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A comprehensive linear mathematical model is

constructed to address the open problem of the

radiated wave for the distensible tube wave energy

converter. This device, full of sea water and located

just below the surface of the sea, undergoes a

complex interaction with the waves running along

its length. The result is a bulge wave in the tube

which, providing certain criteria are met, grows in

amplitude and captures the wave energy through the

power take-off mechanism. Successful optimization

of the device means capturing the energy from

a much larger width of the sea waves (capture

width). To achieve this, the complex interaction

between the incident gravity waves, radiated waves

and bulge waves is investigated. The new results

establish the dependence of the capture width on

absorption of the incident wave, energy loss due

to work done on the tube, imperfect tuning and

the radiated wave. The new results reveal also that

the wave-structure interactions govern the amplitude,

phase, attenuation and wavenumber of the transient

bulge wave. These predictions compare well with

experimental observations.

1. Introduction
The world is confronting a crisis in terms of increasing

global energy requirements, the depletion of fossil fuels

and the threats of global warming and climate change.

Although the situation is daunting, it is not without hope.

The vast unharnessed power of ocean waves offers the

promise of a steady supply of renewable energy. The

recently invented distensible tube wave energy converter

(WEC) has the potential to achieve this promise (see

Figure 1), but progress has been impeded by the limited

scientific understanding of the radiated wave and wave-

structure interactions.

c© The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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Figure 1. Two schematics of the distensible tube in the sea showing cross-sections (a) from the front and (b) from the

side, where the x∗-axis is vertical, the y∗-axis is horizontal and the z∗-axis is parallel to the axis of the unperturbed tube.

The analysis below focuses on the Anaconda, which is the first-patented distensible tube

WEC [1] and is representative of the issues occurring in other WECs. It is based on the principle

that pressure waves can propagate along a distensible tube [2,3]. These waves are usually referred

to as bulge waves [1] due to a local expansion in the tube which moves along its length. The device

consists of a pressurized distensible tube filled with sea water and closed at the bow which is

orientated parallel to the direction of gravity (or sea) waves. The pressure exerted by the gravity

waves produces bulges and contractions in the tube which grow as they propagate. These bulges

and contractions are accompanied by an oscillating flow inside the tube which is exploited by

a power take-off (PTO) at the stern, the PTO being some mechanism capable of converting the

kinetic energy into electricity. A number of factors limit the ability of this first-patented prototype

to capture the energy in the gravity wave:

• The device may be optimized to respond well to some frequencies and wave speeds;

however, ocean gravity waves are known to exhibit a range of frequencies and wave

speeds with seasonal variations. The prototype will need to have a broad response to a

range of frequencies.

• The efficient operation of the distensible tube requires the speed of the bulge wave to

match the speed of the gravity wave in the sea, this being achieved by increasing the

pressure inside the tube. Unfortunately, beyond a critical pressure, the tube becomes

unstable and forms an undesirable aneurysm [4], an aneurysm being a large and

permanent local expansion in the tube. Long tubes are capable of producing large

bulge pressures which may attain this critical pressure. In order to postpone aneurysm

formation in the tube, part of its circumference may be covered in longitudinal

inextensible strips [5].

• The bulge wave may achieve a periodic steady state long before the PTO at the stern has

been reached. In such circumstances, a large proportion of the tube would not contribute

to energy capture.

• The dynamic response of a mechanical PTO would need to be matched to the bulge wave.

Moreover, a mechanical PTO would suffer from high maintenance costs.

The subsequent patents of the distensible tube WEC device have included distributed PTO in

which power is extracted throughout the length of the distensible tube [4,6,7]. This limitation

in the bulge pressure and amplitude will result in a substantial improvement in the energy

conversion. Furthermore, these developments enable the tube to be protected against large bulge
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Table 1. Data for the series 2 experiments, carried out at a scale of around 1:25, in [3] in the third column and for a

prototype WEC in the fourth column. In the prototype, some values are taken from [4] and an incident wave period of 4s

is assumed.

Symbol Definition series 2 prototype

experiments in [3] WEC

h∗ water depth 1.87m 100m

r∗ pressurized tube radius 0.133m 3.5m

d∗ depth of tube 0.148m 3.85m

ρD density multiplied by distensibility 9.8× 10−2m−2s2 2.5× 10−2m−2s2

ωI angular frequency of the incident wave 2.78s−1 1.57s−1

kI wavenumber of the incident wave 0.84m−1 0.25m−1

β∗ energy loss parameter 3.7× 10−2s 0.2s

tube length 6.8m 300m

amplitudes during a storm. This simple design will also benefit from low maintenance costs as

there are no rotating parts or pumps.

A key issue for all these devices is that the basic scientific foundation has not been established

for the distensible tube WEC. Even in the absence of the PTO, the physics has not been fully

resolved in the peer-reviewed literature, the wave-structure interactions being the impediment.

The mathematical models which have been constructed for the tube neglect the radiated wave.

Following Lighthill [2], the standard approach has been to adopt a one-dimensional partially

lumped model for the bulge pressure which describes small changes around the static inflation

pressure. This simplified model has been successful in explaining how the bulge wave propagates

in the tube in response to external pressure variations [3,4,8].

In this article, a self-consistent mathematical model is derived based on the principles

of conservation of mass and momentum (see, for example, [9]). This comprehensive model

incorporates: the Laplace equation for the inviscid irrotational flow in the sea; the one-

dimensional partially lumped model for the bulge in the tube which incorporates a Young-

Laplace equation relating the bulge pressure and hoop stress; the appropriate hoop stress

model for the distensible tube; the interface conditions on the tube relating fluid velocity, tube

deformation and pressure; the boundary conditions at the free surface of the sea; the boundary

condition at the sea bed; and the lateral far-field boundary condition. In our model, the backward

travelling bulge wave will be neglected and all other information propagates from bow to stern,

which means that an additional model for the PTO at the stern is unnecessary. Furthermore, the

changing frequency spectrum of ocean waves is replaced by a single incident frequency.

In British coastal waters, 40% of observed waves have amplitudes of 2m or less with much

longer wavelengths (up to a kilometre). It is standard practice to adopt a linear regular wave

theory in this case based on the small parameter given by the ratio of these two length scales. The

typical amplitude of the bulge wave is also less than 2m. Therefore, the ratio of the amplitude of

the bulge wave to the wavelength of the gravity waves is also a small parameter. Based on these

ratios of length scales, a linear mathematical model is adopted in this article.

The energy capture of a WEC is measured in terms of capture width which is the ratio of the

time-averaged absorbed power and the wave energy flux per unit crest length (often expressed

in terms of diameters). Analytical predictions of capture width have been obtained when the

governing equations are linearized and are analyzed in the frequency domain. If a body with a

vertical axis of symmetry oscillates in heave, then the maximum capture width is λ/2π, where λ

is the incident wavelength. This theoretical result has proved very important [10–13]. More recent

mathematical studies have provided the basis for optimizing the power absorption of submerged

cylinder wave energy converters [14,15], the objective being to design a system which is effective
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over a range of wave periods. Our focus here is to obtain an analytical prediction for the capture

width of the distensible tube WEC.

The role of an analytical solution to a linear mathematical model should be viewed in

the appropriate context. Experimentalists are able to achieve more realistic wave conditions

and numerical practitioners are able to incorporate more detailed nonlinear physics [16,17].

However, full scale trials and the use of computational approaches are all considerably more

expensive than an analytical technique. Therefore, studies are limited to very restricted regions of

parameter space; whereas, analytical solutions are able to search large regions of parameter space

for the optimal design. Analytical solutions should be used as a guide by device developers,

experimentalists and numerical practitioners to ensure that expensive trials and tests are only

conducted in the optimal region of parameter space.

High-quality experimental studies of the distensible tube WEC have taken place in the

laboratory [3], typical data being shown in the third column of Table 1. These experiments

correspond to the first patent of these WECs with a PTO at the stern. We seek to use these

results to obtain validation of our theoretical model. The most significant obstacle in making

these comparisons is the bulge wave which is reflected from the PTO at the stern. In the scaled-

down laboratory tests, this reflected wave will not rapidly decay, but will affect measurements

throughout the length of the tube. The effect of the backward-travelling bulge wave is most

pronounced near the bow; however, it is much less significant near the stern which allows us

to obtain valuable comparisons. A secondary obstacle is the neglect of the nonlinear terms in our

model, large amplitude bulge waves are beyond the scope of this current study and, in any case,

one would expect that a linear model to be appropriate for distributed PTO.

Section 2 formulates the mathematical model for the wave-structure interactions and scales

the resulting system of equations. The periodic steady state is analyzed in Section 3, approximate

analytical expressions being obtained for the incident, radiated and bulge waves. Section 4

determines the transient bulge wave which attenuates as it propagates away from the bow. The

energy capture of the WEC is deduced in Section 5, the mean power of the bulge wave and

capture width being evaluated. Section 6 makes predictions of the capture width which go beyond

previous experimental and theoretical studies. Finally, Section 7 gives a brief discussion of the

results.

2. Formulation

(a) Governing equations

A Cartesian coordinate system (x∗, y∗, z∗) is adopted. We define the z∗-axis to be aligned with

the axis of the unperturbed distensible tube and the y∗-axis to be horizontal. Gravity acts in the

negative x∗-direction such that the free surface of the sea is located at x∗ = η∗(y∗, z∗, t∗), the

axis of the tube at x∗ =−d∗ and the sea bed at x∗ =−h∗, where t∗ is time. A schematic of the

distensible tube in the sea is shown in Figure 1.

We assume that the flow in the sea is inviscid and irrotational, viscous and rotational effects

only being important in the wake of the WEC. The velocity potential, φ∗, is a function of three-

dimensional space and time. The field equation for the velocity potential in the sea is

∂2φ∗

∂x∗2
+
∂2φ∗

∂y∗2
+
∂2φ∗

∂z∗2
= 0. (2.1)

The pressure in the sea p∗(x∗, y∗, z∗, t∗) is determined from the linearized Cauchy-Lagrange

integral of the equations of motion

p∗

ρ
=−∂φ

∗

∂t∗
− gx∗, (2.2)
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where ρ be the density of sea water and g is the acceleration due to gravity. The linearized dynamic

and kinematic boundary conditions at the free surface of the sea are

∂φ∗

∂t∗
+ gη∗ =0 and

∂φ∗

∂x∗
=
∂η∗

∂t∗
(2.3)

at x∗ = 0 (unperturbed free surface). The zero normal velocity at the sea bed requires that

∂φ∗

∂x∗
=0 (2.4)

at x∗ =−h∗. The far-field boundary condition assumes that the radiated wave decays rapidly and

takes the form
∂φ∗

∂y∗
→ 0 (2.5)

as y∗ →±∞. The perturbed tube is of radius R∗(z∗, t∗) with centre at x∗ =−d∗ and y∗ = 0,

whereas the pressurized tube which is unperturbed by gravity waves is of radius r∗ with the same

centre. In fact, the axis of the tube translates in the vertical direction as the gravity wave passes.

This translation is not of primary concern and is neglected in order to simplify this problem. At

the surface of the tube, the continuity of the normal velocity requires that

n̂ ·
(

∂φ∗

∂x∗
,
∂φ∗

∂y∗
,
∂φ∗

∂z∗

)

=
∂R∗

∂t∗
(2.6)

at (x∗ + d∗)2 + y∗ 2 = r∗ 2 (unperturbed tube), where n̂ is the unit outward normal vector. The

hoop strain, ǫ∗h, is then given by

ǫ∗h =
R∗ − r∗

r∗
. (2.7)

The distensible tube has a wall thickness H∗ and Young’s modulus E. The bulge pressure in the

tube, p∗b , is related to the hoop stress, σ∗h, via the Young-Laplace equation p∗b = σ∗hH
∗/r∗ owing to

the thinness of the wall in comparison to its radius. Using the Kelvin-Voigt model, the hoop stress

may be expressed as

σ∗h =E

(

ǫ∗h + β∗
∂ǫ∗h
∂t∗

)

,

where β∗ corresponds to energy loss due to work done on the tube [4]. We obtain

p∗b =
EH∗

r∗

(

ǫ∗h + β∗
∂ǫ∗h
∂t∗

)

=
2

D

(

ǫ∗h + β∗
∂ǫ∗h
∂t∗

)

, (2.8)

in which D is the distensibility of the tube [2]. The total pressure inside the tube is given by

p∗b + p∗w , where p∗w is the pressure exerted by the sea on the tube. Following [2], the bulge pressure

must also satisfy the following differential equation for the bulge wave

∂2A

∂t∗2
=
A0

ρ

(

∂2p∗b
∂z∗2

+
∂2p∗w
∂z∗2

)

,

where A is the cross-sectional area of the tube and A0 is its unperturbed area. The cross-sectional

area may be approximated in terms of the hoop strain by A=A0(1 + 2ǫ∗h). Hence,

∂2ǫ∗h
∂t∗2

=
1

2ρ

(

∂2p∗b
∂z∗2

+
∂2p∗w
∂z∗2

)

. (2.9)

The fluid in the tube is assumed to be stationary at the bow or z∗ = 0, the axial pressure gradient

being set to zero [3]. We have
∂

∂z∗
(p∗b + p∗w) = 0 (2.10)

at z∗ = 0. A second boundary condition is required at the stern to determine the reflected wave.

However, as the bulge wave is damped, the backward propagating wave will decay exponentially.

We will neglect this wave and the associated boundary condition at the stern.
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(b) Scaling

The model (2.1)-(2.10) corresponds to linear forced oscillatory waves in which the incident gravity

wave acts as the forcing term. The solution of the mathematical problem consists of two parts (i) a

periodic steady state which corresponds to the solution attained over large distances and (ii) the

transient problem which describes the variation of the solution along the length of the tube. The

periodic steady state has the same phase velocity as the incident wave, whereas the transient

has a phase velocity associated with the wave-structure interactions. We assume that the incident

gravity wave corresponds to the angular frequency ωI and the corresponding wavenumber is

kI (discussed below). The governing equations and boundary conditions are transformed to

dimensionless variables via

(x∗, y∗, z∗) =
1

kI
(x, y, z), t∗ =

t

ωI
, φ∗ =

ǫωI
k2I

φ, η∗ =
ǫ

kI
η, R∗ = r∗ +

ǫ

kI
R,

(p∗, p∗b , p
∗
w) =

ρǫω2

I

k2I
(p, pb, pw), d∗ =

d

kI
, r∗ =

r

kI
, h∗ =

h

kI
,

where the small parameter ǫ≪ 1 corresponds to small amplitude in comparison to wavelength.

The dimensionless field equation for the velocity potential in the sea is given by

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
=0 (2.11)

and the dimensionless pressure in the sea is determined by the equation

p=−∂φ
∂t

− α

ǫ
x, (2.12)

where α= gkI/ω
2

I . The boundary conditions at the free surface of the sea become

∂φ

∂t
+ αη =0 and

∂φ

∂x
=
∂η

∂t
(2.13)

at x=0. The boundary condition at the sea bed and the far-field boundary conditions are given

by

∂φ

∂x
= 0 at x=−h and

∂φ

∂y
→ 0 as y→±∞, (2.14)

respectively. The interface condition at the surface of the tube is

n̂ ·
(

∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)

=
∂R

∂t
(2.15)

at (x+ d)2 + y2 = r2. The dimensionless bulge pressure is related to the perturbations of the tube

via

pb = c20Λ

(

R+ β
∂R

∂t

)

, (2.16)

where β = β∗ωI , Λ=2/r and c20 = k2I/ρDω
2

I . The differential equation for the bulge wave

becomes

Λ
∂2R

∂t2
=

∂2

∂z2
(pb + pw). (2.17)

Finally, the boundary condition at the bow is given by

∂

∂z
(pb + pw) = 0 (2.18)

at z = 0.
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3. Periodic steady state

(a) Incident wave

We now outline the leading-order solution for the incident wave (2.11)-(2.14) which corresponds

to the standard progressive linear gravity wave. We have

φI = η0
cosh(x+ h) cos(z − t)

sinh(h)
, ηI =−η0 sin(z − t),

provided the dispersion relation

α tanh(h) = 1 (3.1)

is satisfied. The incident angular frequency ωI and wavenumber kI have been chosen to

satisfy (3.1). The corresponding pressure, pI , may be deduced from the linearized Cauchy-

Lagrange integral (2.12). The pressure difference across the tube drives its translational motion

which we have already neglected. Any corresponding periodic variation of the incident or

radiated wave on the surface of the tube is also neglected below.

(b) Radiated wave

This subsection considers the effects of the surrounding fluid (excluding the incident wave)

which we expect to be dominated by the radiated wave. The wave diffracted from the bow

will not be studied here. We formulate the problem for the radiated wave in terms of bipolar

cylindrical coordinates in which we assume the sea bed to be in the far field. This transformation

of the independent variables is adopted to simplify the domain: the equations for the radiated

wave may be rewritten in a rectangular geometry. The drawback is that the equations become

more complicated; nevertheless, these equations are simpler to solve in this geometry than the

corresponding problem in Cartesian coordinates. We define

x=
a sinh(v)

cosh(v)− cos(u)
, y =

a sin(u)

cosh(v)− cos(u)
,

where a=
√
d2 − r2, u∈ [0, 2π) and v ∈ [vt, 0]. The unperturbed tube is located at v= vt < 0 in

which cosh(vt) = d/r. The scale factors are

hu = hv =
a

cosh(v)− cos(u)
.

The field equation takes the form

1

h2v

(

∂2φ

∂u2
+
∂2φ

∂v2

)

+
∂2φ

∂z2
= 0, (3.2)

with the boundary conditions

1

hv

∂φ

∂v
=
∂R

∂t
at v= vt,

1

hv

∂φ

∂v
=
∂η

∂t
at v= 0,

∂φ

∂t
+ αη=0 at v= 0 (3.3)

and

∂φ

∂u
(0, v, z, t) =

∂φ

∂u
(2π, v, z, t) = 0. (3.4)

As our problem is autonomous in z and t, solutions are sought in the form of bulge waves

propagating along the tube RS = s1 cos(z − t+ Ψ1), where s1 > 0 is a dimensionless amplitude

and Ψ1 is the phase shift which are both to be determined. The superscriptS indicates the periodic

steady state. We seek a corresponding solution for the velocity potential φS = s1φ1(u, v) sin(z −



8

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

t+ Ψ1). The function φ1 satisfies the boundary value problem

1

h2v

(

∂2φ1
∂u2

+
∂2φ1
∂v2

)

− φ1 =0,

with

1

hv

∂φ1
∂v

=1 at v= vt,
α

hv

∂φ1
∂v

= φ1 at v= 0,
∂φ1
∂u

(0, v) =
∂φ1
∂u

(2π, v) = 0.

We now seek a Fourier cosine expansion of the form

φ1(u, v) =

∞
∑

n=0

b1n(v) cos(nu).

The terms in cos(nu) are then equated to form an ordinary differential equation for b1n. Apart

from the first term of this expansion, the terms represent a periodic variation around the

circumference of the tube. We now make the assumption that the dominant contribution to the

uniform pressure exerted by the sea on the tube arises from the first term of this expansion. The

expansion is truncated after the first term to yield φ1 = b10(v). We obtain the ordinary differential

equation
(

1

2
cosh(2v) + 1

)

d2b10
dv2

− a2b10 = 0, (3.5)

with the boundary conditions

α
db10
dv

(0) = ab10(0) and cosh(vt)
db10
dv

(vt) = a. (3.6)

We obtain a Taylor series solution to the boundary value problem (3.5)-(3.6) about the ordinary

point v=0 and within its radius of convergence of
√

π2 + ln2(2 +
√
3)/2

b10 =A1

(

1 +
a2

3
v2 +

a2(a2 − 2)

54
v4 + . . .

)

+B1

(

v +
a2

9
v3 +

a2(a2 − 6)

270
v5 + . . .

)

, (3.7)

in which B1 = aA1/α and

A1

[(

2a

3
vt +

2a(a2 − 2)

27
v3t + . . .

)

+
1

α

(

1 +
a2

3
v2t +

a2(a2 − 6)

54
v4t + . . .

)]

=
1

cosh(vt)
.

We now choose to truncate this expansion at O(v5). The accuracy of this truncated series

solution (3.7) may be ascertained by comparing it with a numerical solution of the boundary

value problem. The problem (3.5)-(3.6) is discretized using second-order finite differences and the

tridiagonal matrix is inverted via the Thomas algorithm. Excellent agreement has been obtained

between these two approximations for a number of parameter values.

(c) Bulge pressure

This subsection combines the results of the previous two subsections to determine the bulge wave.

The pressure forcing term will be evaluated using equation (2.12). We neglect terms which vary

with the azimuthal angle around the distensible tube to obtain the simplified expression

pSw =−η0
cosh(h− d) sin(z − t)

sinh(h)
+ s1b10(vt) cos(z − t+ Ψ1) +

αd

ǫ
.

Using (2.16), the bulge pressure may be written in the form

pSb = c20Λs1 [cos(z − t+ Ψ1) + β sin(z − t+ Ψ1)] .

If we substitute these expressions for pSw and pSb into (2.17), then we find

s1P sin(z − t+ Ψ1)− s1Q cos(z − t+ Ψ1) = Γ sin(z − t), (3.8)
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Table 2. Solutions of equations (3.9) and the eight equations (4.4)-(4.6) using the data values from Table 1.

Symbol series 2 prototype

experiments in [3] WEC

s1 1.3 0.34

Ψ1 0.12 −0.85

a0 1.0 1.0

a1 5.0× 10−2 0.42

a2 9.7× 10−4 5.1× 10−2

a3 1.6× 10−5 7.3× 10−3

m 4.8× 10−2 9.6× 10−2

kb 1.0 0.85

s2 −1.3 −0.22

s3 0.21 −0.20

where

P = c20Λβ, Q=Λ(1− c20)− b10(vt), Γ = η0
cosh(h− d)

sinh(h)
.

Equation (3.8) determines the amplitude and phase shift as follows

s1 =
Γ

(P 2 +Q2)1/2
, tanΨ1 =

Q

P
. (3.9)

The term Γ , in the numerator of s1, shows that the amplitude of the bulge wave has the expected

linear dependence on the forcing from the incident wave. In the denominator of s1,P corresponds

to the energy loss due to work done on the tube; the expressionΛ(1− c20) in Q is a measure of the

damping due to imperfect tuning of the bulge wave and the incident wave; and b10(vt) in Q is

damping from the radiated wave. Solutions of equations (3.9) using the data values from Table 1

are shown in Table 2.

After some algebraic manipulation, we may rewrite the total pressure in the tube at periodic

steady state as

pSb + pSw =PS cos(z − t+ Ψ1) +
αd

ǫ
,

where PS =Λs1. Figure 2(a) compares this prediction of amplitude PS with the experimental

results from Figure 14 of [3] for a range of wave periods. The wave period of the incident wave

is denoted by TI = 2π/ωI and T0 =2.2s. The comparison is very good in the linear regime, but

it fails near the resonance, nonlinear effects having been neglected in our mathematical model.

Unfortunately, the backward-travelling wave also influences this comparison as it reflects at the

bow.

4. Transient bulge wave

(a) Radiated wave

This subsection determines the transient radiated wave which varies along the length of the tube

and complements our results at periodic steady state. As our problem is autonomous in z and t,

solutions are now sought in the form of bulge waves which attenuate as they propagate along the

tube

RT = e−mz [s2 cos(kbz − ωbt) + s3 sin(kbz − ωbt)] ,

where m is the dimensionless decay rate, kb = k∗b/kI is the dimensionless wavenumber, ωb =

ω∗
B/ωI is the dimensionless angular frequency, s2 and s3 are the dimensionless amplitudes. The
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Figure 2. Amplitude of pressure in the tube plotted as a function of the relative wave period corresponding to the

constituent with the (a) wavenumber of the incident wave and (b) wavenumber of the bulge wave: (A) amplitude of the

pressure at periodic steady state, (B) amplitude of the transient pressure at the centre of the tube and (C) experimental

results of [3]. The other data values are given in the third column of Table 1.

superscript T indicates the transient. We now seek a corresponding solution of (3.2)-(3.4) of the

form

φT =ωbe
−mz [s2φ2(u, v) sin(kbz − ωbt)− s3φ3(u, v) cos(kbz − ωbt)] .

The functions φ2 and φ3 satisfy the coupled system of equations

s2L̄φ2 = s32mkbφ3, s3L̄φ3 =−s22mkbφ2, (4.1)

where the differential operator is given by

L̄=
1

h2v

(

∂2

∂u2
+

∂2

∂v2

)

+ (m2 − k2b ).

Equations (4.1) may be combined to show that φ2 satisfies the field equation

L̄2φ2 + 4m2k2bφ2 =0.

The boundary conditions on φ2 are

1

hv

∂φ2
∂v

= 1,
1

hv

∂(L̄φ2)

∂v
=
s3
s2

2mkb at v= vt, (4.2)

α

hv

∂φ2
∂v

= ω2

bφ2,
α

hv

∂(L̄φ2)

∂v
= ω2

b (L̄φ2) at v=0 (4.3)

and

∂φ2
∂u

(0, v) =
∂φ2
∂u

(2π, v) =
∂(L̄φ2)

∂u
(0, v) =

∂(L̄φ2)

∂u
(2π, v) = 0.

We seek a Fourier cosine expansion of the form

φ2(u, v) =
∞
∑

n=0

b2n(v) cos(nu).

As in the case of the periodic steady state, we make the assumption that the dominant

contribution to the uniform pressure exerted by the sea on the tube arises from the first term of

this expansion, all subsequent terms representing a periodic variation around the circumference

of the tube. The expansion is truncated after the first term to yield φ2 = b20(v). The linear operator
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L̄ is approximated by L, where

L=
1

a2

(

1

2
cosh(2v) + 1

)

d2

dv2
+ (m2 − k2b ).

We seek a Taylor series expansion, about the ordinary point v= 0 and within its radius of

convergence of
√

π2 + ln2(2 +
√
3)/2, of the form

b20 =
7
∑

n=0

anv
n,

in which the coefficients an are to be determined. We also introduce the notation

Lb20 =
5
∑

n=0

ānv
n

in order to simplify the subsequent algebra. The coefficients ān are readily calculated to be

ā0 =
3

a2
a2 + (m2 − k2b )a0, ā1 =

9

a2
a3 + (m2 − k2b )a1,

ā2 =
2

a2
(a2 + 9a4) + (m2 − k2b )a2, ā3 =

6

a2
(a3 + 5a5) + (m2 − k2b )a3,

ā4 =
1

a2

(

2

3
a2 + 12a4 + 45a6

)

+ (m2 − k2b )a4, ā5 =
1

a2
(2a3 + 20a5 + 63a7) + (m2 − k2b )a5.

We substitute these expansions into

L(Lb20) + 4m2k2b b20 = 0

and equate coefficients of powers of v to yield

54

a4
a4 = − 6

a4
a2 − (m2 − k2b )

(

3

a2
a2 + ā0

)

− 4m2k2ba0,

270

a4
a5 = −54

a4
a3 − (m2 − k2b )

(

9

a2
a3 + ā1

)

− 4m2k2ba1,

810

a4
a6 = −12

a4
(a2 + 18a4)−

2

a2
ā2 − (m2 − k2b )

(

18

a2
a4 + ā2

)

− 4m2k2ba2,

1890

a4
a7 = −60

a4
(a3 + 10a5)−

6

a2
ā3 − (m2 − k2b )

(

30

a2
a5 + ā3

)

− 4m2k2ba3.

It remains to apply the boundary conditions. In order to evaluate a0, a1, a2 and a3, the following

four equations may be deduced from (4.2)-(4.3)

cosh(vt)

7
∑

n=1

nanv
n−1

t = a, s2 cosh(vt)

5
∑

n=1

nānv
n−1

t = 2mkbas3,

αa1 = aω2

ba0, αā1 = aω2

b ā0.

(4.4)

It is not necessary to solve a similar problem for φ3 = b30(v), as we may determine φ3 using our

solution for φ2 and the first equation in (4.1).

(b) Bulge pressure

This subsection uses the results of the previous subsection to evaluate the transient bulge wave.

The pressure forcing term will again be evaluated using equation (2.12). The pressure exerted on
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the tube by the wave radiated from the attenuated bulge wave is given by

pTw = ω2

be
−mz [s2b20(vt) cos(kbz − ωbt) + s3b30(vt) sin(kbz − ωbt)] .

Using (2.16), the bulge pressure may be written in the form

pTb = c20Λe
−mz [(s2 − ωbβs3) cos(kbz − ωbt) + (s3 + ωbβs2) sin(kbz − ωbt)] .

If we substitute these expressions for pTw and pTb into (2.17) and equate coefficients of

e−mz cos(kbz − ωbt) and e−mz sin(kbz − ωbt), then we obtain

[F − Jb20(vt)] s2 + [G+Kb30(vt)] s3 = 0,

[−G−Kb20(vt)] s2 + [F − Jb30(vt)] s3 = 0,
(4.5)

where F =Λ
[

2mkbc
2
0βωb − c20(m

2 − k2b )− ω2

b

]

, G=Λ
[

c20βωb(m
2 − k2b ) + 2mkbc

2
0

]

, J = (m2 −
k2b )ω

2

b and K = 2mkbω
2

b .

(c) Bow boundary condition

The boundary condition at the bow (2.18) must be applied to the sum of the periodic steady state

and the transient bulge wave. We have

pw = pSw + pTw =−Γ sin(z − t) + s1b10(vt) cos(z − t+ Ψ1) +
αd

ǫ

+ω2

b e
−mz [s2b20(vt) cos(kbz − ωbt) + s3b30(vt) sin(kbz − ωbt)] ,

pb = pSb + pTb = c20Λs1 [cos(z − t+ Ψ1) + β sin(z − t+ Ψ1)]

+c20Λe
−mz [(s2 − ωbβs3) cos(kbz − ωbt) + (s3 + ωbβs2) sin(kbz − ωbt)] .

The boundary condition may only be satisfied if ωb is very close to one. Henceforth, we assume

ωb = 1, the angular frequencies of the bulge and incident gravity waves being identical. In the

experimental results of [3], the pressure was also found to be the sum of waves with differing

wavenumbers, but all sharing the angular frequency of the incident wave. The coefficients of

sin(t) and cos(t) are equated in (2.18) to yield

[M + kbb20(vt)] s2 + [N +mb30(vt)] s3 = −Λs1 cos(Ψ1),

[−N −mb20(vt)] s2 + [M + kbb30(vt)] s3 = Λs1 sin(Ψ1),

where M = c20Λ(mβ + kb) and N = c20Λ(m− kbβ). These equations may be rewritten in the form
(

s2
s3

)

=−Λs1
∆

(

[M + kbb30(vt)] cos(Ψ1) + [N +mb30(vt)] sin(Ψ1)

[N +mb20(vt)] cos(Ψ1)− [M + kbb20(vt)] sin(Ψ1)

)

, (4.6)

where

∆= [M + kbb20(vt)] [M + kbb30(vt)] + [N +mb20(vt)] [N +mb30(vt)] .

Equations (4.4)-(4.6) determine the eight unknowns a0, a1, a2, a3, m, kb, s2 and s3. This system

of eight equations embodies the wave-structure interactions taking place along the distensible

tube. The phase velocity of the bulge wave is not determined by the standard formula [2] for the

distensibility in this coupled problem, but by the wave-structure interactions. The quantitative

dependence of s1 (on the energy loss due to work done on the tube; the damping due to imperfect

tuning of the bulge wave and the incident wave; and damping from the radiated wave) carries

forward to s2 and s3. The solutions of this system of eight equations are shown in Table 2 for the

data values given in Table 1.

In order to gain experimental validation of our solution for the transient bulge wave, we

seek a comparison with the experimental results in Figure 14 of [3]. We compare the amplitude

of the total transient pressure at the centre of the tube, PT , for a range of wave periods with

the corresponding experimental values in Figure 2(b). The agreement is very good in the linear
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Figure 3. (a) The total pressure ptot inside the tube normalized by the maximum pressure Γ outside the tube where

lines denote analytical predictions, 16 snapshots over one period plotted over the length of the tube and points indicate

the upper and lower envelopes of the corresponding experimental results in Figure 11(c) of [3]. (b) The amplitude of the

fluid velocity inside the tube ûamp. The experimental results for the forward-travelling bulge wave in Figure 11(e) of [3]

have been shifted by a constant to pass through the origin. (c) The wave phases in degrees. (d) The capture width Cw

in diameters. The experimental result at the stern represents the power which was converted at the PTO. The legends

denote (A) analytical predictions for the bulge wave plotted over the length of the tube, (B) the experimental results for the

bulge wave in Figure 11 of [3] and (C) water wave phase shifted by 90
◦ . The data values are given in the third column of

Table 1.

regime, but fails in the nonlinear regime. Our mathematical model does not include nonlinear

effects.

(d) Final solution

Our final solution is obtained by linear superposition of the solution for the periodic steady state

and transient. Hence, the velocity potential φ= φI + φS + φT , where φI + φS corresponds to the

periodic steady state and φT to the transient. The form of the bulge wave propagating along the

tube is the sum R=RS +RT . Similarly, the bulge pressure in the tube is given by pb = pSb + pTb
and the pressure outside the tube by pw = pSw + pTw.

Experimental validation of our final solution may be obtained by comparison with the results

in Figure 11(c) of [3]. The predicted total pressure ptot = pb + pw − αd/ǫ inside the tube is

compared with these measurements in Figure 3(a). As expected (see the discussion in Section 1),

the agreement is better towards the stern where our neglect of the backward-travelling wave

is less significant. The spatial oscillation in the upper and lower envelopes of the experimental

results may be due to beating; whereas, the predicted results have similar wavenumbers (kb =

k∗b/kI =1.0) and identical frequencies in the incident and bulge waves so beating is not possible.
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It suggests that the incident and bulge waves contain different wavenumbers in the experiments

of [3].

In Figure 11(e) of [3], the amplitude of the fluid velocity inside the tube is plotted for the

forward- and backward-travelling components of the bulge wave. The amplitude of the fluid

velocity of the forward-travelling wave does not tend to zero at the bow, this non-zero value

corresponding to the reflection of the backward-travelling wave. We wish to compare the growth

rate of the forward-travelling bulge wave with our analysis, so this constant non-zero amplitude

must be subtracted from the experimental results. Figure 3(b) compares these two growth rates,

the agreement being excellent.

Further experimental validation may be obtained by comparison with the results in

Figure 11(f) of [3]. The wave phase for the overall solution for the bulgeR=RS +RT is compared

with the measurements in Figure 3(c). The excellent quantitative agreement serves to validate

both the structure of the bulge wave and the values obtained in the second column of Table 2. The

water wave minus 90 degrees is also plotted. As observed previously [3], the bulge wave after

3m leads the water waves by approximately 90 degrees. However, during the first 3m, the bulge

wave may be seen to lead the water wave by significantly more than 90 degrees.

5. Energy capture

(a) Mean energy flux of the incident wave

In this subsection, we calculate the mean energy flux per unit crest length of the incident wave.

The dimensional mean energy flux per unit crest length of the incident wave is

J∗
I =

ωI
2π

∫2π/ωI

t∗=0

∫η∗

x∗=−h∗

p∗I
∂φ∗I
∂z∗

dx∗dt∗,

where φ∗I = ǫωIφI/k
2

I and p∗I = ρǫω2

IpI/k
2

I . We non-dimensionalize and take the leading-order

term on the right-hand side to obtain

J∗
I ∼ 1

2π
ρ
ǫ2ω3

I

k4I

∫
2π

t=0

∫
0

x=−h
pI
∂φI
∂z

dxdt

as ǫ→ 0. Using the linearized Cauchy-Lagrange integral (2.12) and periodicity of φI , our

expression may be rewritten

J∗
I ∼ 1

4
ρ
ǫ2ω3

I

k4I
η20

(sinh(h) cosh(h) + h)

sinh2(h)
.

(b) Mean power of the bulge wave

We now evaluate the mean power of the bulge wave for the unsteady case. The dimensional mean

power of the bulge wave is given by

P ∗
b =

ωI
2π

∫
2π/ωI

t∗=0

∫R∗

r̄=0

(p∗b + p∗w)u
∗2πr̄ dr̄dt∗,

where u∗ = (ǫωI/kI )û is the dimensional axial velocity of the water in the tube and r̄ is the

dimensional radial coordinate from the centre of the tube. As p∗b + p∗w and u∗ are independent

of r̄, we may integrate to yield

P ∗
b =

ωI
2

∫2π/ωI

t∗=0

(p∗b + p∗w)u
∗R∗ 2 dt∗.

We non-dimensionalize on the right-hand side to find that

P ∗
b ∼ ρ

2

ǫ2ω3

Ir
∗ 2

k3I
I, where I =

∫2π
t=0

(pb + pw)û dt.
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In Section 4, we determined that

pb + pw =Λs1 cos(z − t+ Ψ1) +
αd

ǫ
+ Y e−mz cos(kbz − t) + Ze−mz sin(kbz − t),

where

Y = s2b20(vt) + c20Λ(s2 − βs3), Z = s3b30(vt) + c20Λ(s3 + βs2).

The differential equation (see [2])
∂û

∂t
=− ∂

∂z
(pb + pw)

allows us to evaluate

û=Λs1 cos(z − t+ Ψ1) + e−mz sin(kbz − t)[kbZ −mY ] + e−mz cos(kbz − t)[mZ + kbY ].

Hence,

I = Λ2s21π + Λs1π[(kb + 1)Z −mY ]e−mz sin((kb − 1)z − ψ1)

+Λs1π[mZ + (kb + 1)Y ]e−mz cos((kb − 1)z − ψ1) + kb[Y
2 + Z2]πe−2mz.

The first term in I is the value approached at the periodic steady state. An oscillatory behaviour

is evident in the second and third terms in I when the transient and periodic steady state have

different wavenumbers, this corresponding to beating.

(c) Capture width

The capture width of a wave energy converter is defined as the width of the wave front from

which all of the energy has been extracted. Optimization of the capture width is a key factor in

the reduction of the cost of energy. We wish to derive an analytical approximation for the capture

width of the distensible tube wave energy converter from the bow to the stern. The capture width,

Cw, is approximated by

Cw =
P ∗
b

J∗
I

∼ 2r∗ 2kII sinh
2(h)

η2
0
(sinh(h) cosh(h) + h)

.

Figure 3(d) compares our prediction of the capture width over the length of the tube with the

experimental measurements in Figure 11(g) of [3], the agreement being reasonable. The capture

width in the experiments will be increased by the reflection of the backward travelling bulge

wave at the bow. Spatial oscillation is also evident in the experimental results, due to the presence

of a maximum, but does not appear in the analytical prediction because the wavenumbers of

the incident and bulge waves are similar (kb = k∗b /kI = 1.0). This spatial oscillation, which is

associated with beating, is additional evidence that the incident and bulge waves contain different

wavenumbers in the experiments of [3].

6. Results

(a) Small-scale predictions

We now utilize the data in the third column of Table 1 to make predictions of the capture width

which go beyond the experimental results published in [3]. Figure 4(a) shows the variation of

capture width with relative wave period for three locations along the tube 6.8m, 30m and 60m.

At 6.8m, the capture width exhibits a relatively flat and broad response to a range of wave

periods. In contrast for the longer tubes of 30m and 60m, there is a peak in the spectrum with

an accompanying narrower response, the peak being most pronounced for the longest tube.

In Figure 4(b), the capture width is plotted as a function of pressurized tube radius at three

locations along the tube. When varying the radius, we assume d∗ = γr∗ and γ = 1.1 to ensure

that the tube remains just below the surface of the water. It is also important to recall that

the distensibility is a linear function of radius (see (2.8)). At 6.8m, the capture width increases
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Figure 4. The capture width Cw plotted as functions of the (a) relative wave period, (b) pressurized tube radius and

(c) water depth using an incident wavenumber of 0.84m−1, at three points along the length of the tube: (A) z∗ = 6.8m,

(B) z∗ =30m and (C) z∗ =60m. The other data values are given in the third column of Table 1.

monotonically as a function of radius; in other words, fatter and more expensive tubes will

generate more energy. The capture width predictions at 30m and 60m are much more complex: a

global maximum for small radius is followed by oscillatory behaviour at larger radius. The wave-

structure interactions are responsible for this series of local maxima. For longer tubes, fatter and

more expensive devices will generate less electricity than suitably chosen thinner counterparts.

The variation of capture width with water depth at three locations along the tube is shown in

Figure 4(c). At 6.8m, the capture width increases by only a small amount with increasing depth.

For the longer tubes of 30m and 60m, there is a rapid increase in capture width as h∗ increases

from 1m to 1.5m and, as expected, capture approaches a deep-water limit for depths greater

than 4m. For h∗ below 1m and between 1.5m and 4m, some maxima and minima are evident.

In this case, changes in the dispersion relationship play an important role in addition to tuning,

absorption and radiation effects. Indeed, for the longest tube, the global maximum in the capture

width highlights the significance of water depth when mooring a distensible tube WEC in shallow

water.

In order to further understand the optimal choice of pressurized tube radius and water depth,

we consider a contour plot of capture width. Figure 5 shows a ridge of capture width in parameter

space. A WEC should appear along this ridge to achieve the most efficient energy generation. We

note that the series 2 experiments in [3] have a remarkable agreement with the optimal choice of

parameter values identified in Figure 5.
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Figure 5. Contours of capture width at z∗ =60m plotted as a function of water depth and pressurized tube radius. The

capture width is in metres and the incident wavenumber is 0.84m−1. The other data values are given in the third column

of Table 1.
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0.1s, (B) β∗ =0.2s and (C) β∗ =0.4s. The other data values are given in the fourth column of Table 1.

(b) Industrial-scale predictions

This subsection predicts the performance of a prototype WEC described by the fourth column

of Table 1. Figure 6 shows that the capture width along the length of the tube for three values

of the energy loss parameter. The oscillatory behaviour in Figure 6 is due to beating, the ratio of

the wavenumbers of the bulge and incident waves (kb) being 0.85. An increase in the energy loss

parameter damps the beating and reduces the mean values of capture width. Distributed PTO

would need to be carefully optimized in a distensible tube WEC in order to prevent the dramatic

reduction in capture width seen in Figure 6.
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Figure 7. The capture width Cw plotted as functions of the (a) relative wave period, (b) pressurized tube radius and

(c) water depth using an incident wavenumber of 0.25m−1, at three points along the length of the tube: (A) z∗ = 60m,

(B) z∗ =80m and (C) z∗ =100m. The other data values are given in the fourth column of Table 1.

Figures 7 shows a similar behaviour to that already shown in Figures 4 for the small-scale case.

However, there are some notable differences: the capture widths are far greater; there is a broad

response for a range of frequencies in Figure 7(a); beating may be seen in the oscillatory behaviour

of Figure 7(a); and the capture width is almost independent of water depth in Figure 7(c). We also

note that further along the length of the tube, the peak in capture width shifts to larger tube radius

in Figure 7(b); the opposite trend was observed in Figure 4(b). In order to put these results into

context, the maximum capture width for a distensible tube WEC of length 60m in Figure 7(a)

is compared to the maximum capture width, of approximately 4m, for a single heaving point

absorber at this wavenumber. Therefore, this distensible tube WEC of length 60m at resonance is

equivalent to 20 heaving point absorbers at resonance.

7. Conclusions
A comprehensive mathematical model for the interactions of regular waves with a distensible

tube has been introduced. The theory incorporates, for the first time, the effects of the radiated

wave. Our approach differs from the approaches which have been previously reported. These

existing approaches may be derived from our mathematical model by introducing engineering

approximations to uncouple the system of equations. Our mathematical model requires the

assumptions that the following phenomena may be neglected: (i) the vertical translations of the

tube, (ii) nonlinear effects, (iii) the backward travelling bulge wave and (iv) ocean wave spectra.

Assumption (iv) will need to be addressed in future work. Assumption (iii) is easily justified as

the backward travelling wave will decay exponentially within a short distance of the stern for
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a full-scale prototype and will only be important in scaled-down laboratory tests. Assumptions

(i) and (ii) may only be fully justified by comparison with experiment. Nonlinear effects have

been shown to become important near resonance [8], but their significance would be limited by

increased damping. Distributed PTO may well increase damping sufficiently to limit amplitudes

to the linear regime studied here.

Our mathematical model and analytical solution techniques have been validated by numerous

comparisons with the experiments in [3]. The superiority of our mathematical model may be

seen in the comparison of Figure 3(c) and Figure 11(f) of [3]. Our model and the model in [3]

agree that the bulge wave eventually leads the water waves by 90 degrees. However, the model

in [3] predicts that the bulge wave leads the water wave by significantly less than 90 degrees

during the initial stage; whereas, our model predicts that the bulge wave leads the water waves

by significantly more than 90 degrees. Our model predicts the experimental results quantitatively

and captures the physical structure of the bulge wave for the first time.

Analytical techniques have been exploited to solve our coupled system of differential

equations. One major advantage of these techniques is that parameter dependencies emerge in

the course of the analysis which describes the underlying physics. The capture width has been

found to vary linearly with

cosh2(kI(h
∗ − d∗))

P 2 +Q2
,

where

P =
kIEβ

∗H∗

ρωIr∗ 2
, Q=

2kI
r∗ω2

I

(

ω2

I

k2I
− 1

ρD

)

− b10(vt).

The numerator cosh2(kI(h
∗ − d∗)) represents absorption from the incident wave; P is the energy

loss due to work done on the tube; the first term in Q is damping due to imperfect tuning of the

incident and bulge waves; and the second term in Q is the damping due to the radiated wave. In

fact, the capture width at periodic steady state is given by

Cw =
8π cosh2(kI(h

∗ − d∗))

kI(sinh(kIh∗) cosh(kIh∗) + kIh∗)(P 2 +Q2)
.

The role played by the pressurized tube radius is the most striking aspect of these formulae. As

the tube radius increases, the damping due to energy loss and due to imperfect tuning decrease;

however, provided that the tube remains just below the surface of the water (d∗ ≈ r∗), the increase

in d∗ will cause an exponential decrease in the absorption. Unfortunately, the radiation damping

may not be expressed in such simple terms; nevertheless, tube radius has been identified as the

most important design parameter in optimizing the energy capture.

The response of the capture width to a range of wave periods is evident by considering Q,

the maximum in capture width being shifted from the tuned value of the distensibility by the

radiated wave (as |Q|≪ 1). The maximum value of the capture width itself is then governed by

P ; that is, the energy loss due to work done on the tube.

The wave-structure interactions taking place along the distensible tube are most evident in the

solution of the transient problem. These interactions take the form of eight coupled nonlinear

algebraic equations which determine the amplitude, phase, attenuation and wavenumber of

the transient bulge wave. If the wavenumber of the incident wave differs from that of the

transient bulge wave, then the spatial variation of the capture width is in the form of (potentially

large) beating oscillations rather than monotonic growth. Large beating oscillations may have

implications for the survivability of the device.

These analytical formulae will aid device developers as well as advance science in terms

of improved understanding of the physics of WEC devices of this type. The main design

parameters for a distensible tube have been identified as the radius and the length of the

device. Unfortunately, without optimization studies enabled by the mathematical model laid

out in this article, fatter and longer tubes may be manufactured which have reduced energy

capture. This conclusion is all the more pertinent with the capital costs for the production of the
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largest prototypes being prohibitively high. The introduction of distributed PTO will only further

complicate the parameter dependence and optimization of these complex devices.

Distributed PTO may be incorporated into the mathematical model by replacing the Kelvin-

Voigt constitutive equation for hoop stress (and possibly the equation for hoop strain) with an

appropriate equation or system of equations. The remaining differential equations, interface and

boundary conditions in the model will be unaffected by this modification. This has the significant

advantage that the analytical solution obtained in Subsections 3(a), 3(b) and 4(a) will carry over

to these devices and this analysis may be viewed as universal in this context. Therefore, our

mathematical model may be modified to explore the feasibility for potential reductions in the

cost of energy for different distributed PTO options.
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