, like mathe-
matics, physics and biology.
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