

University of Birmingham

Smart-Guard
Denzel, Michael; Bruni, Alessandro ; Ryan, Mark

DOI:
10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0089

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Denzel, M, Bruni, A & Ryan, M 2017, Smart-Guard: defending user input from malware. in D El Baz & J
Bourgeois (eds), 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted
Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and
Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld). Institute of Electrical and Electronics
Engineers (IEEE), pp. 502-509, 13th IEEE International Conference on Advanced and Trusted Computing,
Toulouse, France, 18/07/16. https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0089

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 23/8/2016

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

M. Denzel, A. Bruni and M. D. Ryan, "Smart-Guard: Defending User Input from Malware," 2016 Intl IEEE Conferences on Ubiquitous
Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing,
Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Toulouse, 2016, pp. 502-509.
doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0089

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0089
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0089
https://birmingham.elsevierpure.com/en/publications/ba0cb90e-1a3a-4bf7-8850-78a0ba5c8c67

Smart-Guard: Defending User Input from Malware

Michael Denzel∗, Alessandro Bruni†, and Mark D. Ryan∗

∗University of Birmingham, School of Computer Science,
B15 2TT Birmingham, United Kingdom

m.denzel AT cs.bham.ac.uk, m.d.ryan AT bham.ac.uk

†IT-University of Copenhagen
Rued Langgaards Vej 7, 2300 Copenhagen, Denmark

brun AT itu.dk

Abstract—Trusted input techniques can profoundly enhance
a variety of scenarios like online banking, electronic voting,
Virtual Private Networks, and even commands to a server
or Industrial Control System. To protect the system from
malware of the sender’s computer, input needs to be reliably
authenticated. Previous research in this field is based on fixed
assumptions about trustworthy components and is, thus, too
rigid for this use case.

We present Smart-Guard, a method to protect user input
into a system even if the attacker controls – to us unknown –
parts of the underlying system. Our approach ensures integrity
of user input even when up to two of three devices are
compromised; confidentiality holds for one malicious device.
In this way, Smart-Guard has flexible trust assumptions, and
does not require any particular part of the system to be trusted.
To prove our claims, we formally verified our protocol using
the state-of-the-art protocol verifier ProVerif. Additionally, we
define a new class of techniques, malware tolerance, which op-
erate securely even when the system is infected with malware.

1. Introduction

The term trusted input is defined as the problem of
securing user input from device end-point (e.g. a keyboard)
to program end-point. Trusted output specifies the stream in
the other direction (program to device). Both terms are also
subsumed by the expression trusted path or trusted I/O and
belong to the wider domain of trusted execution. [1], [2]

Trusted input techniques are already utilised to harden
the infrastructure in fields such as online banking and
electronic voting but are also applicable to Virtual Private
Networks (VPNs) or commands to a server (e.g. via SSH) or
to an Industrial Control System (ICS). Authentication of the
exact origin of the input is essential in all of these scenarios
as the following thoughts demonstrate:
• Recent online banking trojans (ZitMo [3]) spread from

PCs to smart-phones to compromise two-factor au-
thentication. Afterwards they impersonate the banking
customer.

• Malicious or bogus commands to ICSs can damage
these systems (see e.g. Stuxnet [4], [5]) and potentially
lead to catastrophes especially since ICSs are used in
the energy, transport, and health sector.

• Keyloggers are able to intercept login credentials and
hijack connections. [6]

• After compromising an administrator account in a com-
pany network, an adversary can pretend to be the
administrator and gain widespread access to assets and
resources. [7]

• Forged, i.e. wrongly authenticated, votes in electronic
voting compromise the entire voting system. [8]

To improve on these scenarios we need to exactly identify
the input source, that means we have to be able to distinguish
between authorised users and a potentially compromised PC.

Current approaches [2], [9], [10], [11], [12], [13] (de-
tailed explanation in section 5) for trusted I/O usually omit
hardware attacks which means firmware attacks, keyloggers
and similar are still effective. Moreover, they make strong
and inflexible assumptions about which parts of the system
are trustworthy. For critical resources like a power plant
or electronic votes, we need stronger security guarantees
and cannot purely rely on the trustworthiness of a single
component.

We introduce Smart-Guard, which secures input even
if malware controls some parts of the system in real time.
Smart-Guard distributes trust over several components of
the system, and remains secure even if one or more of them
are compromised. No single component is required to be
invulnerable to attack; an attack on one component can be
resisted if other components are trustworthy. This means
that we do not rely on a single trusted computing base, but
allow flexibility about the trust assumptions.

Contributions:

• We propose Smart-Guard, a trusted input technique that
is reliable even when an attacker controls some of its
components in real time (see section 2). Our system
guarantees integrity and authentication when at least
one (out of three) components is not controlled by the
attacker. It can also ensure confidentiality under stricter
conditions.

• We provide a formal proof of our security claims for
Smart-Guard, using a state-of-the-art protocol verifica-
tion tool called ProVerif (section 4.2).

• We define malware tolerance, a new class of techniques
(section 4.3), which provides security properties even
if the underlying system is compromised.

2. Overview of Smart-Guard

Smart-Guard is a trusted input system consisting of
a computer, a smart-card, and an encryption-capable key-
board1, i.e. a keyboard with built-in encryption module
which encrypts typed data. Keyboard and smart-card (smart-
card reader) are both connected to the computer via USB
or similar.

One could argue that an encryption-capable keyboard
could simply encrypt or sign keystrokes by itself, but this
would only shift the trust from the operating system driver
to the keyboard. We want to achieve stronger assurances
and, thus, need to distribute trust upon multiple devices to
tolerate localised attacks. An adversary would have to com-
promise more than one device to be successful (sections 4.1
and 4.3 will give details). In particular, Smart-Guard can
resist (confidentiality and integrity) an infected computer,
provided that keyboard and smart-card are not compromised.

Basic procedure of Smart-Guard: Consider a scenario
where an authorised user wants to send a message or a com-
mand to a recipient from his or her commodity computer.
The recipient could be the user’s bank, an election server,
or the flow control system of an oil pipeline.

The user would type the characters of the message into
the encryption-capable keyboard which sends them signed
and encrypted to the smart-card to prevent the computer
from tampering with the data. The smart-card verifies the
keystrokes by displaying them via any form of confiden-
tiality preserving output, like e.g. ARM TrustZone with a
TrustZone-aware screen. When typing is finished, the user
confirms the displayed input by entering a short string.

Smart-card and keyboard each produce one partial sig-
nature of the message. Those partial signatures can only be
combined into a valid signature if the two devices agree
on the same input. The combined cryptographic signature is
verified by the recipient.

Objective: Our primary goal is to protect integrity and
authentication of the user-given keystrokes. The recipient of
the keystrokes should be able to verify the origin of the
input. The system must at least guarantee these security
properties if one of the three participating devices (user
PC, smart-card, keyboard) is malicious. We also provided
confidentiality under stricter conditions but the main focus
lies on authenticating the input.

Our assumptions are:
1) The attacker can control some unknown parts of the

user’s system. These can be entire devices such as the
computer or the keyboard. However, the attacker cannot
control the whole Smart-Guard system. Thus, our goal
is to tolerate at least 1 (best case: 2) malicious devices
of the 3 devices.
This seems realistic since we grant the attacker access
to our infrastructure. Compromising PC, keyboard, and
smart-card involves physical access to the building and
theft of the user’s smart-card which would not scale
and would, moreover, pose a great risk.

1. e.g. https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Blue
tooth-low-energy/nRFready-Desktop-2-Reference-Design

2) For keyboard and smart-card, we assume that they have
no additional communication channels apart from the
ones to the computer (e.g. USB). This could be verified
by inspecting the devices. Note that this does not forbid
a separate hardware keylogger.

3) The user is a trusted entity. Authentication (password,
biometrics) additional to the smart-card has to take
place beforehand to prevent untrusted persons from
signing in with stolen or lost cards.

4) The recipient is trusted and has an asymmetric key pair,
with a known public key. This research does not focus
on trusted execution of the recipient system.

3. Smart-Guard Protocol

Our protocol consists of three phases:
1) An input phase which distributes user input to the

devices. This step runs for every input character.
2) A transition phase marking the end of input.
3) A signature and encryption phase which only takes

place once per message.
We will now introduce the protocol phases one by one.

They are also displayed in Fig. 1 and Fig. 2.
Setup: (1) The encryption-capable keyboard and the

smart-card share a symmetric key kks which pairs the two
devices. (2) Both also receive a partial key (respective k1
and k2) of a mRSA [14] algorithm.

Mediated RSA (mRSA) is an asymmetric cryptosystem
which splits the private key into two shares kpriv = k1 +
k2. This way, signatures can be created out of two partial
signatures ps1 and ps2 (see Eq. 1). Note that the plaintext
m has to be appropriately padded (details in [14]).

signature = ps1 ∗ ps2 = mk1 ∗mk2 = mk1+k2 = mkpriv .
(1)

Phase 1: Every character the user types into the key-
board is encrypted with a stream cipher and sent to the PC.
The PC forwards them to the smart-card which decrypts
them. Smart-card and keyboard buffer the characters for
later signing. At this stage, only the keyboard verified the
input. To allow the user to confirm the typed keystrokes,
the smart-card displays them via any form of confidentiality
preserving output to hide them from the computer. Confi-
dential output can be provided, for example, by an ARM
TrustZone enabled device. Note that even if the secrecy
of the output is compromised, the integrity of the input is
unaffected (assuming no further colluding attacks).

Phase 2: After the user indicated that he wants to end the
input (e.g. by a mouse click), the smart-card creates a keyed
hash of the input and displays it via confidential output. The
user then types this verification string into the keyboard. The
keyboard can only forward these characters via the PC to
the smart-card as they appear random. This way the smart-
card can independently verify that the user agrees with the
keystrokes. A keyed hash has two advantages: (1) it cannot
be forged by keyboard or PC and (2) it is clear to which
command it corresponds.

https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRFready-Desktop-2-Reference-Design
https://www.nordicsemi.com/eng/Products/Bluetooth-Smart-Bluetooth-low-energy/nRFready-Desktop-2-Reference-Design

User Keyboard
kks

Computer Smart-card
kks

Recipient
krecpriv

mi

buffer m = m|mi

ci = E(kks,mi)

ci

mi = D(kks, ci)
buffer m = m|mimi

1

phase 1
loop i

end input

new key kh
challenge ch =
= Hash(kh,m)

ch
1

ch

cch = E(kks, ch)
cch

ch′ = D(kks, cch)
verify ch = ch′

phase 2

msc The Smart-Guard Protocol: Part 1 – public keys: krecpub, kpub

Figure 1: The Smart-Guard Protocol - Part 1: The user types in keystrokes mi which are distributed to the encryption-
capable keyboard and the smart-card. An end-input event (e.g. a mouse click) indicates that the user wants to proceed.
The user verifies the keystrokes, which are displayed via secure output (label 1), by typing a challenge into the keyboard.
Afterwards phase 3 (see Fig. 2) is run.

S(k,m) denotes a signature of data m with key k, E(k,m) is an encryption, D(k, c) is a decryption, and mi|...|m0

represents a concatenation. The secret keys are displayed over each device at the top of the diagram.

Phase 3: The keyboard and the smart-card generate a
fresh key via a Diffie-Hellman key exchange on an en-
crypted channel. The keyboard encrypts the user input and
creates a partial mRSA signature. Both are delivered to the
smart-card for verification. When the smart-card verified
the encryption, it will add the second part of the mRSA
signature to complete the structure which can then be sent
to the recipient.

The three phases are the logical steps to create a shared,
signed ciphertext. Phase 1 distributes the input to the partic-
ipating devices which sign and encrypt the input in phase 3.
The second phase seems unnecessary at first but prevents
the keyboard from appending characters to the message.

Important details: It is worth mentioning some impor-
tant details in the protocol which are essential to achieve
the security guarantees. These details are labelled 1 – 4 in
Fig. 1 and 2 and will now be explained.

1) For confidentiality, the input should be displayed with
a technique for confidential output (integrity protection
is not needed).

2) The Diffie-Hellman key exchange is executed via the

encrypted and authenticated channel of kks (e.g. AES-
GCM) to prevent Man-in-the-Middle attacks. The key
exchange generates a fresh key k′.

3) The smart-card recalculates the RSA encryption of k′
to prevent the keyboard from adding additional keys. A
malicious keyboard could e.g. send r1 = RSA(kattackpub ,
k′). This cannot be distinguished from the original r1 =
RSA(krecpub, k

′) without recomputing it and forces us
to do so. For this, it is necessary to send the random
parameters cIV (encrypted) to the smart-card.

4) The smart-card creates the signature and immediately
verifies it afterwards. This reveals malicious behaviour
of the keyboard.

4. Security Analysis

4.1. Models

Adversary model: We assume the attacker has already
full control over some parts of the user’s system and we are
unaware which parts these are.

User Keyboard
kks, k1

Computer Smart-card
kks, k2

Recipient
krecpriv

2
Diffie-Hellman key exchange via kks

fresh k′ fresh k′

DH

c = E(k′,m = mi|...|m0)
r1 = RSA(IV, krecpub, k

′)
cIV = E(kks, IV)

Encryption

ps1 = S(k1, (r1|c))

mRSA

c, r1, cIV , ps1

3
m′ = D(k′, c)
verify m′ = m

IV = D(kks, cIV)
r2 = RSA(IV, krecpub, k

′)
verify r1 = r2

Encryption

ps2 = S(k2, (r1|c))
4

s = ps1 ∗ ps2 (mRSA)
verify s with kpub

mRSA

phase 3

s

verify s with kpub (r1|c|s)

verify s with kpub
k′ = D(krecpriv, r1)
m = D(k′, c)

msc The Smart-Guard Protocol: Part 2 – public keys: krecpub, kpub

Figure 2: The Smart-Guard Protocol - Part 2: After phase 2 (see Fig. 1) the keyboard and the smart-card are supplied
with a verified copy of the user input. Encryption-capable keyboard and smart-card now generate a fresh, shared key k′.
The keyboard encrypts the input with k′ and adds a partial mRSA [14] signature, which is completed by the smart-card
when verifying the encryption.

TCB Model: In contrast to the classical single Trusted
Computing Base (TCB) model, our model consists of several
TCBs with flexible trust assumptions. If any 1 (of N) TCBs
is secure, the system is secure. In other words, TCBs are
OR’ed together. If TCB1 is secure OR TCB2 is secure then
the system is secure. An adversary has to compromise all
TCBs to be successful which is significantly harder than
attacking a single TCB.

The TCBs for the Smart-Guard protocol are defined in
Table 1. To e.g. compromise integrity, an attacker has to

gain control over two TCBs. Notice that the PC is not part
of any of them which means that its security is irrelevant
for integrity.

Integrity: Confidentiality:
TCB1 = { smart-card } TCB1 = { PC, smart-card }
TCB2 = { keyboard } TCB2 = { smart-card, keyboard }

TCB3 = { PC, keyboard }

TABLE 1: Trusted Computing Bases

The TCB model for integrity can be interpreted as shown
in Eq. 2.

keyboard secure⇒ integrity .
smart-card secure⇒ integrity .

(2)

The confidentiality side of Table 1 is equal to Eq. 3.
Assuming a secure technique for trusted output, the attacker
needs to control three TCBs to compromise confidentiality.
This corresponds to two of three devices as every device is
part of two TCBs.

PC secure ∧ smart-card secure⇒ confidentiality .
smart-card secure ∧ keyboard secure⇒ confidentiality .

PC secure ∧ keyboard secure⇒ confidentiality .
(3)

4.2. Proofs

We proved our protocol using ProVerif2, a state-of-the-
art protocol verifier. In ProVerif, protocols are represented
with messages which are sent over public or private channels
between processes. During a protocol execution user-defined
events can happen. We can formulate predicates, so-called
queries, which ProVerif will try to verify. To do so, ProVerif
has a built-in attacker who is able to participate on public
channels. The following section will introduce our proofs.

In contrast to classical ProVerif proofs, we work with
two attackers: one is controlling some of the three devices
(PC, keyboard, smart-card), while the other one passively
waits for messages. We call them the offline and online
attacker respectively. This characteristic simulates the fact
that smart-card or keyboard cannot communicate to the
network without the PC (see assumptions in section 2). As
a result, the compromised devices (i.e. the offline attacker)
have to trick the PC to communicate to the second attacker
– assuming the PC is honest. A malicious PC is modelled by
making all communication channels of it public in ProVerif.

Due to the proofs for the protocol becoming fairly long,
we split them accordingly to Fig. 1 and 2 into two parts. We
will now explain a few elements of the proofs. The source
code and all required files are available online3.

4.2.1. Proofs for Phase 1 and 2. The results of phase 2
define the pre-conditions of phase 3. We need to test three
properties:
• Does the keyboard have the correct input? (message

integrity keyboard)
• Does the smart-card have the right input? (message

integrity smart-card)
• Does the protocol protect the input from an online

attacker? (confidentiality)
To verify confidentiality, we introduce another property
called “strong confidentiality” which tests if the offline
attacker gets the input (makes four properties to test).

Either the keyboard or the smart-card have to know the
correct message in order to proceed to phase 2. Integrity

2. http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
3. https://github.com/mdenzel/smartguard

is, therefore, the union of message integrity at the keyboard
and message integrity at the smart-card. We formulated the
four properties as ProVerif queries in Fig. 3.

(∗ i n t e g r i t y ∗)
que ry m: c h a r ;

e v e n t (s c p a s s (m)) ==>
e v e n t (u s e r p a s s (m)) .

que ry m: c h a r ;
e v e n t (kb pas s (m)) ==>

e v e n t (u s e r b e g i n (m)) .

(∗ c o n f i d e n t i a l i t y ∗)
que ry mess (c h a t t , new m) .
(∗ s t r o n g c o n f i d e n t i a l i t y ∗)
que ry a t t a c k e r (new m) .

Figure 3: ProVerif Queries Phase 1 and 2: The code excerpt
defines four queries:
Query 1: If the smart-card accepts the message m (event
sc pass), the user must have accepted it on the screen output
(event user pass).
Query 2: If the keyboard accepts the message m (event
kb pass), the user must have created that message (event
user begin).
Query 3: The offline attacker does not get the message m.
Query 4: The online attacker does not receive message m.

4.2.2. Proofs for Phase 3. In phase 3 we assume the results
of phase 2. This should be that the keyboard or the smart-
card have a user-verified copy of the message. Message m
might be compromised by the offline attacker but was not
sent to the online attacker. The protocol will create a joint
ciphertext and signature. We verified that the signature at the
recipient side is indeed correct and that the online attacker
cannot retrieve the plaintext of the message m (see Fig. 4).

(∗ i n t e g r i t y ∗)
que ry m: c h a r ;

e v e n t (r e c e n d (m)) ==>
e v e n t (kb beg in (m)) | |
e v e n t (s c b e g i n (m)) .

(∗ c o n f i d e n t i a l i t y ∗)
que ry mess (c h a t t , new m) .

Figure 4: ProVerif Queries Phase 3: The queries are:
Query 1: If recipient accepts message m (event rec end),
it came from the keyboard (event kb begin) or from the
smart-card (event sc begin).
Query 2: The online attacker does not receive the message
m. (or: the offline attacker cannot communicate m via
channel ch att)

4.2.3. Combined Results. The results of our ProVerif
queries are shown in Table 2. Important for this part is that
either smart-card or keyboard have a valid message (integrity
column) and that the attacker on the internet did not receive
the message (confidentiality column).

We summarised the results in Fig. 5a and 5b. Each circle
in the Venn diagram represents that a device is trusted while
the complement stands for the device being compromised.

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
https://github.com/mdenzel/smartguard

Trust
Confidentiality Integrity

End

PC Smart-card Keyboard reached
honest honest honest 3 3 3
honest honest untrusted 3 3 3
honest untrusted honest 3 3 3

untrusted honest honest 3 3 3
untrusted untrusted honest 3 3
untrusted honest untrusted 3 3

honest untrusted untrusted (3) 3
untrusted untrusted untrusted 3

TABLE 2: ProVerif Results: Brackets indicate that a property
does not hold in phase 3 of the protocol.

The grey area marks cases where our protocol satisfies the
particular property labelled below the figure. Smart-Guard
guarantees integrity for either a trustworthy keyboard or a
trustworthy smart-card (Fig. 5a) and confidentiality for one
malicious device out of three devices (see also Fig. 5b).

We tested if Smart-Guard defends against hardware key-
loggers with ProVerif. A hardware keylogger corresponds to
the channels between PC and the other two devices (usually
USB channels) being public. ProVerif verified these queries
and, thus, Smart-Guard defends against hardware keyloggers
in some cases (see dotted area in Fig. 5a and 5b).

4.2.4. Performance Estimation. To estimate performance
we use the crypto benchmark of Dai [15] and assume a
smart-card CPU with 5 MHz.

Phase 1: According to Dai AES/CTR (128-bit key)
needs 12.6 clocks per byte which would take 12.6/5MHz =
2.52µs per byte on a 5 MHz CPU. As we need to encrypt
and decrypt the keystrokes, we roughly need 2 ∗ 2.52µs =
3.04µs per byte. This is equivalent to an average typing
speed of 60s/3.04µs = 19, 736, 842 characters per minute.

Phase 2: The main bottleneck for the short verification
string is the delay imposed by the user. Thus, the crypto-
graphic performance is negligible.

Phase 3: To generate the resulting ciphertext, our pro-
tocol executes (in order): a Diffie-Hellman key exchange,
an AES encryption, a RSA encryption (for the key), an
AES encryption of the initialisation vector, a RSA signature,
an AES decryption, an AES decryption of the initialisation
vector, a RSA encryption, a RSA signature, and a RSA ver-
ification. When assuming a message of 1024 bytes, we need
0.82/5s+2.52∗1024µs+0.14/5s+2.52∗128µs+2.71/5s+
2.52∗1024µs+2.52∗128µs+0.14/5s+2.71/5s+0.13/5s =
1.34s. Notice that this is only executed once per message
and could run in the background.

These numbers are a rough estimate and have to be con-
sidered carefully. However, they indicate that performance
is not a major concern.

4.3. Malware Tolerance

As demonstrated by Smart-Guard, using malicious de-
vices is possible under certain conditions. We grant the
adversary access to the system and even let him or her
choose the compromised devices to some extent. Integrity

everything untrusted

keyboardkeyboard
trustedtrusted

smart-cardsmart-card
trustedtrusted

computercomputer
trustedtrusted

(a) Integrity
everything untrusted

keyboardkeyboard
trustedtrusted

smart-cardsmart-card
trustedtrusted

computercomputer
trustedtrusted

(b) Confidentiality

Figure 5: Trust Model for Smart-Guard: The “keyboard
trusted” circle represents the cases in which the keyboard
is trusted, and similarly for the other two circles. Thus, the
very centre of the diagram means that all devices are trusted.

Grey area: protocol satisfies integrity (Fig. 5a) or confiden-
tiality (Fig. 5b).
Dotted area: protocol defends against hardware keyloggers.

is guaranteed if either keyboard or smart-card are honest
while confidentiality holds provided two devices are honest.
When the communication on all connections to and from
the PC are encrypted (which is similar to smart-card and
keyboard being honest), then even hardware keyloggers
cannot compromise the message. That means Smart-Guard
can defend against a compromised PC which colludes with
a hardware keylogger.

The basic idea is that trust could be distributed upon
several, independent devices which interact in such a way
that the individual device cannot meaningfully tamper with
the data or resources. Thus, the method tolerates devices
which are compromised by malware. We named this class
of techniques malware tolerance (Tech. Rep. [16], [17]).

An adversary would have to compromise multiple de-
vices to successfully attack the system which is significantly
more difficult than manipulating a single device. Intuitively,
the upper bound of malicious parts to tolerate is at maximum
N−1; one part has to be honest in order to detect or prevent

attacks of the others and report to the user.
To formally examine these techniques, we introduced the

multiple TCB model. Each TCB groups devices which are
able to correctly produce the desired result even when all
other devices are compromised (section 4.1). A technique
is malware-tolerant, if several such TCBs exist. When one
TCB is compromised, another honest TCB would automat-
ically detect or prevent attacks of the first one.

5. Related Work and Comparison

We identified other approaches which could be called
malware-tolerant. Examples for protocols are online banking
with hardware tokens [19] and electronic voting [20]. There
is also a special compiler [21] which restricts attackers to
public method calls of the programming language. Other
work includes hardware to strengthen hypervisors while
protecting guest virtual machines [22] and a two-way sand-
box called Minibox [23] which protects the host Operating
System (OS) as well as the sandboxed guest-application.
Vasudevan et al. [24] defined five properties such secure
systems should fulfil: isolated execution, secure storage,
remote attestation, secure provisioning, and a trusted path.
Rijswijk and Deij [25] suggested to add local attestation to
the user as sixth property. Basin et al. [26] analysed general
topologies of setups for human-computer communication.

Table 3 gives an overview of the existent techniques for
trusted path and compares them based on the information
the papers provided. We will give a brief overview now:

1) BitE – McCune et al. [11]: Bump in the Ether (BitE)
combines a PC, an encryption-capable keyboard, and
a mobile phone to achieve a trusted path. User input
is sent from the keyboard to the trusted phone which
forwards the keystrokes (encrypted) to the OS. There,
they are distributed to the correct applications. The
trusted phone also serves as trusted output.

2) Bumpy – McCune et al. [12]: McCune et al. used
a computer with Flicker [27] in combination with a
special keyboard to deliver passwords securely to a re-
cipient (e.g. webserver). A phone serves again as output
to indicate the receiving application and the webserver.
The technique consists of two stages: collecting the
keystrokes and encrypting or hashing them in order to
sent them to the recipient.

3) UTP – Filyanov et al. [10]: The authors worked
together with McCune to realise trusted input with
Flicker. Their approach, Uni-directional Trusted Path
(UTP), is aimed at CAPTCHAs and confirmations for
banking transactions. UTP switches temporarily away
from the OS to Flicker which securely displays a con-
firmation dialog and signs the user’s input. The result
is sent to the bank where it is verified.

4) DriverGuard – Cheng et al. [9]: In contrast to other
techniques, DriverGuard aims to achieve a trusted path
in software and shields I/O drivers with a hypervisor.
So-called Privileged Code Blocks (PCBs) have access
rights to I/O resources while accesses of the guest OS
are denied.

5) KeyScrambler – QFX Software [13], [28]: The com-
mercial tool KeyScrambler intercepts keystrokes at the
keyboard driver, encrypts them during processing of
the OS, and decrypts them in the actual application.
The difference to DriverGuard is that KeyScrambler
only handles input but manages without a hypervisor.
It partly defends against user space keyloggers.

6) Zhou et al. [2]: The authors of TrustVisor [29] created a
user-verifiable trusted path. The approach uses TrustVi-
sor to shield drivers at a lower level than DriverGuard
protecting I/O ports, device memory access, device
configuration space, and interrupts. Additionally, the
authors enabled the user to verify the system with a
custom hand-held device with a red/green indicator
LED and a Trusted Platform Module (TPM). The hand-
held device requests attestation from the TPM about
the honesty of the platform. The technique defends
against software attacks while maintaining usability
during run-time.

7) TrustZone [18]: TrustZone is a Trusted Execution En-
vironment (TEE) of ARM CPUs. The system is split
into two zones, normal and secure world, with different
privileges managed by the so-called monitor. Combined
with TrustZone-aware devices it can provide Trusted
I/O if the entire TrustZone architecture is trusted.

8) Smart-Guard: Our technique defends against software,
hardware, and even attacks of the own devices. The
TCB model differs from previous research in the fact
that there are flexible trust assumptions: trust is dis-
tributed over multiple TCBs of several devices. If one
of the devices is compromised, the others will prevent
attacks automatically (section 4.1). The limiting fac-
tor is that Smart-Guard relies on other techniques for
trusted output.

6. Conclusions

We presented Smart-Guard, the first malware-tolerant
protocol to protect user input from malware and hardware
attacks. It is especially useful to authenticate user input.
Smart-Guard consists of three devices – a PC, a keyboard,
and a smart-card – and guarantees security properties even
in the context of attacks of one of the underlying de-
vices. We designed the protocol to be secure under several
sets of trust assumptions, providing flexibility and avoiding
a single point of failure making it malware tolerant. To
provide evidence of our claims, we formally verified the
protocol with ProVerif and analysed its security properties.
Our work proves that several devices can interact in a way
that prevents any individual device from compromising the
resources; we called this malware tolerance.

For the future, we plan to examine ARM TrustZone for
its capabilities to improve our technique.

Acknowledgments

This work was partially supported by the EPSRC project
“Analysing security and privacy properties”.

Technique Trusted
input

Trusted
output

Confiden-
tiality Integrity Software

attacks
Hardware

attacks Trusted Computing Base

BitE [11] 3 ∼1 3 3 ∼2 keyboard, phone, PC, OS
Bumpy [12] 3 ∼1 3 3 3 keyboard, Flicker, TPM
UTP [10] 3 3 3 keyboard, Flicker, TPM, hypervisor

DriverGuard [9] 3 3 3 3 ∼3 I/O devices, PC, hypervisor
KeyScrambler [13] 3 3 3 ∼2 keyboard, PC, OS
Zhou et al. [2] 3 3 3 3 3 hypervisor, hand-held device, TPM

TrustZone [18] 3 3 3 3 ∼4 secure world, monitor, bootloader,
TrustZone, I/O devices

Smart-Guard 3 ∼5 3 3 3 3 multiple/flexible (see section 4.1)

1 limited by phone 2 only user-space malware blocked 3 attacks of drivers possible 4 secure world/monitor attacks possible 5 relies on other trusted output techniques

TABLE 3: Comparison of trusted path techniques: Similar techniques are grouped together (dashed line). Ticks indicate
the referred property is secure while a tilde means that it has drawbacks.

References

[1] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo,
“Using innovative instructions to create trustworthy software
solutions,” in 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy, HASP, vol. 13, 2013.

[2] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune, “Building
verifiable trusted path on commodity x86 computers,” in Symposium
on Security and Privacy (SP). IEEE, 2012.

[3] Kaspersky, “Teamwork: How the zitmo trojan bypasses online bank-
ing security,” Online, October 2011, accessed: 2015-02-16. [Online].
Available: http://www.kaspersky.com/about/news/virus/2011/Team
work How the ZitMo Trojan Bypasses Online Banking Security

[4] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” Security
& Privacy, IEEE, vol. 9, pp. 49–51, Nov 2011.

[5] B. Zhu, A. Joseph, and S. Sastry, “A taxonomy of cyber attacks on
scada systems,” in 4th international conference on cyber, physical
and social computing. IEEE, 2011.

[6] N. Virvilis, D. Gritzalis, and T. Apostolopoulos, “Trusted computing
vs. advanced persistent threats: Can a defender win this game?”
in 10th International Conference on Ubiquitous Intelligence and
Computing and 10th International Conference on Autonomic and
Trusted Computing (UIC/ATC). IEEE, 2013.

[7] E. M. Hutchins, M. J. Cloppert, and R. M. Amin, “Intelligence-
driven computer network defense informed by analysis of adversary
campaigns and intrusion kill chains,” Leading Issues in Information
Warfare & Security Research, vol. 1, p. 80, 2011.

[8] A. J. Feldman, J. A. Halderman, and E. W. Felten, “Security analysis
of the diebold accuvote-ts voting machine,” in USENIX Electronic
Voting Technology Workshop, 2006.

[9] Y. Cheng, X. Ding, and R. H. Deng, “Driverguard: A fine-grained
protection on I/O flows,” in Computer Security–ESORICS. 2011.

[10] A. Filyanov, J. M. McCune, A.-R. Sadeghiz, and M. Winandy,
“Uni-directional trusted path: Transaction confirmation on just one
device,” in IFIP 41st International Conference on Dependable
Systems & Networks (DSN). IEEE, 2011.

[11] J. M. McCune, A. Perrig, and M. K. Reiter, “Bump in the ether:
A framework for securing sensitive user input,” in USENIX Annual
Technical Conference, 2006.

[12] ——, “Safe passage for passwords and other sensitive data,” in
16th Annual Network and Distributed System Security Symposium
(NDSS), February 2009.

[13] QFX software, “How keyscrambler works,” Online, 2015, accessed:
2015-05-25. [Online]. Available: https://www.qfxsoftware.com/ks-w
indows/how-it-works.htm

[14] D. Boneh, X. Ding, G. Tsudik, and C.-M. Wong, “A method for
fast revocation of public key certificates and security capabilities,”
in USENIX Security Symposium, 2001.

[15] W. Dai, “Crypto++ 5.6.0 benchmarks,” online, Mar 2009, accessed:
2016-03-11. [Online]. Available: https://www.cryptopp.com/bench
marks.html

[16] M. Denzel and M. Ryan, “Malware tolerance,” University of Birm-
ingham, Tech. Rep. 1, March 2014

[17] ——, “Malware tolerance,” University of Birmingham, Tech. Rep. 3,
April 2015

[18] ARM, “Arm trustzone website,” Online, 2014, accessed: 2014-06-24.
[Online]. Available: http://www.arm.com/products/processors/techn
ologies/trustzone/index.php?tab=Hardware+Architecture

[19] Vasco, “Card readers,” Online, 2016, accessed: 2016-05-19.
[Online]. Available: https://www.vasco.com/products/two-factor-aut
henticators/hardware/card-readers/index.html

[20] G. S. Grewal, M. D. Ryan, L. Chen, and M. R. Clarkson, “Du-
vote: Remote electronic voting with untrusted computers,” in 28th
Computer Security Foundations Symposium (CSF). IEEE, July 2015.

[21] P. Agten, R. Strackx, B. Jacobs, and F. Piessens, “Secure compilation
to modern processors,” in Computer Security Foundations Symposium
(CSF), vol. 25. IEEE, 2012.

[22] J. Szefer and R. B. Lee, “Architectural support for hypervisor-secure
virtualization,” ACM SIGARCH Computer Architecture News, 2012.

[23] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, and W. Drewry,
“Minibox: A two-way sandbox for x86 native code,” in USENIX
Annual Technical Conference, 2014.

[24] A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J. M. McCune,
Trustworthy Execution on Mobile Devices: What security properties
can my mobile platform give me?, ser. Trust and Trustworthy
Computing, CyLab, Carnegie Mellon University, USA. 2012.

[25] R. van Rijswijk-Deij and E. Poll, “Using trusted execution
environments in two-factor authentication: comparing approaches,”
in Open Identity Summit, OID, 2013.

[26] D. Basin, S. Radomirovic, and M. Schläpfer, “A complete
characterization of secure human-server communication,” in
Computer Security Foundations Symposium (CSF), 2015 IEEE.

[27] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: An execution infrastructure for TCB minimization,” in
SIGOPS Operating Systems Review, vol. 42. ACM, 2008.

[28] M. Kassner, “Keyscrambler: How keystroke encryp-
tion works to thwart keylogging threats,” Online,
October 2010, accessed: 2015-05-25. [Online]. Avail-
able: http://www.techrepublic.com/blog/it-security/keyscrambler-h
ow-keystroke-encryption-works-to-thwart-keylogging-threats/

[29] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig, “Trustvisor: Efficient TCB reduction and attestation,” in
Symposium on Security and Privacy (SP). IEEE, 2010.

http://www.kaspersky.com/about/news/virus/2011/Teamwork_How_the_ZitMo_Trojan_Bypasses_Online_Banking_Security
http://www.kaspersky.com/about/news/virus/2011/Teamwork_How_the_ZitMo_Trojan_Bypasses_Online_Banking_Security
https://www.qfxsoftware.com/ks-windows/how-it-works.htm
https://www.qfxsoftware.com/ks-windows/how-it-works.htm
https://www.cryptopp.com/benchmarks.html
https://www.cryptopp.com/benchmarks.html
http://www.arm.com/products/processors/technologies/trustzone/index.php?tab=Hardware+Architecture
http://www.arm.com/products/processors/technologies/trustzone/index.php?tab=Hardware+Architecture
https://www.vasco.com/products/two-factor-authenticators/hardware/card-readers/index.html
https://www.vasco.com/products/two-factor-authenticators/hardware/card-readers/index.html
http://www.techrepublic.com/blog/it-security/keyscrambler-how-keystroke-encryption-works-to-thwart-keylogging-threats/
http://www.techrepublic.com/blog/it-security/keyscrambler-how-keystroke-encryption-works-to-thwart-keylogging-threats/

	Introduction
	Overview of Smart-Guard
	Smart-Guard Protocol
	Security Analysis
	Models
	Proofs
	Proofs for Phase 1 and 2
	Proofs for Phase 3
	Combined Results
	Performance Estimation

	Malware Tolerance

	Related Work and Comparison
	Conclusions
	References

