
 
 

University of Birmingham

A semi-smooth Newton method for projection
equations and linear complementarity problems
with respect to the second order cone
Bello Cruz, Jose Yunier ; Ferreira, Orizon; Nemeth, Sandor; Prudente, Leandro da Fonseca

DOI:
10.1016/j.laa.2016.10.007

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Bello Cruz, JY, Ferreira, O, Nemeth, S & Prudente, LDF 2017, 'A semi-smooth Newton method for projection
equations and linear complementarity problems with respect to the second order cone', Linear Algebra and its
Applications, vol. 513, pp. 160-181. https://doi.org/10.1016/j.laa.2016.10.007

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 25. Apr. 2024

https://doi.org/10.1016/j.laa.2016.10.007
https://doi.org/10.1016/j.laa.2016.10.007
https://birmingham.elsevierpure.com/en/publications/8f817ca9-8124-4da3-8b97-1d1c2cb5aabe


A semi-smooth Newton method for projection equations and linear

complementarity problems with respect to the second order cone∗

J.Y. Bello Cruz† O. P. Ferreira‡ S. Z. Németh § L. F. Prudente ‡

October 6, 2016

Abstract

In this paper a special semi-smooth equation associated to the second order cone is studied. It is
shown that, under mild assumptions, the semi-smooth Newton method applied to this equation is
well-defined and the generated sequence is globally and Q-linearly convergent to a solution. As an
application, the obtained results are used to study the linear second order cone complementarity
problem, with special emphasis on the particular case of positive definite matrices. Moreover,
some computational experiments designed to investigate the practical viability of the method
are presented.

Keywords: Semi-smooth system, conic programming, second order cone, semi-smooth Newton
method.

2010 AMS Subject Classification: 90C33, 15A48.

1 Introduction

In this paper we consider the following special semi-smooth equation in x ∈ Rn associated to the
closed and convex cone K ⊆ Rn:

PK(x) + Tx = b, (1)

where b ∈ Rn is a constant vector, T is an n×n constant nonsingular real matrix and PK(x) denotes
the Euclidean metric projection of a vector x onto the cone K. The equation (1) associated to the
positive orthant, K = Rn++, was first studied in [6]. Additional papers dealing with (1) and its
variations had appeared, for instance, in [3–5,7–9,12,15,17,24,25,32].

The purpose of the present paper is to discuss the semi-smooth Newton method to solve equation
(1) associated to the second order cone

K :=
{

x := (x1, x2) ∈ R× Rn−1 : ‖x2‖ ≤ x1
}
. (2)

∗This work was supported by CNPq (Grants 303492/2013-9, 474160/2013-0, 305158/2014-7) and FAPEG.
†Department of Mathematical Sciences, Northern Illinois University, WH 366, DeKalb, IL - 60115, USA (E-mail:

yunierbello@niu.edu).
‡IME/UFG, Avenida Esperança, s/n, Campus Samambaia, Goiânia, GO - 74690-900, Brazil (E-mails:
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It is shown that, under mild assumptions, the semi-smooth Newton method applied to this equation
is well-defined and the generated sequence is globally and Q-linearly convergent to a solution. As
an application, we use the obtained results to study the linear second order cone complementarity
problem (LSOCCP) : Find x ∈ Rn such that

x ∈ K, Mx + q ∈ K, 〈Mx + q, x〉 = 0, (3)

where q ∈ Rn is a constant vector, M is an n×n constant nonsingular real matrix. Complementarity
problems related to the second order cone are considered in [14, 20, 23]. This topic of high interest
is connected to several problems and has a wide range of applications, see [21]. Since this latter
survey of applications many other important connections with physics, mechanics, economics, game
theory, robotics, optimization and neural networks have been found, such as the ones in [2, 10, 19,
22,28,34,35]. If M is symmetric, then the LSOCCP (3) is the optimality condition of the quadratic
programming problem under a second order cone constraint,

Minimize
1

2
x>Mx + q>x + c (4)

x ∈ K

where c is a real number. Although not considered in this paper, it can be shown that any sec-
ond order (in particular quadratic) conic optimization problem can be reformulated in terms of
complementarity problems (in particular linear) related to the second order cone, see [27].

We show that the semi-smooth Newton method for solving problems (1), (3) and (4) has interest-
ing features, for instance, the global and linear convergence of the generated sequence. Moreover,
we present some computational experiments designed to investigate its practical viability. For a
given class of problem, our numerical results suggest that the number of required iterations is al-
most unchanged. The numerical results also indicate a remarkable robustness with respect to the
starting point.

The organization of the paper is as follows. In Section 1.1 some notations and auxiliary results
used in the paper, are presented. In particular, important and useful properties of the projection
mapping onto the second order cone are studied. In Section 2, we study the convergence properties
of the semi-smooth Newton method for solving (1). In Section 3, the results of Section 2 are applied
to find a solution of (3). In Section 4, we present some computational experiments. Final remarks
are considered in Section 5.

1.1 Notations and preliminaries

In this section we present the notations and some auxiliary results used throughout the paper. Let
Rn be the n-dimensional Euclidean space with the canonical inner product 〈·, ·〉 and induced norm
‖ · ‖. If α ∈ R, then denote α+ := max{α, 0} and α− := max{−α, 0}. The set of all m× n matrices
with real entries is denoted by Rm×n and Rn ≡ Rn×1. The matrix Idn denotes the n × n identity
matrix. Denote ‖E‖ := max{‖Ex‖ : x ∈ Rn, ‖x‖ = 1} for any E ∈ Rn×n.

The next useful result, known as Banach’s Lemma, which was proved in 2.1.1, page 32 of [30].

Lemma 1 (Banach’s Lemma). Let E ∈ Rn×n. If ‖E‖ < 1, then E − Idn is invertible and ‖(E −
Idn)−1‖ ≤ 1/ (1− ‖E‖) .

We continue this section to present an interesting result on the eigenvalues of the sum of two
symmetric matrices and its consequence.
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Lemma 2. Let A and B be two n × n symmetric matrices. Denote the eigenvalues of A, B and
A+B by λi(A), λi(B) and λi(A+B) respectively, where i = 1, . . . , n and all three sets are arranged
in non-increasing order. Then λi(A) + λn(B) ≤ λi(A+B) ≤ λi(A) + λ1(B) for i = 1, . . . , n.

Proof. See page 101 of [33].

Corollary 1. Let A1, . . . , Ap be n × n symmetric matrices and A = a1A1 + · · · + apAp such that
a1 + . . . + ap = 1 with aj ∈ [0, 1]. Denote the eigenvalues of Aj and A by λi(Aj) and λi(A)
respectively, where j = 1, . . . , p, i = 1, . . . , n and all the sets are arranged in non-increasing order.
Then min{λn(A1), . . . , λn(Ap)} ≤ λi(A) ≤ max{λ1(A1), . . . , λ1(Ap)}, for i = 1, . . . , n.

Proof. Since a1 + . . . + ap = 1 with aj ∈ [0, 1] and the eigenvalues of ajAj are equals to ajλi(Aj)
for j = 1, . . . , p and i = 1, . . . , n. Thus, the proof is an immediate consequence of Lemma 2.

For a differentiable mapping F : Rn → Rm at a point x ∈ Rn, we denote by F ′(x) ∈ Rm×n the
Jacobian of F at this point. If F is a locally Lipschitz continuous mapping, then the set

∂BF (x) :=
{

V(x) ∈ Rm×n : ∃ {xk} ⊂ DF ; xk → x, F ′(xk)→ V(x)
}
,

is nonempty and called the B-subdifferential of F at x, where DF ⊆ Rn denotes the set of points at
which F is differentiable. The convex hull of ∂BF , ∂F (x) := conv ∂BF (x), is known as the Clarke’s
generalized Jacobian, see Definition 2.6.1 on page 70 of [11]. The next result is the generalization
of the vector Mean-Value Theorem for Lipschitz continuous mapping, see Proposition 2.6.5 on page
72 of [11].

Proposition 1. Let F : Rn → Rm be a Lipschitz continuous mapping. Then we have

F (y)− F (x) ∈ conv ∂F ([x, y])(y − x), x, y ∈ Rn,

where the right hand side in the inclusion denotes the convex hull of all points of the form U(z)(y−x)
with U(z) ∈ ∂F (z) and z ∈ [x, y] := {tx + (1− t)y : t ∈ [0, 1]}.

We end this section with the well-known contraction mapping principle, see 8.2.2, page 153 of [30].

Theorem 1 (Contraction mapping principle). Let Φ : Rn → Rn. Suppose that there exists κ ∈ [0, 1)
such that ‖Φ(y)−Φ(x)‖ ≤ κ‖y− x‖, for all x, y ∈ Rn. Then there exists a unique x̄ ∈ Rn such that
Φ(x̄) = x̄.

1.2 Properties of the projetion mapping

In this section we present some properties of the projection mapping onto a second order cone,
which will play important roles in the study of equation in (1). We begin with some notations.

The polar cone and the dual cone of second order cone K in (2) are, respectively, the sets

K◦ :={x ∈ Rn : 〈x, y〉≤0, ∀ y∈K}, K∗:={x ∈ Rn : 〈x, y〉≥0, ∀ y∈K}.

Recall that K◦ = −K∗ and K is self-dual, i.e., K∗ = K. Moreover, it follows from Moreau’s
decomposition theorem, see [26] (see also [16, Theorem 3.2.5]), that

x = PK(x)− PK(−x), 〈PK(x), PK(−x)〉 = 0, x ∈ Rn. (5)

An explicit representation of the projection mapping PK onto K is given in the following result,
see [13, Proposition 3.3].
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Lemma 3. Let x := (x1, x2) ∈ R× Rn−1 and K be the second order cone. Then,

PK(x) =


1

2

(
(x1 − ‖x2‖)+ + (x1 + ‖x2‖)+,

[
(x1 + ‖x2‖)+ − (x1 − ‖x2‖)+

] x2

‖x2‖

)
, x2 6= 0,

(
x+1 , 0

)
, x2 = 0.

(6)

Remark 1. It is well-known that the orthogonal projection onto a closed convex set is continuous
and firmly nonexpansive. In particular, ‖PK(x)− PK(y)‖ ≤ ‖x− y‖ for all x, y ∈ Rn, see [16].

Since PK is nonexpansive, it is Lipschitz continuous. Thus, by Rademacher’s Theorem, we con-
clude that PK is differentiable everywhere except at x1 = ±‖x2‖. In the next result we present
the Jacobian of PK at the points where it is differentiable, and as a consequence, we derive some
important properties of its B-subdifferential.

Lemma 4. The projection mapping PK onto the second order cone K is continuously differentiable
at every x := (x1, x2) ∈ R× Rn−1 such that x1 6= ±‖x2‖ and its Jacobian is given by

P′K(x) :=


Idn, x1 > ‖x2‖,
0, x1 < −‖x2‖,
1

2

[
1 w>

w H

]
, −‖x2‖ < x1 < ‖x2‖,

(7)

where w = x2/‖x2‖ and H = [1 + x1/‖x2‖] Idn−1 − (x1/‖x2‖)ww>. As a consequence, at each
x ∈ Rn, the matrix V(x) ∈ ∂BPK(x) has the following representation:

(a) If x1 6= ±‖x2‖, then V(x) = P′K(x);

(b) If x2 6= 0 and x1 = ‖x2‖, then V(x) = Idn or

V(x) =
1

2

[
1 w>

w H

]
, w =

x2

‖x2‖
, H = 2Idn−1 − ww>; (8)

(c) If x2 6= 0 and x1 = −‖x2‖, then V(x) = 0 or

V(x) =
1

2

[
1 w>

w H

]
, w =

x2

‖x2‖
, H = ww>; (9)

(d) If x2 = 0 and x1 = 0, then V(x) = 0 or V(x) = Idn or V(x) belongs to the set{
1

2

[
1 w>

w H

]
: H = (1 + ρ)Idn−1 − ρww>, for some |ρ| < 1 and ‖w‖ = 1

}
.

Moreover, the eigenvalues of any matrix V(x) ∈ ∂BPK(x) belong to the interval [0, 1], and conse-
quently ‖V(x)‖ ≤ 1, for all x ∈ Rn.

Proof. Combine Lemmas 2.5, 2.6 and 2.8 of [18].

In the next two lemmas, we obtain important properties of the orthogonal projection PK, which
will be used in the definition and the convergence analysis of the semi-smooth Newton method for
solving equation in (1).
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Lemma 5. For every x := (x1, x2) ∈ R× Rn−1 and V(x) ∈ ∂BPK(x) there holds V(x)x = PK(x).

Proof. Take any x = (x1, x2) ∈ R × Rn−1. Then, the analysis will be done following the four
possibilities from (a) to (d) as in the statement of Lemma 4. First we assume (a), that is x1 6=
±‖x2‖. Then, V(x) = P′K(x). In this case, by using (7), we conclude that

P′K(x)x =


x, x1 > ‖x2‖,
0, x1 < −‖x2‖,
1

2

(
x1 + ‖x2‖, (x1 + ‖x2‖)

x2

‖x2‖

)
, −‖x2‖ < x1 < ‖x2‖.

On the other hand, by using (6), we easily conclude that P′K(x)x = PK(x).

Next assume the conditions of (b), that is, x2 6= 0 and x1 = ‖x2‖. If V(x) = Idn, then V(x)x = x.
If V(x) is given by (8), then

V(x)x =
1

2

(
x1 + ‖x2‖, (x1 + ‖x2‖)

x2

‖x2‖

)
,

and using the assumption x1 = ‖x2‖ we conclude V(x)x = x. Now, taking into account that x2 6= 0,
x1 − ‖x2‖ = 0 and x1 + ‖x2‖ > 0 the equality in (6) becomes PK(x) = x. Therefore, we also have
V(x) = PK(x).

Now we assume the conditions of (c), that is x2 6= 0 and x1 = −‖x2‖. If V(x) = 0 then V(x)x = 0.
If V(x) is given by (9) then we have

V(x)x =
1

2

(
x1 + ‖x2‖, (x1 + ‖x2‖)

x2

‖x2‖

)
,

and because x1 +‖x2‖ = 0, we also conclude that V(x)x = 0. Note that the assumptions x2 6= 0 and
x1 = −‖x2‖ imply x1 + ‖x2‖ = 0 and x1 − ‖x2‖ < 0. Thus, the equality in (6) implies PK(x) = 0.
Therefore, we also have V(x) = PK(x).

Finally, we prove the statement of (d), assuming that x2 = 0 and x1 = 0. It follows trivially that
V(x)x = 0 and PK(x) = 0. Thus, we also have V(x)x = PK(x).

Therefore, we conclude that in all possible cases the lemma holds for every x = (x1, x2) ∈ R×Rn−1,
which concludes the proof.

Lemma 6. Let x, y ∈ Rn and V(x) ∈ ∂BPK(x). Then ‖PK(y)− PK(x)−V(x)(y − x)‖ ≤ ‖y − x‖.

Proof. After simple algebraic manipulations, we conclude from Proposition 1 that

PK(y)− PK(x)−V(x)(y − x) ∈ conv ∂PK([x, y])(y − x)−V(x)(y − x), x, y ∈ Rn. (10)

On the other hand, Lemma 4 implies that the eigenvalues of any matrix V(x) ∈ ∂BPK(x) belong to
the interval [0, 1], for all x ∈ Rn. Thus, by combining the definitions of ∂PK and conv ∂PK([x, y])
with Corollary 1, we conclude that the eigenvalues of any matrix U ∈ conv ∂PK([x, y]) also belong
to [0, 1]. Therefore, letting U ∈ conv ∂PK([x, y]) and V(x) ∈ ∂BPK(x) and taking into account that
the eigenvalues of U and V(x) belong to [0, 1], we conclude from Lemma 2 that the eigenvalues of
U − V(x) belong to the interval [−1, 1]. Hence, since U − V(x) is a symmetric matrix, we have
‖U−V(x)‖ ≤ 1. On the other hand, (10) implies that there exists U ∈ conv ∂PK([x, y]) such that

PK(y)− PK(x)−V(x)(y − x) = (U−V(x))(y − x).

By taking the norm in the above equality and by using that ‖U−V(x)‖ ≤ 1, we get that the desired
inequality holds.
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2 A semi-smooth Newton method

In this section, we present and analyze the semi-smooth Newton method for solving (1). We begin
by presenting an existence result of solutions for equation (1).

Proposition 2. If
∥∥T−1

∥∥ < 1 then (1) has a unique solution for any b ∈ Rn.

Proof. The equation (1) has a solution if only if Φ(x) = −T−1PK(x) + T−1b has a fixed point. It
follows from definition of Φ that

Φ(x)− Φ(y) = −T−1(PK(x)− PK(y)), x, y ∈ Rn.

Since
∥∥T−1

∥∥ < 1 and ‖PK(x)−PK(y)‖ ≤ ‖x−y‖ for all x, y ∈ Rn and after taking the norm in the
last equality, we get ‖Φ(x) − Φ(y)‖ ≤

∥∥T−1
∥∥ ‖x − y‖, for all x, y ∈ Rn. Hence Φ is a contraction.

Therefore, by applying Theorem 1, we conclude that Φ has precisely an unique fixed point and
consequently (1) has a unique solution.

The next example shows that the bound
∥∥T−1

∥∥ < 1 in Proposition 2 is strict.

Example 1. Consider equation (1) where

T =

[
1 0
0 −1

]
and b =

[
2
0

]
.

Note that
∥∥T−1

∥∥ = 1. By using (6), direct calculations show us that [1 1]> and [1 − 1]> are
solutions of (1).

The semi-smooth Newton method, introduced in [31], for finding the zero of the semi-smooth
function

F (x) := PK(x) + Tx− b, x ∈ Rn, (11)

with starting point x0 ∈ Rn, it is formally defined by

F (xk) + U(xk)
(

xk+1 − xk
)

= 0, U(xk) ∈ ∂F (xk), k = 0, 1, . . . . (12)

Note that U(xk) is any subgradient in ∂F (xk), the Clarke generalized Jacobian of F at xk. By
letting

V(x) ∈ ∂BPK(x), x ∈ Rn, (13)

it is easy to see from (11) that V(x) + T ∈ ∂F (x). Since Lemma 5 implies that V(x)x = PK(x) for
all x ∈ Rn and V(x) ∈ ∂BPK(x), by taking U(xk) = V(xk) + T, equation (12) becomes[

V(xk) + T
]

xk+1 = b, V(xk) ∈ ∂BPK(xk), k = 0, 1, . . . , (14)

which formally defines the semi-smooth Newton sequence {xk} for solving (1). It is worth mentioning
that a similar iteration was studied in [6].

The next proposition gives a stopping condition for the semi-smooth Newton iteration given in (14).

Proposition 3. If in (14) V(xk+1) = V(xk), then xk+1 is a solution of (1).
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Proof. Since V(xk+1) = V(xk), the equation in (14) gives us
[
V(xk+1) + T

]
xk+1 = b. The equation

V(xk+1)xk+1 = PK(xk+1), together with the previous one, yield PK(xk+1) + Txk+1 = b, which
implies that xk+1 is a solution of (1).

The sufficient condition for the Q-linear convergence of the sequence generated by (14) is presented
in the next theorem.

Theorem 2. Let b ∈ Rn and T ∈ Rn×n be a nonsingular matrix. Assume that
∥∥T−1

∥∥ < 1. Then,
(1) has a unique solution x∗ ∈ Rn and, for any starting point x0 ∈ Rn, the semi-smooth Newton
sequence {xk} generated by (14) is well-defined. Additionally, if∥∥T−1

∥∥ < 1/2, (15)

then the sequence {xk} converges Q-linearly to x∗ as follows:

‖x∗ − xk+1‖ ≤ ‖T−1‖
1− ‖T−1‖

‖x∗ − xk‖, k = 0, 1, . . . . (16)

Proof. Let x ∈ Rn. It follows from Lemma 4 that ‖V(x)‖ ≤ 1 for all x ∈ Rn. Hence, by using the
properties of the norm and by taking into account that

∥∥T−1
∥∥ < 1, we conclude that ‖T−1V(x)‖ < 1.

Thus, Lemma 1 implies that −T−1V(x)− Idn is nonsingular. Since T is nonsingular and

V(x) + T = −T
[
−T−1V(x)− Idn

]
, x ∈ Rn,

we obtain that V(x) + T is also nonsingular. Therefore, for any starting point x0 ∈ Rn, (14) implies
that the sequence {xk} generated by (14) is well-defined.

By using Proposition 2, we conclude that (1) has a unique solution x∗ ∈ Rn. Since x∗ ∈ Rn is the
solution of (1), we have [V(x∗) + T]x∗ − b = 0, which together with the definition of {xk} in (14)
and (13), implies

x∗ − xk+1 = −[V(xk) + T]−1
[
b− [V(xk) + T]x∗

]
= −[V(xk) + T]−1

[
[V(x∗) + T]x∗ − b− [V(xk) + T]xk + b− [V(xk) + T](x∗ − xk)

]
,

for k = 0, 1, . . .. On the other hand, since V(x)x = PK(x) for all x ∈ Rn, after simple algebraic
manipulations we obtain

[V(x∗) + T]x∗ − b− [V(xk) + T]xk + b− [V(xk) + T](x∗ − xk) = PK(x∗)− PK(xk)−V(xk)(x∗ − xk),

for k = 0, 1, . . .. By combining the above two equalities and by using the properties of the norm,
we obtain

‖x∗ − xk+1‖ ≤
∥∥∥[V(xk) + T]−1

∥∥∥∥∥∥PK(x∗)− PK(xk)−V(xk)(x∗ − xk)
∥∥∥ , k = 0, 1, . . . . (17)

It follows from Lemma 6 that
∥∥PK(x∗)− PK(xk)−V(xk)(x∗ − xk)

∥∥ ≤ ‖x∗ − xk‖, for k = 0, 1, . . .,
and, by combining the last inequality with (17), we get

‖x∗ − xk+1‖ ≤
∥∥∥[V(xk) + T]−1

∥∥∥ ‖x∗ − xk‖, k = 0, 1, . . . . (18)

On the other hand, by using the properties of the norm, after some simple algebraic manipulations,
we get∥∥∥[V(xk) + T]−1

∥∥∥ =
∥∥∥[−T−1V(xk)− Idn]−1

[
−T−1

]∥∥∥ ≤ ∥∥∥[T−1V(xk) + Idn]−1
∥∥∥ ‖T−1‖, k = 0, 1, . . . ,

7



which combined with Lemma 1 and ‖T−1V(xk)‖ ≤ ‖T−1‖ < 1 implies∥∥∥[V(xk) + T]−1
∥∥∥ ≤ ‖T−1‖

1− ‖T−1‖
, k = 0, 1, . . . .

Thus, the last inequality and (18) yield (16). Note that (15) implies ‖T−1‖/(1 − ‖T−1‖) < 1.
Therefore, (16) implies that {xk} converges Q-linearly, for any starting point x0, to the solution x∗

of (1). Hence, the theorem is proven.

If T is a symmetric and positive definite matrix, then stronger results are obtained.

Theorem 3. Let b ∈ Rn and T ∈ Rn×n be a symmetric and positive definite matrix. Then (1) has
a unique solution x∗ ∈ Rn and, for any starting point x0 ∈ Rn, the semi-smooth Newton sequence
{xk} generated by (14) is well-defined. Moreover, if

∥∥T−1
∥∥ < 1, then {xk} converges Q-linearly to

x∗ as follows:
‖x∗ − xk+1‖ ≤ ‖T−1‖‖x∗ − xk‖, k = 0, 1, . . . .

Proof. Since T is symmetric and positive definite, it follows from Lemma 2 that Idn + T is nonsin-
gular. Thus, taking into account that x = PK(x) − PK(−x), after some algebraic manipulations,
we conclude that (1) is equivalent to x = [Idn + T]−1 (b− PK(−x)). Therefore, equation (1) has a
solution if only if Φ(x) = [Idn + T)]−1 (b− PK(−x)) has a fixed point. On the other hand, it follows
from the definition of Φ that

Φ(x)− Φ(y) = [Idn + T]−1 (−PK(−x) + PK(−y)), x, y ∈ Rn.

Since T is symmetric and positive definite, it follows from Lemma 2 that
∥∥∥[Idn + T]−1

∥∥∥ = κ < 1,

where κ = 1/(1 + λmin) and λmin > 0 is the minimum eigenvalue of T. Now, proceeding as in
Proposition 2, it is possible to conclude that Φ is a contraction and it has precisely a unique fixed
point. Consequently (1) has a unique solution.

Lemma 4 implies that the eigenvalues of V(x) belongs to the interval [0, 1], for all x ∈ Rn.
Hence, the nonsingularity of V(x) + T follows from Lemma 2. As a consequence, the sequence {xk}
generated by (14) is well-defined for any starting point. In order to prove the Q-linear convergence
of {xk} to x∗ ∈ Rn, the unique solution of (1), we proceed as in the proof of Theorem 2 to obtain

‖x∗ − xk+1‖ ≤
∥∥∥[V(xk) + T]−1

∥∥∥ ‖x∗ − xk‖, k = 0, 1, . . . .

Lemma 2 allows us to conclude that
∥∥[V(xk) + T]−1

∥∥ ≤ ‖T−1‖. Thus, by combining the latter two
inequalities we have

‖x∗ − xk+1‖ ≤ ‖T−1‖‖x∗ − xk‖, k = 0, 1, . . . .

Therefore, as we are under the assumption
∥∥T−1

∥∥ < 1, the last inequality implies that {xk} con-
verges Q-linearly to x∗ ∈ Rn, for any starting point x0.

The invertibility of V(x) + T, for all x ∈ Rn, is sufficient for the well-definedness of the Newton
method. However, the next example shows that an additional condition on T must be assumed for
convergence, for instance, (15).

Example 2. Consider the function F : R2 → R2 defined by F (x) = PK(x) + Tx− b, where

T =

[
5 1
1 0

]
and b =

[
13
3

]
.
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Note that T is symmetric and ‖T−1‖ = 5.1926 . . .. When the considered dimension is 2, V(x) ∈
∂BPK(x) is equal to[

0 0
0 0

]
,

[
1 0
0 1

]
,

1

2

[
1 1
1 1

]
, or

1

2

[
1 −1
−1 1

]
.

Therefore, the matrices V(x) + T are invertible, for all x ∈ R2. Moreover, x∗ = [2 1]> is a zero of
F . By applying Newton method starting at x0 = [0 1]>, for finding the zeros of F , the generated
sequence oscillates between the points

x1 =

[
4
−6

]
, x2 =

[
2
4

]
.

It is useful to mention that, for all k, x1 6= ±|x2|. Therefore, V(xk) = P′K(xk) and this example
holds up for all different options in items (b), (c) and (d) in Lemma 4.

3 Application to the linear second order cone complementarity
problem

In this section, we apply the results of Section 2 to solve (3) and consequently to find a solution of
(4). We begin by showing that from each solution of the semi-smooth equation

[M− Idn]PK(x) + x = −q, (19)

we obtain a solution of the LSOCCP (3):

Proposition 4. If the vector x∗ is a solution of (19), then PK(x∗) is a solution of (3).

Proof. It follows from (5) that PK(x∗)− x∗ = PK(−x∗). Thus, if x∗ ∈ Rn is a solution of (19), then

MPK(x∗) + q = PK(−x∗). (20)

Since the second equality in (5) implies that 〈PK(x∗),PK(−x∗)〉 = 0 and since PK(−x∗) ∈ K, the
equality (20) implies that

MPK(x∗) + q ∈ K, 〈MPK(x∗) + q, PK(x∗)〉 = 0. (21)

Combining this with PK(x∗) ∈ K, we conclude that PK(x∗) is a solution of (3) as claimed.

The semi-smooth Newton method of starting point x0 ∈ Rn for solving (19), is given by[
[M− Idn] V(xk) + Idn

]
xk+1 = −q, V(xk) ∈ ∂BPK(xk), k = 0, 1, . . . . (22)

Remark 2. If M − Idn is nonsingular, then letting T = [M − Idn]−1 and b = −Tq, equation (1)
becomes (19). As a consequence, (14) turns into (22). Indeed,

xk+1 =
[
V(xk) + T

]−1
b =

[
[M− Idn] V(xk) + Idn

]−1
(−q), V(xk) ∈ ∂BPK(xk),

for k = 0, 1, . . ., which is equivalent to the semi-smooth Newton method defined in (22).
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In the following two results we present sufficient existence and uniqueness conditions for (19).

Proposition 5. If ‖M− Idn‖ < 1 then (19) has a unique solution, for any q ∈ Rn.

Proof. First note that, (19) has a unique solution if, and only if, Φ(x) = − [M− Idn] PK(x)− q has
a unique fixed point. The definition of Φ implies that

Φ(x)− Φ(y) = [M− Idn] (PK(y)− PK(x)) , x, y ∈ Rn.

Hence, from Remark 1 we obtain that ‖Φ(x)−Φ(y)‖ ≤ ‖M− Idn‖ ‖x− y‖. Since ‖M− Idn‖ < 1, Φ
is a contraction. Therefore, from Theorem 1 we conclude that Φ has a unique fixed point, for any
q ∈ Rn, which implies that (19) has a unique solution.

Proposition 6. If M is nonsingular and
∥∥M−1 − Idn

∥∥ < 1, then (19) has a unique solution, for
any q ∈ Rn.

Proof. Since M is nonsingular, by taking into account the first equality in (5), after some algebraic
manipulations we can conclude that (19) is equivalent to[

M−1 − Idn

]
PK(−x)− x = M−1q. (23)

Define the auxiliary function Θ(x) =
[
M−1 − Idn

]
PK(−x) −M−1q. Note that (23) has a unique

solution if, and only if, Θ has a unique fixed point. On the other hand, the definition of Θ implies

Θ(x)−Θ(y) =
[
M−1 − Idn

]
(PK(−x)− PK(−y)) , x, y ∈ Rn.

It follows from Remark 1 that ‖Θ(x)−Θ(y)‖ ≤
∥∥M−1 − Idn

∥∥ ‖x−y‖ and, due to
∥∥M−1 − Idn

∥∥ < 1,
we conclude that Θ is a contraction. Therefore, Theorem 1 implies that Θ has a unique fixed point,
for any q ∈ Rn. Consequently, (19) has a unique solution, for any q ∈ Rn.

Remark 3. Note that, there exist symmetric matrices for which neither ‖M− Idn‖ < 1, nor∥∥M−1 − Idn

∥∥ < 1 are satisfied. For example, such a matrix is

M =

[
1/3 0
0 3

]
. (24)

In the next theorem a convergence result for the semi-smooth Newton sequence {xk}, generated
by (22), is presented.

Theorem 4. Let q ∈ Rn and M ∈ Rn×n be a symmetric matrix. Assume that M−Idn is nonsingular
and ‖M− Idn‖ < 1. Then, (19) has a unique solution x∗ ∈ Rn and, for any starting point x0 ∈ Rn,
the sequence {xk} generated by (22) is well-defined. Additionally, if ‖M− Idn‖ < 1/2, then {xk}
converges Q-linearly to x∗ ∈ Rn, the unique solution of (1), as follows:

‖x∗ − xk+1‖ ≤ ‖M− Idn‖
1− ‖M− Idn‖

‖x∗ − xk‖, k = 0, 1, . . . .

Moreover, PK(x∗) is a solution of (3).

Proof. The proof follows by combining Proposition 5, Remark 2, Theorem 2, and Proposition 4.
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If we assume M is a symmetric and positive definite in Theorem 4 then stronger results are
obtained. We begin showing that the semi-smooth Newton method in (22) is always well-defined.

Lemma 7. If M is symmetric and positive definite, then the following matrix is nonsingular

[M− Idn] V(x) + Idn, x ∈ Rn. (25)

As a consequence, the semi-smooth Newton sequence {xk} generated by (22) is well-defined, for any
starting point x0 ∈ Rn.

Proof. To simplify the notations let V = V(x). Let us suppose, by contradiction, that the matrix
in (25) is singular. Thus there exists u ∈ Rn such that

([M− Idn] V + Idn) u = 0, u 6= 0.

It is straightforward to see that the last equality is equivalent to the following one

MVu = [V − Idn] u, u 6= 0. (26)

Since M is symmetric and positive definite, there exists a nonsingular matrix L ∈ Rn×n such that
M = LL>. Taking into account that M = LL> and that Lemma 4 implies V = V> and ‖V‖ ≤ 1,
the equality in (26) easily implies that∥∥∥L>Vu

∥∥∥2 = 〈VMVu,u〉 =
〈
(V2 −V)u, u

〉
≤ 0.

Thus, L>Vu = 0. Because M = LL> and L>Vu = 0, equality (26) implies that (V − Idn)u = 0, or
equivalently, Vu = u. Hence,

L>u = L>Vu = 0, u 6= 0,

which contradicts the nonsingularity of L. Therefore, the matrix in (25) is nonsingular for all x ∈ Rn
and the first part of the lemma is proven.

To prove the second part of the lemma, combine the formal definition of {xk} in (22) and the
first part of this lemma.

Theorem 5. Let q ∈ Rn and M ∈ Rn×n be a symmetric and positive definite matrix. Then, for any
starting point x0 ∈ Rn, the semi-smooth Newton sequence {xk} generated by (22) is well-defined.
Additionally, if M − Idn is positive definite and ‖M− Idn‖ < 1, then (19) has a unique solution
x∗ ∈ Rn and {xk} converges Q-linearly to x∗ as follows

‖x∗ − xk+1‖ ≤ ‖M− Idn‖ ‖x∗ − xk‖, k = 0, 1, . . . .

Moreover, PK(x∗) is a solution of (3).

Proof. The proof follows by combining Proposition 5, Lemma 7, Remark 2, Theorem 3 and Propo-
sition 4.

From now on, we will consider a parametric version of equation (19), which will be specially useful
to study the second order cone linear complementarity problem, whenever M is positive definite.
Let q ∈ Rn and M ∈ Rn×n be a symmetric matrix defining equation in (19). Let β > 0 and define
Mβ := βM , qβ := βq and consider the parametric auxiliary equation

[Mβ − Idn]PK(y) + y = −qβ. (27)
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Note that the last equation has the same algebraic structure of equation in (19). In the next remark
we point out some interesting properties of (27), which are analogous properties of the equation in
(19).

Remark 4. It is worth mentioning that the result of Proposition 4 remains true if equation (19)
is replaced by (27). In other words, if y∗ is solution of (27), then PK(y∗) is a solution of (3).
The proof of this statement follows from the same idea as in the proof of Proposition 4, by noting
that, due to K being a cone, the equation (21) still holds for M = Mβ and q = qβ. Moreover, if
‖Mβ − Idn‖ < 1 or

∥∥Mβ
−1 − Idn

∥∥ < 1, then equation in (27) has also a unique solution. Indeed,
the result follows by applying Propositions 5 and 6 with M = Mβ and q = qβ.

Now we are going to show the advantage to choose an appropriate parameter β > 0 in (27)
instead of taking β = 1 as in equation (19). We will begin with the following remark.

Remark 5. Additionally, if M is positive definite and 0 ≤ β < 2/‖M‖, which includes the simple
example of Remark 3, then equation (27) always has a unique solution. Actually, if M is positive
definite and 0 < β < 2/‖M‖, then we have

‖Mβ − Idn‖ = ‖βM− Idn‖ < 1,

and, by applying Proposition 5 with M = Mβ and q = qβ, we conclude that (27) has a unique
solution. In particular, note that, by replacing the matrix in (24), which has the norm equal to 3,
with the matrix

Mβ :=

[
β/3 0

0 3β

]
, 0 < β < 1/3,

we have ‖Mβ − Idn‖ < 1 and in this case we conclude that (27) has a unique solution.

The semi-smooth Newton method for solving (27), with starting point y0 ∈ Rn, is given by[
[Mβ − Idn] V(yk) + Idn

]
yk+1 = −βq, V(yk) ∈ ∂BPK(yk), k = 0, 1, . . . . (28)

The next result shows how to take advantage of choosing an appropriate parameter β > 0, in order
to apply the semi-smooth Newton method for obtaining a solution of (3).

Theorem 6. Let q ∈ Rn and M ∈ Rn×n be a symmetric positive definite matrix. Then, for
any starting point y0 ∈ Rn, the semi-smooth Newton sequence {yk} generated by (28) is well-
defined. Moreover, if 0 < β < 2/‖M‖ then (27) has a unique solution y∗ ∈ Rn. Additionally, if
‖M‖‖M−1‖ < 3 and

1

2
‖M−1‖ < β <

3

2

1

‖M‖
, (29)

then the sequence {yk} converges Q-linearly to y∗ ∈ Rn, the unique solution of (27), as follows:

‖y∗ − yk+1‖ ≤
‖Mβ − Idn‖

1− ‖Mβ − Idn‖
‖y∗ − yk‖, k = 0, 1, . . . . (30)

Furthermore, PK(y∗) is a solution of (3).

Proof. By using the same idea as in Lemma 7, we can prove that [Mβ − Idn] V(yk) + Idn is a
nonsingular matrix, for k = 0, 1, . . .. Consequently, for any starting point y0 ∈ Rn, the semi-smooth
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Newton sequence {yk} generated by (28) is well-defined. Now, assuming that 0 < β < 2/‖M‖, we
conclude from Remark 5 that the equation in (27) has a unique solution y∗ ∈ Rn. Then,

[[Mβ − Idn] V(y∗) + Idn] y∗ = −βq,

which, together with definition of {yk} in (28) and V(x)x = PK(x) for all x ∈ Rn, yield

yk+1 − y∗ =
[
[Mβ − Idn] V(yk) + Idn

]−1 [
[[Mβ − Idn] V(y∗) + Idn] y∗ −

[
[Mβ − Idn] V(yk) + Idn

]
y∗
]

=
[
[Mβ − Idn] V(yk) + Idn

]−1
[Mβ − Idn]

[
PK (y∗)− PK(yk)−V(yk)

(
y∗ − yk

)]
,

for k = 0, 1, . . .. By combining Lemma 6 with this last equality and by using the properties of the
norm, we have

‖y∗ − yk+1‖ ≤
∥∥∥∥[[Mβ − Idn] V(yk) + Idn

]−1∥∥∥∥ ‖Mβ − Idn‖ ‖y∗ − yk‖. (31)

On the other hand, for 0 < β < 2/‖M‖, we have
∥∥[Mβ − Idn] V(yk)

∥∥ ≤ ‖Mβ − Idn‖ < 1. Thus, by
using Lemma 1, we have∥∥∥∥[[Mβ − Idn] V(yk) + Idn

]−1∥∥∥∥ ≤ 1

1− ‖Mβ − Idn‖
,

which combined with (31) gives us (30). Moreover, by using assumption (29), we conclude

‖Mβ − Idn‖
1− ‖Mβ − Idn‖

< 1.

Then, the last inequality, together with (30), imply that {yk} converges Q-linearly to y∗ and, by
using Remark 4, we obtain that PK(y∗) is a solution of (3).

We end this section by presenting an upper bound for the rate of convergence of the semi-smooth
Newton method in (28), which depends only of the minimum and maximum eigenvalues of M.

Remark 6. Let us focus our attention on the convergence rate of {yk}, the sequence generated by
the semi-smooth Newton method in (28), when M is symmetric and positive definite. The inequality
in (30) shows that ‖Mβ − Idn‖ determines the rate, which depends on β. Indeed, the upper bound
for the rate of convergence is

r(β) :=
‖βM− Idn‖

1− ‖βM− Idn‖
,

1

2
‖M−1‖ < β <

3

2

1

‖M‖
.

Now, we are going to compute the minimum value of the function r in the range of β given above.
Since the function t 7→ t/(1− t) is increasing, the minimum value of r in this range is reached when

β∗ = argmin

{
‖βM− Idn‖ :

1

2
‖M−1‖ < β <

3

2

1

‖M‖

}
. (32)

Let λmin and λmax be the minimum and the maximum eigenvalues of M, respectively. Thus, since
M is symmetric and positive definite ‖M−1‖ = 1/λmin and λmax = ‖M‖, and moreover, by using
(32), we obtain

β∗ = argmin

{
max {|βλmin − 1|, |βλmax − 1|} :

1

2

1

λmin
< β <

3

2

1

λmax

}
.
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Some calculations show that

β∗ =
2

λmax + λmin
, r(β∗) =

λmax − λmin

2λmin
.

Additionally, if λ = λmax = λmin, then β∗ = 1/λ and r(β∗) = 0. Thus, the inequality in (30) implies
that y1 = y∗. Hence the sequence {yk} generated by (28) with β = β∗ converges to y∗ in just one
iteration.

4 Computational Results

We implemented the semi-smooth Newton method (14) for solving equation (1) in Matlab R2010b.
When the projection mapping PK onto the second order cone K is not continuously differentiable
at x ∈ Rn, we define V(x) ∈ ∂BPK(x) in the simplest way. This means that V(x) is equal to Idn

in case of item (a) and the null matrix in cases of items (b) and (c) of Lemma 4. The method
stops at the iterate xk ∈ Rn reporting “Solution found” if

∥∥PK(xk) + Txk − b
∥∥ ≤ 10−6. Failure

is considered when the number of iterations exceeds 20. All codes are freely available at https:

//orizon.mat.ufg.br/p/3374-links. The experiments were run on a 3.4 GHz Intel(R) i7 with 4
processors, 8Gb of RAM, and Linux operating system.

In order to verify the applicability of our approach, we tested the semi-smooth Newton method
(14) in several random problems (1). A linear system must be solved in each iteration of the method.
For this purpose, we used the mldivide (same as backslash) command of Matlab. Following, we
enlighten how the problems data were generated.

(i) Matrix T: We consider cases where the matrix T is dense and cases where T is sparse for
different dimension values n. In the first case, we randomly generated the fully dense matrix T
from a uniform distribution on (−10, 10). To ensure the fulfillment of the hypothesis (15), we
computed the minimum singular value of T, then we rescaled T by multiplying it by 2 divided by
the minimum singular value multiplied by a random number in the interval (0, 1). To construct a
sparse matrix T we used the Matlab routine sprand, which generates a sparse matrix with predefined
dimension, density and singular values. First, we randomly generated the vector of singular values
from a uniform distribution on (0, 1). The fulfillment of the hypothesis (15) can be easily achieved
by conveniently rescaling the singular values. Finally, we evoke sprand with density equal to 0.004.
This means that, only about 0.4% of the elements of T are non null.

(ii) Solution and vector b: By Proposition 2, equation (1) has a unique solution if ‖T−1‖ < 1. Note
that if x∗ = (x∗1, x

∗
2) ∈ R × Rn−1 with x∗1 ≤ −‖x∗2‖ is a solution of (1), then x∗ is a solution of

Tx = b. On the other hand, if x∗1 ≥ ‖x∗2‖, then x∗ is a solution of [Idn + T]x = b. In both cases, the
solution can be found by simply solving a linear system. In particular, if the generated sequence
{xk} converges to x∗ = (x∗1, x

∗
2) ∈ R × Rn−1 with x∗1 < −‖x∗2‖ or x∗1 > ‖x∗2‖ then the convergence

is finite. We ignore these trivial cases by assuming that the unique solution x∗ of (1) is such that
−‖x∗2‖ < x∗1 < ‖x∗2‖. First, we randomly generated x∗2 ∈ Rn−1 from a uniform distribution on
(−10, 10) and then we defined x∗1 ∈ R as a convex combination between −‖x∗2‖ and ‖x∗2‖. After
that, we computed b = PK(x∗) + Tx∗.

(iii) Initial point: As preliminary numerical tests, we investigated the influence of the starting
point in the performance of the method. At this stage, we generated 100 problems with fully dense
1000× 1000 matrix T and 100 problems with sparse 5000× 5000 matrix T. For each problem, we
ran the semi-smooth Newton method starting from different initial points x0 = (x01, x

0
2) ∈ R×Rn−1

such that x01 > ‖x0
2‖, x01 < −‖x0

2‖ and −‖x0
2‖ < x01 < ‖x0

2‖. Observe that these regions are the
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interior of the cone K, the interior of the polar cone K◦ and the interior of the complement of
K ∪ K◦, respectively. For simplicity, let us call these regions by Region 1, 2 and 3, respectively.
For dense instances, the method presented similar performance (in the sense of number of problems
solved and average CPU time required) regardless of the location of the initial point. For sparse
instances, the average CPU time to solve the problems was 8.61s, 8.14s, and 9.22s for the initial
point in Region 1, 2, and 3, respectively. Let us explain this slight difference. When T is dense, the
matrix of the linear system [T + V(x0)]x = b solved at the first iteration is also dense regardless of
the location of the initial point. On the other hand, for sparse T, the matrix of the linear system
[T + V(x0)]x = b is sparse if x0 belongs to Region 1 or 2, and dense if x0 belongs to Region 3, see
Lemma 4. Since the method requires very few iterations to find the solution, the computational
cost of the first iterations justify the difference between the average CPU times. At this stage, we
conclude that it is advantageous to take the starting point into Region 1 or 2. If x0 belongs to
Region 2, then V(x0) = 0 and the first iterate x1 is the unique solution of the linear system Tx = b.
For simplicity, we assume directly that the starting point is given by the unique solution of Tx = b.

For dense instances, we consider dimensions n = 500, 1000, 2000, and 3000, and for sparse
instances n = 3000, and 5000. We generate 200 different problems for each test set. In general,
when T is a dense matrix, its condition number is of order 103 or 104. For comparative purposes,
the singular values of a sparse matrix T were rescaled so that its condition number is of order 104.
Table 1 gives a summary of our numerical experiments. The column “n” is the dimension of the
test set, “Cond(T)” is the average condition number of matrices T, “Problems solved” informs the
number of successfully solved problems, “It” and “time” are the average number of semi-smooth
Newton iterations, and the average CPU time for the solved problems, respectively.

n Cond(T) Problems solved It time (s)

Dense T

500 1.27 × 104 198 (99.0%) 1.97 0.03
1000 1.40 × 104 187 (93.5%) 1.97 0.14
2000 4.83 × 104 140 (70.0%) 2.25 0.79
3000 4.13 × 104 106 (53.0%) 2.23 2.00

Sparse T
3000 1.92 × 104 194 (97.0%) 1.96 1.75
5000 1.88 × 104 194 (97.0%) 1.94 6.07

Table 1: Performance of semi-smooth Newton method in sets of 200 random problems considering
fully dense matrices T , and sparse matrices T (density approximately 0.4%).

The semi-smooth Newton method solves a typical problem with two iterations. In fact, consider-
ing the 1019 solved problems for all instances, 970 (95.2%) problems were solved with 2 iterations,
while 36 (3.5%) problems were solved with 1 iteration and 13 (1.3%) problems were solved with
more than 2 iterations. It is interesting to point out that, for any considered problem, all iterates
xk belongs to Region 3 (since the solution also belong to this set, this fact is not a big surprise).
Therefore, the matrix T + V(xk) is dense and the command mldivide of Matlab uses a LU solver for
the associated linear system [T + V(xk)]x = b.

The robustness of the semi-smooth Newton method is directly connected to the ability of the
linear system solver used. It is rarely true in practical implementations that direct methods for
linear systems give the exact solution. In some cases, they are not able to find the solution with
high accuracy and the convergence of the main method gets impaired. By means of numerical
observations, we realize that in instances where the command mldivide is able to give the solution
of a linear system with residuum less than 10−6, the semi-smooth Newton method stops reporting
“Solution found”. Otherwise, the semi-smooth Newton method is not able to find the solution with
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the desired accuracy. Studies concerning the convergence theory of an inexact Newton method are
necessary to clarify these issues. As we can see in Table 1, in case of dense matrices T, the number
of problems solved by the semi-smooth Newton method decreases according to the increase of the
dimension n. This phenomenon is clearly connected with the fact that the greater the dimension,
the more operations are required to solve a linear equation. Consequently, the method is most
affected by the accumulation of floating-point errors resulting in lower robustness. However, it is
useful to mention that, in all cases of failure the achieved accuracy was close to the desired one
(typically, order of 10−6). For sparse T instances, the command mldivide is able to solve linear
systems with high accuracy and the robustness of the semi-smooth Newton method is not affected.

We close the computational results by testing the method in problems where T is a symmetric
and positive definite matrix. In this case, by Theorem 3, equation (1) has a unique solution for
any b ∈ Rn and the semi-smooth Newton method (14) is well-defined. Moreover, convergence is
guaranteed if ‖T−1‖ < 1. We randomly generated 200 problems with 1000 × 1000 matrices T
that do not fulfill this hypothesis. Let us clarify this. First, we randomly generated a fully dense
matrix A and a vector λ ∈ Rn of eigenvalues of T from a uniform distribution on (0, 1). After
that, we extracted the eigenvectors of matrix (A + A>)/2 in the columns of a matrix U and defined
T = UDU>, where D is the diagonal matrix with (i, i)-th entry equal to λi, i = 1, . . . , 1000. Finally,
we randomly generated the vector b as in the previous experiments. The average value of ‖T−1‖
was 4.90 × 103. The semi-smooth Newton method successfully solved all problems of this test
set. The average number of iterations and the average CPU time for solving the problems were
5.90 and 0.39 seconds, respectively. We observed that, as in the previous tests, if we rescaled the
eigenvalues of T such that hypothesis (15) was fulfilled, the semi-smooth Newton method required
(in general) two iterations for finding the solution with the desired accuracy. When T is a symmetric
and positive definite matrix, this experiment suggests the conjecture that the semi-smooth Newton
method always converges.

5 Final remarks

In this paper we studied a special equation associated to the second order cone. Our main result
shows that, under mild conditions, we can apply a semi-smooth Newton method for finding a
solution of this equation and the generated sequence converges globally and linearly. The numerical
experiments suggest that the convergence rate is better than linear and even it achieves accurate
solutions of large scale problems in few iterations. The theoretical verification of these properties
remains as an open question. Our numerical tests also suggest that the semi-smooth Newton method
always converges if the matrix of the equation is symmetric and positive definite. The studied
equation is important because it is related to linear second order cone complementarity problems,
used in a wide range of applications [21]. It would be interesting to see whether the used technique
can be applied for solving a similar equation associated to the cone of the semidefinite matrices. A
more general open question is whether our semi-smooth Newton method approach can be unified
to solve linear symmetric cone complementarity problems. The importance of this question is due
to its connections with physics, mechanics, economics, game theory, robotics, optimization and
neural networks, such as the ones described in [1, 2, 10, 19, 22, 28, 29, 34, 35]. We remark that any
quadratic second order symmetric cone optimization problem can be reformulated in terms of linear
complementarity problems related to symmetric cones, which is a further motivation to study this
question. We foresee further progress in this topic in the near future.
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