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Experimental Analysis of a Variable Autonomy Framework for
Controlling a Remotely Operating Mobile Robot

Manolis Chiou1, Rustam Stolkin2, Goda Bieksaite1, Nick Hawes1, Kimron L. Shapiro3, Timothy S. Harrison4

Abstract—

I. INTRODUCTION

Despite the significant advances in autonomous robotics in
recent years, real-world robots deployed in high consequence
and hazardous environments remain predominantly teleoper-
ated, using interfaces that have not changed greatly in over
30 years. Examples of such applications include Explosive
Ordnance Disposal (EOD), Search and Rescue (SAR) and
nuclear decommissioning (e.g. robots deployed at Fukushima
or at UK and US legacy nuclear sites). The reasons for con-
tinued reliance on direct teleoperation are that autonomous
methods are still not robust enough to be completely self-
sufficient in highly unstructured and uncertain environments.

On the other hand, several Human-Robot Interaction (HRI)
field studies [1]–[3] in SAR operations identify the necessity
for more autonomy to be used in such robots. Often the
remote robot will be separated from its human operator by
e.g. thick concrete walls (nuclear scenarios), or rubble (SAR
scenarios), severely limiting communication bandwidth in
situations where umbilical tethers can cause entanglement
and other severe problems. Additionally, controlling a re-
mote robot to perform precise movements with respect to
surrounding objects can be extremely difficult for human
operators who only have limited situational awareness (SA)
(e.g. restricted views and poor depth perception using a
robot-mounted camera).

It seems likely that future robot applications will therefore
require some form of variable autonomy control. A variable
autonomy system is one in which control can be traded
between the human operator and the robot by switching
between different Levels of Autonomy (LOAs), such that
agents can assist each other. Such a system offers the poten-
tial to assist a human who may be struggling to cope with
issues such as high workload, intermittent communications or
operator multi-tasking. For example, a human operator might
need to concentrate on a secondary task while temporarily
devolving control to an AI which can autonomously manage
robot navigation.

The use of different LOAs in order to improve system
performance is a challenging and open problem, raising a
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number of difficult questions. For example: which LOA
should be used under which conditions?; what is the best
way to switch between different LOAs?; and how can we
investigate the trade-offs offered by switching LOAs in a
repeatable manner? These questions need to be explored by
conducting experiments within a rigorous multidisciplinary
framework, drawing on methodologies from the fields of
psychology and human factors, as well as engineering and
computer science. Our previous work [4] highlighted the ab-
sence of such a framework in existing literature. Additionally
it demonstrated the intrinsic complexity of conducting such
experiments due to the high number of confounding factors
and large variances in the results.

This paper develops from our previous work by designing
and carrying out a principled experimental study to empiri-
cally evaluate the performance of a human-robot team when
using a variable autonomy controller. More specifically it
improves the experimental framework by: a) minimizing con-
founding factors, e.g. by using extensive participant training
and a within-subject design; b) introducing a meaningful
secondary task for human operators; and c) introducing a
variable autonomy controller. We present formally-analysed,
statistically-evaluated experimental evidence, to support the
hypothesis that a variable autonomy system can indeed
outperform teleoperated or autonomous systems in various
circumstances.

In our experiments, we compare the performance of
three different systems: 1) pure joystick teleoperation of a
mobile robot; 2) a semi-autonomous control mode (which
we refer to hereafter as the “autonomy” LOA) in which
a human operator specifies navigation goals to which the
robot navigates autonomously; 3) a Human-Initiative (HI)
variable autonomy system, in which the human operator can
dynamically switch between the teleoperation and autonomy
modes using a button press. During experiments, human test
subjects are tasked with navigating a differential drive vehicle
around a maze-like test arena, with SA provided solely by a
monitor-displayed control interface. At various points during
the experiments, the robot’s performance is degraded by
artificially introducing controlled amounts of noise to sensor
readings, and the human operator’s performance is degraded
by forcing them to perform a cognitively complex secondary
task.

The experiments reported in this paper focus on the ability
and authority of a human operator to switch LOA on the
fly, based on their own judgement. We define this form of



variable autonomy as Human-Initiative (HI), in contrast to
Mixed-Initiative (MI) systems in which both the AI and
the operator have the authority to initiate LOA changes.
However, towards the end of this paper we additionally make
suggestions for how the data, results and insights gathered
during these experiments could be used to inform the design
of a Mixed-Initiative (MI) system in future work.

II. RELATED WORK

The majority of the robotics literature is focused on
describing the engineering and/or computational details of
new technologies, while comparatively few studies address
the issues of rigorously evaluating how well a human can
use such robots to carry out a real task. Additionally,
the autonomous robotics literature has historically tended
to be somewhat separated and distinct from the literature
investigating the issues of teleoperation, with relatively little
work specifically focusing on variable autonomy systems.

A common approach to improving teleoperated systems
is to enhance the user interface [5]. A carefully designed
interface can often assist the operator in performing better.
However, it does not alleviate them from the burden of
continuous control, nor does it exploit the complementary
capabilities of the robot to manage some tasks for itself.

Research which focuses on investigating dynamic LOA
switching on mobile robots is fairly limited. Furthermore,
the investigation of MI systems to address this dynamic
switching is even more limited, as highlighted by Jiang
and Arkin [6] and Chiou et al. [4]. A large part of the
literature, e.g. [7], [8], is focused on comparing the relative
performance of separate LOAs, and does not report on the
value of being able to switch between LOAs. In contrast,
our work specifically addresses the issues of dynamically
changing LOA on-the-fly (i.e. during task execution) using
either a MI or HI paradigm.

Baker and Yanco [9] presented a robotic system in which
the robot aids the operator’s judgement by suggesting poten-
tial changes in the LOA. However, the system was not val-
idated experimentally. Marble et al. [10] conducted a SAR-
inspired experiment in which participants were instructed to
switch LOA in order to improve navigation and search task
performance. However, [10] was intended to be a usability
study which explored the ways in which participants inter-
acted with each different LOA. In contrast, our own work
is focused on evaluating and demonstrating the overall task-
performance when LOA levels can be dynamically switched.
As in our own work, [10] also incorporate secondary tasks
into their experiments. However, in contrast to our work,
the use of these secondary tasks was opportunistic in nature
because participants were only instructed to perform them
optionally. Hence, the secondary tasks in [10] do not degrade
human performance on the primary task (steering the robot).
Also, unlike our work, [10] did not incorporate any methods
into their experiments for degrading the robot’s autonomous
performance in a controlled way.

Much of the published experimental work does not care-
fully control for possible confounding factors. These factors

can vary from partially uncontrolled test environments (as
in [10]), up to the absence of standardized training for
human test-subjects as in [8], [11], [12]. It is particularly
important to control for the training and experience of
human test-subjects, as these factors are known to affect
overall robot operating performance [13], [14]. Additional
confounding factors include the robot having different speed
limits in the different conditions tested [11], or different
navigation strategies of human operators [4]. In contrast to
our work, Nielsen et al. [15] report no significant primary
task results due to large measurement variances, but they do
present a method for systematically categorizing the different
navigational strategies of human operators.

All of the papers discussed above make important con-
tributions in their own right, and we do not intend to
devalue such work in any way. However, across the related
literature we note a deficiency of: a) rigorous statistical
analysis; b) clarity on assumptions and hypotheses; c) precise
and detailed descriptions of the experimental protocol fol-
lowed; d) a formalized, coherent and repeatable experimental
paradigm. In contrast, in disciplines such as psychology and
human factors, the above criteria constitute standard practice.

An excellent example of related work, which does pro-
vide a rigorous protocol, statistical analysis and detailed
description, is the work of Carlson et al. [16]. They validate
an adaptive shared control system, while degrading task
performance with the use of a secondary task. However, their
work is focused on the use of a Brain-Computer Interface for
robot control. Because this field is relatively young, and the
problems are extremely difficult, [16] used a robot navigation
task which was comparatively simplified, i.e. operators only
control left-right movement of a robot using a keyboard.

Lastly, variable autonomy research in the field of multiple
robots being controlled by a single operator, provides similar
experimental studies. However much of this research (e.g.
[17], [18]) is focused on higher levels of abstraction than
our work, e.g. planning or task allocation. Other experiments,
e.g [19], [20], are focused on human factors issues such as
gaining SA when controlling multiple robots, or how the
operator interacts with as many robot as possible.

In contrast to the above work, to the best of our knowledge,
our paper is the first that exploits rigorous methodologies
from psychology and human factors research to carry out a
principled study of variable autonomy in mobile robots; the
first mobile robot experiments that combine quantifiable and
repeatable degradation factors for both human and robot; and
the first work which formally and systematically evaluates
the benefits of combining the capabilities of both human
and autonomous control in a dynamically mode-switching
system.

III. APPARATUS AND ROBOTIC SOFTWARE

Our robot and environment were simulated in the Modular
Open Robots Simulation Engine (MORSE) [21], which is a
high fidelity simulator. The robot used was a Pioneer-3DX
mobile robot equipped with a laser range finder sensor and a
RGB camera. The robot is controlled by the Operator Control



Fig. 1. The control interface as presented to the operator. Left: video feed
from the camera, the control mode in use and the status of the robot. Right:
The map showing the position of the robot, the current goal (blue arrow),
the AI planned path (green line), the obstacles’ laser reflections (red) and
the walls (black).

Unit (OCU), composed of a laptop, a joystick, a mouse and
a screen showing the control interface (see FIG. 1).

In our previous work [4] we built a large maze-like test
arena (see FIG. 2(b) and FIG. 3(b)), and carried out human-
subject tests using a real Pioneer-3DX robot fitted with
camera, laser scanner and WiFi communication to the remote
Operator Control Unit. While demonstrating new methods on
real robots is important, we observed that this can introduce
difficult confounding factors, which can detract from the
repeatability of experiments and the validity of collected
data. For example, tests at different times of day or different
weather, mean that daylight levels inside the lab change,
affecting the video images observed by each test-subject.
Different amounts of battery charge can cause top speed
of the robot to vary slightly between different test-subjects.
These and other factors led us to design the experiments
reported in this paper using a high fidelity simulated robot
and test-arena. As can be seen in FIG. 2 and FIG. 3, and
comparing the real and simulated video feeds (FIG. 1 and
FIG. 4), the simulation environment creates very similar
situations and stimuli for the human operators as experienced
when driving the real robot, but with a much higher degree
of repeatability.

Our system offers two LOAs. Teleoperation: the human
operator drives the robot with the joystick, while gaining
SA via a video feed from the robot’s onboard RGB camera.
Additionally a laser generated 2D map is displayed on the
OCU. Autonomy: the operator clicks on a desired location
on the 2D map, then the robot autonomously plans and
executes a trajectory to that location, automatically avoiding
obstacles. The system is a Human-Initiative (HI) system as
the operator can switch between these LOAs at any time by
pressing a joystick button. The software used was developed
in Robot Operating System (ROS) and is described in more
detail in [4].

IV. EXPERIMENTAL DESIGN AND PROCEDURE

This experiment investigates to what extent circumstances
in which the robot is under-performing, can be overcome
or improved by switching control between the AI and the
human operator. Such circumstances may include idle time,

(a) (b)

Fig. 2. 2(a): the simulated arena and the robot model used in the
experiment. 2(b): the real arena and robot used in our previous experiment.
Note that the simulation recreates the real environment with a good degree
of fidelity.

(a) (b)

Fig. 3. 3(a): laser-derived SLAM map created in the simulation environ-
ment. Primary task was to drive from point A to B and back again to A.
The yellow shaded region is where artificial sensor noise was introduced.
The blue shaded region is where the secondary task was presented to the
operator. 3(b): laser-derived SLAM map generated by real robot in our
previous experiment. Note the similarities between the real and simulated
data.

which is the time passed without any progress towards
achieving a goal [4]. For example a robot being neglected by
its operator when in teleoperation mode, or stuck due to a
navigation failure in autonomy mode. Similar situations are
quite common in real world robotics deployments [22]. For
example, consider the case in which a robot operator must
interrupt their control of the robot, to provide information
to the SAR team leader or EOD team commander. Our
hypothesis is that in such circumstances, trading control to
another agent will improve the overall task performance of
the system.

A. Experimental setup - operator control unit and robot test
arena

In the work described in this paper, we used an identical
OCU (see FIG. 4(b)) as that used in our previous experiments
with a real robot [4]. A simulated maze was designed with
dimensions of 11 × 13.5 meters (see FIG. 2(a) and FIG.
3(a)). It approximates a yellow coded National Institute of
Standards and Technology arena [23]. As can be seen in FIG.



(a) (b)

Fig. 4. 4(a): the control interface as presented to the operator in our
previous real world experiment. 4(b): the Operator Control Unit (OCU),
composed of a laptop, a joystick, a mouse and a screen showing the control
interface. The same OCU was used in both experiments.

3(b) and FIG 4(a), the data presented to the human operator
via the OCU is almost identical to that experienced by human
test subjects operating the real robot in a real arena in our
prior work.

B. Primary and secondary tasks, and experimental test
modalities

Each human test subject was given the primary task of
navigating from point A in FIG. 3(a) (the beginning of the
arena) to point B (the end of the arena) and back to point
A. The path was restricted and one way, i.e. no alternative
paths existed.

Two different kinds of performance degrading factors were
introduced, one for each agent: artificially generated sensor
noise was used to degrade the performance of autonomous
navigation; and a cognitively intensive secondary task was
used to degrade the performance of the human test subject. In
each experimental trial, each of these performance degrading
situations occurred twice, once on the way from point A to
point B, and a second time on the way from point B back
to point A. The two different kinds of degradations occurred
separately from each other, as shown in FIG. 3(a).

More specifically, autonomous navigation was degraded
by adding Gaussian noise to the laser scanner range mea-
surements, thereby degrading the robot’s localization and
obstacle avoidance abilities. For every experimental trial this
additional noise was instantiated when the robot entered a
pre-defined area of the arena, and was deactivated when the
robot exited that area.

To degrade the performance of the human operator, their
cognitive workload was increased via a secondary task of
mentally rotating 3D objects. Whenever the robot entered a
predefined area in the arena, the test subject was presented
with a series of 10 cards, each showing images of two 3D
objects (see FIG. 5). In half of the cards, the objects were
identical but rotated by 150 degrees. In the other half the
objects were mirror image objects with opposite chiralities.
The test subject was required to verbally state whether or
not the two objects were identical (i.e. yes or no). This set
of 3D objects was previously validated for mental rotation
tasks in [24].

For each human test subject, three different control modes
were tested. In teleoperation mode, the operator was re-
stricted to using only direct joystick control to steer the robot,

Fig. 5. A typical example of a rotated 3D objects card.

and no use of the robot’s autonomous navigation capabilities
was allowed at any time. In autonomy mode, the operator
was only allowed to guide the robot by clicking desired
destinations on the 2D map. The only exception was in
the case of critical incidents such as the robot becoming
stuck in a corner. Under such circumstances the experimenter
would instruct the human operator to briefly revert to joystick
control in order to free the robot so that the experiment could
continue. In Human-Initiative (HI) mode, the operator was
given freedom to switch LOA at any time (using a push-
button on the joy-pad) according to their judgement, in order
to maximize performance.

C. Participants and procedure

A total of 24 test subjects participated in a within-
groups experimental design (i.e. every test subject performed
all three trials), with usable data from 23 participants. A
prior experience questionnaire revealed that the majority
of the participants were experienced in driving, playing
video games or operating mobile robots. Each test subject
underwent extensive training before the experiment. This
ensured that all participants had attained a common minimum
skill level (which otherwise might lead to a confounding
factor in later data analysis). Participants were not allowed
to proceed with the experimental trials until they had first
demonstrated that they could complete a training obstacle
course three times, within a specific time limit, with no
collisions and while presented with the two degrading factors
(i.e. the secondary task and sensor noise). Each of the three
training trials used a different control mode. Additionally,
all participants were required to perform the secondary task
separately (i.e. without driving the robot) in order to establish
baseline performance.

During the actual experimental trials (testing the three
different control modes), counterbalancing was used, i.e.
the order of the three control modes was rotated (through
six different possible permutations) for different participants.
The purpose of this counterbalancing measure was to prevent
both learning and fatigue effects from introducing confound-
ing factors into the data from a within-groups experiment.
Ideally, counterbalancing should have been done using 24
test-subjects (i.e. a multiple of 6). Unfortunately, due to
technical reasons, only 23 out of our 24 human test-subjects
yielded usable data, however our slightly imperfect counter-
balancing over 23 subjects should still have eliminated most
learning and fatigue effects from our statistical results. For
the secondary task, different cards, but of equal difficulty



[24], were used for each control mode, again to eliminate
learning as a confounding factor in the test data.

Participants were instructed to perform the primary task
(controlling the robot to reach a destination) as quickly and
safely (i.e. minimizing collisions) as possible. Additionally
they were instructed that, when presented with the secondary
task, they should do it as quickly and as accurately as possi-
ble. They were explicitly told that they should give priority
to the secondary task over the primary task and should only
perform the primary task if the workload allowed. Also they
were told that there would be a score penalty for every wrong
answer. This experimental procedure was informed by initial
pilot study tests, with pilot participants, which showed that
when people are instructed to “do both tasks in parallel to
the best of your abilities”, they either a) ignore the secondary
task or b) choose random answers for the secondary task
to alleviate themselves from the secondary workload, so
that they can continue focusing on the primary task of
robot driving. Lastly, participants were informed that the
best performing individuals in each trial (using a weighted
performance score based on both primary and secondary
tasks) would be rewarded with a gift voucher. The purpose
of this prize was to provide an incentive for participants
to achieve the best score possible on both primary and
secondary tasks.

The human operators can only acquire situational aware-
ness information via the Operator Control Unit (OCU) which
displays real-time video feed from the robot’s front-facing
camera, and displays the estimated robot location (derived
from laser scanner and SLAM algorithm) on the 2D SLAM
map.

Our previous work [4] showed that a difficult confounding
factor can be introduced by the fact that different test
subjects may explore in different directions, thus revealing
different information about the test arena at different times,
as the robot’s onboard laser SLAM progressively performs
mapping. Additionally, real-time SLAM can produce maps
of varying accuracy between trials. To overcome this con-
founding factor, all participants were given an identical and
complete 2D map, generated offline prior to the trials by
driving the robot around the entire arena and generating a
complete SLAM map.

During each trial, a variety of data and metrics were
collected: primary task completion time (time taken for the
robot to travel from point A to point B and back again to
point A (see FIG.1); total number of collisions; secondary
task completion time; number of secondary task errors.

At the end of each experimental run, participants had
to complete a NASA Task Load Index (NASA-TLX) [25]
questionnaire. NASA-TLX is a widely-used, subjective ques-
tionnaire tool. It rates perceived workload in order to assess
a technology or system. The total workload is divided into
six subscales: Mental Demand, Physical Demand, Temporal
Demand, Performance, Effort, and Frustration.

V. RESULTS

Statistical analysis was conducted on a number of metrics
gathered during the experiments. A repeated measures one-
way ANOVA was used, with a Greenhouse-Geisser correc-
tion in the cases that sphericity assumption was violated
(i.e. that the variances of the differences between condi-
tions/levels are not equal). The independent variable was
the control mode with three levels. Fisher’s least significant
difference (LSD) test was used for pairwise comparisons
given the a) clear hypothesis; b) predefined post-hoc com-
parisons; c) small number of comparisons. LSD is typically
used after a significant ANOVA result to determine explicitly
which conditions differ from each other through pairwise
comparisons. Here we consider a result to be significant
when it yields a p value less than 0.05, i.e. when there is
less than a 5 percent chance that the observed result occurred
merely by chance. We also report on the statistical power of
the results. Power denotes the probability that a statistical
significant difference will be found, if it actually exists. It
is generally accepted that greater than 80 percent chance to
find such differences constitutes a good power value. Lastly
η2 is reported as a measure of effect size.

ANOVA for primary task completion time (see FIG. 6(a))
showed overall significantly different means with F(1.275,
28.057) = 34.567, p < .01, power > .9, η2 = .61 between
HI variable-autonomy (M = 413.6), autonomy (M = 483.9)
and teleoperation (M = 429.6). Pairwise comparison reveals
that pure autonomy performed significantly worse than the
other two modes of operation with p < .01. Also HI variable
autonomy performed significantly better than teleoperation
(p < .05).

The effect of control mode on the number of collisions
(see FIG. 6(b)) was significant, F(1.296, 28.507) = 9.173,
p < .05, η2 = .29 with a power > .85. Pure autonomy
mode led to significantly (p < .05) fewer collisions (M =
.61) than teleoperation (M = 2.43). HI variable autonomy
mode (M = .57) also led to fewer collisions (p < .01)
than teleoperation. HI and autonomy had no significant
difference. Playback of the recorded trials revealed that in
teleoperation most of the collisions occurred during the time
of the secondary task. This was true for the participants that
attempted to perform both tasks in parallel.

It is useful to be able to rank each trial according to
an overall performance metric, which we refer to as the
primary task score. This overall score is needed to be able
to compare e.g. one human operator who achieves a very
fast task completion time, but with many collisions, against
another operator who achieves a slower time but with few
collisions. We generate the primary task score by adding a
time penalty, of 10 sec for every collision, onto the primary
task completion time for each participant. This is inspired by
the performance scores used in the RoboCup competitions
[26]. FIG. 6(a) shows the mean primary task scores for
each robot control mode. ANOVA analysis confirmed that
control mode had a significant effect on the primary task
score, F(1.336, 29.403) = 19.342, p < .01, power > .95,



(a) (b)

Fig. 6. Primary task results. 6(a): average time to completion (blue) and
score (green) combining time and collisions penalty. 6(b): average number
of collisions. In all graphs the error bars indicate the standard error.

(a) (b)

Fig. 7. Secondary task performance. 7(a): average time to completion for
one series of 3D objects. 7(b): average number of errors for one series of
3D objects.

η2 = .47. LSD test suggests that HI variable autonomy
(M = 419.2) significantly (p < .01) outperforms both the
pure autonomy mode (M = 490) and the pure teleoperation
mode (M = 453.9). Note also that teleoperation appears to
outperform autonomy (p < .05) in these experiments.

Secondary task completion time (see FIG. 7(a)) refers
to the average time per trial, that the participants took to
complete one series of the 3D object cards. ANOVA with
F (1.565, 34.420) = 7.821, p < .01, power > .85, η2 = .26,
suggests that there is a significant difference between the
mean secondary task completion times with and without
also performing the primary task of controlling the robot.
Participants performed significantly (p < .05) better in the
baseline trial (M = 33.2) compared to their performance
during robot operation. During robot operation, HI variable
autonomy mode (M = 39.3), pure autonomy mode (M =
39.5) and teleoperation mode (M = 41.7) did not show
statistical differences.

No significant differences were observed between the
different robot control modes with respect to numbers of
secondary task errors (see FIG. 7(b)) according to ANOVA
with F (3, 66) = 1.452, p > .05, power < .8, η2 = .06.
Participants had M = 1.7 errors during baseline tests without
operating the robot, M = 1.6 during HI variable autonomy

Fig. 8. NASA-TLX score showing the overall trial difficulty as perceived
by the operators.

mode, M = 1.5 in pure autonomy mode, and M = 2.1 in
pure teleoperation mode.

Control mode had a significant effect on NASA-TLX
scores (see FIG. 8) as suggested by ANOVA (F (2, 44) =
11.510, p < .01, power > .9, η2 = .34). Pairwise compar-
isons showed that autonomy (M = 35.2) was perceived by
participants as having the lowest difficulty, as compared to
HI variable autonomy mode (M = 41.4) with p < 0.05
and teleoperation mode (M = 47.8) with p < 0.01. HI
variable autonomy is perceived as being less difficult than
teleoperation (p < 0.05).

A. Discussion

In terms of overall primary task performance, HI variable
autonomy control significantly outperformed both pure tele-
operation and pure autonomy. This confirms our hypothesis
that a variable autonomy system with the capability of on-
the-fly LOA switching can improve overall performance of
the human-robot team. In essence, it does so by being able
to overcome situations in which a single LOA may struggle
to cope. For example, external distractions to the operator
such as the secondary task can be overcome by the operator
switching from teleoperation to autonomy. In contrast, when
autonomous control struggles to cope with noisy sensory
information, the situation can be ameliorated by switching
to teleoperation. From the Human-Robot Interaction (HRI)
perspective, operators were able to successfully change LOA
on-the-fly in order to maximize the system’s performance.
Since the LOA change was based on the operator’s judge-
ment, these experiments suggest that, given sufficient train-
ing, operators make efficient use of the variable autonomy
capability. Additionally, note that autonomy generates sig-
nificantly fewer collisions than teleoperation, however HI
variable autonomy generates equally few collisions. This
reinforces the conclusion that human operators can efficiently
exploit autonomy by making smart decisions about switching
between autonomy and teleoperation when most appropriate.

Regarding the secondary task, when performed in isolation
from the primary task (during baseline testing), participants
perform better. Since participants were instructed to focus on
the secondary task whenever it was presented, this suggests
that even having the primary task waiting on standby was
enough to impair their performance on the secondary task.
The absence of statistical differences across control modes



in the secondary task time to completion and errors, suggests
that a) the choice of control mode did not have any effect
on secondary task performance; b) participants had the same
level of engagement with the secondary task across trials.

NASA-TLX showed that autonomy is perceived as the eas-
iest control mode, while HI is perceived as being easier than
teleoperation. The fact that HI is perceived as more difficult
than autonomy might perhaps reflect the cognitive overhead
imposed on the operator by having to make judgements
about switching LOA. This suggestion was further reinforced
by observations made during trials and from informal con-
versations with participants. Most participants demonstrated
a more laid-back attitude while using autonomy. However,
participants stated that, while HI variable autonomy mode
was “more stressful and demanding”, it was also “more fun”
due to a perception of increased engagement. For this reason,
many participants expressed strong preference for HI variable
autonomy over the other control modes. These observations
are perhaps related to those of [27] which suggests that
humans’ “sense of agency” is improved when they interact
more actively with a system.

VI. THEORETICAL FRAMEWORK FOR
DESIGNING A MI CONTROLLER

The results of these experiments yielded several insights
for how to design a MI controller. The robot can be seen as
a resource with two different agents having control rights:
one agent is the human operator and the other is the robot’s
autonomous control system. At any given moment, the most
capable agent should take control. Of particular importance
is the ability of each agent to diagnose the need for a
LOA change, and to take control (or hand over control)
successfully. We assume that humans are able to diagnose
when they need to intervene, given sufficient understanding
of the system and the situation. On the other hand, it is
not obvious how to enable the autonomous controller to
detect when the human operator’s performance is degraded,
enabling the AI to robustly and automatically take control
when it is needed. Automatic switching of control to an
autonomous LOA would be important in situations where the
human operator is too preoccupied with the primary cause
of his or her performance degradation to voluntarily switch
control to the robot.

In future work we propose to develop, test and analyse
such an MI system. To make initial progress, it may be
necessary to at first rely on naive assumptions, such as
operators being willing to give control and the context and
timing of a LOA change being appropriate [4]. We propose to
carry out initial validation of our MI system using the same
experimental design as reported in this paper, so that the MI
can be compared against the HI system reported here. To be
useful, the MI algorithm should provide the same level of
performance or better, in terms of primary task completion,
as compared to the simpler HI system.

Two different approaches are being investigated for the
design of such MI algorithms. The first is focused on task ef-
fectiveness. The second is focused on using machine learning

techniques on the HI data gathered during the experiments
described in this paper.

In the first approach and more specifically in a navigation
task, an online metric could express the effectiveness of
goal directed motion. In the simplified case, this could be a
function of speed towards achieving a desired goal position
[28] or the number of collisions inside a thresholded time
window. The general idea is that the metric should compare
the current speed towards achieving a goal, with the optimal
speed towards achieving the same goal.

Such proposals are limited, in that they rely on a variety
of assumptions: the full map is known in advance, or the
navigational goal lies inside an already known region; the
robot’s AI possesses a planner which is capable of reliably
computing both the optimal path, and also the optimal
velocities, from the current pose of the robot towards the
goal; the agent to which the control will be traded, is capable
of coping with the cause of performance degradation in the
other agent.

An alternative approach is one of exploiting machine
learning techniques in order to learn patterns of how human
operators efficiently change LOA. The HI variable auton-
omy experiments reported in this paper, have enabled the
collection of a variety of measurements that might be used
as the training features of such a learning system. Such data
includes: current mode of control at each time-step, positions
and times of each change of LOA; time-stamped joystick
logs; time-stamped series of velocity commands given to
the robot; complete robot trajectories and information about
periods of robot idle time.

VII. CONCLUSION

This paper presented a principled and statistically vali-
dated empirical analysis of a variable autonomy robot control
system. Previously, a comparatively small part of the robotics
literature has addressed the issues of variable control. Previ-
ous studies have focused on the engineering and computer
science behind building such systems; or on enhancing the
human-robot interface; or investigated the ways in which
humans interact with the system.

In contrast, this paper has made a variety of new contribu-
tions, including: showing how to carry out a principled per-
formance evaluation of the combined human-robot system,
with respect to completing the overall task; presenting clear
empirical evidence to support the notion that variable auton-
omy systems may have advantages over purely autonomous
or teleoperated systems for certain kinds of tasks; using
rigorous methodologies, transferred from the fields of psy-
chology and human factors research, to inform experimental
design, eliminate confounding factors, and yield results that
are statistically validated; demonstrates that human operators,
when appropriately trained, make successful decisions about
switching LOA, which efficiently exploit the contrasting
strengths of both teleoperation and autonomous controllers.
We must note here that our hypothesis and experimental
paradigm are intended to be a starting point, from which
more complex hypotheses and scenarios can be formulated.



We believe this is the first study which has used truly
scientifically repeatable experiments to support the continued
development of variable autonomy mobile robots. Addition-
ally, this paper has discussed the difficult issues involved
in extending notions of variable autonomy from Human-
Initiative (HI) to Mixed-Initiative (MI) robotic systems, and
makes several suggestions for different approaches for build-
ing an autonomous MI switching algorithm. Developing such
an MI system forms the subject of our ongoing research.
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