UNIVERSITY^{OF} BIRMINGHAM University of Birmingham Research at Birmingham

Constructing characters of Sylow _p-subgroups of finite Chevalley groups

Goodwin, Simon M.; Le, Tung; Magaard, Kay; Paolini, Alessandro

DOI: 10.1016/j.jalgebra.2016.06.039

License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version Peer reviewed version

Citation for published version (Harvard):

Goodwin, SM, Le, T, Magaard, K & Paolini, A 2016, 'Constructing characters of Sylow subgroups of finite Chevalley groups', *Journal of Algebra*, vol. 468, pp. 395–439. https://doi.org/10.1016/j.jalgebra.2016.06.039

Link to publication on Research at Birmingham portal

Publisher Rights Statement: Verified 8/11/2016

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

CONSTRUCTING CHARACTERS OF SYLOW *p*-SUBGROUPS OF FINITE CHEVALLEY GROUPS

SIMON M. GOODWIN, TUNG LE, KAY MAGAARD AND ALESSANDRO PAOLINI

ABSTRACT. Let q be a power of a prime p, let G be a finite Chevalley group over \mathbb{F}_q and let U be a Sylow p-subgroup of G; we assume that p is not a very bad prime for G. We explain a procedure of reduction of irreducible complex characters of U, which leads to an algorithm whose goal is to obtain a parametrization of the irreducible characters of Ualong with a means to construct these characters as induced characters. A focus in this paper is determining the parametrization when G is of type F_4 , where we observe that the parametrization is "uniform" over good primes p > 3, but differs for the bad prime p = 3. We also explain how it has been applied for all groups of rank 4 or less.

1. INTRODUCTION

Let q be a power of a prime p, and let G be a finite Chevalley group over \mathbb{F}_q and let U be a Sylow p-subgroup of G. We assume that p is not a very bad prime for G; recall that this means that p > 2 if G is of type B_l , C_l or F_4 , and p > 3 if G is of type G_2 .

We study the representation theory of U with the aim of determining a parametrization of the irreducible characters of U and a means to construct them as induced characters of linear characters of certain subgroups. Our principal tool for achieving this is a method of successively reducing characters to smaller subquotients of U, which leads to an algorithm whose goal is to determine the irreducible characters of U. An outline of this algorithm is given below and explained more fully in Section 3.

A focus of this paper is to obtain the parametrization in case G is of type F_4 , as stated in the following theorem.

Theorem 1.1. Let q be a power of an odd prime p and let G be a finite Chevalley group over \mathbb{F}_q of type \mathbb{F}_4 . The irreducible characters of U are completely parameterized in Table 7. Moreover, each character can be obtained as an induced character of a linear character of a certain subgroup that can be determined from the information in Table 7.

As explained later in the introduction, the parametrization is "uniform" over all primes p > 3. However, we observe significant differences in the parametrization for the bad prime p = 3. These differences shed light on why the prime p = 3 is bad for G of type F_4 . In particular, we observe that for p > 3 all characters have degree q^d for some $d \in \mathbb{Z}_{\geq 0}$, whereas for p = 3 there are characters of degree $q^4/3$. We note that similar behaviour for certain characters of U when G is of type E_6 (for p = 3) or E_8 (for p = 5) has previously been observed in [LM2].

We have also used our algorithm to determine a parametrization of the irreducible characters of U for classical types up to rank 4. We emphasise that our algorithm gives a construction of each character as an induced character from a character of a certain subgroup of U, which gives a means to calculate the values of these characters, see Theorem 3.8. In fact for G of rank 4 or less, we obtain that each irreducible character of U can be obtained by inducing a linear character. In addition, we remark that our labelling of the irreducible is amenable to the action of a maximal torus and also the field automorphisms; thus it would be straightforward to determine these actions explicitly.

The methods in this paper develop those used by Himstedt and the second and third authors in [HLM1] and [HLM2], and make significant further progress. A full parametrization of the irreducible characters of U for G of type D_4 and every prime p is given in [HLM1]. The so called midafis (minimal degree almost faithful irreducible characters) are parameterized for every type and rank when p is not a very bad prime for G in [HLM2].

The approach used in those papers and this paper is built on partitioning the irreducible characters of U in terms of the root subgroups that lie in their centre, but not in their kernel. Consequently, there are similarities to the theory of supercharacters, which were first studied for the case G is of type A by André, see for example [An]. This theory was fully developed by Diaconis and Isaacs in [DI]. Subsequently it was applied to the characters of U for G of types B, C and D by André and Neto in [AN].

Another approach to the character theory of U is via the Kirillov orbit method, which is applicable for p greater than the Coxeter number of G. In [GMR2], Mosch, Röhrle and the first author explain an algorithm for parameterizing the coadjoint orbits of U, which was applied for G of rank at most 8, except E_8 ; through the Kirillov orbit method this leads to a parametrization of the irreducible characters of U. This was preceded by an algorithm to determine the conjugacy classes of U, see [GMR1].

We note that a reduction procedure for algebra groups similar to ours, was given by Evseev in [Ev], which builds on work of Isaacs in [Is2]. For $G = SL_n(q)$, this led to a parametrization of the irreducible characters of U for $n \leq 13$. Also recently Pak and Soffer have determined the coadjoint orbits of U for $G = SL_n(q)$ and $n \leq 16$, see [PS]. The situation for G not of type A turns out to be more complicated and we comment more on this below.

There has been considerable other interest in the character theory and conjugacy classes of U. We refer the reader to [LM1] or the introduction to [GMR2] for more information.

Motivation for this work, lies in determining generic character tables for U, as has been done for G of type D_4 in [GLM]. This has a view towards applications to the modular character theory of G in nondefining characteristic; in particular, to determining decomposition numbers; see for example [Hi], [HH] and [HN] for applications of the character theory of parabolic subgroups to the modular representation theory of G in certain low rank cases.

We move on to give an outline of our algorithm to parameterize the irreducible characters of U; we have omitted some details here and a full explanation is given in Section 3. In order to give this outline we require some more notation. We write Φ^+ for the system of positive roots determined by U, and for $\alpha \in \Phi^+$ we denote the corresponding root subgroup by X_{α} .

In the algorithm we consider certain subquotients of U, which we refer to as quattern groups. A pattern subgroup of U is a subgroup that is a product of root subgroups, and a quattern group is a quotient of a pattern subgroup by a normal pattern subgroup, we refer to §2.3 for a precise definition. A quattern group is determined by a subset S of Φ^+ and denoted by X_S . Given a subset \mathcal{Z} of $\{\alpha \in S \mid X_\alpha \subseteq Z(X_S)\}$, we define

$$\operatorname{Irr}(X_{\mathcal{S}})_{\mathcal{Z}} = \{ \chi \in \operatorname{Irr}(X_{\mathcal{S}}) \mid X_{\alpha} \not\subseteq \ker \chi \text{ for all } \alpha \in \mathcal{Z} \}.$$

At each stage of the algorithm, we are considering a pair $(\mathcal{S}, \mathcal{Z})$ as above. We attempt to apply one of two possible types of reductions to reduce $(\mathcal{S}, \mathcal{Z})$ to one or two pairs such that the irreducible characters in $Irr(X_S)_{\mathcal{Z}}$ are in bijection with those irreducible characters corresponding to the pairs we have obtained in the reduction.

The first reduction is based on the elementary but powerful character theoretic result [HLM2, Lemma 2.1], which is referred to as the reduction lemma. In Lemma 3.1, we state and prove a specific version of this lemma, which is the basis of the reduction. This lemma shows that under certain conditions (which are straightforward to check) we can replace (S, Z) with (S', Z), where S' contains two fewer roots than S, and we have a bijection between $\operatorname{Irr}(X_S)_Z$ and $\operatorname{Irr}(X_{S'})_Z$.

The second reduction is more elementary and used when it is not possible to apply the first reduction. For this we choose a root α such that $\alpha \notin \mathbb{Z}$, but $X_{\alpha} \subseteq Z(X_{\mathcal{S}})$. Then $(\mathcal{S}, \mathbb{Z})$ is replaced with the two pairs $(\mathcal{S} \setminus \{\alpha\}, \mathbb{Z})$ and $(\mathcal{S}, \mathbb{Z} \cup \{\alpha\})$. The justification of this reduction is that $\operatorname{Irr}(X_{\mathcal{S}})_{\mathbb{Z}}$ can be partitioned into the characters in which X_{α} is contained in the kernel, namely $\operatorname{Irr}(X_{\mathcal{S} \setminus \{\alpha\}})_{\mathbb{Z}}$, and the characters in which X_{α} is not contained in the kernel, namely $\operatorname{Irr}(X_{\mathcal{S}})_{\mathbb{Z} \cup \{\alpha\}}$.

We first partition the characters in terms of the root subgroups that lie in their kernel, and then apply the reductions to each part of this partition. After we have successively applied these reductions as many times as possible, we are left with a set $\{(S_1, Z_1), \ldots, (S_m, Z_m)\}$ for some $m \in \mathbb{Z}_{\geq 1}$ such that Irr(U) is in bijection with the disjoint union

$$\bigsqcup_{i=1}^{m} \operatorname{Irr}(X_{\mathcal{S}_i})_{\mathcal{Z}_i}.$$

We refer to the pairs (S_i, Z_i) as cores. In many cases we have that X_{S_i} is abelian in which case it is trivial to determine $\operatorname{Irr}(X_{S_i})_{Z_i}$. The more interesting cases are when X_{S_i} is not abelian, we refer to these as nonabelian cores, where there is still some work required to determine $\operatorname{Irr}(X_{S_i})_{Z_i}$.

As proved in Theorem 3.8, the irreducible characters corresponding to $Irr(X_{S_i})_{Z_i}$ are actually obtained from irreducible characters of X_{S_i} by first inflating to a certain pattern subgroup of U and then inducing to U. In particular, this gives a method to construct the characters and, therefore, calculate the values of these characters.

The algorithm has been implemented in the computer algebra system GAP [GAP] using the CHEVIE package [CHEVIE]. For G of rank 4 or less, we have used this and an analysis of the nonabelian cores obtained to determine a parametrization of Irr(U). The results of the calculation are presented in the appendix for G of types B₄, C₄ and F₄.

For the case where G is of type F_4 , we obtain six nonabelian cores. These families of characters show the most interesting behavior. For three of these families the parametrization of $Irr(X_S)_{\mathcal{Z}}$ is significantly different when p > 3 and p = 3. We get a different expression of $Irr(X_S)_{\mathcal{Z}}$ as a polynomial in q in these two cases. For p = 3, we obtain irreducible characters of degree $q^4/3$, whereas for p > 3, we obtain that the degree of an irreducible character is always a power of q.

As mentioned above for G of type A, a similar algorithm is given by Evseev in [Ev], which works in the framework of algebra groups. This allows the algorithm to work with more general subgroups of U; there is not a natural analogue of algebra groups in general types. A parametrization of the irreducible characters of U for G or type A up to rank 12 is achieved in [Ev]. Indeed up to rank 11 there are no nonabelian cores (when working in the framework of algebra groups). The lack of an analogue of the more general notion of algebra groups outside type A leading to nonabelian cores in low rank is in our opinion the main reason why the problem outside of type A is more complex. To deal with G of higher rank, a more systematic procedure for dealing with nonabelian cores is necessary, and is a direction for future research. This should be based on our analysis of nonabelian cores in Section 4.

Another direction for future work is to construct generic character tables of U for G of type F₄, the case of D₄ given in [GLM] serves as a model of how to do this.

Acknowledgments: We would like to thank Frank Himstedt for a number of helpful suggestions. Also we are grateful to Eamonn O'Brien for verifying computationally the number of irreducible characters of U of any fixed degree, when G is of type F_4 , and $q = 3^e$ with $e \in \{1, 2, 3\}$.

2. Preliminaries

2.1. Background on characters of finite groups. Let G be a finite group, and let H be a subgroup of G. We denote by Z(G) the centre of G, and by Irr(G) the set of all irreducible characters of G. We write 1_G for the trivial character of G. For a character $\eta \in Irr(H)$, we write $\eta^G = Ind_H^G \eta$ for the character of G induced from η , and we denote

$$\operatorname{Irr}(G,\eta) = \{ \chi \in \operatorname{Irr}(G) \mid \langle \chi, \eta^G \rangle \neq 0 \}.$$

For a character $\chi \in Irr(G)$, we denote

$$\ker(\chi) = \{g \in G \mid \chi(g) = \chi(1)\} \text{ and } Z(\chi) = \{g \in G \mid |\chi(g)| = \chi(1)\}.$$

Let N be a normal subgroup of G. We have an inflation map from $\operatorname{Irr}(G/N)$ to $\operatorname{Irr}(G)$ which takes $\chi \in \operatorname{Irr}(G/N)$ to $\tilde{\chi} = \operatorname{Inf}_{G/N}^G \chi \in \operatorname{Irr}(G)$, where $\tilde{\chi}(g) = \operatorname{Inf}_{G/N}^G \chi(g) = \chi(gN)$ for $g \in G$. Given $g \in G$, $x \in N$ and $\psi \in \operatorname{Irr}(N)$, we write x^g for $g^{-1}xg$ and we write ${}^g\psi : N \to \mathbb{C}$ for the character defined by ${}^g\psi(x) = \psi(x^g)$.

For ease of reference later we recall the following elementary commutativity property of induction and inflation. For $\psi \in \operatorname{Irr}(H/N)$, we have

(2.1)
$$\operatorname{Inf}_{G/N}^{G}\operatorname{Ind}_{H/N}^{G/N}\psi = \operatorname{Ind}_{H}^{G}\operatorname{Inf}_{H/N}^{H}\psi.$$

We next explain an elementary result, which we use in the sequel. Let Z and T be subgroups of Z(G) such that $Z \cap T = 1$. We can identify Z with a subgroup of G/T. Let $\lambda \in \operatorname{Irr}(Z)$ and let $\tilde{\lambda}$ denote its inflation to ZT. Then it is straightforward to show that we have a bijection $\operatorname{Irr}(G, \tilde{\lambda}) \longleftrightarrow \operatorname{Irr}(G/T, \lambda)$.

The next lemma is key for our algorithm, it was proved in [HLM2, Lemma 2.1] and we refer to it as the reduction lemma. We note that a similar result in the context of algebra groups was previously proved by Evseev in [Ev, Lemma 2.1].

Lemma 2.1 (Reduction lemma). Let G be a finite group, let $H \leq G$ and let X be a transversal of H in G. Let Y and Z be subgroups of H, and $\lambda \in Irr(Z)$. Suppose that

(i) $Z \subseteq Z(G)$, (ii) $Y \trianglelefteq H$, (iii) $Z \cap Y = 1$, (iv) $ZY \trianglelefteq G$, (v) for the inflation of $\tilde{\lambda} \in \text{Irr}(ZY)$ of λ , we have that $x\tilde{\lambda} \neq y\tilde{\lambda}$ for all $x, y \in X$ with $x \neq y$.

Then we have a bijection

$$\operatorname{Irr}(H/Y,\lambda) \to \operatorname{Irr}(G,\lambda) \cap \operatorname{Irr}(G,1_Y)$$
$$\chi \mapsto \operatorname{Ind}_H^G \operatorname{Inf}_{H/Y}^H \chi.$$

Moreover, if |X| = |Y|, then $Irr(G, \lambda) \cap Irr(G, 1_Y) = Irr(G, \lambda)$.

Let p be a prime, and let $q = p^e$ for $e \in \mathbb{Z}_{\geq 1}$. We let \mathbb{F}_q be the finite field with q elements. Denote by $\operatorname{Tr} : \mathbb{F}_q \to \mathbb{F}_p$ the trace map, and define $\phi : \mathbb{F}_q \to \mathbb{C}^{\times}$ by $\phi(x) = e^{\frac{i2\pi \operatorname{Tr}(x)}{p}}$, so that ϕ is a nontrivial character from the additive group of \mathbb{F}_q to the multiplicative group \mathbb{C}^{\times} . We note that ker $\phi = \ker \operatorname{Tr}$. For $a \in \mathbb{F}_q$, we define $\phi_a \in \operatorname{Irr}(\mathbb{F}_q)$ by $\phi_a(t) = \phi(at)$, and note that $\operatorname{Irr}(\mathbb{F}_q) = \{\phi_a \mid a \in \mathbb{F}_q\}$.

It is clear that $\operatorname{Tr}(a_1s_1 + \cdots + a_rs_r) = 0$ for all $s_1, \ldots, s_r \in \mathbb{F}_q$ holds if and only if $a_1 = \cdots = a_r = 0$. Moreover, since the Frobenius automorphism $t \mapsto t^p$ is an automorphism of \mathbb{F}_q , we have that the equality $\operatorname{Tr}(at^p) = 0$ holds for all $t \in \mathbb{F}_q$ if and only if a = 0.

The next lemma is important in our analysis of nonabelian cores; a version of this lemma giving ker ϕ for an arbitrary choice of character $\phi : \mathbb{F}_q \to \mathbb{C}^{\times}$, which is less explicit, was proved in [LM1, Proposition 1.3].

Lemma 2.2. For a fixed $a \in \mathbb{F}_q^{\times}$, let $\mathbb{T}_a = \{t^p - a^{p-1}t \mid t \in \mathbb{F}_q\}$. Then $a^{-p}\mathbb{T}_a = \ker \operatorname{Tr}$.

Proof. We have that

$$a^{-p}\mathbb{T}_a = \{a^{-p}(t^p - a^{p-1}t) \mid t \in \mathbb{F}_q\} = \{(ta^{-1})^p - ta^{-1} \mid t \in \mathbb{F}_q\} = \{u^p - u \mid u \in \mathbb{F}_q\}$$

Now, we also have that

$$\operatorname{Tr}(t^p - t) = \operatorname{Tr}(t^p) - \operatorname{Tr}(t) = \operatorname{Tr}(t) - \operatorname{Tr}(t) = 0.$$

Therefore,

$$\{t^p - t \mid t \in \mathbb{F}_q\} \subseteq \{x \in \mathbb{F}_q \mid \operatorname{Tr}(x) = 0\} = \ker \operatorname{Tr},\$$

and all those sets have same cardinality q/p, therefore ker(Tr) = $\{t^p - t \mid t \in \mathbb{F}_q\} = a^{-p}\mathbb{T}_a$. \Box

2.2. Background on reductive groups. We introduce now the main notation for finite reductive groups that we require. We cite [DM, Section 3], as a reference for the theory of algebraic groups over finite fields, and for the terminology used here.

Let **G** be a connected reductive algebraic group defined and split over \mathbb{F}_p . We assume that p is not a very bad prime for **G**; recall that this means that p > 2 if **G** is of type B_l , C_l or F_4 , and p > 3 if **G** is of type G_2 .

Fix **B** a Borel subgroup of **G** defined over \mathbb{F}_p , and let **T** be a maximal torus of **G** contained in **B** and defined over \mathbb{F}_p . We write **U** for the unipotent radical of **B**, which is defined over \mathbb{F}_p . For a subgroup **H** of **G** defined over \mathbb{F}_p , we write $H = \mathbf{H}(q)$ for the group of \mathbb{F}_q -rational points of **H**. So $G = \mathbf{G}(q)$ is a finite Chevalley group and $U = \mathbf{U}(q)$ is a Sylow *p*-subgroup of *G*.

For G of type X_l , we sometimes write U_{X_l} instead of just U, so that we can discuss different groups at the same time.

We denote by Φ the root system corresponding to G, and by Φ^+ the set of positive roots in Φ . Let $N = |\Phi^+|$. Recall the standard (strict) partial order on Φ is defined by $\alpha < \beta$ if $\beta - \alpha$ is a sum of positive roots. We fix an enumeration of $\Phi^+ = \{\alpha_1, \ldots, \alpha_N\}$ such that i < j whenever $\alpha_i < \alpha_j$.

For $\alpha \in \Phi^+$, we choose a parametrization $X_{\alpha} = \{x_{\alpha}(t) \mid t \in \mathbb{F}_q\}$ of the corresponding root subgroup of U. We abbreviate and write X_i for X_{α_i} and x_i for x_{α_i} . Each element of U can be written uniquely as $u = x_1(s_1)x_2(s_2)\cdots x_N(s_N)$, where $s_i \in \mathbb{F}_q$ for all $i = 1, \ldots, N$. In particular, the X_i generate U, and $|U| = q^N$.

We now recall some standard facts about the commutator relations in U, we refer the reader to [Ca, Chapters 4 and 5] for more details. Given $\alpha, \beta \in \Phi^+$, we have

$$[x_{\alpha}(r), x_{\beta}(s)] = \prod_{\substack{i,j>0:\\i\alpha+j\beta\in\Phi^+}} x_{i\alpha+j\beta}(c_{ij}^{\alpha,\beta}r^is^j)$$

for certain coefficients $c_{ij}^{\alpha,\beta} \in \mathbb{F}_p$. The parameterizations of the root subgroups can be chosen so that the coefficients $c_{ij}^{\alpha,\beta}$ are always ± 1 , ± 2 , ± 3 , where ± 2 occurs only for G of type B_l , C_l , F_4 and G_2 , and ± 3 only occurs for G of type G_2 . Moreover, as p is not very bad for G, we have that

$$[X_{\alpha}, X_{\beta}] = \prod_{\substack{i,j>0:\\i\alpha+j\beta\in\Phi^+}} X_{i\alpha+j\beta}$$

for $\alpha, \beta \in \Phi^+$.

2.3. Quattern groups. In our algorithm for determining the irreducible characters, we require certain subquotients of U, which we refer to as quattern groups. The term pattern subgroup that we use below goes back to Isaacs, [Is2, Section 3], and quattern groups were also used in [HLM2]. We give the required terminology and notation here. Most of the of assertions made here are well-known, proofs can be found in for example [HLM2, Sections 3 and 4].

A subset \mathcal{P} of Φ^+ is said to be *closed* (or a *pattern*) if for $\alpha, \beta \in \mathcal{P}$, we have that $\alpha + \beta \in \mathcal{P}$ whenever $\alpha + \beta \in \Phi^+$. For a closed subset \mathcal{P} of Φ^+ , we say that $\mathcal{K} \subseteq \mathcal{P}$ is *normal in* \mathcal{P} , and write $\mathcal{K} \trianglelefteq \mathcal{P}$, if for all $\delta \in \mathcal{K}$ and $\alpha \in \mathcal{P}$, we have $\delta + \alpha \in \mathcal{K}$ whenever $\delta + \alpha \in \Phi^+$. A subset \mathcal{S} of Φ^+ is called a *quattern* if $\mathcal{S} = \mathcal{P} \setminus \mathcal{K}$, where \mathcal{P} is closed and \mathcal{K} is normal in \mathcal{P} .

Let \mathcal{P} be a closed subset Φ^+ , let \mathcal{K} be normal in \mathcal{P} , and let $\mathcal{S} = \mathcal{P} \setminus \mathcal{K}$. We define

$$X_{\mathcal{P}} = \prod_{\alpha \in \mathcal{P}} X_{\alpha}$$

It is a straightforward exercise using the commutator relations to show that $X_{\mathcal{P}}$ a subgroup of U. We refer to a subgroup of U of the form $X_{\mathcal{P}}$ as a *pattern group*. Further, it is a consequence of the commutator relations that $X_{\mathcal{K}}$ is a normal subgroup of $X_{\mathcal{P}}$, and we define

$$X_{\mathcal{S}} = X_{\mathcal{P} \setminus \mathcal{K}} = X_{\mathcal{P}} / X_{\mathcal{K}}.$$

A subquotient of U of the form $X_{\mathcal{S}}$ is called a *quattern* group. We can easily check that $X_{\mathcal{S}}$ is independent up to (canonical) isomorphism of the possible choice of \mathcal{P} and \mathcal{K} such that $\mathcal{S} = \mathcal{P} \setminus \mathcal{K}$, so there is no ambiguity in the notation $X_{\mathcal{S}}$. We write $\mathcal{S} = \mathcal{P} \setminus \mathcal{K}$ for a quattern,

where we are implicitly assuming that \mathcal{P} and \mathcal{K} are such a choice. Given $\alpha \in \mathcal{S}$, by a mild abuse of notation we identify X_{α} with its image in $X_{\mathcal{S}}$ for the remainder of this paper.

Let $\mathcal{S} \subseteq \Phi^+$ be a quattern and let $X_{\mathcal{S}}$ be the corresponding quattern group. We define

$$\mathcal{Z}(\mathcal{S}) = \{ \gamma \in \mathcal{S} \mid \gamma + \alpha \notin \mathcal{S} \text{ for all } \alpha \in \mathcal{S} \}$$

and

$$\mathcal{D}(\mathcal{S}) = \{ \gamma \in \mathcal{Z}(\mathcal{S}) \mid \alpha + \beta \neq \gamma \text{ for all } \alpha, \beta \in \mathcal{S} \}.$$

Using the commutator relations and the assumption that p is not very bad for G, it can be shown that

$$Z(X_{\mathcal{S}}) = X_{\mathcal{Z}(\mathcal{S})}.$$

Then it can be seen that

(2.2)
$$X_{\mathcal{S}} = X_{\mathcal{S} \setminus \mathcal{D}(\mathcal{S})} \times X_{\mathcal{D}(\mathcal{S})}.$$

Let \mathcal{S} be a quattern and let $\mathcal{Z} \subseteq \mathcal{Z}(\mathcal{S})$. We define

$$\operatorname{Irr}(X_{\mathcal{S}})_{\mathcal{Z}} = \{ \chi \in \operatorname{Irr}(X_{\mathcal{S}}) \mid X_{\alpha} \not\subseteq \ker(\chi) \text{ for all } \alpha \in \mathcal{Z} \}$$

These sets of irreducible characters are key to the algorithm presented in the next section.

Next we recall that a subset Σ of Φ^+ is called an *antichain* if for all $\alpha, \beta \in \Sigma$, we have $\alpha \not\leq \beta$ and $\beta \not\leq \alpha$, i.e. α and β are incomparable in the partial order on Φ^+ .

Given an antichain Σ in Φ^+ , the set $\mathcal{K}_{\Sigma} = \{\beta \in \Phi^+ \mid \beta \nleq \gamma \text{ for all } \gamma \in \Sigma\}$ is a normal subset of Φ^+ . Conversely, given a normal subset \mathcal{K} of Φ^+ the set $\Sigma_{\mathcal{K}}$ of maximal elements of $\Phi^+ \setminus \mathcal{K}$ is clearly an antichain in Φ^+ . This sets up a bijective correspondence between antichains in Φ^+ and normal subsets in Φ^+ . The assertions made above are standard properties of posets, see for example [CP, Section 4].

For an antichain Σ in Φ^+ , we define the quattern $S_{\Sigma} = \Phi^+ \setminus \mathcal{K}_{\Sigma}$. Then it is an easy consequence of the definitions that $\mathcal{Z}(\mathcal{S}_{\Sigma}) = \Sigma$.

Now let $\chi \in \operatorname{Irr}(U)$. We define $\mathcal{R}(\chi) = \{\alpha \in \Phi^+ \mid X_\alpha \subseteq \ker \chi\}$. Using the commutator relations it is easy to see that $\mathcal{R}(\chi)$ is a normal subset of Φ^+ , and thus $\Sigma_{\mathcal{R}(\chi)}$ is an antichain in Φ^+ . For an antichain $\Sigma \in \Phi^+$, we define $\operatorname{Irr}(U)_{\Sigma} = \{\chi \in \operatorname{Irr}(U) \mid \Sigma_{\mathcal{R}(\chi)} = \Sigma\}$. Then clearly we have the partition

$$\operatorname{Irr}(U) = \bigsqcup_{\Sigma} \operatorname{Irr}(U)_{\Sigma},$$

where the union is taken over all antichains Σ in Φ^+ . Moreover, we have that any character in $\operatorname{Irr}(U)_{\Sigma}$ is the inflation of an irreducible character in $\operatorname{Irr}(X_{\mathcal{S}_{\Sigma}})_{\Sigma}$.

We frequently want to inflate and induce characters from one quattern group to another, so we fix some notation for this. Let $\mathcal{S}' = \mathcal{P}' \setminus \mathcal{K}'$ and $\mathcal{S} = \mathcal{P} \setminus \mathcal{K}$ be quatterns, and let ψ be a character of $X_{\mathcal{S}'}$. If $\mathcal{P}' = \mathcal{P}$ and $\mathcal{K}' \supseteq \mathcal{K}$, then we let $\mathcal{L} = \mathcal{K}' \setminus \mathcal{K}$ and we write $\mathrm{Inf}_{\mathcal{L}} \psi = \mathrm{Inf}_{X_{\mathcal{S}'}}^{X_{\mathcal{S}}}$ for the inflation of ψ from $X_{\mathcal{S}'}$ to $X_{\mathcal{S}}$; in case $\mathcal{L} = \{\alpha\}$ has one element, we write $\mathrm{Inf}_{\alpha} \psi = \mathrm{Inf}_{\mathcal{L}} \psi$. If $\mathcal{K}' = \mathcal{K}$ and $\mathcal{P}' \subseteq \mathcal{P}$, then we let $\mathcal{T} = \mathcal{P} \setminus \mathcal{P}'$ and we write $\mathrm{Ind}^{\mathcal{T}} \psi$ for $\mathrm{Ind}_{X_{\mathcal{S}'}}^{X_{\mathcal{S}}} \psi$; in case $\mathcal{T} = \{\alpha\}$ has one element, we write $\mathrm{Ind}^{\alpha} \psi$ for $\mathrm{Ind}^{\mathcal{T}} \psi$.

FIGURE 1. The Dynkin diagram for a root system of type F_4 .

2.4. Notation for F_4 . We fix some specific notation in the case **G** is of type F_4 that we use later. In this case Dynkin diagram of Φ is given in Figure 1, where $\Pi = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ is the set of simple roots determined by Φ^+ .

There are 24 positive roots in Φ , listed in Table 1; they are enumerated as in the computer algebra package GAP, [GAP]. We use the notation 2 3 4 2 for the root $2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 3\alpha_4$, and similarly for the other positive roots. The roots are enumerated so that their height is nondecreasing; we recall that the *height* of $\sum_{i=1}^{4} a_i \alpha_i$ is by definition $\sum_{i=1}^{4} a_i$. We choose parameterizations of the root subgroups in U so that the commutator relations are given as in Table 2.

Height	Roots			
1	α_1	α_2	$lpha_3$	α_4
2	$\alpha_5 = 1 \ 1 \ 0 \ 0$	$\alpha_6 = 0 \ 1 \ 1 \ 0$	$\alpha_7 = 0 \ 0 \ 1 \ 1$	
3	$\alpha_8 = 1 1 1 0$	$\alpha_9 = 0 1 2 0$	$\alpha_{10} = 0 \ 1 \ 1 \ 1$	
4	$\alpha_{11} = 1 \ 1 \ 2 \ 0$	$\alpha_{12} = 1 \ 1 \ 1 \ 1$	$\alpha_{13} = 0 \ 1 \ 2 \ 1$	
5	$\alpha_{14} = 1 \ 2 \ 2 \ 0$	$\alpha_{15} = 1 \ 1 \ 2 \ 1$	$\alpha_{16} = 0 \ 1 \ 2 \ 2$	
6	$\alpha_{17} = 1 \ 2 \ 2 \ 1$	$\alpha_{18} = 1 \ 1 \ 2 \ 2$		
7	$\alpha_{19} = 1 \ 2 \ 3 \ 1$	$\alpha_{20} = 1 \ 2 \ 2 \ 2$		
8	$\alpha_{21} = 1 \ 2 \ 3 \ 2$			
9	$\alpha_{22} = 1 \ 2 \ 4 \ 2$			
10	$\alpha_{23} = 1 3 4 2$			
11	$\alpha_{24} = 2 3 4 2$			

TABLE 1. Positive roots in a root system of type F_4 .

3. Algorithm to parameterize the irreducible characters of U

3.1. Lemmas required for the algorithm. Before describing our algorithm to determine the irreducible characters of U, we present a couple of lemmas which are the basis of the reductions performed in the algorithm.

Our first lemma gives a specific version of Lemma 2.1.

Lemma 3.1. Let $S = \mathcal{P} \setminus \mathcal{K}$ be a quattern, let $Z \subseteq Z(S)$ and let $\gamma \in Z$. Suppose that there exist $\delta, \beta \in S \setminus \{\gamma\}$, with $\delta + \beta = \gamma$, such that for all $\alpha, \alpha' \in S$ we have $\alpha + \alpha' \neq \beta$, and that for all $\alpha \in S \setminus \{\beta\}$ we have $\delta + \alpha \notin S$. Let $\mathcal{P}' = \mathcal{P} \setminus \{\beta\}$ and $\mathcal{K}' = \mathcal{K} \cup \{\delta\}$. Then we have

$$\begin{split} & [x_1(s), x_2(r)] = x_5(rs) & [x_1(s), x_6(r)] = x_8(rs)x_{14}(-r^2s) \\ & [x_1(s), x_{13}(r)] = x_{15}(rs)x_{22}(r^2s) & [x_1(s), x_{16}(r)] = x_{18}(rs) \\ & [x_1(s), x_{23}(r)] = x_{24}(rs) & [x_2(s), x_3(r)] = x_6(rs)x_9(-r^2s) \\ & [x_2(s), x_2(r)] = x_{24}(rs) & [x_2(s), x_{31}(r)] = x_{14}(rs) \\ & [x_2(s), x_{22}(r)] = x_{23}(rs) & [x_2(s), x_{11}(r)] = x_{14}(rs) \\ & [x_3(s), x_5(r)] = x_{8}(-rs)x_{11}(rs^2) & [x_3(s), x_6(r)] = x_{9}(2rs) \\ & [x_3(s), x_{20}(r)] = x_{21}(rs)x_{22}(-rs^2) & [x_3(s), x_{11}(r)] = x_{12}(rs) \\ & [x_3(s), x_{20}(r)] = x_{21}(rs)x_{22}(-rs^2) & [x_3(s), x_{21}(r)] = x_{22}(2rs) \\ & [x_4(s), x_6(r)] = x_{10}(-rs) & [x_4(s), x_{81}(r)] = x_{12}(-rs) \\ & [x_4(s), x_9(r)] = x_{13}(-rs)x_{16}(rs^2) & [x_4(s), x_{11}(r)] = x_{15}(-rs)x_{18}(rs^2) \\ & [x_4(s), x_9(r)] = x_{13}(-rs)x_{16}(rs^2) & [x_4(s), x_{11}(r)] = x_{12}(-rs) \\ & [x_4(s), x_{10}(r)] = x_{21}(rs) & [x_4(s), x_{11}(r)] = x_{12}(-rs) \\ & [x_4(s), x_{10}(r)] = x_{21}(rs) & [x_4(s), x_{11}(r)] = x_{12}(-rs) \\ & [x_4(s), x_{10}(r)] = x_{21}(rs) & [x_5(s), x_{13}(r)] = x_{12}(-rs) \\ & [x_4(s), x_{10}(r)] = x_{21}(rs) & [x_5(s), x_{11}(r)] = x_{22}(2rs) \\ & [x_4(s), x_{11}(r)] = x_{20}(-rs) & [x_5(s), x_{13}(r)] = x_{11}(-rs) x_{23}(-r^2s) \\ & [x_5(s), x_{16}(r)] = x_{20}(-rs) & [x_5(s), x_{22}(r)] = x_{24}(rs) \\ & [x_6(s), x_{16}(r)] = x_{21}(-rs) x_{23}(rs^2) & [x_6(s), x_{21}(r)] = x_{23}(2rs) \\ & [x_7(s), x_{12}(r)] = x_{17}(-rs) x_{23}(rs^2) & [x_7(s), x_{11}(r)] = x_{19}(-rs) x_{22}(rs^2) \\ & [x_7(s), x_{16}(r)] = x_{21}(-rs) (x_{23}(rs^2) & [x_7(s), x_{16}(r)] = x_{21}(rs) \\ & [x_8(s), x_{16}(r)] = x_{21}(rs) & [x_1(s), x_{16}(r)] = x_{22}(2rs) \\ & [x_8(s), x_{16}(r)] = x_{21}(rs) & [x_1(s), x_{16}(r)] = x_{22}(-rs) \\ & [x_9(s), x_{12}(r)] = x_{20}(-2rs) & [x_1(s), x_{16}(r)] = x_{22}(-rs) \\ & [x_1(s), x_{16}(r)] = x_{23}(-rs) & [x_1(s), x_{16}(r)] = x_{22}(-rs) \\ & [x_{11}(s), x_{10}(r)] = x_{23}(-rs) & [x_{11}(s), x_{16}(r)] = x_{22}(-rs) \\ & [x_{11}(s), x_{10}(r)] = x_{23}(-rs) & [x_{11}(s), x_{16}(r)] = x$$

TABLE 2. Commutator relations for U for G of type F_4 .

that $\mathcal{S}' = \mathcal{P}' \setminus \mathcal{K}'$ is a quattern with $X_{\mathcal{S}'} \cong X_{\mathcal{P}'}/X_{\mathcal{K}'}$, and we have a bijection

$$\operatorname{Irr}(X_{\mathcal{S}'})_{\mathcal{Z}} \to \operatorname{Irr}(X_{\mathcal{S}})_{\mathcal{Z}}$$
$$\chi \mapsto \operatorname{Ind}^{\beta} \operatorname{Inf}_{\delta} \chi^{X_{\mathcal{S}}}$$

by inflating over X_{δ} and inducing to $X_{\mathcal{S}}$ over X_{β} .

Proof. Let $\alpha, \alpha' \in \mathcal{P}'$. If $\alpha \in \mathcal{K}$ or $\alpha' \in \mathcal{K}$, then it cannot be $\alpha + \alpha' = \beta$, since in that case we get $\beta \in \mathcal{K}$, a contradiction with $\beta \in \mathcal{S}$. If $\alpha, \alpha' \in \mathcal{S}'$, by assumption the equality $\alpha + \alpha' = \beta$ cannot hold as well. Since $\mathcal{P}' = \mathcal{S}' \cup \mathcal{K}$, this proves that \mathcal{P}' is closed.

Let now $\alpha \in \mathcal{P}'$, and $\alpha' \in \mathcal{K}'$. If $\alpha' \in \mathcal{K}$, then $\alpha + \alpha' \in \mathcal{K}'$ whenever $\alpha + \alpha' \in \Phi^+$, since $\mathcal{K} \leq \mathcal{P}$. Otherwise, $\alpha' = \delta$, and by assumption $\alpha + \delta \notin \mathcal{S}$ since $\alpha \neq \beta$, therefore if $\alpha + \delta \in \Phi^+$ then $\alpha + \delta \in \mathcal{K}'$. Therefore $\mathcal{K}' \leq \mathcal{P}'$, and $\mathcal{S}' = \mathcal{P}' \setminus \mathcal{K}'$ is a quattern.

It is immediate that conditions (i)–(iv) of Lemma 2.1 hold with $G = X_{\mathcal{S}}, Z = X_{\gamma}, H = X_{\mathcal{S} \setminus \{\beta\}}, X = X_{\beta}$ and $Y = X_{\delta}$. Moreover, since for $s_1, s_2 \in \mathbb{F}_q$ we have

$$\lambda^{x_{\beta}(s_1)} = \lambda^{x_{\beta}(s_2)}$$
 if and only if $\lambda([x_{\beta}(s_1), x_{\delta}(t)]) = \lambda([x_{\beta}(s_2), x_{\delta}(t)])$ for all $t \in \mathbb{F}_q$.

Therefore, the commutator formulas in §2.2 imply that condition (v) must also be satisfied, and of course |X| = |Y| = q, so the lemma follows.

Our second lemma is an immediate consequence of the definitions. We state it for ease of reference later, and omit any proof.

Lemma 3.2. Let S be a quattern and let $\alpha \in \mathcal{Z}(S)$. Then there is a bijection $\operatorname{Irr}(X_S) \to \operatorname{Irr}(X_S)_{\alpha} \sqcup \operatorname{Irr}(X_{S \setminus \{\alpha\}})$.

3.2. An example of the algorithm. Before we give a description of our algorithm, we illustrate it in an example. We consider a case for G of type F_4 and use the notation given in §2.4.

We want to compute $\operatorname{Irr}(U)_{\Sigma}$, where $\Sigma = \{\alpha_{12}\}$. We let $\mathcal{S} = \mathcal{S}_{\Sigma} = \Phi^+ \setminus \mathcal{K}_{\Sigma}$, so $\mathcal{S} = \{\alpha_1, \ldots, \alpha_8\} \cup \{\alpha_{10}, \alpha_{12}\}$. Also we let $\mathcal{Z} = \Sigma = \{\alpha_{12}\}$. So we want to compute $\operatorname{Irr}(\mathcal{S})_{\mathcal{Z}}$. Let

$$(\beta_1, \delta_1) = (\alpha_1, \alpha_{10}), \qquad (\beta_2, \delta_2) = (\alpha_4, \alpha_8), \qquad (\beta_3, \delta_3) = (\alpha_5, \alpha_7),$$

An application of Lemma 3.1, for $(\beta, \delta) = (\beta_1, \delta_1)$ gives a bijection $\operatorname{Irr}(X_{S^1})_{\mathcal{Z}} \to \operatorname{Irr}(X_{S})_{\mathcal{Z}}$, where $S^1 = S \setminus \{\beta_1, \delta_1\}$. Two further applications give bijections $\operatorname{Irr}(X_{S^2})_{\mathcal{Z}} \to \operatorname{Irr}(X_{S^1})_{\mathcal{Z}}$ and $\operatorname{Irr}(X_{S^3})_{\mathcal{Z}} \to \operatorname{Irr}(X_{S^2})_{\mathcal{Z}}$, where $S^2 = S^1 \setminus \{\beta_2, \delta_2\}$ and $S^3 = S^2 \setminus \{\beta_3, \delta_3\}$. We record the sets $\mathcal{A} = \{\beta_1, \beta_2, \beta_3\}$ and $\mathcal{L} = \{\delta_1, \delta_2, \delta_3\}$ to tell us which reductions were performed. We also define $\mathcal{K} = \mathcal{K}_{\Sigma} \cup \mathcal{L}$. These three reductions are all instances of TYPE R reductions (the capitalized R means "reduction lemma") in Algorithm 3.3 in the next subsection.

Now we can see that $\alpha_{12} \in \mathcal{D}(\mathcal{S}^3)$, so that $X_{\mathcal{S}^3} \cong X_{\mathcal{S}^3 \setminus \{\alpha_{12}\}} \otimes X_{\alpha_{12}}$. In particular, this means there is no possibility to apply Lemma 3.1, with $\gamma \in \mathcal{Z} = \{\alpha_{12}\}$.

We find that $\mathcal{Z}(\mathcal{S}^3) \setminus \mathcal{D}(\mathcal{S}^3) = \{\alpha_6\}$. We can apply Lemma 3.2 to obtain a bijection

$$\operatorname{Irr}(X_{\mathcal{S}^3})_{\mathcal{Z}} \to \operatorname{Irr}(X_{\mathcal{S}^3})_{\mathcal{Z} \cup \{\alpha_6\}} \sqcup \operatorname{Irr}(X_{\mathcal{S}^3 \setminus \{\alpha_6\}}).$$

We now split the two cases and consider them in turn. We note that this is an example of a TYPE S reduction (the capitalized S means "split") as defined in our algorithm in the next subsection.

First we consider

 $\operatorname{Irr}(X_{\mathcal{S}^3})_{\mathcal{Z}^3},$

where $S^3 = \{\alpha_2, \alpha_3, \alpha_6, \alpha_{12}\}$ and $Z^3 = \{\alpha_6, \alpha_{12}\}$. We can apply Lemma 3.1 with $\delta = \alpha_3$, $\beta = \alpha_2$, and $\gamma = \alpha_6$. We then get a bijection $\operatorname{Irr}(X_{S^3})_{Z^1} \longrightarrow \operatorname{Irr}(X_{S^4})_{Z^3}$, where $S^4 = S^3 \setminus \{\alpha_2, \alpha_3\} = \{\alpha_6, \alpha_{12}\}$. This is another reduction of TYPE R as defined in the next subsection. We record this reduction by adjoining α_2 to \mathcal{A} to obtain $\mathcal{A}' = \{\alpha_2, \alpha_1, \alpha_4, \alpha_5\}$ and adjoining α_3 to \mathcal{L} to obtain $\mathcal{L}' = \{\alpha_3, \alpha_{10}, \alpha_8, \alpha_7\}$. Moreover, we put $\mathcal{K}' = \mathcal{K}_{\Sigma} \cup \mathcal{L}'$.

We note that $X_{\mathcal{S}^4} = X_{\alpha_6} \times X_{\alpha_{12}}$, so we can parameterize $\operatorname{Irr}(X_{\mathcal{S}^4})_{\mathcal{Z}^3}$ as $\{\lambda^{a_6,a_{12}} \mid a_6, a_{12} \in \mathbb{F}_q^{\times}\}$, where $\lambda^{a_6,a_{12}}(x_6(t)) = \phi(a_6t)$ and $\lambda^{a_6,a_{12}}(x_{12}(t)) = \phi(a_{12}t)$. Through the bijections given

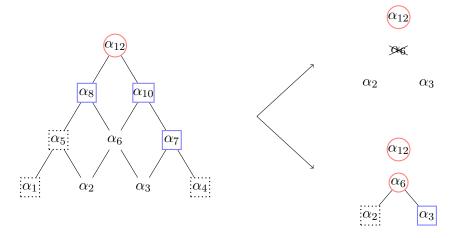


FIGURE 2. A pictorial representation of the calculation of the characters in $Irr(U)_{\{\alpha_{12}\}}$ for G of type F₄.

by Lemma 3.1, we obtain characters of U forming part of $Irr(U)_{\Sigma}$ by a process of successive inflation and induction to the characters $\lambda^{a_6,a_{12}}$. These characters are

$$\chi^{a_6,a_{12}} = \operatorname{Inf}_{\mathcal{K}_{\Sigma}} \operatorname{Ind}^{\alpha_1} \operatorname{Inf}_{\alpha_{10}} \operatorname{Ind}^{\alpha_4} \operatorname{Inf}_{\alpha_8} \operatorname{Ind}^{\alpha_5} \operatorname{Inf}_{\alpha_7} \operatorname{Ind}^{\alpha_2} \operatorname{Inf}_{\alpha_3} \lambda^{a_6,a_{12}}.$$

However, it turns out these characters can be obtained by a single inflation and then induction, thanks to Theorem 3.8, and we have

$$\chi^{a_6,a_{12}} = \operatorname{Ind}^{\mathcal{A}'} \operatorname{Inf}_{\mathcal{K}'} \lambda^{a_6,a_{12}}$$

The characters $\chi^{a_6,a_{12}}$ have degree q^4 .

Next we move on to consider the characters in $\operatorname{Irr}(X_{\mathcal{S}^4})_{\mathcal{Z}}$ where $\mathcal{S}^4 = \mathcal{S}^3 \setminus \{\alpha_6\} = \{\alpha_{22}, \alpha_3, \alpha_{12}\}$, and $\mathcal{Z} = \{\alpha_{12}\}$. We record that we have put α_6 in the kernel by adjoining it to \mathcal{K} to obtain $\mathcal{K}'' = \mathcal{K} \cup \{\alpha_6\}$. We see that $X_{\mathcal{S}^4}$ is abelian, so that $\operatorname{Irr}(X_{\mathcal{S}^4}) = \{\lambda_{b_2,b_3}^{a_{12}} \mid a_{12} \in \mathbb{F}_q^{\times}, b_2, b_3 \in \mathbb{F}_q\}$, where $\lambda_{b_2,b_3}^{a_{12}}(x_2(t)) = \phi(b_2t)$ and $\lambda_{b_2,b_3}^{a_{12}}(x_3(t)) = \phi(b_3t)$ and $\lambda_{b_2,b_3}^{a_{12}}(x_{12}(t)) = \phi(a_{12}t)$.

Now through the bijections from Lemma 3.1, we obtain characters $\chi_{b_2,b_3}^{a_{12}}$ of U forming part of $Irr(U)_{\Sigma}$ from the characters $\lambda_{b_2,b_3}^{a_{12}}$ by a process of successive inflation and induction. We have

 $\chi_{b_2,b_3}^{a_{12}} = \operatorname{Inf}_{\mathcal{K}_{\Sigma}} \operatorname{Ind}^{\alpha_1} \operatorname{Inf}_{\alpha_{10}} \operatorname{Ind}^{\alpha_4} \operatorname{Inf}_{\alpha_8} \operatorname{Ind}^{\alpha_5} \operatorname{Inf}_{\alpha_7} \operatorname{Inf}_{\alpha_6} \lambda_{b_2,b_3}^{a_{12}}.$

and note that by using Theorem 3.8, we can write these characters as

$$\chi^{a_{12}}_{b_2,b_3} = \operatorname{Ind}^{\mathcal{A}} \operatorname{Inf}_{\mathcal{K}''} \lambda^{a_6,a_{12}}.$$

These characters have degree q^3 .

Putting this altogether, we have that

$$\operatorname{Irr}(U)_{\{\alpha_{12}\}} = \{\chi^{a_{12},a_6} \mid a_6, a_{12} \in \mathbb{F}_q^{\times}\} \sqcup \{\chi^{a_{12}}_{b_2,b_3} \mid b_2, b_3 \in \mathbb{F}_q, a_{12} \in \mathbb{F}_q^{\times}, \}.$$

Therefore, $Irr(U)_{\{\alpha_{12}\}}$ consists of:

- $(q-1)^2$ characters of degree q^4 ;
- $q^2(q-1)$ characters of degree q^3 .

In Figure 2, we illustrate how we have calculated these characters. The roots in a circle are in \mathcal{Z} ; the roots in a straight box are in \mathcal{L} and the roots in a dotted box are in \mathcal{A} .

3.3. The algorithm. Our algorithm is used to calculate $Irr(U)_{\Sigma}$ for each antichain Σ in Φ^+ . We explain the algorithm below, which is written in a sort of pseudocode; the comments in *italics* aim to make it easier to understand.

Algorithm 3.3.

INPUT:

- $\Phi^+ = \{\alpha_1, \ldots, \alpha_N\}$, the set of positive roots of a root system with a fixed enumeration such that $i \leq j$ whenever $\alpha_i \leq \alpha_j$.
- Σ , an antichain in Φ^+ .

VARIABLES:

- $\mathcal{S} \subseteq \Phi^+$ is a quattern.
- $\mathcal{Z} \subseteq \mathcal{Z}(\mathcal{S}).$
- $\mathcal{A} \subseteq \Phi^+$ keeps a record of the roots β used in a TYPE R reduction.
- $\mathcal{L} \subseteq \Phi^+$ keeps a record of the roots δ used in a TYPE R reduction.
- $\mathcal{K} \subseteq \Phi^+$ keeps a record of the roots indexing root subgroups in the quotient of the associated quattern subgroup.
- \mathfrak{S} is a stack of tuples of the form $(\mathcal{S}, \mathcal{Z}, \mathcal{A}, \mathcal{L}, \mathcal{K})$ as above to be considered later in the algorithm.
- $\mathfrak{O} = (\mathfrak{O}_1, \mathfrak{O}_2)$ is the output.

INITIALIZATION:

- $\mathcal{K} := \mathcal{K}_{\Sigma}$.
- $\mathcal{S} := \Phi^+ \setminus \mathcal{K}_{\Sigma}.$
- $\mathcal{Z} := \Sigma$.
- $\mathcal{A} := \varnothing$.
- $\mathcal{L} := \emptyset$.
- $\mathfrak{S} := \emptyset$.
- $\mathfrak{O} := (\emptyset, \emptyset).$

During the algorithm we consider $Irr(X_S)_{\mathcal{Z}}$, we go into four subroutines called "ABELIAN CORE", "TYPE R", "TYPE S" and "NONABELIAN CORE".

ABELIAN CORE.

if S = Z(S) then

Adjoin $(\mathcal{S}, \mathcal{Z}, \mathcal{A}, \mathcal{L}, \mathcal{K})$ to \mathfrak{O}_1 .

In this case $X_{\mathcal{S}}$ is abelian and we can parameterize the characters in $\operatorname{Irr}(X_{\mathcal{S}})_{\mathcal{Z}}$.

if $\mathfrak{S} = \emptyset$ then

Finish and output \mathfrak{O} .

In this case we have no more characters to consider, so we are done.

else

Remove the tuple at the top of the stack \mathfrak{S} and replace $(\mathcal{S}, \mathcal{Z}, \mathcal{A}, \mathcal{L}, \mathcal{K})$ with it, and go to ABELIAN CORE.

end if

else Go to TYPE R. end if

TYPE R.

Look for pairs $(\beta, \delta) = (\alpha_i, \alpha_j)$, which satisfy the condition of Lemma 3.1 for some $\gamma \in \mathbb{Z}$.

if such a pair (α_i, α_j) exists then

Choose the pair with j maximal, and update the variables as follows.

- $\mathcal{S} := \mathcal{S} \setminus \{\alpha_i, \alpha_j\}.$
- $\mathcal{A} := \mathcal{A} \cup \{\alpha_i\}.$
- $\mathcal{L} := \mathcal{L} \cup \{\alpha_j\}.$
- $\mathcal{K} := \mathcal{K} \cup \{\alpha_j\}.$

We are replacing S with S' as in Lemma 3.1, and recording this in A and \mathcal{L} . Go to ABELIAN CORE.

else

Go to TYPE S. end if

TYPE S.

if $\mathcal{Z}(\mathcal{S}) \setminus (\mathcal{Z} \cup \mathcal{D}(\mathcal{Z})) \neq \emptyset$ then

Let *i* be maximal such that $\alpha_i \in \mathcal{Z}(\mathcal{S}) \setminus (\mathcal{Z} \cup \mathcal{D}(\mathcal{Z}))$, and update as follows.

- $\mathfrak{S} := \mathfrak{S} \cup \{ (\mathcal{S} \setminus \{\alpha_i\}, \mathcal{Z}, \mathcal{A}, \mathcal{L}, \mathcal{K} \cup \{\alpha_i\}) \}.$
- $\mathcal{Z} := \mathcal{Z} \cup \{\alpha_i\}.$

Here we are using Lemma 3.2. We first add $(S \setminus \{\alpha_i\}, Z)$ to the stack to be considered later, recording that X_{α_i} is in the kernel of these characters by adding α_i to \mathcal{K} . Then we replace (S, Z) with $(S, Z \cup \{\alpha_i\})$ for the current run. Go to ABELIAN CORE.

else

Go to NONABELIAN CORE end if

NONABELIAN CORE.

Adjoin $(\mathcal{S}, \mathcal{Z}, \mathcal{A}, \mathcal{L}, \mathcal{K})$ to \mathfrak{O}_2 .

We are no longer able to apply reductions of TYPE R or of TYPE S, and X_S is not abelian, so the algorithm gives up, and this case is output as a nonabelian core as discussed further later.

if $\mathfrak{S} = \varnothing$ then

Finish and output \mathfrak{O} .

In this case we have no more characters to consider, so we are done.

else

Remove the tuple at the top of the stack \mathfrak{S} and replace $(\mathcal{S}, \mathcal{Z}, \mathcal{A}, \mathcal{L}, \mathcal{K})$ with it, and go to ABELIAN CORE.

end if

The letter R in the TYPE R reduction means "reduction lemma", while the letter S in TYPE S means "split". The letters \mathcal{A} and \mathcal{L} mean "arm" and "leg" respectively; this terminology used in [HLM2], and it is motivated by the fact that each pair (β, δ) gives rise to a so-called "hook" subgroup. We move on to discuss how we interpret the output. We begin by defining what we mean by a core, which are the elements of the output of our algorithm.

Definition 3.4. Suppose that Algorithm 3.3 has run with input (Φ^+, Σ) and given output \mathfrak{O} .

- An element $(\mathcal{S}, \mathcal{Z}, \mathcal{A}, \mathcal{L}, \mathcal{K})$ of \mathfrak{O}_1 is called an *abelian core* for $\operatorname{Irr}(U)_{\Sigma}$.
- An element $(\mathcal{S}, \mathcal{Z}, \mathcal{A}, \mathcal{L}, \mathcal{K})$ of \mathfrak{O}_2 is called an *nonabelian core* for $\operatorname{Irr}(U)_{\Sigma}$.

We discuss how we can determine the characters in $\operatorname{Irr}(U)_{\Sigma}$ corresponding to a core $\mathfrak{C} = (\mathcal{S}, \mathcal{Z}, \mathcal{A}, \mathcal{L}, \mathcal{K})$ in $\mathfrak{O}_1 \cup \mathfrak{O}_2$. When $\mathfrak{C} \in \mathfrak{O}_1$ is an abelian core, we can give a complete description of the irreducible characters, however for nonabelian cores there is more work required. We require some notation for what occurs in the algorithm.

We obtain \mathfrak{C} through a sequence of reductions of TYPE R and of TYPE S applied in Algorithm 3.3; though here we only need to consider the TYPE S reduction in this sequence if a root γ is added to \mathcal{K} (rather than to \mathcal{Z}). So we consider the sequence of reductions where in each one either:

- a pair of roots β and δ is taken from S in a TYPE R reduction, and β is added to A and δ is added to \mathcal{L} and \mathcal{K} ; or
- a root γ is taken from \mathcal{S} and added to \mathcal{K} .

We let $l = l_{\mathfrak{C}}$ be the number of these reductions, and define the sequence $T(\mathfrak{C}) = (t_1, \ldots, t_l)$, where $t_i = \mathbb{R}$ if the *i*th reduction is a TYPE R reduction and $t_i = \mathbb{S}$ if the *i*th reduction is a TYPE S reduction. We let $I(\mathbb{R}, \mathfrak{C})$ be the set of *i* such that $t_i = \mathbb{R}$ and $I(\mathbb{S}, \mathfrak{C})$ be the set of *i* such that $t_i = \mathbb{S}$. For $i \in I(\mathbb{R}, \mathfrak{C})$ we write (β_i, δ_i) for the pair of roots used in the TYPE R reduction, and for $i \in I(\mathbb{S}, \mathfrak{C})$, we write γ_i the root added to \mathcal{K} in the TYPE S reduction. Thus we have $\mathcal{A} = \{\beta_i \mid i \in I(\mathbb{R}, \mathfrak{C})\}, \mathcal{L} = \{\delta_i \mid i \in I(\mathbb{R}, \mathfrak{C})\}$ and $\mathcal{K} \setminus \mathcal{K}_{\Sigma} = \mathcal{L} \cup \{\gamma_i \mid i \in I(\mathbb{S}, \mathfrak{C})\}.$

We also define the subsets $\mathcal{P}^0, \mathcal{P}^1, \ldots, \mathcal{P}^l$ and $\mathcal{K}^0, \mathcal{K}^1, \ldots, \mathcal{K}^l$ of Φ^+ recursively by

$$\mathcal{P}^{0} = \Phi^{+} \text{ and } \mathcal{K}^{0} = \mathcal{K}_{\Sigma}.$$
$$\mathcal{P}^{i} = \begin{cases} \mathcal{P}^{i-1} \setminus \{\beta_{i}\} & \text{if } t_{i} = \mathbb{R} \\ \mathcal{P}^{i-1} & \text{if } t_{i} = \mathbb{S} \end{cases}$$
$$\mathcal{K}^{i} = \begin{cases} \mathcal{K}^{i-1} \cup \{\delta_{i}\} & \text{if } t_{i} = \mathbb{R} \\ \mathcal{K}^{i-1} \cup \{\gamma_{i}\} & \text{if } t_{i} = \mathbb{S} \end{cases}$$

We have the following lemma about these sets.

Lemma 3.5. For each i, j = 1, ..., l with $i \leq j$, we have that \mathcal{P}^j is a closed set, and \mathcal{K}^i is normal in \mathcal{P}^j . In particular, $\mathcal{S}^{i,j} = \mathcal{P}^j \setminus \mathcal{K}^i$ are quatterns.

Proof. Of course, $\mathcal{P}^0 = \Phi^+$ is closed. Let us assume that \mathcal{P}^{i-1} is closed. Without loss of generality, let $\mathcal{P}^i = \mathcal{P}^{i-1} \setminus \{\beta_i\}$. For $\alpha, \alpha' \in \mathcal{P}^i$, it cannot be $\alpha + \alpha' = \beta_i$ by construction of \mathcal{P}^i . Also, by inductive assumption, we have that $\alpha + \alpha' \in \mathcal{P}^{i-1}$ if $\alpha + \alpha'$ is a positive root. This implies $\alpha + \alpha' \in \mathcal{P}^i$ or $\alpha + \alpha' \notin \Phi^+$, that is, \mathcal{P}^i is closed.

To prove that \mathcal{K}^i is normal in \mathcal{P}^j for $i \leq j$, it is enough to prove that \mathcal{K}^i is normal in \mathcal{P}^i , since $\mathcal{K}^i \subseteq \mathcal{P}^j \subseteq \mathcal{P}^i$. Let $\alpha \in \mathcal{P}^i$ and $\eta \in \mathcal{K}^i$. Recall that $\eta \in \mathcal{K}_{\Sigma}$ or η is of the form γ_k or δ_k as above for some $k \leq i$. If $\eta \in \mathcal{K}_{\Sigma}$, then since $\mathcal{K}_{\Sigma} \leq \Phi^+$ we have that $\alpha + \eta \in \mathcal{K}_{\Sigma}$ whenever $\alpha + \eta \in \Phi^+$. If $\eta = \gamma_k$ for some $k \leq i$, then η is a central root in $\mathcal{P}^{k-1} \supseteq \mathcal{P}^i$, therefore since $\alpha \in \mathcal{P}^i$ we have that $\alpha + \eta \in \mathcal{K}^{k-1}$ or $\alpha + \eta \notin \Phi^+$. If $\eta = \delta_k$, then a similar argument applies, observing that we have $\beta_k \notin \mathcal{P}^k$, thus $\beta_k \notin \mathcal{P}^i$. This implies that \mathcal{K}^i is normal in \mathcal{P}^i .

Let $\psi \in \operatorname{Irr}(X_{\mathcal{S}})$. We define characters $\overline{\psi}_i \in \operatorname{Irr}(X_{\mathcal{P}^i \setminus \mathcal{K}^i})$ for $i = 0, 1, \ldots, l$ recursively by the following sequence of inflations and inductions.

$$\overline{\psi}_{l} = \psi \\ \overline{\psi}_{i-1} = \begin{cases} \operatorname{Ind}^{\beta_{i}} \operatorname{Inf}_{\delta_{i}} \overline{\psi}_{i} & \text{if } t_{i} = \mathbf{R} \\ \operatorname{Inf}_{\gamma_{i}} \overline{\psi}_{i} & \text{if } t_{i} = \mathbf{S} \end{cases}$$

Let $\overline{\psi} = \operatorname{Inf}_{\mathcal{K}_{\Sigma}} \overline{\psi}_0 \in \operatorname{Irr}(U).$

Suppose that $\mathfrak{C} = (\mathfrak{S}, \mathfrak{Z}, \mathcal{A}, \mathcal{L}, \mathcal{K}) \in \mathfrak{O}_1$ is an abelian core. We let $\mathcal{Z} = \{\alpha_{i_1}, \ldots, \alpha_{i_m}\}$ and $\mathcal{S} \setminus \mathcal{Z} = \{\alpha_{i_1}, \ldots, \alpha_{i_n}\}$. Then we have

$$\operatorname{Irr}(X_{\mathcal{S}})_{\mathcal{Z}} = \{\lambda_{\underline{b}}^{\underline{a}} \mid \underline{a} = (a_{i_1}, \dots, a_{i_m}) \in (\mathbb{F}_q^{\times})^m, \underline{b} = (b_{j_1}, \dots, b_{j_n}) \in \mathbb{F}_q^m\},\$$

where $\lambda_b^{\underline{a}}$ is defined by

$$\lambda_{\underline{b}}^{\underline{a}}(x_{\alpha_{i_k}}(t)) = \phi(a_{i_k}t) \text{ and } \lambda_{\underline{b}}^{\underline{a}}(x_{\alpha_{j_k}}(t)) = \phi(b_{j_k}t)$$

We define $\chi_{\underline{b}}^{\underline{a}} = \overline{\lambda}_{\underline{b}}^{\underline{a}}$ and

$$\operatorname{Irr}(U)_{\mathfrak{C}} = \{ \chi_{\underline{b}}^{\underline{a}} \mid \underline{a} = (a_{i_1}, \dots, a_{i_m}) \in (\mathbb{F}_q^{\times})^d, \underline{b} = (b_{j_1}, \dots, b_{j_n}) \in \mathbb{F}_q^d \}.$$

Through the bijections given by Lemmas 3.1 and 3.2, this is precisely the set of characters in $\operatorname{Irr}(U)_{\Sigma}$ corresponding to \mathfrak{C} .

We move on to consider a nonabelian core $\mathfrak{C} = (\mathcal{S}, \mathcal{Z}, \mathcal{A}, \mathcal{L}, \mathcal{K}) \in \mathfrak{O}_2$. In this case $X_{\mathcal{S}}$ is not abelian, so we do not immediately have a parametrization of $Irr(X_{\mathcal{S}})_{\mathcal{Z}}$, and it is necessary for us to determine a parametrization by hand. We suppose this has been done and we have

$$\operatorname{Irr}(X_{\mathcal{S}})_{\mathcal{Z}} = \{ \psi_{\underline{c}} \mid \underline{c} \in J_{\mathfrak{C}} \},\$$

where $J_{\mathfrak{C}}$ is some indexing set. We define $\chi_{\underline{c}} = \overline{\psi}_{\underline{c}}$ and define

$$\operatorname{Irr}(U)_{\mathfrak{C}} = \{ \chi_{\underline{c}} \mid \underline{c} \in I_{\mathfrak{C}} \}.$$

Through the bijections given by Lemmas 3.1 and 3.2, this is precisely the set of characters in $\operatorname{Irr}(U)_{\Sigma}$ corresponding to \mathfrak{C} .

From the comments given within Algorithm 3.3 and the discussion above, we deduce the following theorem regarding the validity of our algorithm.

Theorem 3.6. Suppose that Algorithm 3.3 has run with input (Φ^+, Σ) and given output $\mathfrak{O} = (\mathfrak{O}_1, \mathfrak{O}_2)$. Then we have

$$\operatorname{Irr}(U)_{\Sigma} = \bigsqcup_{\mathfrak{C} \in \mathfrak{O}_1} \operatorname{Irr}(U)_{\mathfrak{C}} \sqcup \bigsqcup_{\mathfrak{C} \in \mathfrak{O}_2} \operatorname{Irr}(U)_{\mathfrak{C}}.$$

We note that the definitions of $\chi^{\underline{a}}_{\underline{b}}$ and $\chi_{\underline{c}}$ given above involve a potentially very long sequence of inflations and inductions. In fact it turns out that we can obtain them by a single inflation followed by a single induction, which is stated in Theorem 3.8 below.

To prove this theorem, we require the following lemma. In the statement of the lemma, we use the notation $\mathcal{A}_i = \{\beta_j \mid j \ge i\}, \ \mathcal{L}_i = \{\delta_j \mid j \ge i\} \text{ and } \mathcal{K}_i = \{\gamma_j \mid j \ge i\}.$

Lemma 3.7. Let $\psi \in \operatorname{Irr}(X_{\mathcal{S}})$, and for i = 0, 1, ..., l define ψ_i as above. Then we have $\psi_i = \operatorname{Ind}^{\mathcal{A}_i} \operatorname{Inf}_{\mathcal{L}_i \cup \mathcal{K}_i} \psi.$

Proof. We prove this by reverse induction on i, the case i = l being trivial.

The inductive step boils down to showing that

$$\operatorname{Inf}_{\delta_i} \operatorname{Ind}^{\mathcal{A}_{i+1}} = \operatorname{Ind}^{\mathcal{A}_{i+1}} \operatorname{Inf}_{\delta_i}$$

if $t_i = \mathbf{R}$ and showing that

$$\operatorname{Inf}_{\gamma_i} \operatorname{Ind}^{\mathcal{A}_{i+1}} = \operatorname{Ind}^{\mathcal{A}_{i+1}} \operatorname{Inf}_{\gamma_i}$$

if $t_i = S$. Thanks to Lemma 3.5, we are able to apply (2.1) to deduce both of these equalities.

Theorem 3.8.

(a) Let $\mathfrak{C} \in (\mathcal{S}, \mathcal{Z}, \mathcal{A}, \mathcal{L}, \mathcal{K}) \in \mathfrak{O}_1$ be an abelian core, and let $\chi^{\underline{a}}_{\underline{b}} \in \operatorname{Irr}(U)_{\mathfrak{C}}$ be defined as above. Then

$$\chi^{\underline{a}}_{\underline{b}} = \operatorname{Ind}^{\mathcal{A}} \operatorname{Inf}_{\mathcal{K}} \lambda^{\underline{a}}_{\underline{b}}$$

In particular, $\chi_b^{\underline{a}}$ is induced from linear character of $X_{\mathcal{S}\cup\mathcal{K}}$.

(b) Let $\mathfrak{C} \in (\mathcal{S}, \mathcal{Z}, \overline{\mathcal{A}}, \mathcal{L}, \mathcal{K}) \in \mathfrak{O}_2$ be an nonabelian core, and let $\chi_{\underline{c}} \in \operatorname{Irr}(U)_{\mathfrak{C}}$ be defined as above. Then

$$\chi_{\underline{c}} = \operatorname{Ind}^{\mathcal{A}} \operatorname{Inf}_{\mathcal{K}} \psi_{\underline{c}}$$

Proof. We only prove (a) as the proof of (b) is entirely similar.

By Lemma 3.7, we have that $(\chi_b^a)_0 = \operatorname{Ind}^{\mathcal{A}} \operatorname{Inf}_{(\mathcal{K} \setminus \mathcal{K}_{\Sigma})} \lambda_b^{\underline{a}}$. Thus

$$\chi_{\underline{b}}^{\underline{a}} = \operatorname{Inf}_{\mathcal{K}_{\Sigma}} \operatorname{Ind}^{\mathcal{A}} \operatorname{Inf}_{(\mathcal{K} \setminus \mathcal{K}_{\Sigma})} \lambda_{\underline{b}}^{\underline{a}}$$

Now we can apply (2.1) to see that $\operatorname{Inf}_{\mathcal{K}_{\Sigma}} \operatorname{Ind}^{\mathcal{A}} = \operatorname{Ind}^{\mathcal{A}} \operatorname{Inf}_{\mathcal{K}_{\Sigma}}$ from which we can deduce the theorem.

Remark 3.9. The enumeration of Φ^+ has a significant effect on how the algorithm runs, as this is used to determine which reductions to make when there may be a choice. The resulting parametrization of $Irr(U)_{\Sigma}$ consequently depends on this choice of enumeration.

Remark 3.10. We make a slight abuse in the notation $\chi_{\underline{b}}^{\underline{a}}$. In fact, each b_i and a_j is supposed to record not just a value in \mathbb{F}_q and \mathbb{F}_q^{\times} respectively, but also root indices i and j, so that $\chi_{\underline{b}}^{\underline{a}}$ should read $\chi_{((i_1,b_{i_1}),\ldots,(i_r,b_{i_r}))}^{((j_1,a_{j_1}),\ldots,(j_s,a_{j_s}))}$, for corresponding choices of i_1,\ldots,i_r and j_1,\ldots,j_s indexing positive roots.

3.4. **Results of algorithm.** We have implemented Algorithm 3.3 in the algebra system GAP, [GAP], using the CHEVIE package [CHEVIE]. The algorithm requires us to just work with Φ^+ and the GAP commands for root systems allow us to do this. We use the enumeration of Φ^+ as given in GAP.

We have run the GAP program for G of rank less than or equal to 7. For ranks less than or equal to 4 we are able to deduce a complete parametrization, as the number of nonabelian cores is low. More specifically, for G of rank 3 or less, or G of type C_4 , there are no nonabelian cores, whilst for the types B_4 and D_4 there is one nonabelian core, and in type F_4 we find six nonabelian cores. The nonabelian core for type D_4 has already been encountered in [HLM1], and the core for type B_4 has the same representation theory for $p \neq 2$ as the one in type D_4 , so these cores have been analysed. The nonabelian cores for type F₄ are analysed in §4.3, and the corresponding irreducible characters are determined. The resulting parametrization of irreducible characters of U_{B_4} , U_{C_4} and U_{F_4} are tabulated in the appendix. The parametrization for U_{D_4} is contained in [HLM1]. Also we note that the parametrization of irreducible characters for U_{B_3} can be read off from that for U_{B_4} , as U_{B_3} is a quotient of U_{B_4} . Similarly, the parametrization of irreducible characters of U_{C_3} can be read off from that for U_{C_4} .

From the parameterizations we can determine the number of irreducible characters of U of a given fixed degree. In particular, we observe that if G is of rank at most 4 and p is good, the numbers of irreducible characters of U of degree q^d , is given by a polynomial in q; moreover, these polynomials are the same as the ones given in [GMR2, Table 3], where they are only known to be valid for $p \ge h$ (the Coxeter number of G). Further we also obtain expressions as polynomials in q for the number of characters of a given degree for type F_4 , and p = 3; these are given in Table 3. The case of type D_4 and p = 2 is covered in [HLM1].

For G or rank greater than 4, the number of nonabelian cores grows, so it is necessary to develop an approach to deal with these in a systematic way. This should be based on our analysis of nonabelian cores in the next section and is a topic for future research. In Table 4, we present the output from the algorithm including the number of nonabelian cores.

4. Nonabelian cores

In this section we explain the methods we employ to analyse nonabelian cores. It is helpful for us first to deal with certain 3-dimensional groups that arise in our analysis. Then we outline our general method to deal with nonabelian cores, before explaining how this is applied to the nonabelian cores in types B_4 and F_4 .

4.1. Some 3-dimensional groups. Let $f : \mathbb{F}_q \times \mathbb{F}_q \to \mathbb{F}_q$ be an \mathbb{F}_p -bilinear map, which we assume to be surjective. We define the group $V = V_f$ to be generated by subgroups $X_1 = \{x_1(t) \mid t \in \mathbb{F}_q\} \cong \mathbb{F}_q, X_2 = \{x_2(t) \mid t \in \mathbb{F}_q\} \cong \mathbb{F}_q \text{ and } Z = \{z(t) \mid t \in \mathbb{F}_q\} \cong \mathbb{F}_q,$ subject to $Z \subseteq Z(V)$ and $[x_1(s), x_2(t)] = z(f(s, t))$. Then it is straightforward to see that Vis a nilpotent group and that $V = X_1 X_2 Z$. Moreover, our assumption that f is surjective implies that the derived subgroup of V is Z.

We quickly explain how to construct the irreducible characters of V.

First we note that the linear characters are given by the characters of $V/Z \cong X_1 \times X_2$. For $b_1, b_2 \in \mathbb{F}_q$, we define $\chi_{b_1, b_2} \in \operatorname{Irr}(V)$ by $\chi_{b_1, b_2}(x_1(s_1)x_2(s_2)z(t)) = \phi(b_1s_1 + b_2s_2)$, so that the linear characters of V are $\{\chi_{b_1, b_2} \mid b_1, b_2 \in \mathbb{F}_q\}$.

For each $a \in \mathbb{F}_q^{\times}$, we define the linear character $\lambda^a \in \operatorname{Irr}(Z)$ by $\lambda^a(z(t)) = \phi(at)$. We analyse the characters in $\operatorname{Irr}(V, \lambda^a)$ using Lemma 2.1. We define $X'_1 = \{x_1(s) \in X_1 \mid \operatorname{Tr}(af(s,t)) = 0 \text{ for all } t \in \mathbb{F}_q\}$ and define X'_2 similarly. Note that X'_1 and X'_2 may depend on a. Since the map $\mathbb{F}_q \times \mathbb{F}_q \to \mathbb{F}_p$ given by $(s,t) \mapsto \operatorname{Tr}(f(s,t))$ is \mathbb{F}_p -bilinear, we deduce that X'_1 and X'_2 are \mathbb{F}_p -subspaces of $X_1 \cong \mathbb{F}_q$ and $X_2 \cong \mathbb{F}_q$ respectively, and we have $|X'_1| = |X'_2|$. Thus we can choose complements \tilde{X}_1 and \tilde{X}_2 of X'_1 and X'_2 in X_1 and X_2 respectively. Now by Lemma 2.1 (with $X = \tilde{X}_1$ and $Y = \tilde{Y}_1$), we see that $\psi \mapsto \operatorname{Ind}_{X'_1X_2Z} \operatorname{Inf}_{X'_1X_2Z/\tilde{X}_2} \psi$ gives a bijection from $\operatorname{Irr}(X'_1X_2Z/\tilde{X}_2, \lambda^a)$ to $\operatorname{Irr}(V, \lambda^a)$. Moreover, we note that $X'_1X'_2Z \leq V$ and $X'_1X'_2Z \cong X'_1X_2Z/\tilde{X}_2$. Finally, we observe that $X'_1X'_2Z/\operatorname{ker} \lambda^a$ is abelian, so $\operatorname{Irr}(X'_1X'_2Z, \lambda^a)$ is in bijection with $\operatorname{Irr}(X'_1 \times X'_2)$, which is easily described.

d	$k(\mathrm{UF}_4(q),d)$
u	
1	$v^4 + 4v^3 + 6v^2 + 4v + 1$
q	$v^5 + 6v^4 + 13v^3 + 12v^2 + 4v$
q^2	$v^6 + 7v^5 + 20v^4 + 28v^3 + 18v^2 + 4v$
q^3	$4v^5 + 20v^4 + 33v^3 + 21v^2 + 4v$
$q^{4}/3$	$0, \text{ if } p \ge 5$
	$9v^4/2$, if $p = 3$
q^4	$v^8 + 8v^7 + 28v^6 + 58v^5 + 79v^4 + 66v^3 + 24v^2 + 2v, \text{ if } p \ge 5$
	$v^8 + 8v^7 + 28v^6 + 59v^5 + 161v^4/2 + 67v^3 + 24v^2 + 2v, \text{ if } p = 3$
q^5	$v^7 + 7v^6 + 22v^5 + 39v^4 + 37v^3 + 15v^2 + 2v$, if $p \ge 5$
	$v^7 + 7v^6 + 23v^5 + 41v^4 + 37v^3 + 15v^2 + 2v$, if $p = 3$
q^6	$2v^6 + 14v^5 + 36v^4 + 40v^3 + 17v^2 + 2v, \text{ if } p \ge 5$
	$2v^6 + 14v^5 + 36v^4 + 39v^3 + 17v^2 + 2v, \text{ if } p = 3$
q^7	$2v^6 + 13v^5 + 32v^4 + 34v^3 + 13v^2 + 2v$
q^8	$4v^5 + 15v^4 + 19v^3 + 8v^2$
q^9	$v^5 + 7v^4 + 11v^3 + 5v^2$
q^{10}	$v^4 + 3v^3 + v^2$

TABLE 3. Irreducible characters of U of fixed degree, v = q - 1.

Before considering some particular choices of f, we note that it is straightforward to show that $V_f \cong V_{af}$ for $a \in \mathbb{F}_q^{\times}$ by reparamaterizing Z appropriately.

For f(s,t) = st, we see that V_f is isomorphic to U_{A_2} . Clearly we get X' = Y' = 1 and then

$$\operatorname{Irr}(V) = \{\chi_{b_1, b_2} \mid b_1, b_2 \in \mathbb{F}_q\} \cup \{\chi^a \mid a \in \mathbb{F}_q^{\times}\},\$$

where $\chi^a = \operatorname{Ind}_{X_2Z}^V \operatorname{Inf}_Z^{X_2Z} \lambda^a$. Similarly for $f(s,t) = s^p t$ or $f(s,t) = (s^p - ds)t$ where $d \in \mathbb{F}_q^{\times}$ is not a (p-1)th power, we see that X' = Y' = 1, and $\operatorname{Irr}(V)$ is given as above.

The case of major interest to us here is $f(s,t) = (s^p - ds)t$ where $d \in \mathbb{F}_q^{\times}$ is a (p-1)th power, say $d = e^{p-1}$. Then we find that $X'_1 = \{x_1(s) \mid s^p - ds = 0\} = \{x_1(s) \mid s \in e\mathbb{F}_p\}$ and $X'_2 = \{x_2(t) \mid \operatorname{Tr}(at\mathbb{T}_d) = 0\} = \{x_2(t) \mid t \in (d^{-p}/a)\mathbb{F}_p\}$ using Lemma 2.2. Now for $c_1, c_2 \in \mathbb{F}_p$ we define the characters $\lambda^a_{c_1,c_2} \in \operatorname{Irr}(X'_1X'_2Z)$ by $\lambda^a_{c_1,c_2}(x_1(es_1)x_2((d^{-p}/a)s_2)z(t)) = \phi(c_1s_1 + c_2s_2 + at)$. Then we have

$$\operatorname{Irr}(V) = \{ \chi_{b_1, b_2} \mid b_1, b_2 \in \mathbb{F}_q \} \cup \{ \chi_{c_1, c_2}^a \mid a \in \mathbb{F}_q^{\times}, c_1, c_2 \in \mathbb{F}_p \},\$$

where $\chi^a_{c_1,c_2} = \operatorname{Ind}^V_{X_1'X_2Z} \operatorname{Inf}^{X_1'X_2Z}_{X_1'X_2Z/\tilde{X}_2} \lambda^a_{c_1,c_2}.$

Type	Antichains	Abelian cores	Nonabelian cores	Running time
B_4	70	80	1(1.23%)	$T \ll 1 \text{ sec}$
C_4	70	90	0 (0%)	$T \ll 1 \text{ sec}$
D_4	50	52	1(1.88%)	$T \ll 1 \sec$
F_4	105	177	6(3.28%)	$T \sim 1 \mathrm{sec}$
B_5	252	358	10 (2.72%)	$T \sim 3 \mathrm{sec}$
C_5	252	417	1 (0.24%)	$T \sim 3 \mathrm{sec}$
D_5	182	214	7(3.17%)	$T \sim 1 \mathrm{sec}$
B_6	924	1842	95~(4.90%)	$T \sim 30 \sec$
C_6	924	2254	22 (0.97%)	$T \sim 30 \sec$
D_6	672	991	55~(5.26%)	$T \sim 10 \text{ sec}$
E_6	833	1656	$156 \ (8.61\%)$	$T \sim 30 \sec$
B ₇	3432	11240	969~(7.94%)	$T \sim 7 \min$
C_7	3432	14216	294 (2.03%)	$T \sim 7 \min$
D_7	2508	5479	$531 \ (8.84\%)$	$T \sim 2.5 \min$
E_7	4160	33594	7798 (18.84%)	$T \sim 45 \min$

TABLE 4. Results of the algorithm applied in types B_i , C_i and D_i , i = 4, 5, 6, 7and F_4 , E_k , k = 6, 7.

4.2. A method for analysing nonabelian cores. Let $\mathfrak{C} = (\mathcal{S}, \mathcal{Z}, \mathcal{A}, \mathcal{L}, \mathcal{K})$ be a nonabelian core. The set \mathcal{S} is a quattern corresponding to the pattern $\Phi^+ \setminus \mathcal{A}$ and its normal subset \mathcal{K} . Further, we have $\mathcal{Z} = \mathcal{Z}(\mathcal{S})$ as \mathfrak{C} is a nonabelian core and we let $\mathcal{Z} = \{\alpha_{i_1}, \ldots, \alpha_{i_m}\}$. For each $\underline{a} = (a_{i_1}, \ldots, a_{i_m}) \in (\mathbb{F}_q^{\times})^m$, we define $\mu = \mu^{\underline{a}} : X_{\mathcal{Z}} \to \mathbb{F}_q$ by $\mu(x_{i_h}(t)) = a_{i_h} t$ for $h = 1, \ldots, m$. Then $\lambda = \lambda^{\underline{a}} = \phi \circ \mu^{\underline{a}}$ is a linear character of $X_{\mathcal{Z}}$.

We give a method to analyse the characters in $Irr(X_S, \lambda)$. We note that the nature of the resulting parametrization and construction of the characters may depend on the choice of \underline{a} , and we see instances of this dependence in §4.3. Further we remark that we do not assert that this method is guaranteed to work for any nonabelian core, though it does apply for all the cores that we consider in §4.3.

We set $V = X_{\mathcal{S}}/\ker \mu$ and $Z = X_{\mathcal{Z}}/\ker \mu$. Since, $\ker \mu \subseteq \ker \lambda$ we have that λ factors through Z and we also write λ for this character of Z. Then we have a bijection between $\operatorname{Irr}(V,\lambda)$ and $\operatorname{Irr}(X_{\mathcal{S}},\lambda)$ by inflating over $\ker \mu$, and we work with $\operatorname{Irr}(V,\lambda)$ rather than $\operatorname{Irr}(X_{\mathcal{S}},\lambda)$. Given $\alpha \in \mathcal{S} \setminus \mathcal{Z}$ we identify X_{α} with its image in V.

We aim to find subsets \mathcal{I} and \mathcal{J} of $\mathcal{S} \setminus \mathcal{Z}$ such that the following hold.

- $|\mathcal{I}| = |\mathcal{J}|;$
- $H = X_{S \setminus I} Z$ is a subgroup of V;
- $Y = X_{\mathcal{J}} \leq Z(H)$; and
- YZ is a normal subgroup of V.

We note that this implies that

• $X = X_{\mathcal{I}}$ is a transversal of H in V.

We would like to apply Lemma 2.1 (the reduction lemma), and conditions (i)–(iv) do hold, but condition (v) may not be satisfied, so we aim to adapt the situation slightly.

We consider the inflation $\hat{\mu}$ of λ to YZ and let $\hat{\lambda} = \phi \circ \hat{\mu}$ be the inflation of λ to YZ. For $v \in V$, we consider the map $\psi_v : Y \to \mathbb{F}_q$ given by $\psi_v(y) = \hat{\mu}([v, y])$. Since YZ is abelian and $YZ \leq V$, we deduce from the commutator relations that ψ_v is \mathbb{F}_q -linear. We let

$$Y' = \bigcap_{v \in V} \ker(\psi_v) = \{ y \in Y \mid {^v}\hat{\mu}(y) = \hat{\mu}(y) \text{ for all } v \in V \}$$

Then Y' is an \mathbb{F}_q -subspace of $Y \cong \mathbb{F}_q^{|\mathcal{J}|}$. Also, we define

$$\tilde{H} = \operatorname{Stab}_V(\hat{\mu}) = \{ v \in V \mid {}^v \hat{\mu} = \hat{\mu} \}$$

Then \tilde{H} is a subgroup of V and $\tilde{H} = X'H$ for $X' = \{x \in X \mid x\hat{\mu} = \hat{\mu}\}$. By considering the V-orbit of μ in the spaces of homomorphisms from YZ to \mathbb{F}_q and then applying the orbit-stabilizer theorem one can show that |X'| = |Y'|.

We write $\mathcal{I} = \{\alpha_{j_1}, \dots, \alpha_{j_r}\}$ and $\mathcal{J} = \{\alpha_{k_1}, \dots, \alpha_{k_r}\}$, where $j_1 \leq \dots \leq j_r$ and $k_1 \leq \dots \leq k_r$. In general, Y' and X' can be determined by the following equation,

(4.1)
$$\hat{\mu}([x_{\alpha_{k_1}}(s_{k_1})\cdots x_{\alpha_{k_r}}(s_{k_r}), x_{\alpha_{j_1}}(t_{j_1})\cdots x_{\alpha_{j_r}}(t_{j_r})]) = 0.$$

We note that as the map ψ_x for $x \in X$ is \mathbb{F}_q -linear the left hand side of Equation (4.1) is linear in s_{k_1}, \ldots, s_{k_r} . Therefore, the solutions of the equation in s_{k_1}, \ldots, s_{k_r} for every t_{j_1}, \ldots, t_{j_r} form an \mathbb{F}_q -subspace of Y, which determines Y'.

Under an additional assumption on Y, we are able to apply Lemma 2.1 in the following lemma. We define \overline{H} to be the preimage of \tilde{H} in $X_{\mathcal{S}}$.

Lemma 4.1. Suppose that there exists a subgroup \tilde{Y} of Y such that $Y = Y' \times \tilde{Y}$ and $[X, \tilde{Y}] \subseteq \tilde{Y}Z$. Then we have a bijection

$$\begin{aligned} \operatorname{Irr}(\check{H}/\check{Y},\lambda) &\to \operatorname{Irr}(V,\lambda) \\ \chi &\mapsto \operatorname{Ind}_{\check{H}}^V \operatorname{Inf}_{\check{H}/\check{Y}}^{\check{H}} \chi \end{aligned}$$

Consequently we have a bijection

$$\operatorname{Irr}(\tilde{H}/\tilde{Y},\lambda) \to \operatorname{Irr}(X_{\mathcal{S}},\lambda)$$
$$\chi \mapsto \operatorname{Ind}_{\tilde{H}}^{X_{\mathcal{S}}} \operatorname{Inf}_{\tilde{H}/\tilde{Y}}^{\tilde{H}} \chi$$

Proof. We want to check that $\tilde{H}, \tilde{X}, \tilde{Y}$ and Z, satisfy all the assumptions of Lemma 2.1 as subgroups of V with respect of $\lambda \in \operatorname{Irr}(Z)$. Clearly we have that $Z \leq Z(V)$ and $\tilde{Y} \cap Z = 1$. By assumption, we have that X normalizes $\tilde{Y}Z$, and we have that H centralizes $\tilde{Y}Z$, so $\tilde{Y}Z \leq V$. Since $\tilde{Y} \leq Y \leq Z(H)$, we have that \tilde{Y} is normalized by H. By definition of X' we have that X' normalizes Y. Along with the assumption that $[X, \tilde{Y}] \subseteq \tilde{Y}Z$, we deduce that X' normalizes \tilde{Y} . Hence $\tilde{Y} \leq \tilde{H}$.

Now, we are left to check condition (v) of the reduction lemma. We write $\lambda \in \operatorname{Irr}(\tilde{Y}Z)$ for the inflation of λ to $\tilde{Y}Z$, and note that $\tilde{\lambda} = \hat{\lambda}|_{\tilde{Y}Z}$. Let \tilde{X} be a transversal of \tilde{H} in V. Assume that $\tilde{x}_1 \tilde{\lambda} = \tilde{x}_2 \tilde{\lambda}$ for $\tilde{x}_1, \tilde{x}_2 \in \tilde{X}$. Let $y \in Y$ and $z \in Z$ and write $y = y'\tilde{y}$, where $y' \in Y'$ and $\tilde{y} \in \tilde{Y}$. We have

$$\begin{split} \tilde{x}_1 \hat{\lambda}(y'\tilde{y}z) &= \hat{\lambda}(y'\tilde{x}_1)\tilde{\lambda}(\tilde{y}\tilde{x}_1)\lambda(z) \\ &= \hat{\lambda}(y')(\tilde{x}_1\tilde{\lambda})(\tilde{y})\lambda(z) \\ &= \hat{\lambda}(y'\tilde{x}_2)(\tilde{x}_2\tilde{\lambda})(\tilde{y})\lambda(z) \\ &= \hat{\lambda}(y')\hat{\lambda}(\tilde{y}\tilde{x}_2)\lambda(z) \\ &= \tilde{x}_2\hat{\lambda}(y'\tilde{y}z). \end{split}$$

In the above sequence of equalities we use that $\hat{\lambda}(y'^{\tilde{x}_1}) = \hat{\lambda}(y') = \hat{\lambda}(y'^{\tilde{x}_2})$ by definition of Y'and that $\tilde{x}_1 \tilde{\lambda} = \tilde{x}_2 \tilde{\lambda}$. Hence, we have $\tilde{x}_1 \tilde{x}_2^{-1} \hat{\lambda} = \hat{\lambda}$, so $\tilde{x}_1 \tilde{x}_2^{-1} \in X'$ and thus $\tilde{x}_1 = \tilde{x}_2$ as \tilde{X} is a transversal of \tilde{H} in V.

We can now apply Lemma 2.1 to deduce the bijection.

We note that if $[X, Y] \subseteq Z$, then we take an arbitrary complement \tilde{Y} of Y' in Y, and the assumption $[X, \tilde{Y}] \subseteq \tilde{Y}Z$ is obviously satisfied.

We remark that the parametrization of characters resulting from Lemma 4.1 does not actually depend on the choice of \tilde{Y} . This can be shown by observing that the restriction of $\operatorname{Ind}_{\tilde{H}}^{V} \operatorname{Inf}_{\tilde{H}/\tilde{Y}}^{\tilde{H}} \chi$ to Y'Z is a multiple of χ viewed as a character of Y'Z.

If the condition in Lemma 4.1 is satisfied, then we have that Y' is central in \tilde{H}/\tilde{Y} . In fact, Y' is centralized by H, and [x', y'] = 1 for every $x' \in X'$ and $y' \in Y'$, because we have taken the quotient by ker (μ) .

Remark 4.2. Suppose that Lemma 4.1 applies and let $\psi \in \operatorname{Irr}(\tilde{H}/\tilde{Y}, \lambda)$. Then we have that $\operatorname{Ind}_{\bar{H}}^{X_{\mathcal{S}}} \operatorname{Inf}_{\tilde{H}/\tilde{Y}}^{\bar{H}} \psi \in \operatorname{Irr}(X_{\mathcal{S}})$, and

$$\overline{\psi} = \operatorname{Ind}_{X_{\mathcal{S}\cup\mathcal{K}}}^U \operatorname{Inf}_{X_{\mathcal{S}}}^{X_{\mathcal{S}\cup\mathcal{K}}} \operatorname{Ind}_{\bar{H}}^{X_{\mathcal{S}}} \operatorname{Inf}_{\bar{H}/\tilde{Y}}^{\bar{H}} \psi \in \operatorname{Irr}(U)_{\mathfrak{C}}$$

by Theorem 3.8. Since $X_{\mathcal{K}} \leq U$, we have that $\overline{H}X_{\mathcal{K}}$ is a subgroup of U, and we have $X_{\mathcal{K}} \leq \overline{H}X_{\mathcal{K}}$. Then using similar arguments to those in Lemma 3.7, we can show that

$$\overline{\psi} = \operatorname{Ind}_{\bar{H}X_{\mathcal{K}}}^{U} \operatorname{Inf}_{\tilde{H}/\tilde{Y}}^{\bar{H}X_{\mathcal{K}}} \psi.$$

In §4.3, we apply this argument (sometimes iteratively) to show that each irreducible character considered there can be obtained as an induced character of a linear character.

Consider the case Y' = 1 for all choices of λ , and Y is normal in \overline{H} . We have $\overline{H}/Y = X_{S \setminus (\mathcal{I} \cup \mathcal{J})}$. Defining

$$\overline{\psi} = \operatorname{Ind}^{\mathcal{A} \cup \mathcal{I}} \operatorname{Inf}_{\mathcal{K} \cup \mathcal{J}} \psi,$$

for $\psi \in \operatorname{Irr}(X_{\mathcal{S} \setminus (\mathcal{I} \cup \mathcal{J})})$, sets up a bijection from $\operatorname{Irr}(X_{\mathcal{S} \setminus (\mathcal{I} \cup \mathcal{J})})$ to $\operatorname{Irr}(U)_{\mathfrak{C}}$.

4.3. The nonabelian cores for types B_4 and F_4 . For G of type B_4 there is one nonabelian core and for G of type F_4 , there are six nonabelian cores. We analyse these case by case using the method given in §4.2, and we use the notation introduced there.

For the nonabelian core in U_{B_4} and for one of the nonabelian cores in U_{F_4} , we find \mathcal{I} and \mathcal{J} such that Y' = 1 for all $\underline{a} \in \mathbb{F}_q^m$, and Y is normal in \overline{H} with \overline{H}/Y abelian. For such a core

 \mathfrak{C} we let $\mathcal{S} \setminus (\mathcal{I} \cup \mathcal{J}) = \{\alpha_{h_1}, \ldots, \alpha_{h_s}\}$, and for $\underline{b} = (b_{h_1}, \ldots, b_{h_s}) \in \mathbb{F}_q^s$, we let $\lambda_{\underline{b}} \in \operatorname{Irr}(H)$ be linear character defined by $\lambda_{\underline{b}}^{\underline{a}}(x_{\alpha_{h_i}}(t)) = \phi(b_{h_j}t)$ for $j = 1, \ldots, s$, and $\lambda_{\underline{b}}^{\underline{a}}|_{X_{\mathcal{Z}}} = \lambda^{\underline{a}}$. Let

$$\chi_{\underline{b}}^{\underline{a}} = \operatorname{Ind}^{\mathcal{A} \cup \mathcal{I}} \operatorname{Inf}_{\mathcal{K} \cup \mathcal{J}} \lambda_{\underline{b}}^{\underline{a}}$$

Then using Remark 4.2, we see that

$$\operatorname{Irr}(U)_{\mathfrak{C}} = \{ \chi_{\underline{b}}^{\underline{a}} \mid \underline{a} \in \mathbb{F}_q^m, \underline{b} \in \mathbb{F}_q^s \}.$$

For these cores we include no further details, and just give \mathcal{I} and \mathcal{J} in the tables in the appendix.

Below we consider the remaining nonabelian cores in $U = U_{F_4}$. We denote these cores by \mathfrak{C}^1 , \mathfrak{C}^2 , \mathfrak{C}^3 , \mathfrak{C}^4 and \mathfrak{C}^5 . For each $\mathfrak{C}^i = (\mathcal{S}, \mathcal{Z}, \mathcal{A}, \mathcal{L}, \mathcal{K})$ we give $\mathcal{S}, \mathcal{Z}, \mathcal{A}$ and \mathcal{L} ; we note that \mathcal{K} can then easily be determined. Then we analyse $\operatorname{Irr}(X_{\mathcal{S}})_{\mathcal{Z}}$ before explaining how this parameterizes $\operatorname{Irr}(U)_{\mathfrak{G}^i}$ and how these characters can be obtained by inducing linear characters using Lemma 4.1 and Remark 4.2.

The nonabelian core in \mathfrak{C}^1 . This core occurs for $\Sigma = \{\alpha_{11}, \alpha_{13}\}$, and we have

- $\mathcal{S} = \{\alpha_1, \alpha_2, \alpha_4, \alpha_5, \alpha_6, \alpha_7, \alpha_9, \alpha_{10}, \alpha_{11}, \alpha_{13}\},\$
- $\mathcal{Z} = \{ \alpha_5, \alpha_{10}, \alpha_{11}, \alpha_{13} \},\$
- $\mathcal{A} = \{\alpha_3\}$ and
- $\mathcal{L} = \{\alpha + 8\}.$

Using the method of $\S4.2$, we take

- $Y = X_2 X_6 X_9$,
- $X = X_1 X_4 X_7$ and then we have that
- H = YZ.

In this case Equation (4.1) is

$$s_2(-a_5t_1 + a_{10}t_7) + s_6(a_{10}t_4 - a_{13}t_7) + s_9(-a_{11}t_1 + a_{13}t_4) = 0.$$

For $a_{11} \neq a_5 a_{13}^2 / a_{10}^2$, we have Y' = 1 and Y is normal in \overline{H} . Then as explained in Remark 4.2 we get the family of characters

$$\operatorname{Irr}(U)_{\mathfrak{C}^1}^1 = \{\chi^{a_5, a_{10}, a_{11}^*, a_{13}} \mid a_5, a_{10}, a_{11}^*, a_{13} \in \mathbb{F}_q^{\times}, a_{11}^* \neq a_5(a_{13}/a_{10})^2\} \subseteq \operatorname{Irr}(U)_{\mathfrak{C}^1}$$

where

$$\chi^{a_5,a_{10},a_{11}^*,a_{13}} = \operatorname{Ind}^{\mathcal{A}\cup\mathcal{I}}\operatorname{Inf}_{\mathcal{K}\cup\mathcal{J}}\lambda^{a_5,a_{10},a_{11}^*,a_{13}}$$

We have that $\operatorname{Irr}(U)^{1}_{\mathfrak{C}^{1}}$ consists of $(q-1)^{3}(q-2)$ characters of degree q^{4} . For $a_{11} = a_{5}a_{13}^{2}/a_{10}^{2}$, we have $X' = X_{1,4,7} = \{x_{1,4,7}(t) \mid t \in \mathbb{F}_{q}\}$ and $Y' = X_{2,6,9} =$ $\{x_{2,6,9}(s) \mid s \in \mathbb{F}_q\},$ where

$$x_{1,4,7}(t) = x_1(a_{10}^2t)x_4(a_5a_{13}t)x_7(a_5a_{10}t), \text{ and } x_{2,6,9}(s) = x_2(a_{13}^2s)x_6(a_{10}a_{13}s)x_9(-a_{10}^2s).$$

We can take any complement of Y' in Y, and we choose $\tilde{Y} = X_2 X_9$. Then we have $\tilde{H}/\tilde{Y} = X'Y'Z$, which is abelian. For $b_{1,4,7}, b_{2,6,9} \in \mathbb{F}_q$, we define $\lambda_{b_{1,4,7},b_{2,6,9}}^{a_5,a_{10},a_{13}} \in \operatorname{Irr}(X'Y'Z)$ by extending $\lambda_{b_{1,4,7},b_{2,6,9}}^{a_5,a_{10},a_{13}}$, and setting $\lambda_{b_{1,4,7},b_{2,6,9}}^{a_5,a_{10},a_{13}}(x_{1,4,7}(t)) = \phi(b_{1,4,7}t)$ and $\lambda_{b_{1,4,7},b_{2,6,9}}^{a_5,a_{10},a_{13}}(x_{2,6,9}(t)) = \phi(b_{2,6,9}t)$. Then as explained in Remark 4.2 we get the family of characters

$$\operatorname{Irr}(U)_{\mathfrak{C}^1}^2 = \{\chi_{b_{1,4,7}, b_{2,6,9}}^{a_5, a_{10}, a_{13}} \mid a_5, a_{10}, a_{13} \in \mathbb{F}_q^{\times}, b_{1,4,7}, b_{2,6,9} \in \mathbb{F}_q\},\$$

where

$$\chi^{a_5,a_{10},a_{13}}_{b_{1,4,7},b_{2,6,9}} = \operatorname{Ind}_{\bar{H}X_{\mathcal{K}}}^U \operatorname{Inf}_{\tilde{H}/\tilde{Y}}^{HX_{\mathcal{K}}} \lambda^{a_5,a_{10},a_{13}}_{b_{1,4,7},b_{2,6,9}}$$

We have that $\operatorname{Irr}(U)^2_{\mathfrak{C}^1}$ consists of $q^2(q-1)^3$ characters of degree q^3 .

We have that $\operatorname{Irr}(U)_{\mathfrak{C}^1} = \operatorname{Irr}(U)^1_{\mathfrak{C}^1} \cup \operatorname{Irr}(U)^2_{\mathfrak{C}^1}$ and this gives all the irreducible characters corresponding to \mathfrak{C}^1 .

The nonabelian core \mathfrak{C}^2 . This core occurs for $\Sigma = \{\alpha_{12}, \alpha_{16}\}$, and we have

- $S = \{ \alpha_1, \alpha_2, \alpha_3, \alpha_5, \alpha_6, \alpha_7, \alpha_8, \alpha_9, \alpha_{10}, \alpha_{12}, \alpha_{16} \},\$
- $\mathcal{Z} = \{\alpha_8, \alpha_9, \alpha_{12}, \alpha_{16}\},\$
- $\mathcal{A} = \{\alpha_4\}$ and
- $\mathcal{L} = \{\alpha_{13}\}.$

Using the method of $\S4.2$, we take

- $Y = X_5 X_6 X_{10}$,
- $X = X_1 X_3 X_7$ and then we have that
- $H = X_2 Y Z$.

In this case Equation (4.1) is

$$s_5(a_8t_3 + a_{12}t_7) + s_6(-a_8t_1 - 2a_9t_3) + s_{10}(-a_{12}t_1 + 2a_{16}t_7) = 0.$$

For $a_{16} \neq a_9 a_{12}^2/a_8^2$, we have Y' = 1 and Y is normal in \overline{H} . Further, $\overline{H}/Y = X_2 X_z$, so as explained in Remark 4.2 we get the family of characters

$$\operatorname{Irr}(U)_{\mathfrak{C}^2}^1 = \{\chi_{b_2}^{a_8, a_9, a_{12}, a_{16}^*} \mid a_8, a_9, a_{12}, a_{16}^* \in \mathbb{F}_q^\times, a_{16}^* \neq a_9(a_{12}/a_8)^2, b_2 \in \mathbb{F}_q\} \subseteq \operatorname{Irr}(U)_{\mathfrak{C}^2},$$

where

$$\chi_{b_2}^{a_8,a_9,a_{12},a_{16}^*} = \operatorname{Ind}^{\mathcal{A}\cup\mathcal{I}}\operatorname{Inf}_{\mathcal{K}\cup\mathcal{J}}\lambda_{b_2}^{a_8,a_9,a_{12},a_{16}^*}$$

and $\lambda_{b_2}^{a_8,a_9,a_{12},a_{16}^*} \in \operatorname{Irr}(\bar{H}/Y)$ is defined in the usual way. We have that $\operatorname{Irr}(U)_{\mathfrak{C}^2}^1$ consists of $q(q-1)^3(q-2)$ characters of degree q^4 .

Now suppose $a_{16} = a_9 a_{12}^2 / a_8^2$. We have $X' = \{x_{1,3,7}(t) \mid t \in \mathbb{F}_q\}$ and $Y' = \{x_{5,6,10}(s) \mid s \in \mathbb{F}_q\}$, where

$$x_{1,3,7}(t) = x_1(2a_9a_{12}t)x_3(-a_8a_{12}t)x_7(a_8^2t) \text{ and } x_{5,6,10}(s) = x_5(2a_9a_{12}s)x_6(a_8a_{12}s)x_{10}(-a_8^2s).$$

We can take any complement of Y' in Y and we choose $\tilde{Y} = X_5 X_{10}$. Then we have $\tilde{H}/\tilde{Y} = X_2 X' Y Z/\tilde{Y}$ and $Y' \subseteq Z(\tilde{H}/\tilde{Y})$.

A computation in \tilde{H}/\tilde{Y} gives

$$[x_2(s), x_{1,4,7}(t)] = x_{5,6,10}(-st).$$

Therefore, \tilde{H}/\tilde{Y} is a direct product of Z and $X_2X'Y/\tilde{Y}$. Further $X_2X'Y/\tilde{Y}$ is isomorphic to the three dimensional group V_f for f(s,t) = -st from §4.1.

We label the linear characters of $X_2 X' Y / \tilde{Y}$ by $\chi_{b_2, b_{1,3,7}}$. By tensoring these characters with $\lambda^{a_8, a_9, a_{12}}$ and then applying $\operatorname{Ind}_{\bar{H}X_{\mathcal{K}}}^U \operatorname{Inf}_{\tilde{H}/\tilde{Y}}^{\bar{H}X_{\mathcal{K}}}$ we obtain the family of characters

$$\operatorname{Irr}(U)_{\mathfrak{C}^2}^2 = \{\chi_{b_2, b_{1,3,7}}^{a_8, a_9, a_{12}} \mid a_8, a_9, a_{12} \in \mathbb{F}_q^{\times}, b_2, b_{1,3,7} \in \mathbb{F}_q\},\$$

which consists of $q^2(q-1)^3$ characters of degree q^3 .

We write $\lambda^{a_8,a_9,a_{12},a_{5,6,10}}$ for the linear character of X'Z defined in the usual way. By applying $\operatorname{Ind}_{X'YX_{\mathbb{Z}}X_{\mathcal{K}}}^U \operatorname{Inf}_{YZ/\tilde{Y}}^{X'YX_{\mathbb{Z}}X_{\mathcal{K}}}$ to these linear characters we obtain the family of characters

$$\operatorname{Irr}(U)^{3}_{\mathfrak{C}^{2}} = \{\chi^{a_{8}, a_{9}, a_{12}, a_{5,6,10}} \mid a_{8}, a_{9}, a_{12}, a_{5,6,10} \in \mathbb{F}_{q}^{\times}\},\$$

which consists of $(q-1)^4$ characters of degree q^4 .

We have $\operatorname{Irr}(U)_{\mathfrak{C}^2} = \operatorname{Irr}(U)^1_{\mathfrak{C}^2} \cup \operatorname{Irr}(U)^2_{\mathfrak{C}^2} \cup \operatorname{Irr}(U)^3_{\mathfrak{C}^2}$ and this gives all the irreducible characters corresponding to \mathfrak{C}^2 .

The nonabelian core \mathfrak{C}^3 . This core occurs for $\Sigma = \{\alpha_{14}, \alpha_{15}\}$, and we have

- $S = \{\alpha_2, \alpha_4, \alpha_6, \alpha_7, \alpha_8, \alpha_{10}, \alpha_{11}, \alpha_{14}, \alpha_{15}\},\$
- $\mathcal{Z} = \{\alpha_{10}, \alpha_{14}, \alpha_{15}\},\$
- $\mathcal{A} = \{\alpha_1, \alpha_3, \alpha_5\}$ and
- $\mathcal{L} = \{\alpha_9, \alpha_{12}, \alpha_{13}\}.$

Using the method of $\S4.2$, we take

•
$$Y = X_6 X_7 X_{11}$$
,

- $X = X_2 X_4 X_8$ and then we have that
- H = YZ.

In this case Equation (4.1) is

$$s_6(a_{10}t_4 + 2a_{14}t_8) + s_7(-a_{10}t_2 + a_{15}t_8) + s_{11}(-a_{14}t_2 + a_{15}t_4) = 0.$$

For $p \ge 5$, we have Y' = 1 and Y is normal in \overline{H} . So as explained in Remark 4.2 we obtain

$$\operatorname{Irr}(U)_{\mathfrak{C}^3}^{p \ge 5} = \{ \chi^{a_{10}, a_{14}, a_{15}} \mid a_{10}, a_{14}, a_{15} \in \mathbb{F}_q^{\times} \}$$

by applying $\operatorname{Ind}^{\mathcal{A}\cup\mathcal{I}} \operatorname{Inf}_{\mathcal{K}\cup\mathcal{J}}$ to the characters in $\operatorname{Irr}(X_{\mathcal{S}\setminus(\mathcal{I}\cup\mathcal{J})})_{\mathcal{Z}}$. We have that $\operatorname{Irr}(U)_{\mathfrak{C}^3}^{p\geq 5}$ consists of $(q-1)^3$ characters of degree q^6 .

Now suppose p = 3. We have $X' = \{x_{2,4,8}(t) \mid t \in \mathbb{F}_q\}$ and $Y' = \{x_{6,7,11}(s) \mid s \in \mathbb{F}_q\}$, where

$$x_{2,4,8}(t) = x_2(a_{15}t)x_4(a_{14}t)x_8(a_{10}t)$$
 and $x_{6,7,11}(s) = x_6(a_{15}s)x_7(a_{14}s)x_{11}(-a_{10}s)x_{11}(-a_$

We can take $\tilde{Y} = X_6 X_{11}$, and we have $\tilde{H}/\tilde{Y} \cong X'Y'Z$ is abelian. This yields

$$\operatorname{Irr}(U)_{\mathfrak{C}^3}^{p=3} = \{\chi_{b_{2,4,8},b_{6,7,11}}^{a_{10},a_{14},a_{15}} \mid a_{10},a_{14},a_{15} \in \mathbb{F}_q^{\times}, b_{2,4,8},b_{6,7,11} \in \mathbb{F}_q\}$$

where these characters are obtained by applying $\operatorname{Ind}_{\tilde{H}X_{\mathcal{K}}}^{U} \operatorname{Inf}_{\tilde{H}/\tilde{Y}}^{\tilde{H}X_{\mathcal{K}}}$ to the linear characters $\lambda_{b_{2,4,8},b_{6,7,11}}^{a_{10},a_{14},a_{15}}$ of \tilde{H}/\tilde{Y} , which are labelled in the usual way. We have that $\operatorname{Irr}(U)_{\mathfrak{C}^{3}}^{p=3}$ consists of $q^{2}(q-1)^{3}$ characters of degree q^{5} .

The nonabelian core \mathfrak{C}^4 . This core occurs for $\Sigma = \{\alpha_{11}, \alpha_{12}, \alpha_{13}\}$, and we have

- $\mathcal{S} = \{\alpha_1, \ldots, \alpha_{13}\},$
- $\mathcal{Z} = \Sigma = \{\alpha_{11}, \alpha_{12}, \alpha_{13}\},\$
- $\mathcal{A} = \emptyset$ and
- $\mathcal{L} = \emptyset$.

Using the method of $\S4.2$, we take

- $Y = X_5 X_8 X_9 X_{10}$,
- $X = X_1 X_3 X_4 X_7$ and then we have that
- $H = X_2 X_6 Y Z$.

In this case Equation (4.1) is

$$s_5(-a_{11}t_3^2 + a_{12}t_7) + s_8(-2a_{11}t_3 + a_{12}t_4) + s_9(-a_{11}t_1 + a_{13}t_4) + s_{10}(-a_{12}t_1 - a_{13}t_3) = 0.$$

For $p \geq 5$, we have that Y' = 1, and Y is normal in \overline{H} . Also we have $\overline{H}/Y \cong X_2 X_6 X_{\mathcal{Z}}$ is abelian. For $b_2, b_6 \in \mathbb{F}_q$ we let $\lambda_{b_2, b_6}^{a_{11}, a_{12}, a_{13}} \in \operatorname{Irr}(X_{\mathcal{S} \setminus (\mathcal{I} \cup \mathcal{J})})_{\mathcal{Z}}$ be the linear character with the usual notation. Then as explained in Remark 4.2 we obtain

$$\operatorname{Irr}(U)_{\mathfrak{C}^4}^{p\geq 5} = \{\chi_{b_2,b_6}^{a_{11},a_{12},a_{13}} \mid a_{11},a_{12},a_{13} \in \mathbb{F}_q^{\times}, b_2, b_6 \in \mathbb{F}_q\},\$$

where $\chi_{b_2,b_6}^{a_{11},a_{12},a_{13}} = \operatorname{Ind}^{\mathcal{A}\cup\mathcal{I}} \operatorname{Inf}_{\mathcal{K}\cup\mathcal{J}} \lambda_{b_2,b_6}^{a_{11},a_{12},a_{13}}$. We have that $\operatorname{Irr}(U)_{\mathfrak{C}^4}^{p\geq 5}$ is a family of $q^2(q-1)^3$ characters of degree q^4 .

Now suppose p = 3. We have $X' = \{x_{1,3,4,7}(t) \mid t \in \mathbb{F}_q\}$ and $Y' = \{x_{8,9,10}(s) \mid s \in \mathbb{F}_q\}$, where

$$x_{1,3,4,7}(t) = x_1(a_{13}t)x_3(-a_{12}t)x_4(a_{11}t)x_7(-a_{11}a_{12}t^2) \text{ and}$$
$$x_{8,9,10}(s) = x_8(a_{13}s)x_9(-a_{12}s)x_{10}(a_{11}s).$$

We can take $\tilde{Y} = X_5 X_8 X_9$, and we have $\tilde{H}/\tilde{Y} = X_2 X_6 X' Y Z/\tilde{Y}$. By Lemma 4.1, we have $\operatorname{Irr}(V, \lambda)$ is in bijection with $\operatorname{Irr}(\tilde{H}/\tilde{Y}, \lambda)$.

We continue by considering $\operatorname{Irr}(\tilde{H}/\tilde{Y},\lambda)$ and note that Y' lies in the centre of \tilde{H}/\tilde{Y} . For $a_{8,9,10} \in \mathbb{F}_q^{\times}$, we let $\lambda^{a_{8,9,10}}$ be the extension of λ to Y'Z with $\lambda^{a_{8,9,10}}(x_{8,9,10}(t)) = \phi(a_{8,9,10}t)$. Then $\operatorname{Irr}(\tilde{H}/\tilde{Y},\lambda)$ decomposes as the union of $\operatorname{Irr}(\tilde{H}/\tilde{Y},\lambda^{a_{8,9,10}})$ over $a_{8,9,10} \in \mathbb{F}_q^{\times}$ along with $\operatorname{Irr}(\tilde{H}/Y,\lambda)$.

A computation in \tilde{H}/\tilde{Y} gives

$$[x_6(s), x_{1,3,4,7}(t)] = x_{8,9,10}(st).$$

Now by Lemma 2.1, we have that $\operatorname{Irr}(\tilde{H}/\tilde{Y}, \lambda^{a_{8,9,10}})$ is in bijection with $\operatorname{Irr}(X_2 Y Z/\tilde{Y}, \lambda^{a_{8,9,10}})$. Further, we have that $X_2 Y Z/\tilde{Y} \cong X_2 Y' Z$ is abelian, and we label the linear characters in $\operatorname{Irr}(X_2 Y Z/\tilde{Y}, \lambda^{a_{8,9,10}})$ as $\lambda^{a_{11,a_{12},a_{13},a_{8,9,10}}_{b_2}$ in the usual way. This gives the family of characters

$$\operatorname{Irr}(U)_{\mathfrak{C}_4}^{1,p=3} = \{\chi_{b_2}^{a_{11},a_{12},a_{13},a_{8,9,10}} \mid a_{11},a_{12},a_{13},a_{8,9,10} \in \mathbb{F}_q^{\times}, b_2 \in \mathbb{F}_q\},\$$

where by Remark 4.2 we have $\chi_{b_2}^{a_{11,a_{12},a_{13},a_{8,9,10}}} = \text{Ind}_{X_2X'YX_zX_K}^U \prod_{X_2YZ/\tilde{Y}}^{X_2X'YX_zX_K} \lambda_{b_2}^{a_{11,a_{12},a_{13},a_{8,9,10}}}$. We have that $\text{Irr}(U)_{\sigma_4}^{1,p=3}$ consists of $q(q-1)^4$ irreducible characters of degree q^4 .

It remains to consider $\operatorname{Irr}(\tilde{H}/Y, \lambda)$. We have $\tilde{H}/Y = X_2 X' X_6 Y Z/Y$ and X_6 is central in \tilde{H}/Y . For $a_6 \in \mathbb{F}_q^{\times}$, we let λ^{a_6} be the extension of λ to $X_6 Z$ with $\lambda^{a_6}(x_6(t)) = \phi(a_6 t)$. Then $\operatorname{Irr}(\tilde{H}/Y, \lambda)$ decomposes as the union of $\operatorname{Irr}(\tilde{H}/Y, \lambda^{a_6})$ over $a_{8,9,10} \in \mathbb{F}_q^{\times}$ along with $\operatorname{Irr}(\tilde{H}/X_6 Y, \lambda)$.

A computation in \hat{H}/Y gives

$$[x_2(t), x_{1,3,4,7}(s)] = x_6(-a_{12}st)x_{11}(a_{12}^2a_{13}s^3t).$$

Let μ^{a_6} : $X_6Z \to \mathbb{F}_q$, be such that $\lambda^{a_6} = \phi \circ \mu_6$. Then we see that the quotient $\tilde{H}/Y \ker \mu^{a_6} = X_2 X' X_6 Y Z/Y \ker \mu^{a_6}$ is isomorphic to the three dimensional group V_f where $f(s,t) = a_{12}t(a_{11}a_{12}a_{13}s^3 - a_6s)$ given in §4.1, and of course we have $\operatorname{Irr}(\tilde{H}/Y,\lambda^{a_6}) = \operatorname{Irr}(\tilde{H}/Y \ker \mu^{a_6},\lambda^{a_6})$. Thus we can apply the analysis of $\operatorname{Irr}(V_f)$ in §4.1. We let $d = a_6/a_{11}a_{12}a_{13}$.

Suppose first that d is a square in \mathbb{F}_q . In this case we write $a_{1,6}$ for a_6 . We let $W' = \{x_{1,3,4,7}(ds) \mid s \in \mathbb{F}_3\}$ and $W_2 = \{x_2((d^{-p}/a_{11}a_{12}^2a_{13})t) \mid t \in \mathbb{F}_3\}$, and define the linear

characters $\lambda_{c_{1,3,4,7},c_2}^{a_{11,a_{12},a_{13},a_{1,6}}}$ for $c_{1,3,4,7}, c_2 \in \mathbb{F}_3$ of $W'W_2X_6YZ/Y$ as in §4.1. Then we get the family of characters

$$\operatorname{Irr}(U)_{\mathfrak{C}^4}^{2,1,p=3} = \{\chi_{c_{1,3,4,7},c_2}^{a_{11},a_{12},a_{13},a_{1,6}} \mid a_{11}, a_{12}, a_{13} \in \mathbb{F}_q^{\times}, a_{1,6} \in a_{11}a_{12}a_{13}S_q, c_{1,3,4,7}, c_2 \in \mathbb{F}_3\},$$

where

$$\chi^{a_{11},a_{12},a_{13},a_{1,6}}_{c_{1,3,4,7},c_2} = \operatorname{Ind}_{X'W_2X_6YX_{\mathcal{Z}}X_{\mathcal{K}}}^U \operatorname{Inf}_{W'W_2X_6YZ_/Y}^{X'W_2X_6YX_{\mathcal{Z}}X_{\mathcal{K}}} \lambda^{a_{11},a_{12},a_{13},a_{1,6}}_{c_{1,3,4,7},c_2}$$

and S_q denotes the set of nonzero squares in \mathbb{F}_q . We have that $\operatorname{Irr}(U)_{\mathfrak{C}^4}^{2,1,p=3}$ consists of $9(q-1)^4/2$ characters of degree $q^4/3$,

Suppose now that $a_6/a_{11}a_{12}a_{13}$ a nonsquare in \mathbb{F}_q . In this case we write $a_{2,6}$ for a_6 . We write $\lambda^{a_{11},a_{12},a_{13},a_{2,6}}$ for the linear characters of X_6YZ/Y in the usual notation. Then we get the family of characters

$$\operatorname{Irr}(U)_{\mathfrak{C}^4}^{2,2,p=3} = \{\chi^{a_{11},a_{12},a_{13},a_{2,6}} \mid a_{2,6} \in \mathbb{F}_q^{\times} \setminus (a_{11}a_{12}a_{13}S_q), a_{11}, a_{12}, a_{13} \in \mathbb{F}_q^{\times}\},\$$

where

$$\chi^{a_{11},a_{12},a_{13},a_{2,6}} = \operatorname{Ind}_{X'X_6YX_{\mathcal{Z}}X_{\mathcal{K}}}^U \operatorname{Inf}_{X_6YZ/Y}^{X'X_6YX_{\mathcal{Z}}X_{\mathcal{K}}} \lambda^{a_{11},a_{12},a_{13},a_{2,6}}$$

We have that $\operatorname{Irr}(U)_{\mathfrak{C}^4}^{2,2,p=3}$ consists of $(q-1)^4/2$ characters of degree q^4 .

Similarly, we can analyse $\operatorname{Irr}(\tilde{H}/X_6Y, \lambda)$ using the arguments for the three dimensional group V_f where $f(s,t) = a_{11}a_{12}^2a_{13}s^3t$. Therefore, we get the family of characters

$$\operatorname{Irr}(U)_{\mathfrak{C}^4}^{3,p=3} = \{\chi^{a_{11},a_{12},a_{13}} \mid a_{11}, a_{12}, a_{13} \in \mathbb{F}_q^{\times}\},\$$

where the characters are given by

$$\chi^{a_{11},a_{12},a_{13}} = \operatorname{Ind}_{X'X_6YX_{\mathcal{Z}}X_{\mathcal{K}}}^U \operatorname{Inf}_{X_6YZ/X_6Y}^{X'X_6YX_{\mathcal{Z}}X_{\mathcal{K}}} \lambda^{a_{11},a_{12},a_{13}}$$

We have that $\operatorname{Irr}(U)_{\mathfrak{C}^4}^{3,p=3}$ consists of $(q-1)^3$ characters of degree q^4 .

Putting this together we obtain

$$\operatorname{Irr}(U)_{\mathfrak{C}^{4}}^{p=3} = \operatorname{Irr}(U)_{\mathfrak{C}^{4}}^{1,p=3} \cup \operatorname{Irr}(U)_{\mathfrak{C}^{4}}^{2,1,p=3} \cup \operatorname{Irr}(U)_{\mathfrak{C}^{4}}^{2,2,p=3} \cup \operatorname{Irr}(U)_{\mathfrak{C}^{4}}^{3,p=3}.$$

The nonabelian core \mathfrak{C}^5 . This core occurs for $\Sigma = \{\alpha_{12}, \alpha_{13}, \alpha_{14}\}$, and we have

- $S = \{\alpha_1, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7, \alpha_8, \alpha_9, \alpha_{10}, \alpha_{12}, \alpha_{13}, \alpha_{14}\},\$
- $\mathcal{Z} = \Sigma = \{\alpha_{12}, \alpha_{13}, \alpha_{14}\},\$
- $\mathcal{A} = \{\alpha_2\}$ and
- $\mathcal{L} = \{\alpha_{11}\}.$

Using the method of $\S4.2$, we take

- $Y = X_1 X_7 X_8 X_9,$
- $X = X_4 X_5 X_6 X_{10}$ and then we have that
- $H = X_3 Y Z$.

In this case Equation (4.1) is

$$s_1(-a_{14}t_4^2 + a_{12}t_{10}) + s_7(-a_{12}t_5 + a_{13}t_6) + s_8(a_{12}t_4 - 2a_{14}t_6) + s_9(a_{13}t_4 + a_{14}t_5) = 0.$$

For $p \geq 5$, we have that Y' = 1, and Y is normal in \overline{H} . Also we have $\overline{H}/Y \cong X_3 X_{\mathbb{Z}}$ is abelian. For $b_3 \in \mathbb{F}_q$ we let $\lambda_{b_3}^{a_{12},a_{13},a_{14}} \in \operatorname{Irr}(X_{\mathcal{S}\setminus(\mathcal{I}\cup\mathcal{J})})_{\mathbb{Z}}$ be the linear character with the usual notation. Then as explained in Remark 4.2 we obtain

$$\operatorname{Irr}(U)_{\mathfrak{C}^5}^{p \ge 5} = \{\chi_{b_3}^{a_{12}, a_{13}, a_{14}} \mid a_{12}, a_{13}, a_{14} \in \mathbb{F}_q^{\times}, b_3 \in \mathbb{F}_q\}_{26}$$

where $\chi_{b_2,b_6}^{a_{11},a_{12},a_{13}} = \operatorname{Ind}^{\mathcal{A}\cup\mathcal{I}} \operatorname{Inf}_{\mathcal{K}\cup\mathcal{J}} \lambda_{b_3}^{a_{12},a_{13},a_{14}}$. We have that $\operatorname{Irr}(U)_{\mathfrak{C}^5}^{p\geq 5}$ is a family of $q(q-1)^3$ characters of degree q^5 .

Now suppose p = 3. We have $X' = \{x_{4,5,6,10}(t) \mid t \in \mathbb{F}_q\}$ and $Y' = \{x_{7,8,9}(s) \mid s \in \mathbb{F}_q\}$, where

$$x_{4,5,6,10} = x_4(-a_{14}t)x_5(a_{13}t)x_6(a_{12}t)x_{10}(a_{12}a_{14}t^2)$$
 and $x_{7,8,9} = x_7(a_{14}s)x_8(-a_{13}s)x_9(a_{12}s)$.

We can take $\tilde{Y} = X_1 X_7 X_8$, and we have $\tilde{H}/\tilde{Y} = X_3 X' Y Z/\tilde{Y}$. By Lemma 4.1, we have $\operatorname{Irr}(V, \lambda)$ is in bijection with $\operatorname{Irr}(\tilde{H}/\tilde{Y}, \lambda)$.

A computation in H/Y gives

$$[x_3(s), x_{4,5,6,10}(t)] = x_{7,8,9}(-st).$$

We notice that \tilde{H}/\tilde{Y} is a direct product of Z and the 3-dimensional group $X_3X'Y/\tilde{Y} \cong X_3X'Y'$. Then the analysis in §4.1 applies with f(s,t) = -st.

We label the linear characters of $X_3 X' Y / \tilde{Y}$ by $\chi_{b_3, b_{4,5,6,10}}$. By tensoring these characters with $\lambda^{a_{12}, a_{13}, a_{14}}$ and then applying $\operatorname{Ind}_{\bar{H}X_{\kappa}}^{U} \operatorname{Inf}_{\tilde{H}/\tilde{Y}}^{\bar{H}X_{\kappa}}$ we obtain the family of characters

$$\operatorname{Irr}(U)_{\mathfrak{C}^5}^{1,p=3} = \{\chi_{b_3,b_{4,5,6,10}}^{a_{12},a_{13},a_{14}} \mid a_{12}, a_{13}, a_{14} \in \mathbb{F}_q^{\times}, b_3, b_{4,5,6,10} \in \mathbb{F}_q\},\$$

which consists of $q^2(q-1)^3$ characters of degree q^4 .

We write $\lambda^{a_{12},a_{13},a_{14},a_{7,8,9}}$ for the linear character of Y'Z defined in the usual way. By applying $\operatorname{Ind}_{X'YX_{\mathcal{Z}}X_{\mathcal{K}}}^{U} \operatorname{Inf}_{YZ/\tilde{Y}}^{X'YX_{\mathcal{Z}}X_{\mathcal{K}}}$ to these linear characters we obtain the family of characters

$$\operatorname{Irr}(U)_{\mathfrak{C}^5}^{2,p=3} = \{\chi^{a_{12},a_{13},a_{14}a_{7,8,9}} \mid a_{12},a_{13},a_{14},a_{7,8,9} \in \mathbb{F}_q^{\times}\}$$

which consists of $(q-1)^4$ characters of degree q^5 . We have $\operatorname{Irr}(U)_{\mathfrak{C}^5}^{p=3} = \operatorname{Irr}(U)_{\mathfrak{C}^2}^{1,p=3} \cup \operatorname{Irr}(U)_{\mathfrak{C}^2}^{2,p=3}$.

APPENDIX: TABLES OF PARAMETRIZATION OF Irr(U)

This appendix contains a parametrization of the irreducible characters of U_{B_4} , U_{C_4} and U_{F_4} when p is not a very bad prime for U, that is $p \neq 2$.

The notation in the tables is as follows. The first column corresponds to the families of the form \mathcal{F}_{Σ} , where \mathcal{F}_{Σ} is the family of irreducible characters of U arising from an antichain Σ . The second column contains character labels for those families as explained in Sections 3 and 4. For a fixed core $(\mathcal{S}, \mathcal{Z}, \mathcal{A}, \mathcal{L}, \mathcal{K})$, we define

$$I_{\mathcal{A}} = \{i \in \{1, \dots, |\Phi^+|\} \mid \alpha_i \in \mathcal{A}\},\$$

and define $I_{\mathcal{L}}$ similarly. The third column contains $I_{\mathcal{A}}$ and $I_{\mathcal{L}}$. We note that \mathcal{K} can be determined from \mathcal{A}, \mathcal{L} and the labels of the characters. For the abelian cores, we recall that the irreducible characters in the family are obtained by applying $\mathrm{Ind}^{\mathcal{A}} \mathrm{Inf}_{\mathcal{K}}$ to the linear characters in $\mathrm{Irr}(X_{\mathcal{S}})_{\mathcal{Z}}$. We use the **bold** font to identify nonabelian cores. In these cases, we also use the second column to give any relation between the indices and the third column to give some information on the construction of these characters. In the case where we have Y' = 1 and Y is normal in \overline{H} , we give $I_{\mathcal{I}}$ and $I_{\mathcal{J}}$ in the third column, as in this case the irreducible characters are given by applying $\mathrm{Ind}^{\mathcal{A}\cup\mathcal{I}} \mathrm{Inf}_{\mathcal{J}\cup\mathcal{K}}$ to linear characters in $\mathrm{Irr}(X_{\mathcal{S}\setminus(\mathcal{I}\cup\mathcal{J})})_{\mathcal{Z}}$. In other cases, we refer the reader to the relevant part of §4.3. Finally, the fourth column records the number of irreducible characters in a family corresponding to some character labels, and the fifth column records their degree.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	\mathcal{F}	χ	Ι	Number	Degree
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathcal{F}_{1:n}$			a^4	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\chi^{a_1, b_2, b_3, b_4}$	$I_A = \{1\}, I_C = \{2\},$		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-			-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	0.0	$I_{\mathcal{A}} = \{1\}, I_{\mathcal{C}} = \{5\},$		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	<i>a</i> ₀			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	a10			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. a11			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		χ_{b_2, b_5, b_6}			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	\mathcal{F}_{12}	X		(q-1)	q
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$v^{a_{12}}$		$a^2(a-1)$	a ³
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F10	<i>0</i> .19			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				$q^{3}(q-1)^{2}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	J 14	$x_{b_2,b_6,b_{10}}$		q (q-1)	q
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$x^{a_6,a_{14}}$		$a^2(a-1)^2$	a^4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$x_{b_5,b_{10}}$		q (q-1)	q
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\lambda^{a_{14}}$		$a^4(a-1)$	a ³
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F		$I_{\mathcal{A}} = \{1, 3, 1\}, I_{\mathcal{L}} = \{0, 11, 12\}, I_{\mathcal{L}} = \{1, 2, 4, 5, 8\}$	$\frac{q}{(q-1)}$	4 a ⁵
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	J 15	x_{b_3,b_6,b_7}		q (q-1)	Ч
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$v^{a_9,a_{15}}$	<u> </u>	$a^2(a-1)^2$	a ⁵
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\lambda b_3, b_7$		<i>q</i> (<i>q</i> 1)	Ч
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$v_{1}^{a_{15}}$		$a^4(a-1)$	a^4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\lambda_{b_1,b_3,b_6,b_7}$		4 (4 -)	А
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.F16	$\gamma_{1}^{a_{8},a_{16}}$		$a^2(a-1)^2$	a^6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	* 10	$^{\Lambda b_{2},b_{4}}$		1 (1 -)	7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\chi_{L}^{a_{5},a_{16}}$	~ ()	$q(q-1)^2$	q^6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		κ_{04}		1(1)	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\chi^{a_{16}}_{b_{1},b_{2},b_{3},b_{4}}$		$q^3(q-1)$	q^5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		01,02,04	$I_{\mathcal{L}} = \{11, 12, 13, 14, 15\},\$,	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{F}_{1,6}$		$I_{\mathcal{A}} = \{2\}, \ I_{\mathcal{L}} = \{3\},$	$(q-1)^2$	q
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		χ^{a_1,a_7}			q
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{F}_{1,10}$	$\chi^{a_1,a_{10}}_{b_2}$	$I_{\mathcal{A}} = \{2, 4\}, \ I_{\mathcal{L}} = \{6, 7\},$	$q(q-1)^2$	q^2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{F}_{2,7}$	χ^{a_2,a_7}	$I_{\mathcal{A}} = \{3\}, \ I_{\mathcal{L}} = \{4\},$	$(q-1)^2$	q
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{F}_{3,5}$				q
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{F}_{3,8}$	$\chi^{a_3,a_8}_{b_2}$		$q(q-1)^2$	q
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathcal{F}_{4,5}$	χ^{a_4,a_5}	$I_{\mathcal{A}} = \{1\}, \ I_{\mathcal{L}} = \{2\},$		q
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{F}_{4,6}$		$I_{\mathcal{A}} = \{2\}, \ I_{\mathcal{L}} = \{3\},$		q
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{F}_{4,8}$	χ_{b_2}	$I_{\mathcal{A}} = \{1\}, \ I_{\mathcal{L}} = \{5\},$	$q(q-1)^2$	q
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\chi^{a_4,a_9}_{b_2}$	$I_{\mathcal{A}} = \{1, 3\}, \ I_{\mathcal{L}} = \{5, 6\},\$	$q(q-1)^2$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{F}_{4,11}$	$\chi^{a_4,a_{11}}_{b_2,b_5,b_6}$	$I_{\mathcal{A}} = \{1, 3\}, \ I_{\mathcal{L}} = \{8, 9\},$	$q^3(q-1)^2$	q^2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\chi^{a_4,a_{13}}_{b_1,b_3}$		$q^2(q-1)^2$	q^3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{F}_{5,6}$	$\chi^{a_5,a_6}_{b_2}$		$q(q-1)^2$	q
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		χ^{a_5,a_7}			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0 - 0			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\chi_{b_4}^{a_6,a_7}$			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		χ^{a_6,a_8}			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\chi^{a_7,a_8}_{b_2}$	$I_{\mathcal{A}} = \{1, 4\}, \ I_{\mathcal{L}} = \{3, 5\},$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\chi_{h_2,h_3}^{a_7,a_9}$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\chi_{1}^{a_{7},a_{13}}$			
$\begin{array}{c c} \mathcal{F}_{8,9} & \chi^{a_8,a_9}_{b_2} & I_{\mathcal{A}} = \{1,3\}, \ I_{\mathcal{L}} = \{5,6\}, & q(q-1)^2 & q^2 \\ \mathcal{F}_{8,10} & \chi^{a_8,a_{10}}_{b_3} & I_{\mathcal{A}} = \{1,2,4\}, \ I_{\mathcal{L}} = \{5,6,7\}, & q(q-1)^2 & q^3 \end{array}$	- 1,10	γ_{b_1}		1(7 -)	7
$\mathcal{F}_{8,10} \chi_{b_3}^{\hat{a_8}, a_{10}} \qquad I_{\mathcal{A}} = \{1, 2, 4\}, \ I_{\mathcal{L}} = \{5, 6, 7\}, \qquad q(q-1)^2 \qquad q^3$	F80	$\chi_{i}^{a_{8},a_{9}}$		$q(q-1)^2$	q^2
$ \begin{array}{c} \bullet \ \bullet, \bullet \ $		$\gamma_{a8,a_{10}}^{a_{b_2}}$			
$\mathcal{F}_{8,12} \qquad \chi^{a_6,a_8,a_{12}} \qquad I_{\mathcal{A}} = \{1,3,4,7\}, \qquad (q-1)^3 \qquad q^4$		$\chi^{a_6,a_8,a_{12}}$		$(q-1)^3$	
$\begin{array}{c c} \mathcal{F}8,12 \\ \mathcal{I}_{\mathcal{L}} = \{2,5,9,10\}, \end{array} \qquad $	5 8,12	λ		(q-1)	Ч

Parametrization of irreducible characters of $U_{\rm B_4}$

\mathcal{F}	χ	Ι	Number	Degree
	$\chi^{a_8,a_{12}}_{b_2,b_2}$	$I_{\mathcal{A}} = \{1, 4, 7\}, \ I_{\mathcal{L}} = \{5, 9, 10\},$	$q^2(q-1)^2$	q^3
$\mathcal{F}_{9,10}$	$\frac{\chi_{b_2,b_3}}{\chi_{b_4}^{a_9,a_{10}}}$	$I_{\mathcal{A}} = \{2, 3, 6\}, \ I_{\mathcal{L}} = \{1, 5, 7\},$	$q(q-1)^2$	q^3
$F_{10,11}$	$\frac{\chi_{b_4}^{a_{9},a_{10}}}{\chi_{b_5}^{a_{10},a_{11}}}$	$I_{\mathcal{A}} = \{1, 2, 3, 4\},\$	$q(q-1)^2$	q^4
	0	$I_{\mathcal{L}} = \{6, 7, 8, 9\},\$ $I_{\mathcal{A}} = \{2, 4, 5, 6\},\$		
$\mathcal{F}_{10,13}$	$\chi^{a_7,a_{10},a_{13}}_{b_1}$		$q(q-1)^3$	q^4
	<i>a</i> 10 <i>a</i> 18	$I_{\mathcal{L}} = \{3, 8, 9, 11\},\$	27	2
	$\chi^{a_{10},a_{13}}_{b_1,b_3,b_4}$	$I_{\mathcal{A}} = \{2, 5, 6\}, \ I_{\mathcal{L}} = \{8, 9, 11\},$	$q^3(q-1)^2$ $q^2(q-1)^2$	q^3
$\mathcal{F}_{11,12}$	$\chi^{a_{11},a_{12}}_{b_2,b_6}$	$I_{\mathcal{A}} = \{1, 3, 4, 7\},\$	$q^2(q-1)^2$	q^4
T	<i>a</i> 12. <i>a</i> 12	$I_{\mathcal{L}} = \{5, 8, 9, 10\},\$ $I_{\mathcal{A}} = \{1, 2, 4, 5, 6\},\$	(1)?	5
$F_{12,13}$	$\chi^{a_{12},a_{13}}_{b_3}$		$q(q-1)^2$	q^5
T	a10.013.014	$I_{\mathcal{L}} = \{7, 8, 9, 10, 11\},\$ $I_{\mathcal{A}} = \{1, 5\}, I_{\mathcal{I}} = \{2, 4, 8\},\$	$q(q-1)^3$	q^5
$\mathcal{F}_{13,14}$	$\chi^{a_{10},a_{13},a_{14}}_{b_3}$	$I_{\mathcal{A}} = \{1, 5\}, \ I_{\mathcal{I}} = \{2, 4, 8\}, \ I_{\mathcal{L}} = \{9, 12\}, \ I_{\mathcal{I}} = \{6, 7, 11\}.$	$q(q-1)^{\circ}$	q°
	$\chi^{a_7,a_{13},a_{14}}$	$I_{\mathcal{L}} = \{9, 12\}, \ I_{\mathcal{J}} = \{0, 7, 11\}.$ $I_{\mathcal{A}} = \{1, 4, 5, 8, 11\},$	$(q-1)^3$	q^5
	λ	$I_{\mathcal{A}} = \{1, 4, 6, 0, 11\},\$ $I_{\mathcal{C}} = \{2, 3, 6, 9, 12\},\$	(4 1)	Ч
	$\chi^{a_{13},a_{14}}_{b_3,b_4}$	$\tilde{I}_{\mathcal{A}} = \{1, 5, 8, 11\},\$	$q^2(q-1)^2$	q^4
		$I_{\mathcal{L}} = \{2, 6, 9, 12\},\$,	
$\mathcal{F}_{1,2,7}$	χ^{a_1,a_2,a_7}	$I_{\mathcal{A}} = \{3\}, \ I_{\mathcal{L}} = \{4\},$	$(q-1)^3$	q
$\mathcal{F}_{1,4,6}$	χ^{a_1,a_4,a_6}	$I_{\mathcal{A}} = \{2\}, \ I_{\mathcal{L}} = \{3\},$	$(q-1)^3$	q
$\mathcal{F}_{1,6,7}$	$\chi^{a_1,a_6,a_7}_{b_4}$	$I_{\mathcal{A}} = \{2\}, \ I_{\mathcal{L}} = \{3\},$	$q(q-1)^{3}$	q
$\mathcal{F}_{3,4,5}$	χ^{a_3,a_4,a_5}	$I_{\mathcal{A}} = \{1\}, \ I_{\mathcal{L}} = \{2\},$	$(q-1)^3$	q
$\mathcal{F}_{3,4,8}$	$\chi^{a_3,a_4,a_8}_{b_2}$	$I_{\mathcal{A}} = \{1\}, \ I_{\mathcal{L}} = \{5\},$	$q(q-1)^3$	q
$\mathcal{F}_{4,5,6}$	λ_{h_0}	$I_{\mathcal{A}} = \{1\}, \ I_{\mathcal{L}} = \{2\},$	$q(q-1)^{3}$	q
$\mathcal{F}_{4,6,8}$	χ^{a_4,a_6,a_8}	$I_{\mathcal{A}} = \{1, 3\}, \ I_{\mathcal{L}} = \{2, 5\},$	$(q-1)^3$	q^2
$\mathcal{F}_{4,8,9}$	$\chi^{a_4,a_8,a_9}_{b_2}$	$I_{\mathcal{A}} = \{1, 3\}, \ I_{\mathcal{L}} = \{5, 6\},$	$q(q-1)^3$	q^2
$\mathcal{F}_{5,6,7}$	χ^{a_5, a_6, a_7}	$I_{\mathcal{A}} = \{2, 4\}, \ I_{\mathcal{L}} = \{1, 3\},$	$(q-1)^3$	q^2
$\mathcal{F}_{6,7,8}$	$\chi^{a_6,a_7,a_8}_{b_4}$	$I_{\mathcal{A}} = \{1, 3\}, \ I_{\mathcal{L}} = \{2, 5\},$	$q(q-1)^3$	q^2
$\mathcal{F}_{7,8,9}$	$\chi^{a_7,a_8,a_9}_{b_2,b_4}_{\lambda^{a_8,a_9,a_{10}}}$	$I_{\mathcal{A}} = \{1, 3\}, \ I_{\mathcal{L}} = \{5, 6\},$	$q^2(q-1)^3$	q^2
$\mathcal{F}_{8,9,10}$	$\chi^{a_8,a_9,a_{10}}_{b_4}$	$I_{\mathcal{A}} = \{2, 5, 6\}, \ I_{\mathcal{L}} = \{1, 3, 7\},\$	$q(q-1)^{3}$	q^3

TABLE 5. The parametrization of the irreducible characters of $\text{UB}_4(q)$, where $q = p^e$ and $p \ge 3$.

${\mathcal F}$	χ	Ι	Number	Degree
$\mathcal{F}_{ ext{lin}}$	χ_{b_1,b_2,b_3,b_4}		q^4	1
\mathcal{F}_{5}	χ^{a_5}	$I_{\mathcal{A}} = \{1\}, \ I_{\mathcal{L}} = \{2\},$	q-1	q
\mathcal{F}_{6}	χ^{a_6}	$I_{\mathcal{A}} = \{2\}, \ I_{\mathcal{L}} = \{3\},$	q-1	q
\mathcal{F}_{7}	χ^{a_7}	$I_{\mathcal{A}} = \{3\}, \ I_{\mathcal{L}} = \{4\},$	q-1	q
\mathcal{F}_{8}	$\chi^{a_8}_{b_1}$	$I_{\mathcal{A}} = \{2\}, \ I_{\mathcal{L}} = \{5\},$	q(q-1)	q
\mathcal{F}_{9}	χ_{b_2}	$I_{\mathcal{A}} = \{1, 3\}, \ I_{\mathcal{L}} = \{5, 6\},\$	q(q-1)	q^2
\mathcal{F}_{10}	$\chi^{a_{10}}_{b_3}$ $\chi^{a_{11}}_{t_1}$	$I_{\mathcal{A}} = \{2, 4\}, \ I_{\mathcal{L}} = \{6, 7\},$	q(q-1)	q^2
\mathcal{F}_{11}	1001	$I_{\mathcal{A}} = \{2, 3, 6\}, \ I_{\mathcal{L}} = \{5, 8, 9\},$	q(q-1)	q^3
\mathcal{F}_{12}	$\chi^{a_6,a_{12}}$	$I_{\mathcal{A}} = \{1, 3, 4, 7\},\$	$(q-1)^2$	q^4
		$I_{\mathcal{L}} = \{2, 5, 9, 10\},\$	_	_
	$\chi^{a_{12}}_{b_2,b_3}$	$I_{\mathcal{A}} = \{1, 4, 7\}, \ I_{\mathcal{L}} = \{5, 9, 10\},$	$q^2(q-1)$	q^3
\mathcal{F}_{13}	$\chi_{b_1}^{a_8,a_{13}}$	$I_{\mathcal{A}} = \{2, 3, 6\}, \ I_{\mathcal{L}} = \{5, 9, 11\},\$	$q(q-1)^2$	q^3
	$\chi^{a_{5},a_{13}}$	$I_{\mathcal{A}} = \{2, 3, 6\}, \ I_{\mathcal{L}} = \{1, 9, 11\},\$	$(q-1)^2$	q^3
	$\chi^{a_{13}}_{b_1,b_2}$	$I_{\mathcal{A}} = \{3, 6\}, \ I_{\mathcal{L}} = \{9, 11\},$	$q^2(q-1)$	q^2
\mathcal{F}_{14}	$\chi^{a_9,a_{14}}_{b_3}$	$I_{\mathcal{A}} = \{1, 2, 4, 5, 7\},\$	$q(q-1)^2$	q^5
	-	$I_{\mathcal{L}} = \{6, 8, 10, 11, 12\},\$		
	$\chi^{a_{14}}_{b_1,b_3,b_6}$	$I_{\mathcal{A}} = \{2, 4, 5, 7\},\$	$q^3(q-1)$	q^4
	2. 57 0	$I_{\mathcal{L}} = \{8, 10, 11, 12\},\$		

Parametrization of irreducible characters of U_{C_4}

\mathcal{F} χ I	Number	Degree
$\begin{array}{ c c c c c c } \mathcal{F}_{15} & \chi^{a_8,a_{15}}_{b_1} & I_{\mathcal{A}} = \{2,3,4\} \end{array}$	$\{q, 6, 7, 10\}, \qquad q(q-1)^2$	q^6
$I_{\mathcal{L}} = \{5, 9, 11\}$		0
$\chi^{a_5,a_{15}}$ $I_{\mathcal{A}} = \{2,3,4\}$		q^6
$\begin{array}{c} I_{\mathcal{L}} = \{1, 9, 11\} \\ \chi^{a_{15}}_{b_{1}, b_{2}} & I_{\mathcal{A}} = \{3, 4, 6\} \end{array}$		q^5
$\chi_{b_1, b_2}^{1, 5} \qquad I_{\mathcal{A}} = \{3, 4, 6\} \\ I_{\mathcal{L}} = \{9, 11, 12\} $		4
$\mathcal{F}_{16} \qquad \chi_{b_1}^{a_8,a_{13},a_{16}} \qquad \mathcal{I}_{\mathcal{A}} = \{2,3,4\}$	$q(q-1)^3$	q^6
$I_{\mathcal{L}} = \{5, 9, 11\}$		0
$\chi^{a_5,a_{13},a_{16}} \qquad I_{\mathcal{A}} = \{2,3,4\}$		q^6
$\begin{array}{c} I_{\mathcal{L}} = \{1, 9, 11\} \\ \chi^{a_{13}, a_{16}}_{b_{1}, b_{2}} & I_{\mathcal{A}} = \{3, 4, 6\} \end{array}$		q^5
$\begin{array}{c} \chi_{b_1,b_2}^{a_{13},a_{16}} \\ I_{\mathcal{L}} = \{3,4,6\} \\ I_{\mathcal{L}} = \{9,11,1\} \end{array}$		7
$\chi_{b_1}^{a_{11},a_{16}} \qquad I_{\mathcal{A}} = \{2,3,4\}$	$\{q, 6, 7, 10\},$ $q(q-1)^2$	q^6
$I_{\mathcal{L}} = \{5, 8, 9,\}$		5
$\begin{array}{c c} \chi_{b_3}^{a_8,a_9,a_{16}} & I_{\mathcal{A}} = \{1,4,5\}\\ I_{\mathcal{L}} = \{2,6,12\} \end{array}$		q^5
<i>A</i> ₂ , <i>A</i> ₁ <i>e x (</i> ₂ , <i>t</i> =		q^4
$I_{\mathcal{L}} = \{5, 12, 12\}$		7
$\chi_{b_2}^{a_9,a_{16}} \qquad I_{\mathcal{A}} = \{1,3,4\}$	$q(q-1)^2$	q^5
$I_{\mathcal{L}} = \{5, 6, 12\}$		4
$\begin{array}{c} \chi_{b_1,b_5}^{a_6,a_{16}} & I_{\mathcal{A}} = \{2,4,7\}\\ I_{\mathcal{L}} = \{3,12,1\} \end{array}$		q^4
$\chi_{b_3}^{a_5,a_{16}} \qquad \begin{array}{c} I_{\mathcal{L}} = \{3,12,13,12,13,13,13,13,13,13,13,13,13,13,13,13,13,$		q^4
$I_{\mathcal{L}} = \{1, 12, 12\}$		1
	$0\}, \ I_{\mathcal{L}} = \{12, 14, 15\}, \ q^3(q-1)$	q^3
$\mathcal{F}_{1,6}$ χ^{a_1,a_6} $I_{\mathcal{A}} = \{2\}, I$		q
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{q}{q^2}$
$\begin{array}{c c} \mathcal{F}_{1,10} & \chi_{b_3}^{a_1,a_{10}} & I_{\mathcal{A}} = \{2,4\}, \\ \hline \mathcal{F}_{2,7} & \chi^{a_2,a_7} & I_{\mathcal{A}} = \{3\}, \end{array}$		q q
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{q}{q}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$I_{\mathcal{L}} = \{5\}, \qquad q(q-1)^2$	q
$\mathcal{F}_{4,5}$ χ^{a_4,a_5} $I_{\mathcal{A}} = \{1\}, I$		q
$\begin{array}{c c} \mathcal{F}_{4,6} & \chi^{a_4,a_6} & I_{\mathcal{A}} = \{2\}, & I_{\mathcal{A}} = \{$	$I_{\mathcal{L}} = \{3\}, \qquad (q-1)^2$	q
$\mathcal{F}_{4,8} = \chi_{b_1} = I_{\mathcal{A}} - \{2\}, I_{\mathcal{A}} = \{2\}, I_{$		$\frac{q}{q^2}$
	$\begin{aligned} I_{\mathcal{L}} &= \{5, 6\}, & q(q-1)^2\\ \delta_{\mathcal{I}}, & I_{\mathcal{L}} &= \{5, 8, 9\}, & q(q-1)^2 \end{aligned}$	q^3
$\begin{array}{c c} \mathcal{F}_{4,11} & \chi_{b_1}^{a_4,a_{11}} & I_{\mathcal{A}} = \{2,3,6\} \\ \hline \mathcal{F}_{4,13} & \chi_{b_1}^{a_4,a_8,a_{13}} & I_{\mathcal{A}} = \{2,3,6\} \\ \end{array}$	$\begin{array}{c} I_{\mathcal{L}} = \{5, 9, 11\}, \\ I_{\mathcal{L}} = \{5, 9, 11\}, \\ \end{array} \qquad \begin{array}{c} q(q-1)^3 \\ q(q-1)^3 \end{array}$	q^3
$\chi^{a_4,a_5,a_{13}}$ $I_{\mathcal{A}} = \{2,3,6\}$	$\{S\}, I_{\mathcal{L}} = \{1, 9, 11\}, (q-1)^3$	q^3
$\chi^{a_4,a_{13}}_{b_1,b_2} \qquad I_{\mathcal{A}} = \{3,6\},$	$I_{\mathcal{L}} = \{9, 11\}, \qquad q^2(q-1)^2$	q^2
$\mathcal{F}_{5,6} \qquad \chi_{b_3}^{a_5,a_6} \qquad I_{\mathcal{A}} = \{1\}, \ I_{\mathcal{A}} = \{1$		q
	$I_{\mathcal{L}} = \{1, 3\}, \qquad (q-1)^2$	$\frac{q^2}{q^2}$
$\mathcal{F}_{5,10}$ χ_{b_1,b_3} $I_{\mathcal{A}} = \{2,4\},$	$I_{\mathcal{L}} = \{6,7\}, \qquad q^2(q-1)^2$ $I_{\mathcal{L}} = \{3\}, \qquad q(q-1)^2$	
		q q
	$\frac{1}{I_{\mathcal{L}} = \{3, 5\}}, \qquad \qquad q(q-1)^2$	q^2
$\begin{array}{ccc} \mathcal{F}_{7,9} & \chi^{a_7,a_9}_{b_2,b_4} & I_{\mathcal{A}} = \{1,3\}, \end{array}$	$I_{\mathcal{L}} = \{5, 6\}, \qquad \qquad q^2(q-1)^2$	
$\mathcal{F}_{7,11} \qquad \chi_{b_1,b_4}^{a_{7,3}} \qquad I_{\mathcal{A}} = \{2,3,6\}$	$\{5\}, I_{\mathcal{L}} = \{5, 8, 9\}, \qquad q^2(q-1)^2$	
$\mathcal{F}_{7,13} \qquad \chi^{a_7,a_8,a_{13}}_{b_1,b_4} \qquad I_{\mathcal{A}} = \{2,3,6\}$	$\{5\}, I_{\mathcal{L}} = \{5, 9, 11\}, \qquad q^2(q-1)^3$	q^3
-04	$\{J_{\mathcal{L}} = \{1, 9, 11\}, \qquad q(q-1)^3$	q^3
	$I_{\mathcal{L}} = \{9, 11\}, \qquad q^3(q-1)^2$	q^2
	$I_{\mathcal{L}} = \{2, 6\}, \qquad q(q-1)^2$ $I_{\mathcal{L}} = \{5, 6\}, \qquad q^3(q-1)^2$	$\frac{q^2}{q^2}$
$\begin{array}{c c} \mathcal{F}_{8,10} & \chi^{a_{8},a_{10}}_{b_{1},b_{3},b_{7}} & I_{\mathcal{A}} = \{2,4\}, \\ \mathcal{F}_{8,12} & \chi^{a_{6},a_{8},a_{12}} & I_{\mathcal{A}} = \{1,3,4\} \end{array}$		q^2 q^4
$\begin{bmatrix} \mathbf{y} \mathbf{g}, 12 \\ \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \mathbf{z} \\ I_{\mathcal{L}} = \{2, 7, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,$		Ч
<i>do d t o</i>	$ \begin{array}{ll} I_{\mathcal{L}} = \{7, 9, 10\}, & q^2(q-1)^2 \\ I_{\mathcal{L}} = \{1, 5, 7\}, & q(q-1)^2 \end{array} $	q^3
	$\{5\}, I_{\mathcal{L}} = \{1, 5, 7\}, \qquad q(q-1)^2$	q^3
$\mathcal{F}_{10,11} \chi^{a_{10},a_{11}}_{b_1,b_4,b_7} \qquad I_{\mathcal{A}} = \{2,3,6\}$	$\frac{1}{6}, I_{\mathcal{L}} = \{5, 8, 9\}, \qquad q^3(q-1)^2$	q^3

${\mathcal F}$	χ	Ι	Number	Degree
$\mathcal{F}_{10,13}$	$\chi^{a_{10},a_{13}}_{b_1,b_4,b_5,b_8}$	$I_{\mathcal{A}} = \{2, 3, 6\}, \ I_{\mathcal{L}} = \{7, 9, 11\},$	$q^4(q-1)^2$	q^3
$F_{11,12}$	$\chi^{a_{11},a_{12}}_{b_4,b_7}$	$I_{\mathcal{A}} = \{1, 3, 5, 9\},\$	$q^2(q-1)^2$	q^4
		$I_{\mathcal{L}} = \{2, 6, 8, 10\},\$		
$\mathcal{F}_{12,13}$	$\chi^{a_{12},a_{13}}_{b_2,b_4,b_8}$	$I_{\mathcal{A}} = \{1, 3, 5, 9\},\$	$q^3(q-1)^2$	q^4
		$I_{\mathcal{L}} = \{6, 7, 10, 11\},\$		_
$\mathcal{F}_{13,14}$	$\chi^{a_{13},a_{14}}_{b_1,b_4}$	$I_{\mathcal{A}} = \{2, 5, 6, 8, 11\},\$	$q^2(q-1)^2$	q^5
		$I_{\mathcal{L}} = \{3, 7, 9, 10, 12\},\$		
$\mathcal{F}_{1,2,7}$	χ^{a_1,a_2,a_7}	$I_{\mathcal{A}} = \{3\}, \ I_{\mathcal{L}} = \{4\},$	$(q-1)^3$	q
$\mathcal{F}_{1,4,6}$	χ^{a_1,a_4,a_6}	$I_{\mathcal{A}} = \{2\}, \ I_{\mathcal{L}} = \{3\},$	$(q-1)^3$	q
$\mathcal{F}_{1,6,7}$	$\chi^{a_1,a_6,a_7}_{b_4}$	$I_{\mathcal{A}} = \{2\}, \ I_{\mathcal{L}} = \{3\},$	$q(q-1)^{3}$	q
$\mathcal{F}_{3,4,5}$	χ^{a_3,a_4,a_5}	$I_{\mathcal{A}} = \{1\}, \ I_{\mathcal{L}} = \{2\},$	$(q-1)^3$	q
$\mathcal{F}_{3,4,8}$	$\chi^{a_3,a_4,a_8}_{b_1}$	$I_{\mathcal{A}} = \{2\}, \ I_{\mathcal{L}} = \{5\},$	$q(q-1)^3$	q
$\mathcal{F}_{4,5,6}$	$\frac{\chi_{b_1}^{a_3,a_4,a_8}}{\chi_{b_3}^{a_4,a_5,a_6}}$	$I_{\mathcal{A}} = \{1\}, \ I_{\mathcal{L}} = \{2\},$	$q(q-1)^3$	q
$\mathcal{F}_{4,6,8}$	$\chi^{a_4,a_6,a_8}_{b_1,b_3}$	$I_{\mathcal{A}} = \{2\}, \ I_{\mathcal{L}} = \{5\},$	$q^2(q-1)^3$	q
$\mathcal{F}_{4,8,9}$	χ_{b_2}	$I_{\mathcal{A}} = \{1, 5\}, \ I_{\mathcal{L}} = \{2, 6\},$	$q(q-1)^3$	q^2
$\mathcal{F}_{5,6,7}$	χ^{a_5,a_6,a_7}	$I_{\mathcal{A}} = \{2, 4\}, \ I_{\mathcal{L}} = \{1, 3\},$	$(q-1)^3$	q^2
$\mathcal{F}_{6,7,8}$	$\chi^{a_6,a_7,a_8}_{b_1}$	$I_{\mathcal{A}} = \{2, 4\}, \ I_{\mathcal{L}} = \{3, 5\},$	$q(q-1)^3$	q^2
$F_{7,8,9}$	χ^{a_7,a_8,a_9}	$I_{\mathcal{A}} = \{1, 4, 5\}, \ I_{\mathcal{L}} = \{2, 3, 6\},$	$(q-1)^3$	q^3
$F_{8,9,10}$	$\chi^{a_8,a_9,a_{10}}_{b_4}$	$I_{\mathcal{A}} = \{2, 3, 6\}, \ I_{\mathcal{L}} = \{1, 5, 7\},$	$q(q-1)^3$	q^3

TABLE 6. The parametrization of the irreducible characters of $UC_4(q)$, where $q = p^e$ and $p \ge 3$.

\mathcal{F}	X	Ι	Number	Degree
\mathcal{F}_{lin}	χ_{b_1,b_2,b_3,b_4}		a^4	1
\mathcal{F}_5	χ^{a_5}	$I_{\mathcal{A}} = \{1\}, \ I_{\mathcal{L}} = \{2\},$	$\frac{q}{q-1}$	q^1
\mathcal{F}_6	χ^{a_6}	$I_{\mathcal{A}} = \{2\}, \ I_{\mathcal{L}} = \{3\},$	q - 1	q^1
\mathcal{F}_{7}	χ^{a_7}	$I_{\mathcal{A}} = \{3\}, \ I_{\mathcal{L}} = \{4\},$	q - 1	q^1
\mathcal{F}_{8}	$\chi^{a_8}_{b_2}$	$I_{\mathcal{A}} = \{1, 3\}, \ I_{\mathcal{L}} = \{5, 6\},$	q(q-1)	q^2
\mathcal{F}_{9}	$\chi^{a_{9}}_{b_{2}}$	$I_{\mathcal{A}} = \{3\}, \ I_{\mathcal{L}} = \{6\},$	q(q-1)	q^1
\mathcal{F}_{10}	$\chi^{a_{10}}_{b_2}$	$I_{\mathcal{A}} = \{2, 4\}, \ I_{\mathcal{L}} = \{6, 7\},$	q(q-1)	q^2
\mathcal{F}_{11}	$\chi^{a_{11}}_{b_2,b_5,b_6}$	$I_{\mathcal{A}} = \{1, 3\}, \ I_{\mathcal{L}} = \{8, 9\},$	$q^3(q-1)$	q^2
\mathcal{F}_{12}	$\chi^{a_6,a_{12}}$	$I_{\mathcal{A}} = \{1, 3, 4, 7\},\$	$(q-1)^2$	q^4
		$I_{\mathcal{L}} = \{2, 5, 8, 10\},\$	0	
	$\chi^{a_{12}}_{b_2,b_3}$	$I_{\mathcal{A}} = \{1, 4, 7\}, \ I_{\mathcal{L}} = \{5, 8, 10\},$	$q^2(q-1)$	q^3
\mathcal{F}_{13}	χ_{b_2}	$I_{\mathcal{A}} = \{3, 4, 7\}, \ I_{\mathcal{L}} = \{6, 9, 10\},$	q(q-1)	q^3
\mathcal{F}_{14}	$\chi^{a_{14}}_{b_1,b_3}$	$I_{\mathcal{A}} = \{2, 5, 6\}, \ I_{\mathcal{L}} = \{8, 9, 11\},\$	$q^2(q-1)$	q^3
\mathcal{F}_{15}	$\chi^{a_{15}}_{b_2,b_5,b_6,b_9,b_{10}}$	$I_{\mathcal{A}} = \{1, 3, 4, 7\},\$	$q^5(q-1)$	q^4
	a_{9},a_{16}	$I_{\mathcal{L}} = \{8, 11, 12, 13\},\$		
\mathcal{F}_{16}	χ_{b2}	$I_{\mathcal{A}} = \{3, 4, 7\}, \ I_{\mathcal{L}} = \{6, 10, 13\},\$	$q(q-1)^2$	q^3
	$\chi^{a_6,a_{16}}_{a_{16}}$	$I_{\mathcal{A}} = \{3, 4, 7\}, \ I_{\mathcal{L}} = \{2, 10, 13\}, \ I_{\mathcal{L}} = \{1, 10, 13\}, \ I_{\mathcal{L}} = \{1, 10, 13\}, \ I_{\mathcal{L}} = \{1, 10, 10\}, \ I_{\mathcal{L}} = \{1, 10,$	$(q-1)^2$	q_2^3
_	$\frac{\chi^{a_{16}}_{b_2,b_3}}{\chi^{a_{111},a_{17}}}$	$I_{\mathcal{A}} = \{4,7\}, \ I_{\mathcal{L}} = \{10,13\},$	$q^2(q-1)$	q^2
\mathcal{F}_{17}	$\chi^{a_{11},a_{17}}_{b_3,b_7}$	$I_{\mathcal{A}} = \{1, 2, 4, 5, 6, 8\},$	$q^2(q-1)^2$	q^6
	a ₁₇	$I_{\mathcal{L}} = \{9, 10, 12, 13, 14, 15\},\$	4(1)	q^5
	$\chi^{a_{17}}_{b_1,b_3,b_7,b_9}$	$I_{\mathcal{A}} = \{2, 4, 5, 6, 8\},$	$q^4(q-1)$	q°
\mathcal{F}_{18}	× ^a 11,a ₁₈	$I_{\mathcal{L}} = \{10, 12, 13, 14, 15\},\$ $I_{\mathcal{A}} = \{1, 3, 4, 7\},\$	$q^6(q-1)^2$	q^4
J 18	$\chi_{b_2,b_5,b_6,b_9,b_{10},b_{13}}$	$I_{\mathcal{A}} = \{1, 3, 4, 7\},\$ $I_{\mathcal{L}} = \{8, 12, 15, 16\},$	q (q-1)	^{<i>Y</i>}
	$\chi^{a_{13},a_{18}}_{b_2,b_5,b_6,b_8,b_9}$	$I_{\mathcal{L}} = \{0, 12, 13, 10\},\$ $I_{\mathcal{A}} = \{1, 3, 4, 7\},$	$q^5(q-1)^2$	q^4
	$^{h}b_2, b_5, b_6, b_8, b_9$	$I_{\mathcal{A}} = \{1, 0, 12, 15, 16\},\$		А
	$\chi^{a_8,a_{18}}_{b_2,b_6,b_9,b_{10}}$	$I_{\mathcal{A}} = \{1, 3, 4, 7\},\$	$q^4(q-1)^2$	q^4
	02,06,09,010	$I_{\mathcal{L}} = \{5, 12, 15, 16\},\$	- \ - /	1

Parametrization of irreducible characters of U_{F_4}

${\cal F}$	χ	Ι	Number	Degree
	$\chi^{a_9,a_{18}}_{b_2,b_5,b_{10}}$	$I_{\mathcal{A}} = \{1, 3, 4, 7\},\$	$q^3(q-1)^2$	q^4
	$x^{a_6,a_{18}}$	$I_{\mathcal{L}} = \{6, 12, 15, 16\}, \\ I_{\mathcal{A}} = \{1, 3, 4, 7\},$	$q^2(q-1)^2$	q^4
	$\chi^{a_6,a_{18}}_{b_5,b_{10}}$	$I_{\mathcal{A}} = \{1, 3, 4, 7\},\$ $I_{\mathcal{C}} = \{2, 12, 15, 16\},\$	q $(q-1)$	q
	$\chi^{a_{18}}_{b_2,b_3,b_5,b_{10}}$	$\widetilde{I}_{\mathcal{A}} = \{1, 4, 7\}, \ I_{\mathcal{L}} = \{12, 15, 16\},$	$\frac{q^4(q-1)}{q(q-1)^2}$	q^3
\mathcal{F}_{19}	$\chi^{a_5,a_{19}}_{b_4}$	$I_{\mathcal{A}} = \{2, 3, 6, 7, 8, 9, 10\},\$	$q(q-1)^2$	q^7
	$\lambda^{a_{19}}$	$I_{\mathcal{L}} = \{1, 11, 12, 13, 14, 15, 17\}, \\ I_{\mathcal{A}} = \{3, 6, 7, 8, 9, 10\},$	$q^3(q-1)$	q^6
	χ_{b_1,b_2,b_4}	$I_{\mathcal{L}} = \{1, 12, 13, 14, 15, 17\},\$	q (q-1)	4
\mathcal{F}_{20}	$\chi^{a_9,a_{14},a_{15},a_{20}}_{b_{11}}$	$I_{\mathcal{A}} = \{1, 2, 3, 4, 5, 8, 12\},\$	$q(q-1)^4$	q^7
	a_{14}, a_{15}, a_{20}	$I_{\mathcal{L}} = \{6, 7, 10, 13, 16, 17, 18\},\$	$q^3(q-1)^3$	q^6
	$\chi_{b_3,b_6,b_{11}}^{11,110,20}$	$I_{\mathcal{A}} = \{1, 2, 4, 5, 8, 12\},$ $I_{\mathcal{L}} = \{7, 10, 13, 16, 17, 18\},$	$q^{*}(q-1)^{*}$	q^{+}
	$\chi^{a_{11},a_{13},a_{14},a_{20}}$	$I_{\mathcal{A}} = \{1, 2, 3, 4, 5, 6, 10\},\$	$(q-1)^4$	q^7
	a_{13}, a_{14}, a_{20}	$I_{\mathcal{L}} = \{7, 8, 9, 12, 16, 17, 18\},\$	$q^4(q-1)^3$	~5
	$\chi^{-13,-14,-20}_{b_1,b_3,b_8,b_9}$	$I_{\mathcal{A}} = \{2, 4, 5, 6, 10\}, \\ I_{\mathcal{L}} = \{7, 12, 16, 17, 18\}, $	$q^{2}(q-1)^{3}$	q^5
	$\chi^{a_{11},a_{14},a_{20}}_{b_3,b_7}$	$I_{\mathcal{A}} = \{1, 2, 4, 5, 8, 10\},\$	$q^2(q-1)^3$	q^6
	a_{14}, a_{20}	$I_{\mathcal{L}} = \{6, 9, 12, 16, 17, 18\},\$	4	5
	$\chi^{a_{14},a_{20}}_{b_1,b_3,b_7,b_9}$	$I_{\mathcal{A}} = \{2, 4, 5, 6, 10\}, \\ I_{\mathcal{L}} = \{8, 12, 16, 17, 18\}, $	$q^4(q-1)^2$	q^5
	$\chi^{a_9,a_{15},a_{20}}_{b_{11}}$	$I_{\mathcal{L}} = \{0, 12, 10, 11, 10\},\$ $I_{\mathcal{A}} = \{1, 2, 3, 4, 5, 8, 12\},\$	$q(q-1)^{3}$	q^7
		$I_{\mathcal{L}} = \{6, 7, 10, 13, 16, 17, 18\},\$		
	$\chi^{a_{15},a_{20}}_{b_3,b_6,b_{11}}$	$I_{\mathcal{A}} = \{1, 2, 4, 5, 8, 12\},$	$q^3(q-1)^2$	q^6
	$\chi^{a_{11},a_{13},a_{20}}$	$I_{\mathcal{L}} = \{7, 10, 13, 16, 17, 18\}, \\ I_{\mathcal{A}} = \{1, 2, 3, 4, 5, 6, 10\},$	$(q-1)^3$	q^7
	~	$I_{\mathcal{L}} = \{7, 8, 9, 12, 16, 17, 18\},\$	(- <i>)</i>	
	$\chi^{a_{13},a_{20}}_{b_1,b_3,b_8,b_9}$	$I_{\mathcal{A}} = \{2, 4, 5, 6, 10\},$	$q^4(q-1)^2$	q^5
	$\chi^{a_{11},a_{20}}_{b_6,b_7}$	$I_{\mathcal{L}} = \{7, 12, 16, 17, 18\}, \\ I_{\mathcal{A}} = \{1, 2, 3, 4, 5, 10\},$	$q^2(q-1)^2$	q^6
		$I_{\mathcal{L}} = \{8, 9, 12, 16, 17, 18\},\$,	1
	$\chi^{a_9,a_{20}}_{b_1,b_7,b_8}$	$I_{\mathcal{A}} = \{2, 4, 5, 6, 10\},$	$q^3(q-1)^2$	q^5
	$v_{1}^{a_{8},a_{20}}$	$I_{\mathcal{L}} = \{3, 12, 16, 17, 18\}, \\ I_{\mathcal{A}} = \{1, 2, 4, 5, 10\},$	$q^2(q-1)^2$	q^5
	$\chi^{u_{8},u_{20}}_{b_{3},b_{7}}$	$I_{\mathcal{L}} = \{6, 12, 16, 17, 18\},\$,	1
	$\chi^{a_{20}}_{b_1,b_3,b_6,b_7}$	$I_{\mathcal{A}} = \{2, 4, 5, 10\},\$	$q^4(q-1)$	q^4
\mathcal{F}_{21}	$\chi^{a_{14},a_{21}}_{b_1}$	$I_{\mathcal{L}} = \{12, 16, 17, 18\},\$ $I_{\mathcal{A}} = \{2, 3, 4, 5, 6, 7, 8, 10, 13\},\$	$q(q-1)^2$	<i>q</i> ⁹
5 21	x_{b_1}	$I_{\mathcal{L}} = \{2, 3, 4, 5, 6, 7, 8, 10, 13\},\$ $I_{\mathcal{L}} = \{9, 11, 12, 15, 16, 17, 18, 19, 20\},\$	q(q-1)	q
	$\chi^{a_{11},a_{21}}_{b_2,b_5}$	$I_{\mathcal{A}} = \{1, 3, 4, 6, 7, 8, 10, 13\},\$	$q^2(q-1)^2$	q^8
	a_{5}, a_{21}	$I_{\mathcal{L}} = \{9, 12, 15, 16, 17, 18, 19, 20\},\$	$q(q-1)^2$	~8
	χ_{b_9}	$I_{\mathcal{A}} = \{2, 3, 4, 6, 7, 8, 10, 13\},$ $I_{\mathcal{L}} = \{1, 12, 15, 16, 17, 18, 19, 20\},$	$q(q-1)^{-}$	q^8
	$\chi^{a_{21}}_{b_1,b_2,b_9}$	$I_{\mathcal{A}} = \{3, 4, 6, 7, 8, 10, 13\},\$	$q^3(q-1)$	q^7
T		$I_{\mathcal{L}} = \{12, 15, 16, 17, 18, 19, 20\},\$	(1)3	- a
\mathcal{F}_{22}	$\chi^{a_{14},a_{20},a_{22}}_{b_1}$	$I_{\mathcal{A}} = \{3, 4, 6, 7, 10, 13\}, I_{\mathcal{I}} = \{2, 9, 16\}.$ $I_{\mathcal{L}} = \{8, 12, 15, 17, 19, 21\}, I_{\mathcal{I}} = \{5, 11, 18\},$	$q(q-1)^3$	q^9
	$\chi^{a_8,a_{20},a_{22}}_{b_2,b_5}$	$I_{\mathcal{L}} = \{0, 12, 13, 17, 13, 21\}, I_{\mathcal{J}} = \{0, 11, 15\}, I_{\mathcal{J}} = \{1, 3, 4, 7, 10, 13, 16, 18\},$	$q^2(q-1)^3$	q^8
	<i>ar and an</i>	$I_{\mathcal{L}} = \{6, 9, 11, 12, 15, 17, 19, 21\},\$	() 2	0
	$\chi_{b_6}^{a_5,a_{20},a_{22}}$	$I_{\mathcal{A}} = \{2, 3, 4, 7, 10, 13, 16, 18\}, \\I_{\mathcal{L}} = \{1, 9, 11, 12, 15, 17, 19, 21\},$	$q(q-1)^3$	q^8
	$\chi^{a_{20},a_{22}}_{b_1,b_2,b_6}$	$I_{\mathcal{L}} = \{1, 9, 11, 12, 13, 17, 19, 21\}, \\ I_{\mathcal{A}} = \{3, 4, 7, 10, 13, 16, 18\},$	$q^3(q-1)^2$	q^7
		$I_{\mathcal{L}} = \{9, 11, 12, 15, 17, 19, 21\},\$		
	$\chi^{a_{17},a_{22}}_{b_1}$	$I_{\mathcal{A}} = \{2, 3, 4, 6, 7, 9, 10, 11, 13\},$	$q(q-1)^2$	q^9
	$\chi^{a_{12},a_{14},a_{22}}_{b_{2},b_$	$I_{\mathcal{L}} = \{5, 8, 12, 14, 15, 16, 18, 19, 21\}, \\I_{\mathcal{A}} = \{1, 3, 7, 8, 9, 11, 13\},$	$q^3(q-1)^3$	q^7
	$\chi_{b_2,b_4,b_5}^{-12,-14,-22}$	$I_{\mathcal{L}} = \{6, 10, 15, 16, 18, 19, 21\},\$	/	1
	$\chi^{a_5,a_{14},a_{22}}_{b_4,b_{10}}$	$I_{\mathcal{A}} = \{2, 3, 6, 7, 9, 11, 13\},$	$q^2(q-1)^3$	q^7
		$I_{\mathcal{L}} = \{1, 8, 15, 16, 18, 19, 21\},\$		

${\cal F}$	χ	Ι	Number	Degree
	$\chi^{a_{14},a_{22}}_{b_1,b_2,b_4,b_{10}}$	$I_{\mathcal{A}} = \{3, 6, 7, 9, 11, 13\},\$	$q^4(q-1)^2$	q^6
	a_{12}, a_{22}	$I_{\mathcal{L}} = \{8, 15, 16, 18, 19, 21\},\$	3(1)2	7
	$\chi^{a_{12},a_{22}}_{b_2,b_5,b_6}$	$I_{\mathcal{A}} = \{1, 3, 4, 7, 9, 11, 13\},\$ $I_{\mathcal{L}} = \{8, 10, 15, 16, 18, 19, 21\},\$	$q^3(q-1)^2$	q^7
	$\chi^{a_5,a_{10},a_{22}}_{b_8}$	$I_{\mathcal{L}} = \{0, 10, 10, 10, 10, 10, 10, 21\},\$ $I_{\mathcal{A}} = \{2, 3, 6, 7, 9, 11, 13\},\$	$q(q-1)^{3}$	q^7
		$I_{\mathcal{L}} = \{1, 4, 15, 16, 18, 19, 21\},\$		-
	$\chi^{a_{10},a_{22}}_{b_1,b_2,b_8}$	$I_{\mathcal{A}} = \{3, 6, 7, 9, 11, 13\},\$	$q^3(q-1)^2$	q^6
	a_{8}, a_{22}	$I_{\mathcal{L}} = \{4, 15, 16, 18, 19, 21\},\$	$q^3(q-1)^2$	q^6
	χ_{b_2,b_4,b_5}	$I_{\mathcal{A}} = \{1, 3, 7, 9, 11, 13\}, \\I_{\mathcal{L}} = \{6, 15, 16, 18, 19, 21\},$	q (q-1)	q
	$\chi^{a_5,a_{22}}_{b_4,b_6}$	$I_{\mathcal{A}} = \{2, 3, 7, 9, 11, 13\},\$	$q^2(q-1)^2$	q^6
		$I_{\mathcal{L}} = \{1, 15, 16, 18, 19, 21\},\$	4	-
	$\chi^{a_{22}}_{b_1,b_2,b_4,b_6}$	$I_{\mathcal{A}} = \{3, 7, 9, 11, 13\},$	$q^4(q-1)$	q^5
\mathcal{F}_{23}	$v^{a_{11},a_{18},a_{23}}$	$I_{\mathcal{L}} = \{15, 16, 18, 19, 21\},\$ $I_{\mathcal{A}} = \{2, 3, 4, 6, 7, 9, 10, 13, 16\},\$	$q^2(q-1)^3$	<i>q</i> ⁹
5 23	$\chi^{a_{11},a_{18},a_{23}}_{b_1,b_5}$	$I_{\mathcal{L}} = \{2, 3, 4, 0, 7, 3, 10, 13, 10\},\$ $I_{\mathcal{L}} = \{8, 12, 14, 15, 17, 19, 20, 21, 22\},\$	q (q-1)	q
	$\chi^{a_8,a_{18},a_{23}}_{b_1}$	$I_{\mathcal{A}} = \{2, 3, 4, 6, 7, 9, 10, 13, 16\},\$	$q(q-1)^3$	q^9
		$I_{\mathcal{L}} = \{5, 12, 14, 15, 17, 19, 20, 21, 22\},\$		0
	$\chi^{a_{18},a_{23}}_{b_1,b_3,b_5}$	$I_{\mathcal{A}} = \{2, 4, 6, 7, 9, 10, 13, 16\},$	$q^3(q-1)^2$	q^8
	$v_{a_{15},a_{23}}^{a_{15},a_{23}}$	$I_{\mathcal{L}} = \{12, 14, 15, 17, 19, 20, 21, 22\}, \\I_{\mathcal{A}} = \{2, 3, 4, 6, 7, 9, 10, 13, 16\},$	$q^2(q-1)^2$	q^9
	$\chi^{a_{15},a_{23}}_{b_1,b_5}$	$I_{\mathcal{L}} = \{2, 3, 4, 0, 7, 3, 10, 13, 10\},\$ $I_{\mathcal{L}} = \{8, 11, 12, 14, 17, 19, 20, 21, 22\},\$	A (A +)	ч
	$\chi^{a_{11},a_{12},a_{23}}_{b_1,b_4}$	$I_{\mathcal{A}} = \{2, 5, 6, 8, 9, 10, 13, 16\},\$	$q^2(q-1)^3$	q^8
	<i>a</i> ₁₁ <i>,a</i> ₂₃	$I_{\mathcal{L}} = \{3, 7, 14, 17, 19, 20, 21, 22\},\$	4	7
	$\chi^{-11,-23}_{b_1,b_4,b_5,b_7}$	$I_{\mathcal{A}} = \{2, 3, 6, 9, 10, 13, 16\}, \\I_{\mathcal{L}} = \{8, 14, 17, 19, 20, 21, 22\},$	$q^4(q-1)^2$	q^7
	$\chi^{a_{12},a_{23}}_{b_1,b_3}$	$I_{\mathcal{L}} = \{3, 14, 17, 19, 20, 21, 22\}, \\ I_{\mathcal{A}} = \{2, 4, 6, 7, 9, 10, 13, 16\},$	$q^2(q-1)^2$	q^8
		$I_{\mathcal{L}} = \{5, 8, 14, 17, 19, 20, 21, 22\},\$		-
	$\chi^{a_8,a_{23}}_{b_1,b_4,b_7}$	$I_{\mathcal{A}} = \{2, 3, 6, 9, 10, 13, 16\},\$	$q^3(q-1)^2$	q^7
	a_{7}, a_{23}	$I_{\mathcal{L}} = \{5, 14, 17, 19, 20, 21, 22\}, \\ I_{\mathcal{A}} = \{2, 4, 6, 9, 10, 13, 16\},$	$q^2(q-1)^2$	q^7
	χ_{b_1, b_5}	$I_{\mathcal{A}} = \{2, 4, 0, 5, 10, 13, 10\}, I_{\mathcal{L}} = \{3, 14, 17, 19, 20, 21, 22\},$	q (q-1)	q
	$\chi^{a_{23}}_{b_1,b_3,b_4,b_5}$	$I_{\mathcal{A}} = \{2, 6, 9, 10, 13, 16\},\$	$q^4(q-1)$	q^6
		$I_{\mathcal{L}} = \{14, 17, 19, 20, 21, 22\},\$		10
\mathcal{F}_{24}	$\chi^{a_9,a_{16},a_{24}}_{b_2}$	$I_{\mathcal{A}} = \{1, 3, 4, 5, 7, 8, 11, 12, 14, 15\},\$	$q(q-1)^{3}$	q^{10}
	$x^{a_6,a_{16},a_{24}}$	$I_{\mathcal{L}} = \{6, 10, 13, 17, 18, 19, 20, 21, 22, 23\}, \\I_{\mathcal{A}} = \{1, 3, 4, 5, 7, 8, 11, 12, 14, 15\},$	$(q-1)^3$	q^{10}
	~	$I_{\mathcal{L}} = \{2, 10, 13, 17, 18, 19, 20, 21, 22, 23\},\$		-
	$\chi^{a_{16},a_{24}}_{b_2,b_3}$	$I_{\mathcal{A}} = \{1, 4, 5, 7, 8, 11, 12, 14, 15\},\$	$q^2(q-1)^2$	q^9
		$I_{\mathcal{L}} = \{10, 13, 17, 18, 19, 20, 21, 22, 23\}, \\I_{\mathcal{A}} = \{1, 3, 4, 5, 7, 8, 11, 12, 14, 15\},$	$q(q-1)^2$	q^{10}
	$\chi_{b_2}^{a_{13},a_{24}}$	$I_{\mathcal{A}} = \{1, 5, 4, 5, 7, 8, 11, 12, 14, 15\},\$ $I_{\mathcal{L}} = \{6, 9, 10, 17, 18, 19, 20, 21, 22, 23\},\$	q(q-1)	Ч
	$\chi^{a_{10},a_{24}}_{b_3,b_9}$	$I_{\mathcal{A}} = \{1, 2, 5, 6, 8, 11, 12, 14, 15\},\$	$q^2(q-1)^2$	q^9
		$I_{\mathcal{L}} = \{4, 7, 17, 18, 19, 20, 21, 22, 23\},\$		0
	$\chi^{a_9,a_{24}}_{b_2,b_4,b_7}$	$I_{\mathcal{A}} = \{1, 3, 5, 8, 11, 12, 14, 15\},\$	$q^3(q-1)^2$	q^8
	$\chi_{1}^{a_{6},a_{24}}$	$I_{\mathcal{L}} = \{6, 17, 18, 19, 20, 21, 22, 23\}, \\I_{\mathcal{A}} = \{1, 3, 5, 8, 11, 12, 14, 15\},$	$q^2(q-1)^2$	q^8
	$\chi^{a_{6},a_{24}}_{b_{4},b_{7}}$	$I_{\mathcal{L}} = \{2, 17, 18, 19, 20, 21, 22, 23\},\$	1 (1 -)	7
	$\chi^{a_7,a_{24}}_{b_2}$	$I_{\mathcal{A}} = \{1, 4, 5, 8, 11, 12, 14, 15\},\$	$q(q-1)^2$	q^8
	a.24	$I_{\mathcal{L}} = \{3, 17, 18, 19, 20, 21, 22, 23\},\$	3(1)	7
	χ_{b_2,b_3,b_4}^{-24}	$I_{\mathcal{A}} = \{1, 5, 8, 11, 12, 14, 15\}, \\I_{\mathcal{L}} = \{17, 18, 19, 20, 21, 22, 23\},$	$q^3(q-1)$	q^7
$\mathcal{F}_{1,6}$	χ^{a_1,a_6}	$I_{\mathcal{L}} = \{11, 10, 13, 20, 21, 22, 23\},\$ $I_{\mathcal{A}} = \{2\}, I_{\mathcal{L}} = \{3\},\$	$(q-1)^2$	q^1
$\mathcal{F}_{1,7}$	χ^{a_1,a_7}	$I_{\mathcal{A}} = \{3\}, I_{\mathcal{L}} = \{4\},$	$(q-1)^2$	q^1
$\mathcal{F}_{1,9}$	$\chi^{a_1,a_9}_{b_2}$	$I_{\mathcal{A}} = \{3\}, \ I_{\mathcal{L}} = \{6\},$	$q(q-1)^2$	q^1
$\mathcal{F}_{1,10}$	$\chi^{a_1,a_{10}}_{b_3}$	$I_{\mathcal{A}} = \{2, 4\}, \ I_{\mathcal{L}} = \{6, 7\},$	$q(q-1)^2$	q^2
$\mathcal{F}_{1,13}$	χ_{b_2}	$I_{\mathcal{A}} = \{3, 4, 7\}, \ I_{\mathcal{L}} = \{6, 9, 10\},$ $I_{\mathcal{A}} = \{3, 4, 7\}, \ I_{\mathcal{L}} = \{6, 10, 13\},$	$\frac{q(q-1)^2}{q(q-1)^3}$	q^3 q^3
$\mathcal{F}_{1,16}$	χ_{b_2} $\chi^{a_1,a_6,a_{16}}$	$I_{\mathcal{A}} = \{3, 4, 7\}, \ I_{\mathcal{L}} = \{0, 10, 13\}, \\ I_{\mathcal{A}} = \{3, 4, 7\}, \ I_{\mathcal{L}} = \{2, 10, 13\}, $	$q(q-1)^{3}$ $(q-1)^{3}$	$\frac{q^3}{q^3}$
L	Λ	$-\mathcal{A} = \{0, 1, 1\}, \ \mathcal{I}_{\mathcal{L}} = \{2, 10, 10\},$	(4 -)	Ч

${\cal F}$	χ	Ι	Number	Degree
	$\chi^{a_1,a_{16}}_{b_2,b_3}$	$I_{\mathcal{A}} = \{4, 7\}, \ I_{\mathcal{L}} = \{10, 13\},$	$q^2(q-1)^2$	q^2
$\mathcal{F}_{2,7}$	χ^{a_2,a_7}	$I_{\mathcal{A}} = \{3\}, \ I_{\mathcal{L}} = \{4\},$	$(q-1)^2$	q^1
$\mathcal{F}_{3,5}$	χ^{a_3,a_5}	$I_{\mathcal{A}} = \{1\}, \ I_{\mathcal{L}} = \{2\},$	$(q-1)^2$	q^1
$\mathcal{F}_{4,5}$	χ^{a_4,a_5}	$I_{\mathcal{A}} = \{1\}, \ I_{\mathcal{L}} = \{2\},$	$(q-1)^2$	q^1
$\mathcal{F}_{4,6}$	χ^{a_4,a_6}	$I_{\mathcal{A}} = \{2\}, \ I_{\mathcal{L}} = \{3\},$	$(q-1)^2$	q^1
$\mathcal{F}_{4,8}$	$\chi^{a_4,a_8}_{b_2}$	$I_{\mathcal{A}} = \{1, 3\}, \ I_{\mathcal{L}} = \{5, 6\},$	$q(q-1)^2$	q^2
$\mathcal{F}_{4,9}$	$\begin{array}{c} \chi_{b_2}^{a_4,a_8} \\ \chi_{b_2}^{a_4,a_9} \\ \chi_{b_2}^{a_4,a_{11}} \end{array}$	$I_{\mathcal{A}} = \{3\}, \ I_{\mathcal{L}} = \{6\},$	$q(q-1)^2$	q^1
$\mathcal{F}_{4,11}$	$\chi^{a_4,a_{11}}_{b_2,b_5,b_6}$	$I_{\mathcal{A}} = \{1, 3\}, \ I_{\mathcal{L}} = \{8, 9\},$	$q^{3}(q-1)^{2}$	q^2
$\mathcal{F}_{4,14}$	$\begin{array}{c} \chi^{a_4,a_{11}}_{b_2,b_5,b_6} \\ \chi^{a_4,a_{14}}_{b_1,b_3} \\ \chi^{a_5,a_6}_{b_6} \end{array}$	$I_{\mathcal{A}} = \{2, 5, 6\}, \ I_{\mathcal{L}} = \{8, 9, 11\},$	$q^2(q-1)^2$	q^3
$\mathcal{F}_{5,6}$		$I_{\mathcal{A}} = \{1\}, \ I_{\mathcal{L}} = \{2\},$	$q(q-1)^2$	q^1
$\mathcal{F}_{5,7}$	χ^{a_5,a_7}	$I_{\mathcal{A}} = \{2, 4\}, \ I_{\mathcal{L}} = \{1, 3\},$	$(a-1)^2$	q^2
$\mathcal{F}_{5,9}$	χ^{a_5,a_9}	$I_{\mathcal{A}} = \{2, 3\}, \ I_{\mathcal{L}} = \{1, 6\},$	$\frac{(q-1)^2}{(q-1)^2}$	q^2
$\mathcal{F}_{5,10}$	$\chi^{a_5,a_{10}}_{b_1,b_3}$	$I_{\mathcal{A}} = \{2, 4\}, \ I_{\mathcal{L}} = \{6, 7\},$	$q^2(q-1)^2$	q^2
$\mathcal{F}_{5,13}$	$\chi^{a_5,a_{13}}$	$I_{\mathcal{A}} = \{2, 3, 4, 7\},\$	$(q-1)^2$	q^4
		$I_{\mathcal{L}} = \{1, 6, 9, 10\},\$ $I_{\mathcal{A}} = \{2, 3, 4, 7\},\$		
$\mathcal{F}_{5,16}$	$\chi^{a_5,a_9,a_{16}}$		$(q-1)^3$	q^4
	GF G A A	$I_{\mathcal{L}} = \{1, 6, 10, 13\},\$	9.4	
	$\chi^{a_5,a_{16}}_{b_3,b_6}$	$I_{\mathcal{A}} = \{2, 4, 7\}, \ I_{\mathcal{L}} = \{1, 10, 13\},$	$\frac{q^2(q-1)^2}{q(q-1)^2}$	q^3
$\mathcal{F}_{6,7}$	$\chi^{a_6,a_7}_{b_4}$	$I_{\mathcal{A}} = \{2\}, \ I_{\mathcal{L}} = \{3\},$	$q(q-1)^2$	q^1
$\mathcal{F}_{7,8}$	$\chi^{a_7,a_8}_{b_2,b_4}$	$I_{\mathcal{A}} = \{1, 3\}, \ I_{\mathcal{L}} = \{5, 6\},$	$\frac{q^2(q-1)^2}{q^2(q-1)^2}$	q^2
$\mathcal{F}_{7,9}$	$\chi^{a_7,a_9}_{b_2,b_4}$	$I_{\mathcal{A}} = \{3\}, \ I_{\mathcal{L}} = \{6\},$	$q^2(q-1)^2$	q^1
$\mathcal{F}_{7,11}$	$\chi^{a_7,a_{11}}_{b_2,b_4,b_5,b_6}$	$I_{\mathcal{A}} = \{1, 3\}, \ I_{\mathcal{L}} = \{8, 9\},$	$q^4(q-1)^2$	q^2
$\mathcal{F}_{7,14}$	$\chi^{a_7,a_{14}}_{b_1}$	$I_{\mathcal{A}} = \{2, 4, 5, 6\},\$	$q(q-1)^2$	q^4
		$I_{\mathcal{L}} = \{3, 8, 9, 11\},\$		
$\mathcal{F}_{8,9}$	$\chi^{a_8,a_9}_{b_2}$	$I_{\mathcal{A}} = \{1, 3\}, \ I_{\mathcal{L}} = \{5, 6\},\$	$q(q-1)^2$	q^2
$\mathcal{F}_{8,10}$	$\chi^{a_8,a_{10}}_{b_4}$	$I_{\mathcal{A}} = \{2, 3, 6\}, \ I_{\mathcal{L}} = \{1, 5, 7\},$	$q(q-1)^2$ $(q-1)^3$	q^3
$\mathcal{F}_{8,13}$	$\chi^{a_5,a_8,a_{13}}$	$I_{\mathcal{A}} = \{2, 3, 4, 6\},$	$(q-1)^3$	q^4
		$I_{\mathcal{L}} = \{1, 7, 9, 10\},\$		
	$\frac{\chi^{a_8,a_{13}}_{b_1,b_2}}{\chi^{a_8,a_{16}}_{a_8,a_{16}}}$	$ \widetilde{I}_{\mathcal{A}} = \{3, 4, 6\}, \widetilde{I}_{\mathcal{L}} = \{7, 9, 10\}, \\ \widetilde{I}_{\mathcal{A}} = \{1, 3, 4, 7\}, $	$\frac{q^2(q-1)^2}{q^2(q-1)^2}$	q^3
$\mathcal{F}_{8,16}$	$\chi^{a_8,a_{16}}_{b_2,b_9}$	$I_{\mathcal{A}} = \{1, 3, 4, 7\},\$	$q^2(q-1)^2$	q^4
		$I_{\mathcal{L}} = \{5, 6, 10, 13\}, \\ I_{\mathcal{A}} = \{2, 6\}, \ I_{\mathcal{L}} = \{3, 7\}, $		
$\mathcal{F}_{9,10}$	$\chi^{a_9,a_{10}}_{b_4}$	$I_{\mathcal{A}} = \{2, 6\}, \ I_{\mathcal{L}} = \{3, 7\},$	$q(q-1)^2$ $q(q-1)^2$	q^2
$\mathcal{F}_{9,12}$	$\chi_{b_2}^{a_{9}^{*},a_{12}}$	$I_{\mathcal{A}} = \{1, 3, 4, 7\},\$	$q(q-1)^2$	q^4
		$I_{\mathcal{L}} = \{5, 6, 8, 10\},\$ $I_{\mathcal{A}} = \{1, 2, 3, 4\},\$		
$\mathcal{F}_{10,11}$	$\chi^{a_{10},a_{11}}_{b_5}$		$q(q-1)^2$	q^4
	05 010 014	$I_{\mathcal{L}} = \{6, 7, 8, 9\},$ $I_{\mathcal{A}} = \{2, 4, 5, 6\},$	() ?	4
$\mathcal{F}_{10,14}$	$\chi^{a_7,a_{10},a_{14}}_{b_1}$		$q(q-1)^{3}$	q^4
	a_{10}, a_{14}	$I_{\mathcal{L}} = \{3, 8, 9, 11\},$	3/ 1)2	3
	χ_{h_1} ho ha	$I_{\mathcal{A}} = \{2, 5, 6\}, \ I_{\mathcal{L}} = \{8, 9, 11\},$	$q^3(q-1)^2$ $q(q-1)^3$	q^3
$\mathcal{F}_{11,12}$	$\chi^{a_{10},a_{11},a_{12}}_{b_2}$	$I_{\mathcal{A}} = \{1, 3, 4, 7\},$	$q(q-1)^{3}$	q^4
	$\chi^{a_6,a_{11},a_{12}}$	$I_{\mathcal{L}} = \{5, 6, 8, 9\},$	(1)3	4
	$\chi^{a_0,a_{11},a_{12}}$	$I_{\mathcal{A}} = \{1, 3, 5, 8\}, \\ I_{\mathcal{L}} = \{2, 4, 7, 9\},$	$(q-1)^3$	q^4
	a_{11}, a_{12}	$I_{\mathcal{L}} = \{2, 4, 7, 9\}, \\ I_{\mathcal{A}} = \{1, 5, 8\}, \ I_{\mathcal{L}} = \{4, 7, 9\}, $	$a^2(a-1)^2$	q^3
T	$\chi_{b_2,b_3}^{-11,-12}$ $\chi^{a_5,a_{10},a_{11}^*,a_{13}}$	$I_{\mathcal{A}} = \{1, 0, 0\}, I_{\mathcal{L}} = \{4, 7\}, I_{\mathcal{I}} = \{3\}, I_{\mathcal{I}} = \{1, 4, 7\},$	$\frac{q^2(q-1)^2}{(q-1)^3(q-2)}$	<i>q</i>
$\mathcal{F}_{11,13}$			$(q-1)^{o}(q-2)$	q^*
	$\begin{array}{l} (a_{11}^{*}\neq a_{5}a_{13}^{2}/a_{10}^{2}) \\ \boldsymbol{\chi_{b_{1,4,7},b_{2,6,9}}^{a_{5},a_{10},a_{13}}} \end{array}$	$I_{\mathcal{L}} = \{8\}, \ I_{\mathcal{J}} = \{2, 6, 9\}.$ $I_{\mathcal{A}} = \{3\}, \ I_{\mathcal{I}} = \{1, 4, 7\},$	$q^2(q-1)^3$	q^3
	$x_{b_{1,4,7},b_{2,6,9}}$	See C^1 in §4.3	q (q-1)	Ч
	$\chi^{a_{10},a_{11},a_{13}}$	See C^2 in $\frac{94.3}{1_A} = \{2, 3, 6, 9\},$	$(q-1)^3$	q^4
	λ	$I_{\mathcal{A}} = \{2, 3, 0, 9\},\$ $I_{\mathcal{L}} = \{1, 4, 7, 8\},$	(A - 1)	ч
	$\chi^{a_5,a_{11},a_{13}}$	$I_{\mathcal{A}} = \{1, 4, 7, 9\},\$ $I_{\mathcal{A}} = \{2, 3, 7, 9\},\$	$(q-1)^3$	q^4
		$I_{\mathcal{L}} = \{1, 4, 6, 8\},\$	(1 -)	1
	$\chi^{a_{11},a_{13}}_{b_1,b_2}$	$I_{\mathcal{A}} = \{3, 7, 9\}, \ I_{\mathcal{L}} = \{4, 6, 8\},$	$q^2(q-1)^2$	q^3
$F_{11,16}$	$\begin{array}{c} \chi^{a_{11},b_{2}}_{b_{2},b_{5},b_{6}} \\ \end{array}$	$I_{\mathcal{A}} = \{1, 3, 4, 7\},$	$\frac{q^2(q-1)^2}{q^3(q-1)^2}$	q^4
,10	02,05,06	$I_{\mathcal{L}} = \{8, 9, 10, 13\},\$	• • • /	.
$F_{12,13}$	$\chi^{a_9,a_{12},a_{13}}_{b_2}$	$I_{\mathcal{A}} = \{3, 4, 7, 10\},\$	$q(q-1)^{3}$	q^4
, =		$I_{\mathcal{L}} = \{1, 5, 6, 8\},\$	/	-
	$\chi^{a_6,a_{12},a_{13}}$	$\tilde{I}_{\mathcal{A}} = \{3, 4, 7, 10\},\$	$(q-1)^3$	q^4

${\cal F}$	X	Ι	Number	Degree
	$x^{a_{12},a_{13}}$	$I_{\mathcal{L}} = \{1, 2, 5, 8\},$	$-2(-1)^2$	3
$\mathcal{F}_{12,14}$	$\frac{\chi^{a_{12},a_{13}}_{b_2,b_3}}{\chi^{a_7,a_{12},a_{14}}}$	$I_{\mathcal{A}} = \{4, 7, 10\}, \ I_{\mathcal{L}} = \{1, 5, 8\}.$ $I_{\mathcal{A}} = \{1, 2, 4, 5, 8\},$	$\frac{q^2(q-1)^2}{(q-1)^3}$	q^3 q^5
<i>テ</i> 12,14		$I_{\mathcal{L}} = \{3, 6, 9, 10, 11\},\$		4
	$\chi^{a_{12},a_{14}}_{b_3,b_4}$	$\tilde{I}_{\mathcal{A}} = \{1, 2, 5, 8\},$	$q^2(q-1)^2$	q^4
	a8,a9,a12,a [*]	$I_{\mathcal{L}} = \{6, 9, 10, 11\},\$		_
$\mathcal{F}_{12,16}$	X _{b2}	$I_{\mathcal{A}} = \{4\}, \ I_{\mathcal{I}} = \{1, 3, 7\}$	$q(q-1)^3(q-2)$	q^4
	$(a_{16}^* \neq a_9 a_{12}^2 / a_8^2)$ $\chi^{a_8, a_9, a_{12}, a_{5,6,10}}$	$I_{\mathcal{L}} = \{13\}, \ I_{\mathcal{J}} = \{5, 6, 10\}$ See \mathfrak{C}^2 in §4.3	$(a-1)^4$	q^4
	$\chi^{a_{8},a_{9},a_{12}}_{b_{1,3,7},b_{5,6,10}}$	See C^2 in §4.3	$(q-1)^4 \ q^2(q-1)^3$	q^3
	$\chi^{a_8,a_{12},a_{16}}_{b_2}$	$I_{\mathcal{A}} = \{1, 3, 4, 7\},\$	$q(q-1)^{3}$	q^4
	2	$I_{\mathcal{L}} = \{5, 6, 10, 13\},\$		
	$\chi^{a_9,a_{12},a_{16}}_{b_2}$	$I_{\mathcal{A}} = \{1, 3, 4, 7\},$	$q(q-1)^{3}$	q^4
	$\chi^{a_6,a_{12},a_{16}}$	$I_{\mathcal{L}} = \{5, 6, 10, 13\}, \\ I_{\mathcal{A}} = \{1, 3, 4, 7\}, $	$(q-1)^3$	q^4
	A	$I_{\mathcal{L}} = \{2, 5, 10, 13\},\$	· · · ·	A
	$\chi^{a_{12},a_{16}}_{b_{2},b_{3}}$	$I_{\mathcal{A}} = \{1, 4, 7\}, \ I_{\mathcal{L}} = \{5, 10, 13\},$ $I_{\mathcal{A}} = \{2, 3, 6, 9\},$	$q^2(q-1)^2$ $q^3(q-1)^2$	q^{3}
$\mathcal{F}_{13,14}$	$\chi^{a_{13},a_{14}}_{b_1,b_4,b_7}$		$q^3(q-1)^2$	q^4
<i>⊤p</i> ≥5	$\chi^{a_{10},a_{14},a_{15}}$	$I_{\mathcal{L}} = \{5, 8, 10, 11\},\$ $I_{\mathcal{A}} = \{1, 3, 5\}, I_{\mathcal{I}} = \{2, 4, 8\}$	$(q-1)^3$	q ⁶
<i>F</i> ^{p≥5} 14,15	X	$I_{\mathcal{A}} = \{1, 3, 5\}, I_{\mathcal{I}} = \{2, 4, 8\}$ $I_{\mathcal{L}} = \{9, 12, 13\}, I_{\mathcal{J}} = \{6, 7, 11\}$	(q-1)	Ч
	$\chi^{a_{14},a_{15}}_{b_4,b_7}$	$I_{\mathcal{A}} = \{1, 3, 5, 8, 11\},\$	$q^2(q-1)^2$	q^5
	a10,a14,a15	$I_{\mathcal{L}} = \{2, 6, 9, 12, 13\},\$		-
$\mathcal{F}_{14,15}^{p=3}$	$\chi^{a_{10},a_{14},a_{15}}_{b_{2,4,8},b_{6,7,11}}$	See \mathfrak{C}^3 in §4.3	$q^2(q-1)^3$	q ⁵
	$\chi^{-14,-13}_{b_4,b_7}$	$I_{\mathcal{A}} = \{1, 3, 5, 8, 11\},$	$q^2(q-1)^2$	q^5
$F_{14,16}$	$\chi^{a_{14},a_{16}}_{b_1,b_3}$	$I_{\mathcal{L}} = \{2, 6, 9, 12, 13\},$ $I_{\mathcal{A}} = \{2, 4, 5, 6, 7\},$	$q^2(q-1)^2$	q^5
		$I_{\mathcal{L}} = \{8, 9, 10, 11, 13\}, \\I_{\mathcal{A}} = \{1, 2, 3, 4, 5, 6, 7\},$		-
$\mathcal{F}_{14,18}$	$\chi^{a_{13},a_{14},a_{18}}$		$(q-1)^3$	q^7
	$\chi^{a_{14},a_{18}}_{b_3,b_{10}}$	$I_{\mathcal{L}} = \{8, 9, 10, 11, 12, 15, 16\}, \\I_{\mathcal{A}} = \{1, 2, 4, 5, 6, 7\},$	$q^2(q-1)^2$	q^6
	$\lambda_{b_3,b_{10}}$		1 (1 -)	7
$\mathcal{F}_{15,16}$	$\chi^{a_{15},a_{16}}_{b_2,b_5,b_6,b_9,b_{10}}$	$I_{\mathcal{L}} = \{8, 9, 11, 12, 15, 16\},$ $I_{\mathcal{A}} = \{1, 3, 4, 7\},$	$q^5(q-1)^2$	q^4
T	$\chi^{a_{11},a_{16},a_{17}}$	$I_{\mathcal{L}} = \{8, 11, 12, 13\},$ $I_{\mathcal{A}} = \{1, 2, 3, 4, 5, 6, 10\},$	$(q-1)^3$	q^7
$\mathcal{F}_{16,17}$	$\chi^{-11,-10,-17}$	$I_{\mathcal{A}} = \{1, 2, 5, 4, 5, 6, 10\}, \\ I_{\mathcal{L}} = \{7, 8, 9, 12, 13, 14, 15\},$	$(q-1)^{\circ}$	q^{*}
-	$\chi^{a_{16},a_{17}}_{b_1,b_3,b_8,b_9}$	$\tilde{I}_{\mathcal{A}} = \{2, 4, 5, 6, 10\},\$	$q^4(q-1)^2$	q^5
		$I_{\mathcal{L}} = \{7, 12, 13, 14, 15\},$	(1)2	7
$\mathcal{F}_{16,19}$	$\chi^{a_5,a_{16},a_{19}}_{b_4}$	$I_{\mathcal{A}} = \{2, 3, 6, 7, 9, 10, 13\},\$ $I_{\mathcal{L}} = \{1, 8, 11, 12, 14, 15, 17\},\$	$q(q-1)^{3}$	q^7
	$\chi^{a_{16},a_{19}}_{b_1,b_2,b_4}$	$I_{\mathcal{A}} = \{3, 6, 7, 9, 10, 13\},\$	$q^3(q-1)^2$	q^6
		$I_{\mathcal{L}} = \{8, 11, 12, 14, 15, 17\},$ $I_{\mathcal{A}} = \{1, 2, 3, 4, 5, 8, 12\},$		
$F_{17,18}$	$\chi^{a_9,a_{17},a_{18}}_{b_{11}}$		$q(q-1)^{3}$	q^7
	$v_{117}^{a_{17},a_{18}}$	$I_{\mathcal{L}} = \{6, 7, 10, 13, 14, 15, 16\}, I_{\mathcal{A}} = \{1, 2, 4, 5, 8, 12\},$	$q^3(q-1)^2$	q^6
	$\chi_{b_3, b_6, b_{11}}$	$I_{\mathcal{L}} = \{7, 10, 13, 14, 15, 16\},\$	9 (9 1)	4
$\mathcal{F}_{18,19}$	$\chi^{a_{18},a_{19}}_{b_2,b_4,b_5}$	$I_{\mathcal{A}} = \{1, 3, 7, 8, 9, 11, 15\},\$	$q^3(q-1)^2$	q^7
Ŧ	a_{19}, a_{20}	$I_{\mathcal{L}} = \{6, 10, 12, 13, 14, 16, 17\},\$	2/ 1)2	8
$\mathcal{F}_{19,20}$	$\chi^{-15,-20}_{b_1,b_4}$	$I_{\mathcal{A}} = \{2, 5, 6, 8, 9, 10, 14, 17\}, \\I_{\mathcal{L}} = \{3, 7, 11, 12, 13, 15, 16, 18\},$	$q^2(q-1)^2$	q^8
$F_{1,2,7}$	χ^{a_1,a_2,a_7}	$I_{\mathcal{L}} = \{3\}, \ I_{\mathcal{L}} = \{4\},$	$(q-1)^3$	q^1
$\mathcal{F}_{1,4,6}$	χ^{a_1,a_4,a_6}	$I_{\mathcal{A}} = \{2\}, \ I_{\mathcal{L}} = \{3\},$	$(q-1)^3$	q^1
$\mathcal{F}_{1,4,9}$	$\frac{\chi_{b_2}^{a_1,a_4,a_9}}{\chi_{b_2}^{a_1,a_6,a_7}}$	$I_{\mathcal{A}} = \{3\}, I_{\mathcal{L}} = \{6\},$	$q(q-1)^3$	q^1
$\mathcal{F}_{1,6,7}$	χ_{h_A}	$I_{\mathcal{A}} = \{2\}, I_{\mathcal{L}} = \{3\},$ $I_{\mathcal{A}} = \{3\}, I_{\mathcal{L}} = \{6\},$	$rac{q(q-1)^3}{q^2(q-1)^3}$	q^1 q^1
$\frac{\mathcal{F}_{1,7,9}}{\mathcal{F}_{1,9,10}}$	$\begin{array}{c} \chi^{a_1,a_7,a_9}_{b_2,b_4} \\ \chi^{a_1,a_9,a_{10}}_{a_1,a_9,a_{10}} \end{array}$	$I_{\mathcal{A}} = \{3\}, \ I_{\mathcal{L}} = \{0\}, \\ I_{\mathcal{A}} = \{2, 6\}, \ I_{\mathcal{L}} = \{3, 7\}, $	$\frac{q^2(q-1)^3}{q(q-1)^3}$	$\frac{q^2}{q^2}$
$\mathcal{F}_{3,4,5}$	$\frac{\chi_{b_4}}{\chi^{a_3,a_4,a_5}}$	$I_{\mathcal{A}} = \{2, 0\}, \ I_{\mathcal{L}} = \{0, 1\}, \\ I_{\mathcal{A}} = \{1\}, \ I_{\mathcal{L}} = \{2\}, $	$(q-1)^3$	q^1
$\mathcal{F}_{4,5,6}$	$\chi^{a_4,a_5,a_6}_{b_3}$	$I_{\mathcal{A}} = \{1\}, \ I_{\mathcal{L}} = \{2\},$	$q(q-1)^3$	q^1

${\cal F}$	X	Ι	Number	Degree
$\mathcal{F}_{4,5,9}$	χ^{a_4,a_5,a_9}	$I_{\mathcal{A}} = \{2, 3\}, \ I_{\mathcal{L}} = \{1, 6\},$	$(q-1)^3$	q^2
$\mathcal{F}_{4,8,9}$	$\chi^{a_4,a_8,a_9}_{b_2}$	$I_{\mathcal{A}} = \{1, 3\}, \ I_{\mathcal{L}} = \{5, 6\},$	$q(q-1)^{3}$	q^2
$\mathcal{F}_{5,6,7}$	χ^{a_5,a_6,a_7}	$I_{\mathcal{A}} = \{2, 4\}, \ I_{\mathcal{L}} = \{1, 3\},$	$(q-1)^3$	q^2
$\mathcal{F}_{5,7,9}$	$\chi^{a_5,a_7,a_9}_{b_4}$	$I_{\mathcal{A}} = \{2, 3\}, \ I_{\mathcal{L}} = \{1, 6\},$	$q(q-1)^{3}$	q^2
$\mathcal{F}_{{f 5},{f 9},{f 10}}$	$\chi^{a_5, a_9, a_{10}}_{b_1, b_4}$	$I_{\mathcal{A}} = \{2, 6\}, \ I_{\mathcal{L}} = \{3, 7\},$	$q^2(q-1)^3$	q^2
$\mathcal{F}_{7,8,9}$	$\chi^{a_7,a_8,a_9}_{b_2,b_4}$	$I_{\mathcal{A}} = \{1, 3\}, \ I_{\mathcal{L}} = \{5, 6\},$	$q^2(q-1)^3$	q^2
$\mathcal{F}_{8,9,10}$	$\begin{array}{c} \chi_{b_2,b_4}^{a_7,a_8,a_9} \\ \chi_{b_4}^{a_8,a_9,a_{10}} \end{array}$	$I_{\mathcal{A}} = \{2, 3, 6\}, \ I_{\mathcal{L}} = \{1, 5, 7\},$	$q(q-1)^{3}$	q^3
$\mathcal{F}_{11,12,13}^{p \ge 5}$	$\chi^{a_{11},a_{12},a_{13}}_{b_2,b_6}$	$I_{\mathcal{I}} = \{1, 3, 4, 7\}$	$q^2(q-1)^3$	q^4
		$I_{\mathcal{J}} = \{5, 8, 9, 10\}$		
$\mathcal{F}_{11,12,13}^{p=3}$	$\chi^{a_{11},a_{12},a_{13},a_{8,9,10}}_{b_2}$	See \mathfrak{C}^4 in §4.3	$q(q-1)^4$	q^4
,,	$\chi^{\tilde{a_{11}},a_{12},a_{13},a_{2,6}}$	See \mathfrak{C}^4 in §4.3	$(q-1)^4/2$	q^4
	$\chi^{a_{11},a_{12},a_{13}}$	$\mathbf{See}~\mathfrak{C}^4~\mathbf{in}~\S 4.3$	$(q-1)^3$	q^4
	$\chi^{a_{11},a_{12},a_{13},a_{1,6}}_{x_{1,3,4,7},x_2}$	See \mathfrak{C}^4 in §4.3	$9(q-1)^4/2$	$q^{4}/3$
$\mathcal{F}_{11,12,16}$	$\chi^{a_{11},a_{12},a_{16}}_{b_2,b_5,b_6}$	$I_{\mathcal{A}} = \{1, 3, 4, 7\},\$	$q^3(q-1)^3$	q^4
		$I_{\mathcal{L}} = \{8, 9, 10, 13\},\$		
$\mathcal{F}_{12,13,14}^{p \ge 5}$	$\chi^{a_{12},a_{13},a_{14}}_{b_3}$	$I_{\mathcal{A}} = \{2\}, \ I_{\mathcal{I}} = \{4, 5, 6, 10\}$	$q(q-1)^3$	q^5
	-	$I_{\mathcal{L}} = \{11\}, \ I_{\mathcal{J}} = \{1, 7, 8, 9\}$		
$\mathcal{F}_{12,13,14}^{p=3}$	$\chi^{a_{12},a_{13},a_{14},a_{7,8,9}}$	$\mathbf{See}~\mathfrak{C}^5~\mathbf{in}~\S 4.3$	$(q-1)^4$	q^5
	$\chi^{a_{12},a_{13},a_{14}}_{b_3,b_{4,5,6,10}}$	See \mathfrak{C}^5 in §4.3	$q^2(q-1)^3$	q^4
$\mathcal{F}_{12,14,16}$	$\chi^{a_{12},a_{14},a_{16}}_{b_1,b_3}$	$I_{\mathcal{A}} = \{2, 4, 5, 6, 10\},\$	$q^2(q-1)^3$	q^5
		$I_{\mathcal{L}} = \{7, 8, 9, 11, 13\},\$		
$\mathcal{F}_{14,15,16}$	$\chi^{a_{14},a_{15},a_{16}}_{b_4}$	$I_{\mathcal{A}} = \{3, 6, 7, 9, 11, 13\},\$	$q(q-1)^{3}$	q^6
		$I_{\mathcal{L}} = \{1, 2, 5, 8, 10, 12\},\$		

TABLE 7. The parametrization of the irreducible characters of $UF_4(q)$, where $q = p^e$ and $p \ge 3$.

References

- [An] C. A. M. André, The basic character table of the unitriangular group J. Algebra 241 (2001), no. 1, 437–471.
- [AN] C. André and A. Neto, A supercharacter theory for the Sylow p-subgroups of the finite symplectic and orthogonal groups, J. Algebra 322 (2009), 1273–1294.
- [Ca] R. W. Carter, Simple Groups of Lie Type, A Wiley-Interscience publication, London, 1972.
- [CHEVIE] M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, CHEVIE A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Engrg. Comm. Comput. 7 (1996), 175–210.
- [CP] P. Cellini and P. Papi, ad-nilpotent ideal of a Borel subalgebra II, J. Algebra, 258 (2002), no. 1, 112–121.
- [DI] P. Diaconis, I.M. Isaacs, Supercharacters and superclasses for algebra groups, Trans. Amer. Math. Soc. 360 (2008), no. 5, 2359–2392.
- [DM] F. Digne and J. Michel, Representations of Finite Groups of Lie Type, London Mathematical Society Student Texts 21, Cambridge University Press, Cambridge, 1991.
- [Ev] A. Evseev, Reduction for characters of finite algebra groups, J. Algebra **325** (2011), no. 1, 321–351.
- [GAP] The GAP Group, *GAP Groups, Algorithms, and Programming*, Version 4.3. 2002, http://www.gap-system.org.
- [GLM] S. M. Goodwin, T. Le and K. Magaard, The generic character table of a Sylow p-subgroup of a finite Chevalley group of type D₄, preprint, arXiv:1508.06937 (2015).
- [GMR1] S. M. Goodwin, P. Mosch and G. Röhrle, Calculating conjugacy classes in Sylow p-subgroups of finite Chevalley groups of rank six and seven, LMS J. Comput. Math. 17 (2014), no. 1, 109–122.
- [GMR2] _____, On the coadjoint orbits of maximal unipotent subgroups of reductive groups, Transform. Groups, to appear (2015).

- [Hi] F. Himstedt, On the decomposition numbers of the Ree groups ${}^{2}F_{4}(q^{2})$ in non-defining characteristic, J. Algebra **325** (2011), no. 1, 364–403.
- [HH] F. Himstedt and S. Huang, On the decomposition numbers of Steinberg's triality groups ${}^{3}D_{4}(2^{n})$ in odd characteristics, Comm. Algebra **41** (2013), no. 4, 1484–1498.
- [HN] F. Himstedt and F. Noeske, Decomposition numbers of $SO_7(q)$ and $Sp_6(q)$, J. Algebra **413** (2014), 15–40.
- [HLM1] F. Himstedt, T. Le and K. Magaard, Characters of the Sylow p-subgroups of the Chevalley Groups $D_4(p^n)$, J. Algebra, **332** (2011), no. 1, 414–427.
- [HLM2] F. Himstedt, T. Le and K. Magaard, Characters of the Sylow p-subgroups of untwisted Chevalley Groups $Y_n(p^a)$, preprint, arXiv:1508.00050v1 (2015).
- [Is1] I. M. Isaacs, Character Theory of Finite Groups, Dover Books on Mathematics, New York, 1994.
- [Is2] I. M. Isaacs, Counting characters of upper triangular groups, J. Algebra **315** (2007), no. 1, 698–719.
- [LM1] T. Le and K. Magaard, Representations of unitriangular groups, Buildings, finite geometries and groups, 163–174, Springer Proc. Math. 10, Springer, New York, 2012.
- [LM2] T. Le and K. Magaard, On the character degrees of Sylow p-subgroups of Chevalley groups $G(p^f)$ of type E, Forum Math. 27 (2015), no. 1, 1–55.
- [PS] I. Pak and A. Soffer, On Higman's $k(U_n(\mathbb{F}_q))$ conjecture, preprint, arXiv:1507.00411 (2015).

SCHOOL OF MATHEMATICS, UNIVERSITY OF BIRMINGHAM, BIRMINGHAM, B15 2TT, U.K. E-mail address: s.m.goodwin@bham.ac.uk E-mail address: k.magaard@bham.ac.uk

 $E\text{-}mail\ address: \texttt{axp282@bham.ac.uk}$

DEPARTMENT OF MATHEMATICS, NORTH-WEST UNIVERSITY, MAFIKENG 2735, SOUTH AFRICA *E-mail address*: lttung96@yahoo.com