UNIVERSITYOF
 BIRMINGHAM
 University of Birmingham Research at Birmingham

Almost minimal systems and periodicity in hyperspaces
 Fernández, Leobardo; Good, Christopher; Puljiz, Mate

DOI:

10.1017/etds.2016.123

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
 Peer reviewed version

Citation for published version (Harvard):
Fernández, L, Good, C \& Puljiz, M 2018, 'Almost minimal systems and periodicity in hyperspaces', Ergodic Theory and Dynamical Systems, vol. 38, no. 6, pp. 2158-2179. https://doi.org/10.1017/etds.2016.123

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© Cambridge University Press, 2017

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
- Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
-User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
-Users may not further distribute the material nor use it for the purposes of commercial gain.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

ALMOST MINIMAL SYSTEMS AND PERIODICITY IN HYPERSPACES

LEOBARDO FERNÁNDEZ, CHRIS GOOD, AND MATE PULJIZ

Abstract

Given a self-map of a compact metric space X, we study periodic points of the map induced on the hyperspace of closed non-empty subsets of X. We give some necessary conditions on admissible sets of periods for these maps. Seemingly unrelated to this, we construct an almost totally minimal homeomorphism of the Cantor set. We also apply our theory to give a full description of admissible period sets for induced maps of the interval maps. The description of admissible periods is also given for maps induced on symmetric products.

1. Introduction

A continuous function $f: X \rightarrow X$ from a compact metric space X to itself induces a continuous function $2^{f}: 2^{X} \rightarrow 2^{X}$ on the (compact metric) space of closed nonempty subsets of X with Hausdorff metric by defining $2^{f}(C)=f(C)=\{f(x): x \in$ $C\}$ for all closed $C \in 2^{X}$. The study of such systems was initiated by Bauer and Sigmund [5], where they can been seen as a (simplified) topological version of the induced dynamics on the space of measures over X and their evolution under f. Edalat [11] has argued that such systems are the natural approach to dynamical systems, from a computational and domain theoretic point of view.

Clearly one is interested in which properties of the dynamical system (X, f) transfer to the system $\left(2^{X}, 2^{f}\right)$ and there have been a number of results in this direction. For example, Banks [4] proves that f is (weakly) mixing if and only if 2^{f} is (weakly) mixing and that 2^{f} is transitive if and only if f is weakly mixing. In [5] and also [19] it is shown that if f has positive entropy, then the entropy of 2^{f} is infinite. Kwietniak and Oprocha go on to show [19] that if f does not have a dense set of recurrent points, then the entropy of 2^{f} is at least $\log 2$. Guirao, Kwietniak, Lampart, Oprocha, and Peris in [16] show that all the usual notions of chaos except for the classical Devaney's definition are transferred from T to 2^{T}, whereas the converse does not hold for any of them. Recently, the authors jointly with Ramírez in [13] have proved that 2^{f} is chain transitive if and only if f is chain weakly mixing if and only if f is chain transitive and has a fixed point. The first two authors [12] also show that 2^{f} has shadowing if and only if f does.

However, little work has been done on the periodic points of 2^{f} other than some results on periodicity in symmetric products in [15] which we extend in Section 9. It turns out that the theory here is of some interest. Moreover, the techniques that seem to be necessary to construct hyperspaces with various periods are of independent interest.

[^0]Example 3.1 shows that the set of periods of 2^{f}, denoted by $\operatorname{Per}\left(2^{f}\right)$, can be \mathbb{N} even when f has no periodic points at all and in Theorem 3.2 we show quite easily that if f is an interval map, then the set of periods of 2^{f} is either $\{1\}$ or $\{1,2\}$ or \mathbb{N}.

Theorem 3.2. Let f be a continuous map of a compact interval to itself. Then Per $\left(2^{f}\right)$ is either $\{1\}$ or $\{1,2\}$ or \mathbb{N}.

Trivially, if x is a point of period n under f, then $\{x\}$ is a point of period n under 2^{f}. Since finite unions of points are again closed sets, it follows, for example, that if f has a period 4 point and a period 6 point, then 2^{f} has points of period 1 , $2,3,4,6$ and 12 . It is possible to give a complete description of admissible periods in 2^{f} that arise in this fashion, i.e. those that are formed exclusively of points that were periodic in the original system (X, f), and this is done in Section 9. More generally if 2^{f} has points of period 4 and 6 consisting of pairwise disjoint subsets of X, then it would again have points of period $1,2,3,4,6$ and 12 . It is reasonable to ask then, whether this is a general property of induced maps on hyperspaces.

A positive result in this direction is the following theorem.
Theorem 5.1. Given a continuous map $f: X \rightarrow X$, the set of periods $\operatorname{Per}\left(2^{f}\right)$ of the induced map on 2^{X} contains $\operatorname{Per}(f) \cup\{1\}$ and is closed under taking prime power divisors.

Whether Per $\left(2^{f}\right)$ is closed under taking arbitrary divisors remains open. We are, however, able to show that Per $\left(2^{f}\right)$ needs not to be closed under taking least common multiples. In Section 7 we construct a dynamical system (Z, g) on the Cantor set such that the induced system $\left(2^{Z}, 2^{g}\right)$ only has periodic points of periods 1,2 and 3 . In particular it does not have a period 6 point. In Theorem 7.4 we generalise this construction to an induced system which admits only those periods that are divisors ${ }^{1}$ of two positive integers p and q.

Theorem 7.4. Let $p, q \in \mathbb{N}$. There exists a continuous onto map of the Cantor set $g: Z \rightarrow Z$ for which the periods appearing in the induced map are exactly divisors of either p or q, i.e.

$$
\operatorname{Per}\left(2^{g}\right)=\{m|m| p \text { or } m \mid q\} .
$$

To obtain those results we first construct an almost totally minimal system over the Cantor set which is of interest in its own right, see Theorem 6.1. Recall that a system (X, f) having a fixed point $x^{0} \in X$ is almost totally minimal if after removing its (unique) fixed point the remaining non-compact system ($X^{*}=X \backslash$ $\left\{x^{0}\right\}, f$) is totally minimal, meaning that the full orbit with respect to any iterate of f of any point is dense in X^{*} (see Section 6 for a precise definition).
Theorem 6.1. There exists an almost totally minimal homeomorphism $T: \mathcal{C} \rightarrow \mathcal{C}$ of the Cantor set \mathcal{C}. Such T has exactly one fixed point $x^{0} \in \mathcal{C}$ and the full T^{m}-orbit of every other point is dense in \mathcal{C} for every $m \in \mathbb{N}$ i.e.
(i) $\left(\exists!x^{0} \in \mathcal{C}\right) \quad T\left(x^{0}\right)=x^{0}$,
(ii) $\left(\forall y \in \mathcal{C} \backslash\left\{x^{0}\right\}\right)(\forall m \in \mathbb{N}) \quad \overline{\left\{T^{m k}(y) \mid k \in \mathbb{Z}\right\}}=\mathcal{C}$.

This theorem is proved using graph covers, a tool first devised by Gambaudo and Martens in [14] to give a combinatorial description of minimal systems over the Cantor set. This theory has proved useful not just for describing algebraic structure of such systems but also for constructing maps on the Cantor set with particular properties. Shimomura [24], for example, uses it to construct a transitive, completely scrambled 0-dimensional system. Essentially the same method but

[^1]formalised in a slightly different way was used by Akin, Glasner, and Weiss in [1] to give a generic self homeomorphism of the Cantor set. Bernardes and Darji extend some of their results in [6] and again make use of the same method. There is a close link between these graph covers, Bratteli-Vershik diagrams and Kakutani-Rokhlin towers and it would be possible to pass from one representation to another. As an example, in Section 8 we give a Bratteli-Vershik representation the almost totally minimal system from Theorem 6.1.

The rest of the paper is organised as follows. In Section 2 we briefly introduce the notation. A complete description of the situation for interval maps is given in Section 3. In Section 4 we introduce minimal building blocks of periodic sets in hyperspaces and derive some fundamental properties related to these. In Section 5 we seek to characterise admissible periods for induced maps. In Section 6 an almost totally minimal homeomorphism of the Cantor set is constructed, which we then use in Section 7 to obtain a map whose induced system admits only periods 1,2 and 3 . In Section 8 we give a Bratteli-Vershik representation of the system constructed in Section 6. Section 9 contains results on periods in symmetric products. At the very end in Section 10 we list some problems naturally arising from our considerations that are still without a satisfying resolution.

2. Preliminaries

All the spaces under consideration will be compact and metric unless specified otherwise. Given a continuous self-map $f: X \rightarrow X$ of such a space the inverse limit $\varliminf_{¿}(X, f)$ is defined as the set of full orbits of this system

$$
\lim _{\rightleftarrows}(X, f)=\left\{\bar{x}=\left(x_{i}\right)_{i \in \mathbb{Z}}=\left(\ldots, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right) \in \prod_{i \in \mathbb{Z}} X \mid f\left(x_{i}\right)=x_{i+1}\right\} .
$$

Note the slightly unconventional enumeration of indices above. We shall say that any $\bar{x} \in \lim _{\leftrightarrows}(X, f)$ with $x_{0}=x$ is a full orbit of the point $x \in X$. There exists a natural homeomorphism of $\varliminf_{\rightleftarrows}(X, f)$ called (right) shift $\sigma: \lim _{\rightleftarrows}(X, f) \rightarrow \varliminf_{\rightleftarrows}(X, f)$ given by $(\sigma(\bar{x}))_{i}=x_{i+1}$, for all $i \in \mathbb{Z}$. For more on inverse limits see [18].

Recall that to a full orbit $\bar{x} \in \lim _{\leftrightarrows}(X, f)$ one can associate two limit sets, ω - and α-limit set which are the accumulation sets of the forward and backward orbit of x_{0} respectively.

$$
\begin{aligned}
& \omega(\bar{x})=\bigcap_{m=0}^{\infty} \overline{\bigcup_{n=m}^{\infty}\left\{x_{n}\right\}}, \\
& \alpha(\bar{x})=\bigcap_{m=0}^{\infty} \overline{\bigcup_{n=m}^{\infty}\left\{x_{-n}\right\}}
\end{aligned}
$$

Both of these are closed and strongly f-invariant meaning that $f(\omega(\bar{x}))=\omega(\bar{x})$ and $f(\alpha(\bar{x}))=\alpha(\bar{x})$, see e.g. [3, 7]. Note that we could equivalently say that they are fixed points of the induced map 2^{f} (see below). As a shorthand we denote their union $\omega(\bar{x}) \cup \alpha(\bar{x})$ by $\lambda(\bar{x})$ which is again a closed and strongly f-invariant set.

The set of all non-empty closed (and compact) subsets of X is denoted by 2^{X} and can be metrized using Hausdorff metric

$$
\begin{gathered}
H(A, B)=\inf \left\{\varepsilon>0 \mid A \subseteq N_{X}(B, \varepsilon) \text { and } B \subseteq N_{X}(A, \varepsilon)\right\}, \\
\text { where } \quad N_{X}(S, \varepsilon)=\{x \in X \mid(\exists y \in S) d(x, y)<\epsilon\},
\end{gathered}
$$

with the corresponding induced topology coinciding with Vietoris' topology (see e.g. [21] for more details).

Figure 1. The set X from Example 3.1.

The induced map $2^{f}: 2^{X} \rightarrow 2^{X}$ on the hyperspace 2^{X} is defined by

$$
2^{f}(S)=f(S)=\{f(s) \mid s \in S\}
$$

and is continuous with respect to Hausdorff metric.
As we shall constantly be dealing with the sets of periods of different functions it is convenient to introduce a symbol $\operatorname{Per}(f)$ for the subset of natural numbers such that $k \in \operatorname{Per}(f)$ if and only if there exists a point $x \in X$ with the fundamental period k. Per $\left(2^{f}\right)$ will consequentially be the set of all the fundamental periods of points in 2^{X}.

We shall also be interested in restrictions of the map 2^{f} to a few $2^{f \text {-invariant }}$ subsets of 2^{X}. We introduce a special symbol for each of these restrictions:

$$
\begin{gathered}
f_{n}=\left.2^{f}\right|_{F_{n}(X)}, \\
f^{<\omega}=\left.2^{f}\right|_{F(X)},
\end{gathered}
$$

where $F_{n}(X)=\left\{A \in 2^{X} \mid A\right.$ has at most n points $\}$ is the n-fold symmetric product of X and $F(X)=\bigcup_{n=1}^{\infty} F_{n}(X)$ is the collection of all finite subsets of X. Occasionally we shall write just f for any of the above maps (including 2^{f} itself) as this does not lead to any confusion, and is useful to keep the notation simple, especially when we need to refer to the $n^{\text {th }}$ iterate of the map 2^{f} which we simply denote by f^{n}.

The usual n-fold Cartesian product will also be of interest as the n-fold symmetric product can be seen as a quotient of this space. Somewhat unconventionally we denote the product space $\underbrace{X \times X \times \cdots \times X}_{n-\text { times }}$ by $X^{(n)}$ and the induced map by $f^{(n)}$. This is not to be confused with f^{n} which is simply the $n^{\text {th }}$ iterate of f.

3. Two Simple Results

To put our results into perspective, we start with two related results.
Example 3.1. Let $C=\mathbb{S}^{1} \times[0,1]$ be a cylinder where $\mathbb{S}^{1}=[0,1] / \sim$ denotes the unit circle obtained from the interval $[0,1]$ with its endpoints identified. Let $g: C \rightarrow C$ be an irrational rotation by $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ about the central axis combined with an upward displacement that preserves the bases, e.g. $(\theta, z) \stackrel{g}{\mapsto}\left(\theta+\alpha \bmod 1,2 z-z^{2}\right)$. Note that this is a homeomorphism of C. Let $X \subset C$ be the set consisting of the two bases $\mathbb{S}^{1} \times\{0,1\}$ and a full orbit $\left\{\ldots, z_{-1}, z_{0}, z_{1}, z_{2}, \ldots\right\}$ of a point z_{0} on a generating line, say $z_{0}=(0,1 / 2)$, where we set $z_{k}=g^{k}\left(z_{0}\right)$ for all $k \in \mathbb{Z} \backslash\{0\}$ (see Figure 1). Then clearly $f=\left.g\right|_{X}$ has no periodic points and at the same time, for any $k \in \mathbb{N}$ the set $\mathbb{S}^{1} \times\{0,1\} \cup\left\{\ldots, z_{-k}, z_{0}, z_{k}, \ldots\right\}$ is periodic under 2^{f} with period k.

Block and Coven [8] prove that if f is be a continuous map from a compact interval to itself and every point is chain recurrent, then either f^{2} is the identity map or f is turbulent. From this, one can easily deduce the following.

Theorem 3.2. Let f be a continuous map of a compact interval to itself. Then Per $\left(2^{f}\right)$ is either $\{1\}$ or $\{1,2\}$ or \mathbb{N}.

Proof. If f^{2} is the identity, then $\operatorname{Per}\left(2^{f}\right)$ is either $\{1\}$ or $\{1,2\}$. If f^{2} turbulent, then f must have a periodic point with period which is not a power of 2 (see p33 in [7]). But if f has a point of period $2^{n}(2 k+1)$, then by Šarkovs'kiǐ's Theorem, it has points of period $2^{n+1} m$ for any positive integer m, from which it follows that 2^{f} has points of period m, i.e. that $\operatorname{Per}\left(2^{f}\right)=\mathbb{N}$.

So suppose that there exists a point x_{0} that is not chain recurrent. ${ }^{2}$ Clearly, x_{0} is not periodic. Also, we may assume that f is onto, as otherwise one can take a restriction to the surjective core of the map f and repeat the same reasoning. We can therefore take a full orbit $\bar{x} \in \underset{\rightleftarrows}{\lim }(X, f)$ of x_{0} and consider the limit set

$$
\lambda(\bar{x})=\alpha(\bar{x}) \cup \omega(\bar{x})=\bigcap_{m=0}^{\infty} \overline{\bigcup_{n=m}^{\infty}\left\{x_{-n}, x_{n}\right\}} .
$$

We claim that x_{0} is non-recurrent, i.e. $x_{0} \notin \lambda(\bar{x})$. Firstly note that $x_{0} \notin \omega\left(x_{0}\right)$ as otherwise it would be recurrent and hence chain recurrent. Other possibility is that there exists an increasing subsequence $\left(p_{k}\right)_{k \in \mathbb{N}}$ such that $x_{-p_{k}} \rightarrow x_{0}$ as $k \rightarrow \infty$. But then $x_{-p_{k}+1} \rightarrow x_{1}$ and for any $\epsilon>0$ one can choose $k_{0} \in \mathbb{N}$ large enough so that $x_{-p_{k_{0}}+1}$ is ϵ close to x_{1}. Thus, $\left\{x_{0}, x_{-p_{k_{0}}+1}, x_{-p_{k_{0}}+2}, \ldots, x_{0}\right\}$ is an ϵ-chain from x_{0} to x_{0} making x_{0} a chain recurrent point. A contradiction.

As x_{0} is non-recurrent, by Proposition 4.2, we immediately obtain all periods in $\operatorname{Per}\left(2^{f}\right)$ proving our corollary.

4. Elementary periodic points

We shall first describe the most basic type of periodic points that appear in the induced dynamics on 2^{X}. It captures both the periods arising from cycles in (X, f) via $x \mapsto\{x\}$ embedding as well as the periods as in Example 3.1.

Given a point $\bar{x}=\left(\ldots, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right) \in \lim _{\swarrow}(X, f)$ we define the set of periods of \bar{x} by

$$
\operatorname{Per}(\bar{x})=\left\{k \in \mathbb{N} \mid \overline{\left\{x_{m k} \mid m \in \mathbb{Z}\right\}} \in 2^{X} \text { is periodic with period } k\right\} .
$$

We use the same symbol as before but the meaning will be clear from the context. Note that this set does not depend on the choice of the starting point, i.e. $\operatorname{Per}(\bar{x})=\operatorname{Per}(\sigma(\bar{x}))=\operatorname{Per}\left(\sigma^{-1}(\bar{x})\right)$. It may however depend on the chosen backward orbit of x_{0}. For example, if x_{0} is a fixed point which also has a history of infinitely many isolated points then $\operatorname{Per}\left(\left(\ldots, x_{-2}, x_{-1}, x_{0}, x_{0}, \ldots\right)\right)=\mathbb{N}$ but $\operatorname{Per}\left(\left(\ldots, x_{0}, x_{0}, x_{0}, \ldots\right)\right)=\{1\}$.
Remark 4.1. If $\left\{x_{0}, x_{1}, \ldots, x_{p-1}\right\}$ is a p-cycle in (X, f) then it is not hard to check that $\operatorname{Per}\left(\left(\ldots, x_{p-1}, x_{0}, \ldots, x_{p-1}, x_{0}, \ldots\right)\right)$ is the set of all divisors of p.

The situation akin to that in Example 3.1 occurs whenever there exists a nonrecurrent point, i.e. a point whose full orbit does not accumulate at the point itself. Formally $x \in X$ is non-recurrent if there exists a full orbit $\bar{x} \in \lim _{\leftrightarrows}(X, f)$ of $x=x_{0}$ such that $x \notin \lambda(\bar{x})$.

[^2]Proposition 4.2. Let $f: X \rightarrow X$ be a continuous map and assume that there exists a non-recurrent point x_{0} with a full orbit $\bar{x}=\left(\ldots, x_{-1}, x_{0}, x_{1}, \ldots\right) \in \lim _{幺}(X, f)$. Then $\operatorname{Per}(\bar{x})=\mathbb{N}$ and therefore also $\operatorname{Per}\left(2^{f}\right)=\mathbb{N}$.
Proof. Let $k \in \mathbb{N}$ be arbitrary and set $S=\overline{\left\{x_{m k} \mid m \in \mathbb{Z}\right\}} \in 2^{X}$. S is clearly mapped to itself under k iterates of 2^{f}. It is therefore periodic with a fundamental period that divides k. To show that this is in fact k it suffices to see that $x_{0} \notin$ $\left(2^{f}\right)^{n}(S)$ for any $0<n<k$.

To that end take any such n and note that $\left(2^{f}\right)^{n}(S)=\overline{\left\{x_{m k+n} \mid m \in \mathbb{Z}\right\}}$. Recall that $x_{0} \notin \lambda(\bar{x})$ and so if x_{0} was in $\left(2^{f}\right)^{n}(S)$ it could only be equal to $x_{m_{0} k+n}$ for some $m_{0} \in \mathbb{Z}$ and thus x_{0} would have to be periodic. This would then imply that $x_{0} \in \omega(\bar{x}) \subseteq \lambda(\bar{x})$ which gives a contradiction.

Remark 4.3. It could however happen that x itself is recurrent but if it has a point x_{-k} for some $k>0$ in the backward part of its orbit that is non-recurrent then the result still holds as $\operatorname{Per}(\bar{x})=\operatorname{Per}\left(\sigma^{-k}(\bar{x})\right)=\mathbb{N}$.

We have already used the obvious fact that $\operatorname{Per}(\bar{x}) \subseteq \operatorname{Per}\left(2^{f}\right)$ and one might suspect that $\bigcup_{\bar{x} \in \varliminf_{m}(X, f)} \operatorname{Per}(\bar{x})=\operatorname{Per}\left(2^{f}\right)$, but this is not the case. It suffices to take a system that consists of five points, two of which form a 2 -cycle and the other three a 3 -cycle. Then clearly $6 \in \operatorname{Per}\left(2^{f}\right)$ but no point in the inverse limit has 6 in its set of periods.
$\operatorname{Per}(\bar{x})$, however, has a nice structure. Below we show that it is closed under taking divisors and least common multiples. This in particular implies that in case it is finite, Per (\bar{x}) is simply the set of divisors of its largest element. But what if it is infinite, does it have to be \mathbb{N} ? A negative answer to this provides the odometer, a classical example of a transitive system over the Cantor set.
Example 4.4. Let $X=\Sigma_{2}=\{0,1\}^{\mathbb{N}}$. The 2-adic odometer $f: X \rightarrow X$ is defined recursively by

$$
f\left(\xi_{0}, \xi_{1}, \ldots\right)=\left\{\begin{array}{l}
\left(1, \xi_{1}, \ldots\right), \text { if } \xi_{0}=0 \\
\left(0, f\left(\xi_{1}, \xi_{2}, \ldots\right)\right), \text { otherwise }
\end{array}\right.
$$

It is not hard to see that $\operatorname{Per}(\bar{x})=\left\{1,2,2^{2}, 2^{3}, \ldots\right\}$ is the set of all powers of 2 for any $\bar{x} \in \underset{\longleftarrow}{\lim }(X, f)$, and that $\operatorname{Per}\left(2^{f}\right)$ is the same set.

We note in passing that this is also an example of a system where 2^{f}-periodic points are dense in 2^{X}. This is simply because any closed set in Σ_{2} can be approximated by a finite union of clopen cylinders to an arbitrary precision and these cylinders are clearly periodic under 2^{f} and so is their finite union. We remind the reader that a cylinder in Σ_{2} is a set of the form

$$
\left\{\left(\xi_{0}, \xi_{1}, \ldots\right) \in \Sigma_{2} \mid \xi_{i}=a_{i} \text { for } 0 \leq i \leq n\right\}
$$

for some $n \in \mathbb{N}$ and a choice of $a_{i} \in\{0,1\}$, and that all such sets form a clopen basis of the Cantor topology on Σ_{2}.

To prove the aforementioned structural result for elementary sets of periods, we shall need two lemmata.
Lemma 4.5. If $S \in 2^{X}$ is a k-periodic then none of its $k-1$ iterates under 2^{f} can be a subset of S.
Proof. Otherwise, let us assume that $\left(2^{f}\right)^{j}(S) \subseteq S$ for some $0<j<k$. Using the usual notation one would write $f^{j}(S) \subseteq S$ and from there

$$
S=f^{k j}(S) \subseteq f^{(k-1) j}(S) \subseteq \cdots \subseteq f^{j}(S) \subseteq S
$$

This makes S periodic with a period strictly less than k, a contradiction.

Lemma 4.6. Let $\bar{x} \in \lim _{\rightleftarrows}(X, f)$. Then

$$
\begin{equation*}
\operatorname{Per}(\bar{x})=\left\{k \in \mathbb{N} \mid \exists N_{0} \in \mathbb{N} \text { s.t. } x_{-N_{0} k} \notin \overline{\left\{x_{l} \mid l \in \mathbb{Z} \text { and } k \nmid l\right\}}\right\} . \tag{1}
\end{equation*}
$$

Also
(2) $\operatorname{Per}(\bar{x})=\left\{k \in \mathbb{N} \mid \exists N_{0} \in \mathbb{N}\right.$ s.t. $\forall N \geq N_{0} \quad x_{-N k} \notin\left\{\overline{\left\{x_{l} \mid l \in \mathbb{Z} \text { and } k \nmid l\right\}}\right\}$
and in particular

$$
\begin{equation*}
\operatorname{Per}(\bar{x})=\bigcup_{N=0}^{\infty}\left\{k \in \mathbb{N} \mid x_{-N k} \notin \overline{\left\{x_{l} \mid l \in \mathbb{Z} \text { and } k \nmid l\right\}}\right\} \tag{3}
\end{equation*}
$$

Proof. (2) follows easily from (1) if one recalls that $x_{-N k} \notin \overline{\left\{x_{l} \mid l \in \mathbb{Z} \text { and } k \nmid l\right\}}$ implies $x_{-(N+1) k} \notin \overline{\left\{x_{l} \mid l \in \mathbb{Z} \text { and } k \nmid l\right\}}$. And from there it is clear that the sets under the union sign in (3) form a monotonically increasing family of sets converging to the set in (1).

We now turn to proving that the first claim holds. We first show that any k satisfying the defining statement of the set in (1) is necessarily in $\operatorname{Per}(\bar{x})$. Let such a $k \in \mathbb{N}$ be fixed and let N_{0} be as in the definition of the set. It is clear that $x_{-N_{0} k}$ is a "distinguishing feature", an element contained in $\overline{\left\{x_{m k} \mid m \in \mathbb{Z}\right\}}$ but which cannot be in any of its $k-1$ forward iterates under 2^{f}. The set $\overline{\left\{x_{m k} \mid m \in \mathbb{Z}\right\}}$ is thus truly a k-period point.

Conversely, take a $k \in \mathbb{N}$ which does not satisfy the statement in (1). Hence, there are infinitely many points in the k-step backward orbit of x_{0} that are also in $\overline{\left\{x_{l} \mid l \in \mathbb{Z} \text { and } k \nmid l\right\}}$. In particular, infinitely many of them are in $\overline{\left\{x_{k m+j} \mid m \in \mathbb{Z}\right\}}$ for some $0<j<k$. Similar reasoning as in the first paragraph of this proof allows us to conclude that, not just infinitely many, but all of the elements of the k-step orbit $\left\{x_{m k} \mid m \in \mathbb{Z}\right\}$ are contained in $\overline{\left\{x_{k m+j} \mid m \in \mathbb{Z}\right\}}$ and hence their closure as well. But this implies that $\overline{\left\{x_{k m} \mid m \in \mathbb{Z}\right\}}$ is not a k-periodic point by Lemma 4.5.

Proposition 4.7. Let $\bar{x} \in \underset{\longleftarrow}{\lim }(X, f)$. Then $\operatorname{Per}(\bar{x})$ is non-empty (always contains at least 1) and closed under taking divisors and least common multiples.

Proof. Clearly $1 \in \operatorname{Per}(\bar{x})$. The rest is proved by invoking Lemma 4.6. Let $k \in \operatorname{Per}(\bar{x}), d \mid k$ and let N_{0} be chosen as in (1), i.e. $x_{-N_{0} k} \notin \overline{\left\{x_{l} \mid l \in \mathbb{Z} \text { and } k \nmid l\right\}}$ and hence $x_{-\left(N_{0} k / d\right) d} \notin \overline{\left\{x_{l} \mid l \in \mathbb{Z} \text { and } k \nmid l\right\}} \supseteq \overline{\left\{x_{l} \mid l \in \mathbb{Z} \text { and } d \chi l\right\}}$. Therefore $d \in \operatorname{Per}(\bar{x})$.

As we have already seen that this set is closed under taking divisors it will suffice to show that for any two co-prime $m, n \in \operatorname{Per}(\bar{x})$ their product $m n$ is in there as well. Chose N_{0} to be the greater of the two integers associated to m and n in the context of (1). Then $x_{-\left(N_{0} m\right) n} \notin \overline{\left\{x_{l} \mid l \in \mathbb{Z} \text { and } n \nmid l\right\}}$ and $x_{-\left(N_{0} n\right) m} \notin \overline{\left\{x_{l} \mid l \in \mathbb{Z} \text { and } m \nmid l\right\}}$. As m and n are co-prime we have that $n m \nmid l$ if and only if $n \nmid l$ or $m \nmid l$, hence $x_{-N_{0}(m n)} \notin \overline{\left\{x_{l} \mid l \in \mathbb{Z} \text { and } n \nmid l\right\}} \cup \overline{\left\{x_{l} \mid l \in \mathbb{Z} \text { and } m \nmid l\right\}}=\overline{\left\{x_{l} \mid l \in \mathbb{Z} \text { and } m n \nmid l\right\}}$. Therefore $m n \in \operatorname{Per}(\bar{x})$.

5. Admissible sets of periods for 2^{f}

A few facts about $\operatorname{Per}\left(2^{f}\right)$ are obvious. By considering singleton sets we see that $\operatorname{Per}\left(2^{f}\right) \supseteq \operatorname{Per}(f)$ and also $1 \in \operatorname{Per}\left(2^{f}\right)$ as $X \in 2^{X}$ is a fixed point. In fact $\operatorname{Per}\left(f^{<\omega}\right)=[\mathcal{D}(\operatorname{Per}(f))]^{3} \subseteq \operatorname{Per}\left(2^{f}\right)$ since $F(X) \subseteq 2^{X}$. It turns out that Per $\left(2^{f}\right)$ itself is closed under taking prime power divisors. The question if it must be closed under taking any divisor remains open. Surprisingly it needs not to be closed under taking least common multiples. The construction of such an example

[^3]occupies Section 7. Intuitively one might think that if $A_{0}, A_{1}, \ldots, A_{n-1}$ is an n cycle and $B_{0}, B_{1}, \ldots, B_{m-1}$ is an m-cycle in 2^{X}, and $d \mid n$ then $A_{0} \cup A_{d} \cup \ldots A_{n-d}$ should be a d-periodic point and $A_{0} \cup B_{0}$ should be a $[m, n$]-periodic point. But this does not hold in general as it could happen that their fundamental period is smaller than expected. As a trivial example consider a map over $X=\{0,1,2,3\}$ given by $f(x)=x+1 \bmod 4$. Then $A_{0}=\{0,1,2\} \in 2^{X}$ is 2^{f}-periodic with period 4 but $A_{0} \cup f^{2}\left(A_{0}\right)=X$ is a fixed rather than a period 2 point in 2^{X}.

Theorem 5.1. Given a continuous map $f: X \rightarrow X$, the set of periods $\operatorname{Per}\left(2^{f}\right)$ of the induced map on 2^{X} contains $\operatorname{Per}(f) \cup\{1\}$ and is closed under taking prime power divisors.

Proof. We have already seen that $\operatorname{Per}(f) \cup\{1\} \subseteq \operatorname{Per}\left(2^{f}\right)$. Given an $n \in \operatorname{Per}\left(2^{f}\right)$ and its prime factorisation $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ where $r \geq 1$, for the second part of the claim it will suffice to find a full orbit $\bar{x} \in \lim (X, f)$ for which $\operatorname{Per}(\bar{x})$ contains $p_{1}^{\alpha_{1}}$ as the result will then follow from Proposition 4.7.

To that end we set $k=p_{1}^{\alpha_{1}}$ and $l=n / p_{1}=p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, and let A_{0}, \ldots, A_{n-1} be a periodic orbit for 2^{f} of period n. By Lemma 4.5 there exists $x_{0} \in A_{0} \backslash A_{l}$, and as $A_{i} \mathrm{~S}$ are mapped surjectively onto each other, it is possible to find a full orbit $\bar{x}=\left(\ldots, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right)$ of x_{0} such that $x_{m n+i} \in A_{i}$ for all $m \in \mathbb{Z}$. We claim that $k \in \operatorname{Per}(\bar{x})$, i.e. that $\overline{\left\{x_{m k} \mid m \in \mathbb{Z}\right\}}$ is k-periodic under 2^{f}.

Firstly note that $x_{-m n+i} \in A_{i} \backslash A_{i+k \bmod n}$ for $m \in \mathbb{N}$, as otherwise if $x_{-m n+i} \in$ $A_{i+k \bmod n}$ then after mapping it forward by $f^{m n-i}$ we would have a contradiction with $x_{0} \in A_{0} \backslash A_{k}$. Similar reasoning allows us to conclude that, as we go backwards along the orbit, the pre-images $x_{0}, x_{-n}, x_{-2 n}, x_{-3 n}, \ldots$ belong to, possibly, more and more complements of different $A_{i} \mathrm{~s}$ and, as there are only finitely many of those, this number must stabilise. The backward iterate at which this happens is then taken to be x_{0} and all the other indices are shifted accordingly. Note that this does not affect the claim we wish to prove as $\operatorname{Per}(\bar{x})=\operatorname{Per}\left(\sigma^{t}(\bar{x})\right)$ for any $t \in \mathbb{Z}$. Also note that for this new x_{0} we still have $x_{0} \in A_{0} \backslash A_{l}$. This modification will however allow us that from $x_{0} \in A_{j}$ for some j we infer $x_{m n+i} \in A_{i+j \bmod n}$ for all $m \in \mathbb{Z}$ where before we could conclude this only for positive m s. Essentially the same trick was used previously in the proof of Lemma 4.6.

After we altered the enumeration in \bar{x} we are ready to conclude the proof by showing that (now modified) $x_{0} \notin \overline{\left\{x_{t} \mid t \in \mathbb{Z}\right.}$ and $\left.k X t\right\}$. Note that

$$
\overline{\left\{x_{t} \mid t \in \mathbb{Z} \text { and } k \chi t\right\}}=\bigcup_{i=1}^{k-1} \overline{\left\{x_{m k+i} \mid m \in \mathbb{Z}\right\}}
$$

and for the sake of getting a contradiction we assume that $x_{0} \in \overline{\left\{x_{m k+i} \mid m \in \mathbb{Z}\right\}}$ for some $0<i<k$. This means that either $x_{0}=x_{m k+i}$ for some $m \in \mathbb{Z}$ and therefore $x_{0} \in A_{\tilde{i}}$ where

$$
\tilde{i} \equiv m k+i \quad(\bmod n), \quad \text { hence } \quad \tilde{i} \equiv i \quad(\bmod k),
$$

or x_{0} is a limit of such points $\left(x_{m k+i} \mathrm{~S}\right)$ out of which infinitely many must fall within the same congruence class with respect to n, say \tilde{i}, and thus also in the same $A_{\tilde{i}}$ for some $0 \leq \tilde{i}<n$, which must also satisfy $\tilde{i} \equiv i(\bmod k)$. As $A_{\tilde{i}}$ is closed, in both cases we get $x_{0} \in A_{0} \cap A_{\tilde{i}}$.

From here we can conclude that in the periodic case $x_{0} \in A_{\tilde{i}} \cap A_{2 \tilde{i} \bmod n}$ as $x_{0}=x_{m k+i}=x_{2 m k+2 i}$. Also, if x_{0} is a limit point of some subsequence in $\left\{x_{m n+\tilde{i}} \mid\right.$ $m \in \mathbb{Z}\} \subseteq A_{\tilde{i}}$, using the reasoning described above and in light of the fact that $x_{0} \in A_{\tilde{i}}$, this subsequence is also in $A_{2 \tilde{i} \bmod n}$ and so must be x_{0} as its limit. In both cases we henceforth conclude $x_{0} \in A_{0} \cap A_{\tilde{i}} \cap A_{2 \tilde{i} \bmod n}$. Continuing in this
fashion we see that $x_{0} \in A_{j}$ for any j that satisfies

$$
j \equiv s \tilde{i} \quad(\bmod n) \text { for some } s \in \mathbb{N}_{0}
$$

To obtain a contradiction with $x_{0} \notin A_{l}$ it now only remains to show that there exist $s \in \mathbb{N}_{0}$ for which $s \tilde{i} \equiv l(\bmod n)$. It is an elementary fact from number theory that there exists $\tilde{s} \in \mathbb{N}_{0}$ such that $\tilde{s} \tilde{i} \equiv(\tilde{i}, n)(\bmod n)$, where (a, b) stands for the greatest common divisor of integers a and b. Note that $\tilde{i} \not \equiv 0(\bmod k)$ and hence $p_{1}^{\alpha_{1}}=k \nmid \tilde{i}$. Thus $(\tilde{i}, n)=\left(\tilde{i}, n / p_{1}\right)=(\tilde{i}, l) \mid l$ and setting $s=\frac{l}{(i, n)} \tilde{s}$ gives the desired conclusion.

We now turn to showing that $\operatorname{Per}\left(2^{f}\right)$ is not always closed under taking least common multiples. But for this we need first to revisit the notion of almost minimal systems.

6. Almost totally minimal Cantor system

Recall that any two non-compact, locally compact, totally disconnected, metrizable spaces with no isolated points are homeomorphic (see e.g. [9, Proposition 1.1]). These are essentially equal to the Cantor set without a point, which is in turn homeomorphic to a countable union of Cantor sets. We shall denote such a set by \mathcal{C}^{*}. In [9] Danilenko gives a direct limit construction of a class of minimal systems on \mathfrak{C}^{*}. The system $\left(\mathcal{C}^{*}, T\right)$ is said to be minimal if the only non-empty, closed, strongly T-invariant subset of \mathcal{C}^{*} is \mathcal{C}^{*} itself, or equivalently if any full orbit ${ }^{4}$ of any point is dense in \mathcal{C}^{*}. In the compact case this is equivalent to asking that the ω-limit set of any point is whole of the state space, but here one has to be careful with the definition of minimality as some points can have their ω-limit sets empty due to non-compactness even if their full orbits are dense. In fact Danilenko proved that for any invertible minimal map on \mathcal{C}^{*} the set of points with their forward orbit dense in \mathcal{C} (those points x for which $\omega(x)=\mathcal{C}^{*}$) will be a dense, G_{δ} set with empty interior (see [9, Theorem 1.2]).

The class of maps constructed there conveniently extends to a class of continuous homeomorphisms of the Cantor set \mathcal{C} which is obtained as one point compactification of \mathcal{C}^{*} with point at infinity being mapped onto itself. Such maps, with one fixed point and all the other points having dense full orbits are referred to as almost minimal systems and in particular they are examples of essentially minimal systems which are defined as those systems which have one unique minimal subsystem (see [17]). To make our proofs in Section 7 work we need a map that is almost totally minimal meaning that the system $\left(\mathcal{C}, T^{m}\right)$ is almost minimal for any iterate T^{m} of the original map T where $m \in \mathbb{N}$, in other words, that the system $\left(\mathcal{C}^{*}, T \mid \mathcal{C}^{*}\right)$ with the fixed point removed is totally minimal in the usual sense.
Theorem 6.1. There exists an almost totally minimal homeomorphism $T: \mathcal{C} \rightarrow \mathcal{C}$ of the Cantor set \mathcal{C}. Such T has exactly one fixed point $x^{0} \in \mathcal{C}$ and all the other points have their full orbit with respect to T^{m} dense in \mathcal{C}, for any $m \in \mathbb{N}$ i.e.

$$
\left(\forall x \in \mathcal{C} \backslash\left\{x^{0}\right\}\right)(\forall m \in \mathbb{N}) \quad \overline{\mathcal{O}}_{T^{m}}(x)=\mathcal{C},
$$

where $\overline{\mathcal{O}}_{T^{m}}(x)=\overline{\mathcal{O}}_{T^{m}}(\bar{x})=\overline{\left\{x_{m k} \mid k \in \mathbb{Z}\right\}}$ and $\bar{x}=\left(x_{i}\right)_{i \in \mathbb{Z}} \in \lim (\mathcal{C}, T)$ is the full orbit of $x=x_{0}$.
Remark 6.2. We remark in passing that, as \mathcal{C} is a Baire space without isolated points, $\overline{\mathcal{O}}_{T}(\bar{x})=\mathcal{C}$ is equivalent to $\lambda(\bar{x})=\mathcal{C}$ for any full orbit $\bar{x} \in \varliminf_{幺}(\mathcal{C}, T)$.

To prove this theorem we revisit Gambaudo and Martens' combinatorial approach for constructing self-maps of the Cantor set (or indeed any 0-dimensional compact metric space) via graph covers (see [14]).

[^4]6.1. Graph covers. It is a well-known fact that any totally disconnected, compact and Hausdorff space (these are sometimes called Stone spaces) can be obtained as an inverse limit of a (countable) system of discrete finite spaces. This property actually characterises Stone spaces via Stone duality (see [22, Proposition 8-5]) which is why these are also occasionally called profinite spaces.

It turns out, using similar ideas, that it is possible to give a complete description not just for Stone spaces, but also for the self-maps on them by adding arrows to the discrete spaces forming the inverse system and, thus, creating an inverse limit of directed graphs. We briefly recall the main results of this theory following Shimomura's treatment in [23].

A graph 5 is a pair $G=(V, E)$ where V is a finite set of vertices and $E \subseteq V \times V$ is a set of directed edges. We additionally require that each vertex has at least one outgoing and one incoming edge. A graph homomorphism between graphs (V, E) and $\left(V^{\prime}, E^{\prime}\right)$ is a vertex map $\phi: V \rightarrow V^{\prime}$ which respects the edges, i.e. for any pair $(v, w) \in E$ it must be $(\phi(v), \phi(w)) \in E^{\prime}$. A graph homomorphism is said to be + -directional if $\phi\left(w_{1}\right)=\phi\left(w_{2}\right)$ whenever both $\left(v, w_{1}\right) \in E$ and $\left(v, w_{2}\right) \in E$. If additionally $\left(v_{1}, w\right) \in E$ and $\left(v_{2}, w\right) \in E$ implies $\phi\left(v_{1}\right)=\phi\left(v_{2}\right)$ it is said that ϕ is bidirectional. A graph cover is a + -directional homomorphism of graphs that is also edge-surjective meaning that the map which ϕ naturally induces on the set of edges $\phi: E \rightarrow E^{\prime}$ is surjective.

Given a sequence of graph covers $G_{0} \stackrel{\phi_{0}}{\longleftarrow} G_{1} \stackrel{\phi_{1}}{\longleftarrow} G_{2} \stackrel{\phi_{2}}{\longleftarrow} \cdots$ one forms a Stone space as the inverse limit

$$
G_{\infty}=\lim _{\rightleftarrows} G_{i}=\left\{\left(v^{(i)}\right)_{i \geq 0} \in \prod_{i=0}^{\infty} V_{i} \mid v^{(i)}=\phi_{i}\left(v^{(i+1)}\right) \text { for all } i \in \mathbb{N}_{0}\right\}
$$

It is possible to define a self-map $\phi_{\infty}: G_{\infty} \rightarrow G_{\infty}$ by setting

$$
\phi_{\infty}\left(\left(v^{(i)}\right)_{i \geq 0}\right)=\left(\phi_{i}\left(w^{(i+1)}\right)\right)_{i \geq 0}
$$

where $w^{(i)}$ is any vertex for which the edge $\left(v^{(i)}, w^{(i)}\right)$ is in E_{i}. Intuitively, the map is given by the rule 'follow the arrows' except that if there are more than one outgoing arrow from the chosen vertex at the any given level, we might need to peek at one level below whose finer resolution will help us decide which of the arrows to follow. +-directionality of the covers ensures that this process, or indeed ϕ_{∞} is a well-defined continuous self-map of the Stone space G_{∞}. If additionally each of the bounding maps in the sequence is bidirectional then the map ϕ_{∞} is a homeomorphism, see [23, Lemma 3.5].

The full correspondence is given by
Theorem 6.3 ([23, Theorem 3.9]). A topological (compact, metric, surjective) dynamical system is 0 -dimensional if and only if it is topologically conjugate to G_{∞} for some sequence of covers $G_{0} \stackrel{\phi_{0}}{\longleftarrow} G_{1} \stackrel{\phi_{1}}{\longleftarrow} G_{2} \stackrel{\phi_{2}}{\longleftarrow} \cdots$.

We remark that these results have a flavour of those by Mioduszewski in [20] but are more elaborate as here we are dealing only with 0-dimensional spaces.

We are now ready to construct the system described in Theorem 6.1. The inspiration for this came from the construction in [24]. Very recently similar techniques appeared in [25].

Proof of Theorem 6.1. Let $G_{0}=\left(\left\{v_{0}^{(0)}\right\},\left\{\left(v_{0}^{(0)}, v_{0}^{(0)}\right)\right\}\right)$ be one vertex with a self-loop. Given G_{i} we shall inductively define G_{i+1}. The graph G_{i+1} will consist

[^5]

Figure 2. The first 3 steps of the construction, with $C_{0}=1$ and $C_{1}=2$.
of $\left|V_{i+1}\right|=\left(\left|V_{i}\right|+C_{i}\right) \cdot(i+1)!+1$ vertices $^{6} V_{i+1}=\left\{v_{0}^{(i+1)}, \ldots, v_{\left|V_{i+1}\right|-1}^{(i+1)}\right\}$ which make a cycle in that order, and additionally E_{i+1} also contains a self-loop at $v_{0}^{(i+1)}$, see Figure 2. The constants $C_{i} \in \mathbb{N}$ are inductively chosen so that $\left|V_{i}\right|+C_{i}$ and $(i+1)$! are co-prime. It remains to specify the cover $\phi_{i}: V_{i+1} \rightarrow V_{i}$ by the formula

$$
\phi_{i}\left(v_{k}^{(i+1)}\right)=v_{I(i, k)}^{(i)}
$$

where

$$
I(i, k)= \begin{cases}0, & \text { if } k \equiv 0,1,2, \ldots, \text { or } C_{i} \quad\left(\bmod \left|V_{i}\right|+C_{i}\right), \\ l, & \text { otherwise }, \text { where } l \equiv k-C_{i} \quad\left(\bmod \left|V_{i}\right|+C_{i}\right)\end{cases}
$$

It is perhaps easier to see what is going if we look at how ϕ_{i} maps the edges of G_{i+1} onto the edges of G_{i}. Let us denote the self loops in G_{i} and G_{i+1} by e_{0} and e_{0}^{\prime} respectively, and let $\left\{f_{1}, \ldots, f_{\left|V_{i}\right|}\right\}$ and $\left\{f_{1}^{\prime}, \ldots, f_{\left|V_{i+1}\right|}^{\prime}\right\}$ be successive edges in their bigger cycles respectively. The formulae above capture the fact that the cycle $\left\{f_{1}^{\prime}, \ldots, f_{\left|V_{i+1}\right|}^{\prime}\right\}$ on the $(i+1)^{\text {st }}$ level is wound $(i+1)$! times over the full circuit (with the first edge being repeated C_{i} times) in the graph G_{i} in the following succession

In particular, looking at Figure 2, $\phi_{1}: G_{2} \rightarrow G_{1}$ maps denoted edges as follows:

f_{1}^{\prime},	f_{2}^{\prime},	f_{3}^{\prime},	f_{4}^{\prime},	f_{5}^{\prime},	f_{6}^{\prime},	f_{7}^{\prime},	f_{8}^{\prime},	f_{9}^{\prime},	f_{10}^{\prime},	f_{11}^{\prime}
I										
e_{0},	e_{0},	f_{1},	f_{2},	f_{3},	e_{0},	e_{0},	f_{1},	f_{2},	f_{3},	e_{0}

Also note the additional twist over e_{0} at the end which is needed to ensure that these are bidirectional covers.

[^6]Let G_{∞} be the inverse limit of the just constructed inverse system $G_{0} \stackrel{\phi_{0}}{\longleftrightarrow}$ $G_{1} \stackrel{\phi_{1}}{\longleftarrow} G_{2} \stackrel{\phi_{2}}{\longleftarrow} \cdots$. As each vertex in G_{i} is covered with at least 2 vertices of G_{i+1} one easily checks that G_{∞} has no isolated points and is therefore homeomorphic to the Cantor set. As we mentioned earlier, the sequence consists of bidirectional covers and $\phi_{\infty}: G_{\infty} \rightarrow G_{\infty}$ is thus a homeomorphism of the Cantor set.

It remains to be seen that $\left(G_{\infty}, \phi_{\infty}\right)$ is almost totally minimal. One fixed point of the system is clearly $\left(v_{0}^{(i)}\right)_{i \geq 0}$. Any other point $\left(v_{p_{i}}^{(i)}\right)_{i \geq 0} \in G_{\infty}$ will have $p_{i}>0$ for all i large enough. Let $x_{\infty}=\left(v_{p_{i}}^{(i)}\right)_{i \geq 0}$ be one such a point. We wish to show that for any given $m \in \mathbb{N}$ the full orbit under ϕ_{∞}^{m} of this point is dense in G_{∞}.

We shall denote by $\left[v_{k}^{(i)}\right]$ the set of all the points in G_{∞} with $i^{\text {th }}$ coordinate equal to $v_{k}^{(i)}$. Recall that these sets $\left[v_{k}^{(i)}\right]$, where $i \in \mathbb{N}_{0}$ and $0 \leq k \leq\left|V_{i}\right|-1$, form a clopen basis for the topology on G_{∞}. They are neatly nested within each other and those on the level $i+1$ refine all those on levels less than i. In fact one has the relation $\left[v_{k}^{(i+1)}\right] \subseteq\left[\phi_{i}\left(v_{k}^{(i+1)}\right)\right]=\left[v_{I(i, k)}^{(i)}\right]$. It will thus suffice to see that for any level $L \in \mathbb{N}_{0}$, one can find ϕ_{∞}^{m}-iterates of x_{∞} that hit each of the sets $\left[v_{k}^{(L)}\right]$, for $0 \leq k \leq\left|V_{L}\right|-1$.

Let L be one such level and choose $M \geq \max \{L, m-1\}$ large enough so that $p_{M+1}>0$. We claim that $\phi_{\infty}^{(M+1)!}$-iterates of x_{∞} hit each of the sets $\left[v_{k}^{(M)}\right]$, for $0 \leq k \leq\left|V_{M}\right|-1$, which will suffice as $m \mid(M+1)$! and $M \geq L$.

Note that as $p_{M+1}>0$ it is possible to infer where a large portion of iterates of x_{∞} are mapped within level $M+1$ without actually having to look at what happens at the level below ${ }^{7}$. In particular we know that $\phi_{\infty}^{-p_{M+1}+k}\left(x_{\infty}\right) \in\left[v_{k}^{(M+1)}\right]$ for each $0 \leq k \leq\left|V_{M+1}\right|-1$. This means that those same iterates hit each of the sets $\left[v_{k}^{(M)}\right]$, for $0 \leq k \leq\left|V_{M}\right|-1$, at least $(M+1)$! times, as each of the vertices in G_{M+1} covers those of G_{M} with at least multiplicity $(M+1)$!. This, along with the choice of C_{M} (the number of successive repetitions of $v_{0}^{(M)}$ in the covering map), creates an apt offset implying that $\phi_{\infty}^{(M+1)!}$-iterates of x_{∞} end up in all of the sets $\left[v_{k}^{(M)}\right]$.

To put it precisely, let $p_{M+1}=q(M+1)!+r$ with $0 \leq r<(M+1)$! as in Euclidean division. Then if $k=s(M+1)!+r$ with $0 \leq s \leq\left|V_{M}\right|+C_{M}-1$ we have $\phi_{\infty}^{(s-q)(M+1)!}\left(x_{\infty}\right)=\phi_{\infty}^{-q(M+1)!-r+k}\left(x_{\infty}\right)=\phi_{\infty}^{-p_{M+1}+k}\left(x_{\infty}\right) \in\left[v_{k}^{(M+1)}\right] \subseteq\left[v_{I(M, k)}^{(M)}\right]$. This is justified by noting that k falls within the required range

$$
0 \leq r \leq k \leq(M+1)!\left(\left|V_{M}\right|+C_{M}\right)=\left|V_{M+1}\right|-1
$$

As $\left|V_{M}\right|+C_{M}$ and $(M+1)$! are co-prime it is an elementary number theoretic fact that $s(M+1)$!, and hence also $k=s(M+1)!+r$, will run through all the residue classes modulo $\left|V_{M}\right|+C_{M}$ as s runs through $\left\{0,1, \ldots,\left|V_{M}\right|+C_{M}-1\right\}$. Inspecting the definition of $I(M, k)=I(M, s(M+1)!+r)$, we see that this attains all the values in $\left\{0,1, \ldots,\left|V_{M}\right|-1\right\}$ when s goes through $\left\{0,1, \ldots,\left|V_{M}\right|+C_{M}-1\right\}$. This completes our proof.

$$
\text { 7. } 2,3 \in \operatorname{Per}\left(2^{f}\right) \nRightarrow 6 \in \operatorname{Per}\left(2^{f}\right)
$$

Using Theorem 6.1 we can now construct a map on the Cantor set \mathcal{C} for which the induced map on the hyperspace $2^{\mathcal{E}}$ has period 2 and 3 points but no cycle of length 6.

Let $A \sqcup B=\mathcal{C}$ be a partition ${ }^{8}$ of the Cantor set in two clopen set such that the fixed point x^{0} is in A. Let $\hat{X}=A \times\{0,1\} \sqcup B \times\{0\}$. We define a map $f: \hat{X} \rightarrow \hat{X}$

[^7]by
\[

f(x, i)=\left\{$$
\begin{array}{l}
(T(x), 1), \text { if } i=0 \text { and } x \in T^{-1}(A) \\
(T(x), 0), \text { otherwise }
\end{array}
$$\right.
\]

But this map is not surjective as for example $T(B) \cap A \times\{0\}$ is not contained in the range of f, and it is also 2 to 1 on $A \cap T^{-1}(B) \times\{0,1\}$ as $f(x, 0)=f(x, 1)=(T(x), 0)$ for all $x \in A \cap T^{-1}(B)$. It is possible to restrict the dynamics to the surjective core of the map $\left.f\right|_{\tilde{X}}: \tilde{X} \rightarrow \tilde{X}$ where $\tilde{X}=\bigcap_{k=0}^{\infty} f^{k}(\hat{X})$ is the set of all points in \hat{X} that have preimages going infinitely back. This is still not the map we are after as \tilde{X} is the largest closed strongly f-invariant set, and we would like our map to be defined on a minimal closed, strongly f-invariant set that contains $B \times\{0\}$. Such a set exists by Zorn's lemma, but it turns out that it is unique and can be constructed as follows.

Let

$$
N(x, B)=\min \left\{k \in \mathbb{N}_{0} \mid T^{-k}(x) \in B\right\}
$$

be the time elapsed since x last visited B. If the minimum above does not exist, we set $N(x, B)=\infty$. Clearly $N(x, B)=0$ for all $x \in B$, but it is also finite for all other $x \in \mathcal{C}$ which have their backward orbit dense in \mathcal{C} which we know is a G_{δ} dense set in \mathcal{C} with empty interior. In fact, $N(x, B)$ is finite on a much larger (dense and open) set $U=\{x \in \mathcal{C} \mid N(x, B)<\infty\}$. To see that U is open it suffices to notice that $N(x, B)$ is a locally constant function. What we mean by this is that for any point $x \in U$ there exists a (cl)open neighbourhood containing x on which the function $N(\cdot, B)$ is constant $(=N(x, B))$. This is easy to see as one just needs to ensure that the neighbourhood is small enough so that the $N(x, B)$ backward iterates of the points in it follow tightly those of x. We now set

$$
X=\overline{\{(x, N(x, B) \bmod 2) \mid x \in U\}}
$$

where the closure is taken in \hat{X}. Note that X is still homeomorphic to the Cantor set since it is defined as the closure of a subset of the Cantor set with no isolated points. It is also immediately clear that X can be written as

$$
X=\overline{\bigcup_{k=0}^{\infty} f^{k}(B \times\{0\})}
$$

To prove that this is the unique minimal closed strongly f-invariant set containing $B \times\{0\}$ it only remains to be seen that $X \subseteq f(X)$. Actually, $B \times\{0\} \subseteq f(X)$ will suffice. For this we recall the natural factor map, the projection to the first coordinate, $\pi: \hat{X} \rightarrow \mathcal{C}$ given by $\pi(x, i)=x$. It is in fact a semi-conjugacy as one can verify that $\pi \circ f=T \circ \pi$. Using this we get $T(\pi(X))=\pi(f(X)) \subseteq \pi(X)$ and so $\pi(X)$ is a T-invariant set clearly containing B. Remembering that the set of points with their forward orbit dense under T is itself dense in \mathcal{C} we conclude that $\pi(X)=\mathcal{C}$. But then given any $(b, 0) \in B \times\{0\}$ set $b_{-1}=T^{-1}(b)$ and then since $\pi(X)=\mathcal{C}$, either $\left(b_{-1}, 0\right)$ or $\left(b_{-1}, 0\right)$ or both are in X. In any case one of these will map to ($b, 0$) under f finishing our proof.

Another important thing to note is that the map π restricted to X is almost a homeomorphism as it is injective everywhere except possibly at some points of $\pi^{-1}(\mathcal{C} \backslash U) \cap X$ where it can be 2 to 1 . To see that π is injective on $\pi^{-1}(U) \cap X$ recall that for any $u \in U$ one can find a clopen neighbourhood V_{u} where $N(\cdot, B)$ is constant and hence $V_{u} \times\{N(u, B) \bmod 2\}$ is contained in X but $V_{u} \times\{1-$ $N(u, B) \bmod 2\}$ has an empty intersection with X.

This observation allows us to prove
Lemma 7.1. For any fixed natural number m, X is the least closed f^{m}-invariant set that contains $B \times\{0\}$.

Proof. Let $m \in \mathbb{N}$ be fixed, and let $S \subseteq X$ be a closed, f^{m}-invariant subset of X containing $B \times\{0\}$. We need to see that $S=X$. Reasoning similarly as before, we see that $\pi(S)$ is a closed T^{m}-invariant subset of \mathcal{C} containing B. Thus, by Theorem 6.1, $\pi(S)=\mathcal{C}$. If we now remember that π is injective on $\pi^{-1}(U) \cap X=$ $\{(x, N(x, B) \bmod 2) \mid x \in U\}$, we get $\{(x, N(x, B) \bmod 2) \mid x \in U\} \subseteq S$, and from there immediately $S=X$.

Remark 7.2. The statement of Lemma 7.1 could equivalently be written as

$$
X=\overline{\bigcup_{k=0}^{\infty} f^{k m}(B \times\{0\})}
$$

for any $m \in \mathbb{N}$.
Lemma 7.3. For any $(x, i) \in X \backslash \pi^{-1}\left(x^{0}\right)$ and any $m \in \mathbb{N}$ we have

$$
\overline{\mathcal{O}}_{f^{m}}((x, i))=X
$$

for any chosen full orbit of (x, i).
Proof. Using the fact that π is a semi-conjugacy and Theorem 6.1 we know that

$$
\mathcal{C}=\overline{\mathcal{O}}_{T^{m}}(x)=\overline{\mathcal{O}}_{T^{m}}(\pi(x, i)) \subseteq \pi\left(\overline{\mathcal{O}}_{f^{m}}((x, i))\right),
$$

and hence $\pi\left(\overline{\mathcal{O}}_{f^{m}}((x, i))\right)=\mathcal{C}$. But π is injective on $B \times\{0\}$ and hence $B \times\{0\} \subset$ $\overline{\mathcal{O}}_{f^{m}}((x, i))$, and as $\overline{\mathcal{O}}_{f^{m}}((x, i))$ is f^{m}-invariant and closed, by Lemma 7.1 it must be that $\overline{\mathcal{O}}_{f^{m}}((x, i))=X$.

We are now ready to finish the construction of our example. To avoid confusion we abstain from denoting points in X as ordered pairs, and we let the alternating 2 -cycle be made of points $x^{0}, x^{1} \in X$. Let $Z=X \times\{0,1,2\} / \sim$ be a quotient space obtained by gluing the points in $\left\{\left(x^{0}, i\right) \mid i=0,1,2\right\}$ together and likewise the points in $\left\{\left(x^{1}, i\right) \mid i=0,1,2\right\}$. Let us call those two points z^{0} and z^{1}. We define the map $g: Z \rightarrow Z$ by

$$
g(x, i)=(f(x), i+1 \bmod 3)
$$

Note that this rule respects the quotient relation and therefore accounts for a welldefined map on Z. Let us inspect closer the induced map 2^{g}. It is clear that $\left\{z^{0}\right\}$ gives a 2 -cycle in 2^{Z} as z^{0} is 2 -periodic for g. It is also clear that the natural embedding of X in Z as $X \times\{0\}$ produces a 3 -cycle in 2^{Z}. It remains to show that no 6 -cycle in 2^{Z} exists. For if it did, it would have to contain at least one point $(x, i) \in Z$ other than z^{0} or z^{1}. Then clearly $\overline{\mathcal{O}}_{g^{6}}((x, i))$ would also have to be contained in this set for some choice of the full orbit of (x, i). But $\overline{\mathcal{O}}_{g^{6}}((x, i))=$ $\overline{\mathcal{O}}_{f^{6}}(x) \times\{i\}=X \times\{i\}$ and therefore our initial set must have been of the form $X \times F / \sim$ for some $F \subseteq\{0,1,2\}$ and hence was not periodic with fundamental period 6.
7.1. General p and q. Using the idea of the time elapsed since the last visit to B it becomes obvious how to generalise this construction for p and q other than 2 and 3 . We set

$$
X=\overline{\{(x, N(x, B) \bmod p) \mid x \in U\}}
$$

and define a map $f: X \rightarrow X$ by

$$
f(x, i)=\left\{\begin{array}{l}
(T(x), i+1 \bmod p), \text { if } x \in T^{-1}(A) \\
(T(x), 0), \text { otherwise }
\end{array}\right.
$$

This is a continuous map on the Cantor set X with a p-cycle $\left(x^{0}, 0\right),\left(x^{0}, 1\right), \ldots$, $\left(x^{0}, p-1\right)$. As before, using the projection map $\pi: X \rightarrow \mathcal{C}$, one checks that f is onto, and that $\pi(X)=\mathcal{C}$. Analogously one sees that π is injective on $\pi^{-1}(U) \cap X=$
$\{(x, N(x, B) \bmod p) \mid x \in U\}$, and hence any closed subset of X that projects onto the whole of \mathcal{C} must be X itself. This enables one to prove that Lemmata 7.1 and 7.3 still hold even with this, more general, definition of X and f. In fact, their statements along with the proofs (up to changing 2 to p) still hold word for word.

One can now set $Z=X \times\{0,1, \ldots, q-1\} / \sim$ where \sim identifies q distinct p-cycles into one p-periodic orbit $\left\{z^{0}, \ldots, z^{p-1}\right\} \subset Z$. The map $g: Z \rightarrow Z$ given by

$$
g(x, i)=(f(x), i+1 \bmod q)
$$

is once again well-defined and clearly satisfies $p, q \in \operatorname{Per}\left(2^{g}\right)$. We claim that any other $m \in \operatorname{Per}\left(2^{g}\right)$ must be a divisor of either p or q.

Firstly, if we assume that the periodic point $S \in 2^{Z}$ is completely contained in $\left\{z^{0}, \ldots, z^{p-1}\right\}$ then by our previous results we know that $m \mid p$. If otherwise there exists a point $(x, i) \in S$ other than any of $z^{0}, \ldots z^{p-1}$ then $\overline{\mathcal{O}}_{g^{m q}}((x, i))$ is contained in S for some choice of the full orbit of (x, i). By Lemma 7.3 we get $\overline{\mathcal{O}}_{g^{m q}}((x, i))=\overline{\mathcal{O}}_{f^{m q}}((x)) \times\{i\}=X \times\{i\}$ and so $S=X \times F / \sim$ for some $F \subseteq\{0,1, \ldots, q-1\}$. From here we immediately get that $m \mid q$. Thus we have proved

Theorem 7.4. Let $p, q \in \mathbb{N}$. There exists a continuous onto map of the Cantor set $g: Z \rightarrow Z$ for which the periods appearing in the induced map are exactly divisors of either p or q, i.e.

$$
\operatorname{Per}\left(2^{g}\right)=\{m|m| p \text { or } m \mid q\} .
$$

8. Bratteli-Vershik representation

We have mentioned before that it would be possible to give rewrite rules for translating a description of a systems given by graph covers to those using BratteliVershik diagrams or Kakutani-Rokhlin towers. In this section we give an example of how this is done by providing another, equivalent construction of the system (\mathcal{C}, T) from Theorem 6.1 using the former.

There are many references explaining the theory behind Bratteli-Vershik diagrams, e.g. [10, 17], but to us most relevant was a recent preprint [2] by Amini, Elliott, and Golestani where they give a category theory treatment of the matter highlighting the connection between these diagrams and essentially minimal systems.

Consider the infinite graph in Figure 3, where all the edges are oriented downwards even if this is not depicted there. Additionally, for each node other than the root L_{0} which has no incoming edges, an ordering is given on the set of incoming edges into that node. This order is depicted in the figure as the order in which the edges connect to that node going from left to right.

We have yet to explain how this infinite graph is constructed. Recall that in the proof of Theorem 6.1 we obtained a sequence of numbers $\left(C_{i}\right)_{i \in \mathbb{N}_{0}}$ which was of some significance in the construction of the map T. Here, any node L_{i+1} will have only one incoming edge coming from the node L_{i} for any $i \in \mathbb{N}_{0}$. The incoming edges into the node R_{i+1} will be: C_{i+1} edges coming form the node L_{i}, then one edge from the node R_{i}, then another C_{i+1} edges form L_{i}, and another one from R_{i}, and this sequence of $C_{i+1}+1$ edges is to be repeated in total $(i+1)$! times, after which the last one in comes the edge from L_{i}. Note that we could simply say that there are $(i+1)!\cdot\left(C_{i+1}\right)+1$ edges coming from L_{i} and $(i+1)$! from R_{i} into R_{i+1}, but by listing them as above, we implicitly specified the order on those edges incoming into the node R_{i+1} for any $i \in \mathbb{N}$.

The space we shall be considering is the space of all infinite paths starting from L_{0} and then following the sequence of edges down through the vertices L_{i} / R_{i}.

Figure 3. Bratteli-Vershik representation of the system from Theorem 6.1.

Encoding these paths as sequences of edges allows one to see this space as the Cantor set of symbolic sequences. It remains to specify the map on this space of infinite paths.

Recall that for each node other than the root there exists the minimal and the maximal ingoing edge into that node. A path is said to be minimal (resp. maximal) if it consists entirely of minimal (resp. maximal) edges. It is not hard to check that in our graph the path $e_{1}^{1} e_{1}^{2} e_{1}^{3} \ldots$ that is always staying on the left side is both minimal and maximal and no other minimal nor maximal path exits. This path will be the fixed point of our map. For any other path $p^{1} p^{2} p^{3} \ldots$ there must exist a $k \in \mathbb{N}_{0}$ such that the edge p^{k} is not maximal. Choose this k to be the smallest possible and then we let our function map this path to the path $q^{1} q^{2} \ldots q^{k} p^{k+1} p^{k+2} p^{k+3} \ldots$ where q^{k} is the successor of the edge p^{k} and q^{i} S for $i<k$ are chosen in such a way that $q^{1} q^{2} \ldots q^{k-1}$ forms the (unique) minimal path connecting L_{0} and the source vertex of the edge q^{k}. Equivalently, $q^{1} \ldots q^{k}$ is chosen to be the successor of the path $p^{1} \ldots p^{k}$ with respect to the natural induced order on the sequence of paths (of length k) terminating at the source of p^{k+1}.

We leave to the reader to check that this does give the same (or formally, conjugated) system as the method given in Section 6. For this it is helpful to see how this representation was derived from Figure 2.

Each vertex above stands for a cycle in the graph covers representation. To be precise, the self-loop of the graph G_{0} is represented by the root L_{0}, the self-loop of any G_{i} is represented by the vertex L_{i}, and the bigger cycle $v_{0}^{(i)} v_{1}^{(i)} \ldots v_{\left|V_{i}\right|}^{(i)}$ in G_{i} corresponds to the right side vertex R_{i}. Finally the edges and the order in which they connect vertices L_{i} and R_{i} to the vertices L_{i+1} and R_{i+1} are to be inferred from the way the cycles in the graph G_{i+1} wrap around through the cycles
of G_{i}. In particular, the loop e_{0}^{\prime} in G_{2} just goes once through the loop e_{0} in G_{1} and hence only one edge from L_{1} to L_{2}. On the other hand, the cycle $f_{1}^{\prime} f_{2}^{\prime} \ldots f_{11}^{\prime}$ in G_{2} wraps firstly two times around e_{0}, then once around the bigger cycle in G_{1}, then repeats this, and then finally winds the last time over e_{0}. This means that the edges incoming into R_{2} are: two edges from L_{1}, followed by one from R_{1}, then again two from L_{1} and one from R_{1}, and lastly one from L_{1}.

At the very end we mention that the corresponding representation using Kaku-tani-Rokhlin towers is obtained by associating the cycles in the graphs G_{i} with the eponymous towers and the vertices within those cycles correspond to the levels of the towers.

9. Periodicity in symmetric products

In this section we shall be concerned only with periodic points in 2^{X} made up entirely of periodic points for (X, f). We shall see that in this setting the anomalies such as those in Theorem 7.4 are not possible.

Firstly note that one can reduce the problem to studying periodic points of $f^{<\omega}$. Namely, let $S \in 2^{X}$ be a periodic point with fundamental period $k=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ where each point of S is periodic under f. Then as in the proof of Theorem 5.1 we can find points x_{1}, \ldots, x_{r} in S for which $p_{i}^{\alpha_{i}} \in \operatorname{Per}\left(\bar{x}_{i}\right)$ where each \bar{x}_{i} is simply a full periodic orbit of x_{i}. It could happen that some of these $x_{i} \mathrm{~s}$ are represented by the same point or by points that are members of the same full orbit, which in this case means the same cycle. For a moment let us assume that this is not the case and that all of these r full orbits are mutually disjoint when considered as subsets of X. Then for each $1 \leq i \leq r$ let $S_{i} \in 2^{X}$ be the canonical $k_{i}=p_{i}^{\alpha_{i}}$-periodic set given by $S_{i}=\left\{x_{i}, f^{k_{i}}\left(x_{i}\right), f^{2 k_{i}}\left(x_{i}\right), \ldots\right\}$. Note that S_{i} s are finite and mutually disjoint, and thus $\bigcup_{i=1}^{r} S_{i}$ is a k-periodic point for 2^{f} but also for $f^{<\omega}$.

Suppose now that x_{1} and x_{2} belong to the same orbit. Then using Proposition 4.7 we can actually conclude that $l_{1}=k_{1} k_{2} \in \operatorname{Per}\left(\bar{x}_{1}\right)=\operatorname{Per}\left(\bar{x}_{2}\right)$. Grouping the elements of the same orbits in this way and discarding all but one representative for each of the orbits we obtain a factorisation of $k=l_{1} \cdots l_{s}$ in $s \leq r$ co-prime factors where each l_{i} is an element of some Per $\left(\bar{x}_{t(i)}\right)$ with $x_{t(1)}, \ldots, x_{t(s)}$ all belonging to distinct orbits. After setting $S_{i}=\left\{x_{t(i)}, f^{l_{i}}\left(x_{t(i)}\right), f^{2 l_{i}}\left(x_{t(i)}\right), \ldots\right\}$ the union $\bigcup_{i=1}^{s} S_{i}$ will again be a k-periodic point for both 2^{f} and $f^{<\omega}$.

Below we give explicit formulae for $\operatorname{Per}\left(f^{(n)}\right)$, $\operatorname{Per}\left(f_{n}\right)$, and $\operatorname{Per}\left(f^{<\omega}\right)$ in terms of $\operatorname{Per}(f)$ where by $\operatorname{Per}(f)$ we denote the set of periods of the periodic points of f.

Proposition 9.1. We have the following identities

$$
\begin{array}{r}
\operatorname{Per}\left(f^{(n)}\right)=\left\{\left[m_{1}, \ldots, m_{n}\right] \mid m_{i} \in \operatorname{Per}(f) \text { for all } 1 \leq i \leq n\right\} \tag{4}\\
\operatorname{Per}\left(f_{n}\right)= \\
\bigcup_{l=1}^{n}\left\{\left[d_{1}, \ldots, d_{l}\right]\left|d_{i}\right| m_{i} \in \operatorname{Per}(f) \text { for all } 1 \leq i \leq l\right. \\
\text { and } \left.\frac{m_{1}}{d_{1}}+\cdots+\frac{m_{l}}{d_{l}} \leq n\right\},
\end{array}
$$

$$
\begin{equation*}
\operatorname{Per}\left(f^{<\omega}\right)=\bigcup_{l=1}^{\infty}\left\{\left[d_{1}, \ldots, d_{l}\right]\left|d_{i}\right| m_{i} \in \operatorname{Per}(f) \text { for all } 1 \leq i \leq l\right\} \tag{6}
\end{equation*}
$$

where $\left[k_{1}, \ldots, k_{m}\right]$ stands for the least common multiple of k_{1}, \ldots, k_{m}.
Proof. Statement (4) is easy. Given points q_{1}, \ldots, q_{n} with fundamental periods m_{1}, \ldots, m_{n} it is clear that the point $\left(q_{1}, \ldots, q_{n}\right) \in X^{(n)}$ has fundamental period [m_{1}, \ldots, m_{n}]. And conversely any periodic point of $f^{(n)}$ must arise in this fashion.

We shall now prove (5). Let $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ be a periodic point in $F_{n}(X)$. Clearly each q_{i} must be a periodic point of f. Then Q can be naturally partitioned into sets $Q_{1}, \ldots Q_{l}$ where each Q_{i} contains points belonging to the same cycle under f, and no two points from distinct $Q_{i} \mathrm{~s}$ belong to the same cycle. All the points in Q_{i} have the same period m_{i} under f. Let us denote the periods of $Q, Q_{1}, \ldots, Q_{l} \in F_{n}(X)$ by d, d_{1}, \ldots, d_{l} respectively. Clearly $d=\left[d_{1}, \ldots, d_{l}\right]$ and since $f_{n}^{m_{i}}\left(Q_{i}\right)=Q_{i}$ we also have $d_{i} \mid m_{i}$. By the construction we have $l \leq n$ as every Q_{i} must contain at least one point from Q.

Lastly, we claim that $\frac{m_{i}}{d_{i}} \leq\left|Q_{i}\right|$ where $|$.$| denotes the cardinality of a set. This$ is because $f_{n}^{d_{i}}$ acts on Q_{i} as a permutation over set of cardinality $\left|Q_{i}\right|$ of order at most $\frac{m_{i}}{d_{i}}$. But a permutation can not have order larger than the cardinality of the set it acts upon and, thus, we get the claim. From this it follows $\sum_{i=1}^{l} \frac{m_{i}}{d_{i}} \leq$ $\left|\bigcup_{i=1}^{l} Q_{i}\right|=|Q|=n$ which finishes the proof of the inclusion \subseteq in (5). The other inclusion follows by noting that any period of the form $\left[d_{1}, \ldots, d_{l}\right]$ where $1 \leq l \leq n$, $d_{i} \mid m_{i}$ for some $m_{i} \in \operatorname{Per}(f)$, and $\sum_{i=1}^{l} \frac{m_{i}}{d_{i}} \leq n$ can be realised by taking points r_{1}, \ldots, r_{l} of periods m_{1}, \ldots, m_{l} respectively and then setting $Q=\bigcup_{i=1}^{l} Q_{i}$ where for each $1 \leq i \leq l$ the set Q_{i} is formed of $\frac{m_{i}}{d_{i}}$ equispaced iterates of r_{i}. More precisely $Q_{i}=\left\{r_{i}, f^{d_{i}}\left(r_{i}\right), f^{2 d_{i}}\left(r_{i}\right), \ldots, f^{\left(\frac{m_{i}}{d_{i}}-1\right) d_{i}}\left(r_{i}\right)\right\}$.

Finally, note that $\operatorname{Per}\left(f^{<\omega}\right)=\bigcup_{n \in \mathbb{N}} \operatorname{Per}\left(f_{n}\right)$, therefore (6) follows immediately from (5).

Remark 9.2. An important observation that implicitly drives the proof of the second statement above was that no periods are lost if one only considers points in $F_{n}(X)$ formed of equispaced ${ }^{9}$ iterates of points in X. To take a simple example, consider a point x which is periodic with fundamental period 6 in some system (X, f). Even though $\{x, f(x)\},\left\{x, f(x), f^{2}(x)\right\}$, and many others are period 6 points for f_{3}, there is a simple, equispaced point of period 6 for f_{3}, namely $\{x\}$.
Remark 9.3. Note that statement (6) could equally be written as

$$
\operatorname{Per}\left(f^{<\omega}\right)=[\mathcal{D}(\operatorname{Per}(f))]
$$

where $\mathcal{D}(S)=\{d \in \mathbb{N}|d| n$ for some $n \in S\}$ is the set of divisors of S, and $[S]=\left\{\left[k_{1}, \ldots, k_{l}\right] \mid l \in \mathbb{N}, k_{1}, \ldots k_{l} \in S\right\}$ is the set of least common multiples of a set $S \subseteq \mathbb{N}$. In particular, $\operatorname{Per}\left(f^{<\omega}\right)$ is the smallest set containing $\operatorname{Per}(f)$ that is closed under taking least common multiples and divisors.

Let us show how Proposition 9.1 can be used to compute the periods of induced maps on hyperspaces.
Example 9.4. Let $f:[0,1] \rightarrow[0,1]$ be a 2^{r} interval map $(r>1)$, i.e. a map for which $\operatorname{Per}(f)=\left\{1,2,2^{2}, \ldots 2^{r-1}, 2^{r}\right\}$. One possible construction of such a map is described in [7, Example I.13]. For any positive integer n, all the sets $\operatorname{Per}\left(f_{n}\right)$, $\operatorname{Per}\left(f^{(n)}\right)$, $\operatorname{Per}\left(f^{<\omega}\right)$ clearly contain $\operatorname{Per}(f)$. Note that in our special case, if $d_{i} \mid m_{i}$ and $m_{i} \in \operatorname{Per}(f)$ then $d_{i} \in \operatorname{Per}(f)$, and hence also $\left[d_{1}, \ldots, d_{l}\right]=\max \left\{d_{1}, \ldots, d_{l}\right\} \in$ $\operatorname{Per}(f)$. Therefore $\operatorname{Per}\left(f_{n}\right)=\operatorname{Per}\left(f^{(n)}\right)=\operatorname{Per}\left(f^{<\omega}\right)=\operatorname{Per}(f)$. Note that using Theorem 3.2 and the fact $\operatorname{Per}(f) \subseteq \operatorname{Per}\left(2^{f}\right)$ we can also conclude $\operatorname{Per}\left(2^{f}\right)=\mathbb{N}$. \triangleleft

10. Concluding Remarks

Nearly all the results contained in here were driven by the problem of finding a complete characterisation of the set $\operatorname{Per}\left(2^{f}\right)$ in terms of $\operatorname{Per}(f)$. The first step would be to find constraints on $\operatorname{Per}\left(2^{f}\right)$ and this already seems involved. We have

[^8]shown that this set must be closed under taking prime divisors, but the question remains if it is closed under taking divisors in general. Whatever turns out to be the truth, one will still be faced with the laborious task of constructing maps attaining all the admissible periodicity sets in-between, if one seeks for such a full characterisation. Some of these will be easy, but we have already gone through much trouble in order to construct examples having two co-prime periods in $\operatorname{Per}\left(2^{f}\right)$ but not their product. We conjecture that, more generally, a map with Per $\left(2^{f}\right)=\{m \mid$ $m \mid p$ for $p \in P\}$ exists for any finite $P \subset \mathbb{N}$.

One plausible strategy for obtaining such results easily would be to find a way to embed any Cantor set dynamics (X, f) within another ("bigger") Cantor set dynamics (\hat{X}, \hat{f}) where X would be a closed, nowhere dense set in \hat{X}. Additionally one would require that $(\hat{X} \backslash X, \hat{f})$ is totally minimal. More precisely, we formulate this as

Question 10.1. Let (X, f) be a dynamical system on the Cantor set X. Does there always exist a system on the Cantor set (\hat{X}, \hat{f}) and an embedding (continuous injection) $i: X \rightarrow \hat{X}$ which:
(a) intertwines the dynamics of f and \hat{f}, i.e. $\hat{f} \circ i=i \circ f$,
(b) embeds X as an \hat{f}-invariant set whose complement in \hat{X} is also invariant and non-empty,
(c) and such that for any $m \in \mathbb{N}$ and any full orbit $\bar{x} \in \lim _{\leftarrow}(\hat{X}, \hat{f})$ of a point $x=x_{0}$ in $\hat{X} \backslash i(X)$ we have $\overline{\mathcal{O}}_{\hat{f}^{m}}(\bar{x})=\hat{X}$?
Note that these imply that the embedding $i(X)$ is nowhere dense in \hat{X}.
Using this one could, starting with our p, q example as (X, f), construct a system with $\operatorname{Per}\left(2^{f}\right)$ consisting solely of divisors of p, q and r by taking the set $\hat{X} \times\{0,1, \ldots, r-1\} / \sim$, where \sim identifies r copies of X into just one copy, and the map $(x, i) \mapsto(\hat{f}(x), i+1 \bmod r)$. This procedure can be then repeated with the system just obtained as a starting point. Continuing in this way would enable one to construct systems with an increasing hierarchy of subsystems nested within each other. It is not hard to check that Per $\left(2^{f}\right)$ of such a map would be exactly of the form above.

References

[1] Ethan Akin, Eli Glasner, and Benjamin Weiss, Generically there is but one self homeomorphism of the Cantor set, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3613-3630. MR2386239
[2] Massoud Amini, George A. Elliott, and Nasser Golestani, The category of Bratteli diagrams, Canad. J. Math. 67 (2015), no. 5, 990-1023. MR3391730
[3] Francisco Balibrea, Juan L. G. Guirao, and Marek Lampart, A note on the definition of α-limit set, Appl. Math. Inf. Sci. 7 (2013), no. 5, 1929-1932. MR3072393
[4] John Banks, Chaos for induced hyperspace maps, Chaos Solitons Fractals 25 (2005), no. 3, 681-685. MR2132366 (2006a:37013)
[5] Walter Bauer and Karl Sigmund, Topological dynamics of transformations induced on the space of probability measures, Monatsh. Math. 79 (1975), 81-92. MR0370540 (51 \#6767)
[6] Nilson C. Bernardes Jr. and Udayan B. Darji, Graph theoretic structure of maps of the Cantor space, Adv. Math. 231 (2012), no. 3-4, 1655-1680. MR2964619
[7] L. S. Block and W. A. Coppel, Dynamics in one dimension, Lecture Notes in Mathematics, vol. 1513, Springer-Verlag, Berlin, 1992. MR1176513 (93g:58091)
[8] Louis Block and Ethan M. Coven, Maps of the interval with every point chain recurrent, Proc. Amer. Math. Soc. 98 (1986), no. 3, 513-515. MR857952 (87j:54059)
[9] Alexandre I. Danilenko, Strong orbit equivalence of locally compact Cantor minimal systems, Internat. J. Math. 12 (2001), no. 1, 113-123. MR1812067 (2002j:37016)
[10] Anthony H. Dooley, Markov odometers, Topics in dynamics and ergodic theory, 2003, pp. 6080. MR2052275 (2005c:37007)
[11] Abbas Edalat, Dynamical systems, measures, and fractals via domain theory, Inform. and Comput. 120 (1995), 32-48.
[12] Leobardo Fernández and Chris Good, Shadowing for induced maps of hyperspaces, Fund. Math. (2016), to appear.
[13] Leobardo Fernández, Chris Good, Mate Puljiz, and Ártico Ramírez, Chain transitivity in hyperspaces, Chaos Solitons Fractals 81 (2015), no. part A, 83-90. MR3426021
[14] Jean-Marc Gambaudo and Marco Martens, Algebraic topology for minimal Cantor sets, Ann. Henri Poincaré 7 (2006), no. 3, 423-446. MR2226743 (2006m:37007)
[15] José L. Gómez-Rueda, Alejandro Illanes, and Héctor Méndez, Dynamic properties for the induced maps in the symmetric products, Chaos Solitons Fractals 45 (2012), no. 9-10, 11801187. MR2979228
[16] Juan Luis García Guirao, Dominik Kwietniak, Marek Lampart, Piotr Oprocha, and Alfredo Peris, Chaos on hyperspaces, Nonlinear Anal. 71 (2009), no. 1-2, 1-8. MR2518006 (2010c:37032)
[17] Richard H. Herman, Ian F. Putnam, and Christian F. Skau, Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math. 3 (1992), no. 6, 827-864. MR1194074 (94f:46096)
[18] W. T. Ingram and William S. Mahavier, Inverse limits, Developments in Mathematics, vol. 25, Springer, New York, 2012. From continua to chaos. MR3014043
[19] Dominik Kwietniak and Piotr Oprocha, Topological entropy and chaos for maps induced on hyperspaces, Chaos Solitons Fractals 33 (2007), no. 1, 76-86. MR2301847 (2008b:37024)
[20] J. Mioduszewski, Mappings of inverse limits, Colloq. Math. 10 (1963), 39-44. MR0166762
[21] Sam B. Nadler Jr., Hyperspaces of sets. A text with research questions, Aportaciones Matemáticas: Textos [Mathematical Contributions: Texts], vol. 33, Sociedad Matemática Mexicana, México, 2006. Unabridged edition of the 1978 original. MR2293338 (2007i:54024)
[22] Keiô Nagami, Dimension theory, With an appendix by Yukihiro Kodama. Pure and Applied Mathematics, Vol. 37, Academic Press, New York-London, 1970. MR0271918 (42 \#6799)
[23] Takashi Shimomura, Special homeomorphisms and approximation for Cantor systems, Topology Appl. 161 (2014), 178-195. MR3132360
[24] , The construction of a completely scrambled system by graph covers, Proc. Amer. Math. Soc. (2015), to appear.
[25] , A combinatorial construction of residually scrambled symbolic systems (2016), available at http://arxiv.org/abs/1602.01568. Accessed: 9/2/2016.

School of Mathematics; University of Birmingham; Birmingham, B15 2TT, UK E-mail address: l.fernandez@bham.ac.uk, leobardof@ciencias.unam.mx

School of Mathematics; University of Birmingham; Birmingham, B15 2TT, UK
E-mail address: c.good@bham.ac.uk
School of Mathematics; University of Birmingham; Birmingham, B15 2TT, UK
E-mail address: mxp243@student.bham.ac.uk, puljizmate@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 37E15; Secondary 37B05, 37B10, 54H20.
 Key words and phrases. Induced map; hyperspace; periodic points; almost minimal system; Šarkovs'kiî's Order.

 The first author acknowledges support by CONACyT, scholarship for Postdoctoral Position no. 250254 .

 The second and the third author acknowledge support from the European Union through funding under FP7-ICT-2011-8 project HIERATIC (316705).

[^1]: ${ }^{1}$ Here and elsewhere in text by divisors we actually mean positive divisors.

[^2]: ${ }^{2}$ Compare this with Proposition 4.2. Also note that whether a point is (chain) recurrent depends only on its forward orbit, as is common in the literature; but, for convenience, our notion of non-recurrent point involves the full λ-limit set of the point. As a results, it is possible for a point to be neither recurrent nor non-recurrent.

[^3]: ${ }^{3}$ See Remark 9.3 below.

[^4]: ${ }^{4}$ If T is non-invertible then there will points with more than one distinct full orbits.

[^5]: ${ }^{5}$ All graphs we consider are directed.

[^6]: ${ }^{6}$ Thus $\left|V_{n}\right|$ grows faster than superfactorials $n!(n-1)!\cdots 2!1$!.

[^7]: ${ }^{7}$ By the level below we mean level $M+2$, i.e. a level with a finer structure.
 ${ }^{8}$ We use symbol \sqcup to denote a disjoint union.

[^8]: ${ }^{9}$ Formally, we say that $Q=\left\{q_{1}, \ldots, q_{m}\right\}$ is an equispaced point in $F_{n}(X)$ if $\min \{k \geq 1 \mid$ $\left.f^{k}\left(q_{i}\right) \in Q\right\}$ does not depend on $1 \leq i \leq m$.

