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SHADOWING FOR INDUCED MAPS OF HYPERSPACES

LEOBARDO FERNÁNDEZ AND CHRIS GOOD

Abstract. Given a nonempty compact metric space X and a contin-
uous function f : X → X, we study shadowing and h-shadowing for
the induced maps on hyperspaces, particularly in symmetric products,
Fn(X), and the hyperspace of compact subsets of X, 2X . We prove
that f has shadowing (h-shadowing) if and only if 2f has shadowing
(h-shadowing).

1. Introduction

A continuous function f : X → X on a compact metric space induces

a number of maps on related spaces. There is a close relationship, for ex-

ample, between the dynamical behaviour of f , the topological structure of

the inverse limit space lim
←−

(X, f) and induced shift map on (X, f). This

situation has been extensively studied (see for example [4, 15, 29] and the

references contained therein). Over the past few years there has been in-

creasing interest in the study of induced map on the hyperspace of closed

subsets and various of its subsets equipped with the Vietoris topology (or

Hausdorff metric). This study was initiated by Bauer and Sigmund [5] and

it has been argued [11] that, from a computational and domain theoretic

point of view, this is the natural approach to dynamical systems.

Given a compact metric space X, 2X is the hyperspace of nonempty

closed subsets of X with the Vietoris topology. A continuous map f : X →
X induces a continuous map 2f : 2X → 2X defined by 2f (A) = f(A). A

number of well-studied subspaces (such as the collections Cn(X) of closed

sets with at most n components, F (X) of finite subsets, or Fn(X) of subsets

sets with at most n points) are invariant under this map and therefore form

dynamical systems in their own right. It turns out that a number of dynam-

ical properties lift between these systems. For example, 2f is transitive if

and only if it is weakly mixing if and only if f is weakly mixing [3, 27]. In

[12] the authors study chain transitivity, chain recurrence and periodicity

of induced maps on Fn(X) and 2X . Relationships between the entropy of
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the map f and the entropy of the induced maps on 2X , Cn(X), Fn(X) and

F (X) are studied in [13] and [18]. In [14] the authors study periodicity,

recurrence, quasi periodicity, wandering points, shadowing, exactness and

non-wandering for the induced map in the hyperspace Fn(X). Induced maps

on the symmetric products Fn(X) are also studied in [19] and [16].

Of particular relevance in the computation of a dynamical system is the

notion of shadowing, which is the focus of this paper. Given a map f , a δ-

pseudo orbit is a (finite or infinite) sequence of points such that the distance

between f(xi) and xi+1 is less than δ. A typical example of a pseudo orbit

would be the points produced computationally in calculating the orbit of

a point where there is a round off error. A pseudo orbit is said to be ε-

shadowed if there is a real orbit whose points track the pseudo orbit within

a distance of ε. The map f has the shadowing property if, for a given ε,

there is a δ such that δ-pseudo orbits are ε shadowed. Shadowing has been

studied in the context of numerical analysis [8, 7, 25], at times being cited as

a prerequisite to achieving accurate mathematical models, and extensively

as a property in its own right [9, 30, 20, 24, 26, 28]. Bowen was one of the

first to consider this property in [6], where he used it in the study of ω-limit

sets of Axiom A diffeomorphisms.

Some work on the shadowing of induced hyperspace maps has been done.

In [14] it is proved that, for any n ≥ 1, if the restriction fn of 2f to Fn(X)

has shadowing, then f has shadowing. The authors also prove that if f

has shadowing, then f2 has shadowing but give an example (z 7→ z2 on

S1) for which f has shadowing but fn does not have shadowing for any

n ≥ 3. Interestingly, we prove below that the pseudo orbits in this example

that cannot be shadowed in Fn(X) can be shadowed in Fm(X) for some

m > n. Sakai [30] proves that a positively expansive map on a compact

metric space has shadowing if and only if it is open. In [31] it is shown that

the induced map 2f of a positively expansive open map f is open but need

not be positively expansive. However, the authors show that such induced

maps do have shadowing.

In this paper we show that, in fact 2f has shadowing if and only if f has

shadowing.

If a map f : X → X has shadowing, then the restriction f<ω of 2f to

F (X) has shadowing for finite pseudo orbits. Since F (X) is not compact,

this is not enough to show that F (X) has shadowing. However F (X) is

dense in 2X and invariant under 2f , and this is enough, via a general result

on shadowing in dense subspaces to prove that f has shadowing if and only
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if 2f has shadowing. Using slightly different arguments we prove a similar

result which says that f has the much stronger property of h-shadowing if

and only if 2f does.

2. Preliminaries

We start with some definitions.

Definition 2.1. Let X be a compact metric space. Consider the following

hyperspaces of X:

• 2X = {A ⊆ X : A is nonempty and closed} is the hyperspace of

closed nonempty subsets of X.

• C(X) = {A ∈ 2X : A is connected} is the hyperspace of subcontinua

of X.

• Fn(X) = {A ∈ 2X : A has at most n points} is the n-fold symmetric

product of X.

• F (X) =
∞⋃
n=1

Fn(X) is the colection of all finite subsets of X.

Definition 2.2. Given a map f : X → Y between compact metric spaces,

the induced maps are given in the following way:

• The induced map 2f : 2X → 2Y is given by 2f (A) = f(A).

• The induced map C(f) : C(X)→ C(Y ) is given by C(f) = 2f |C(X).

• The induced map fn : Fn(X)→ Fn(Y ) is given by fn = 2f |Fn(X).

• The induced map f<ω : F (X)→ F (X) is given by f<ω = 2f |F (X).

Given a metric space X with metric d. For any r > 0 and any A ∈ 2X ,

the open ball about A of radius r is given by:

NX(A, r) = {x ∈ X : d(x,A) < r} .

For the special case when A = {x} we write NX(x, r). If X is a compact

metric space with metric d, then (see for example [21]) 2X is a compact

metric space when equipped with the Hausdorff metric

H(A,B) = inf{ε > 0: A ⊆ NX(B, ε) and B ⊆ NX(A, ε)}.

The topology generated by H coincides with the Vietoris topology.

3. Shadowing

It is shown in [31] that if f is a positively expansive open map then 2f

has shadowing. Here we prove that if one of the induced maps fn, C(f), 2f

or f<ω has shadowing, then f has shadowing. Also we prove that if f has
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shadowing, then f<ω has finite shadowing which, in turn, implies that 2f

has shadowing.

We start with basic definitions. Let X be a compact metric space and

let f : X → X be a continuous function. For δ > 0, the (finite or in-

finite) sequence Γ = 〈x0, x1, . . . 〉 of points in X is a δ-pseudo orbit if

d (f(xi), xi+1) < δ for every i ≥ 0. If ε > 0, we say that the sequence

〈y0, y1, . . . 〉 ε-shadows Γ provided d(yi, xi) < ε for every i. If yi = f i(y) for

some point y ∈ X, we say that y shadows the sequence Γ. We say that f

has shadowing if for every ε > 0 there is δ > 0 such that every δ-pseudo

orbit is ε-shadowed by some point in X. In the case that only finite pseudo

orbits are shadowed, we say that f has finite shadowing. If X is compact,

f has shadowing if and only if f has finite shadowing (see, for example, [2,

Remark 1]).

We first prove a general result about shadowing that we assume to be

well known.

Lemma 3.1. Let X be a compact metric space, let f : X → X be a contin-

uous function and let Y be a dense invariant subset of X. Then f has finite

shadowing if and only if f |Y has finite shadowing.

Proof. Assume first that f has shadowing. Let ε > 0 and choose δ such

that every δ-pseudo orbit in X is ε/2-shadowed. Let Γ = 〈y0, y1, . . . , yr〉 be

a δ-pseudo orbit in Y . Then Γ is a δ-pseudo orbit in X. Since f has shad-

owing, there is a point x ∈ X which ε/2-shadows Γ, i.e., d(f i(x), yi) <
ε
2
,

for every i ∈ {0, 1, 2, . . . , r}. Since f is continuous, there is ηr−1 > 0, with

ηr−1 <
ε
2

and f (NX (f r−1(x), ηr−1)) ⊆ NX

(
f r(x), ε

2

)
. Also, there is ηr−2 >

0, with ηr−2 < ηr−1 and f (NX (f r−2(x), ηr−2)) ⊆ NX (f r−1(x), ηr−1). Con-

tinuing this process, there is η1 > 0, with η1 < η2 and f (NX (f(x), η1)) ⊆
NX (f 2(x), η2). Finally, there is η0 > 0, with η0 < η1 and f (NX (x, η0)) ⊆
NX (f(x), η1). By construction, every y ∈ NX (x, η0) ∩ Y ε-shadows Γ.

Now assume that f |Y has finite shadowing, let ε > 0 and let Γ =

〈x0, x1, . . . , xr〉 be a δ/3-pseudo orbit in X, where δ is given by shadowing in

f |Y for ε/2. Since f is continuous and X is compact, f is uniformly contin-

uous and there exists η > 0 with η < δ
3

and η < ε
2

such that if d(x, y) < η,

then d (f(x), f(y)) < δ
3
. For each i ∈ {0, 1, . . . , r}, let yi ∈ NX(xi, η) ∩ Y .

Hence d (f(xi), f(yi)) <
δ
3
. Thus, Γ∗ = 〈y0, y1, . . . , yr〉 is a δ-pseudo orbit in

Y because:

d (f(yi), yi+1) ≤ d (f(yi), f(xi)) + d (f(xi), xi+1) + d (xi+1, yi+1)

<
δ

3
+
δ

3
+
δ

3
= δ.
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Since f |Y has shadowing, there is a point y ∈ Y which ε
2
-shadows Γ∗. But

then d (f i(y), xi) < d (f i(y), yi) + d (yi, xi) <
ε
2

+ ε
2

= ε. Therefore, y ε-

shadows Γ and f has finite shadowing. �

Turning now to induced maps on hyperspaces, we start with a simple

observation.

Theorem 3.2. Let X be a compact metric space and let f : X → X be a

continuous function. Let n ≥ 1. If any of fn, C(f), 2f or f<ω has shadowing,

then f has shadowing.

Proof. The proof is the identical in each case, so we prove it for 2f . So

suppose that 2f has shadowing. Let ε > 0 and let δ > 0 given by shad-

owing for 2f . Let Γ = 〈x0, x1, . . . , xr〉 be a δ-pseudo orbit in X. Then

Γ∗ = 〈{x0}, {x1}, . . . , {xr}〉 is a δ-pseudo orbit in 2X . Since 2f has shadow-

ing, there is a point A ∈ 2X which ε-shadows Γ∗. But then every point x of

A ε-shadows Γ. �

As mentioned above, in [14] it is shown that f has shadowing if and only

if f2 has shadowing but that there is a map f with shadowing for which

certain pseudo orbits in Fn(X) can only be shadowed in Fm(X) for some

m > n. The fact that finite sets can always be shadowed by larger finite

sets turns out to be a general property of shadowing maps.

Theorem 3.3. Let X be a compact metric space and let f : X → X be a

continuous function. If f has shadowing, then f<ω has finite shadowing.

Proof. Fix ε > 0 and let δ > 0 be given by shadowing of f . Let Γ =

〈A0, A1, . . . Ar〉 be a finite δ-pseudo orbit in F (X) and assume that |Ai| = ni

for each i ∈ {0, 1, 2, . . . , r}. We will construct a family of δ-pseudo orbits in

X, denoted {Γj : j ≤ n}, for some n, such that, writing

Γj =
〈
aj0, a

j
1, a

j
2, . . . , a

j
r−1, a

j
r

〉
,

we have Ai = {aji : j ≤ n} for each i ≤ r.

To this end, suppose that Ar = {a1r, a2r, . . . , anr
r }. For each j, with 1 ≤ j ≤

nr, we first construct a δ-pseudo orbit in X with ith element in Ai, whose

final element is ajr. Since Γ is a δ-pseudo orbit, we can choose ajr−1 ∈ Ar−1
such that d

(
f(ajr−1), a

j
r

)
< δ. Again, there is some ajr−2 ∈ Ar−2 such that

d
(
f(ajr−2), a

j
r−1
)
< δ. Continuing in this way, we have δ-pseudo orbits

Γj =
〈
aj0, a

j
1, a

j
2, . . . , a

j
r−1, a

j
r

〉
,

for each j ≤ nr, such that Ar = {ajr : j ≤ nr} and {aji : j ≤ nr} ⊆ Ai for

each i ≤ r.
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Let k = max
{
i < r : Ai 6= {aji : j ≤ nr}

}
(if no such k exists then we are

done) and write Ak−{ajk : j ≤ nr} = {ajk : nr < j ≤ n′k}. Exactly as for Ar,

for each nr < j ≤ n′k, we can construct a δ-pseudo orbit Γ′j =
〈
aj0, a

j
1, . . . , a

j
k

〉
such that aji ∈ Ai, for i ≤ k. Clearly Ak = {ajk : j ≤ n′k}. Now, since

f
(
ajk
)
∈ f<ω (Ak) and H (f<ω (Ak) , Ak+1) < δ, there is ajk+1 ∈ Ak+1 such

that d
(
f
(
ajk
)
, ajk+1

)
< δ. Similarly for each nr < j ≤ n′k and k < i < r,

there are aji ∈ Ai such that d
(
f
(
aji
)
, aji+1

)
< δ, so that we can extend Γ′j

to a δ-pseudo orbit Γj which starts in A0 and ends in Ar.

Repeating this process, it is clear then that we can construct the collec-

tion {Γj : j ≤ n} of δ-pseudo orbits in X. Since f has shadowing, for each

Γj there is a point bj ∈ X which ε-shadows Γj. Let B = {b0, b1, . . . , bm}. By

construction, B ε-shadows Γ. �

Our main theorem now follows easily.

Theorem 3.4. Let X be a compact metric space and let f : X → X be a

continuous function. Then f has shadowing if and only if 2f has shadowing.

Proof. By Theorem 3.2, if 2f has shadowing, then f has shadowing. Con-

versely, if f has shadowing then f<ω has finite shadowing by Theorem 3.3,

but F (X) is an invariant dense subset of 2X , so by Lemma 3.1 2f has shad-

owing. �

It also follows immediately from Theorems 3.2 and 3.3 that f<ω has finite

shadowing whenever fn has shadowing for some positive integer n. Example

3.5 is an example in which fn has shadowing for every positive integer n but

f<ω does not have infinite shadowing (recall that F (X) is not a compact

space). The proof of this fact isolates the fundamental idea in the Example

12 of [14]. The fact that this system has shadowing is well-known folk lore,

though we include a proof for completeness.

Example 3.5. Let X =
{

1
2n

: n ∈ N ∪ {0}
}
∪{0}, and let f : X → X given

by: f(0) = 0, f(1) = 1 and for every n ∈ N, n ≥ 1, f
(

1
2n

)
= 1

2n−1 . To see

that f has shadowing let ε > 0. Let k0 be such that 1
2k0+1 < ε ≤ 1

2k0
and

choose δ < 1
2k0
− 1

2k0+1 . Let Γ = 〈x0, x1, x2, . . . 〉 be a δ-pseudo orbit in X.

Notice that if xm = 1
2k0

for some m ≥ 0, then 〈xm, xm+1, xm+2, . . . 〉 must

be a real orbit because of the choice of δ. There are two cases to consider:

Γ ⊆ [0, ε) or Γ∩ [ε, 1] 6= ∅. In the first case, y = 0 ε-follows Γ. In the second

case, let m be the least non-negative integer such that xm > ε. Either m = 0

and Γ is a real orbit (which shadows itself), or xm = 1
2k0

and so y = 1
2k0+m

ε-follows Γ.
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To see that f<ω does not have infinite shadowing let ε = 1
8

and let

δ > 0. Since δ > 0, there is a positive number N ≥ 3 such that 1
2N

< δ.

Let A0 = {0, 1}, A1 = {0, 1
2N
, 1}, A2 = f<ω(A1) = {0, 1

2N−1 , 1}, A3 =

(f<ω)2(A1) = {0, 1
2N−2 , 1}, . . . , AN = (f<ω)N−1(A1) = {0, 1

2N−(N−1) , 1} =

{0, 1
2
, 1}, AN+1 = (f<ω)N(A1) = {0, 1} = A0. By construction:

Γ = 〈A0, A1, A2, . . . AN , A0, A1, A2, . . . 〉

is a δ-pseudo orbit in F (X) (which actually is a δ-pseudo orbit in F3(X)).

It is not difficult to see that the sets that ε-follows Γ are sets of the form

B =
{

0, 1
2kN

, 1
2(k−1)N ,

1
2(k−2)N , . . . ,

1
2N
, 1
}

. The number of iterations that B is

going to ε-follow Γ depend on the number k.

4. h-Shadowing

The following definition was introduced in [2] and is motivated by the

fact that shifts of finite type actually possess a stronger shadowing property,

h-shadowing, or shadowing with exact hit, which happens to coincide with

shadowing in shift spaces (but not necessarily in other systems). In fact [1],

it turns out that open maps that are expanding (in the sense that, for some

µ > 1 and small enough ε, Bµε(f(x)) ⊆ f (Bε(x))) have h-shadowing.

Definition 4.1. Let X be a compact metric space and let f : X → X be a

continuous function. We say that f has h-shadowing if for every ε > 0 there

is δ > 0 such that every finite δ-pseudo orbit Γ = 〈x0, x1, . . . , xr〉, there is a

point x ∈ X such that d (f i(x), xi) < ε for every i < r and f r(x) = xr.

The proofs of the following two theorems are similar to the proofs of

Theorem 3.2 and 3.3, respectively.

Theorem 4.2. Let X be a compact metric space and let f : X → X be

a continuous function. If fn, 2f or f<ω has h-shadowing, then f has h-

shadowing.

Theorem 4.3. Let X be a compact metric space and let f : X → X be a

continuous function. If f has h-shadowing, then f<ω has h-shadowing.

Also, it follows immediately from Theorems 4.2 and 4.3 that if fn has

h-shadowing for every positive integer n, then f<ω has h-shadowing.

Lemma 4.4. Let X be a compact metric space, let f : X → X be a con-

tinuous function and let Y be a dense invariant subset of X. If f |Y has

h-shadowing, then f has h-shadowing.
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Proof. Suppose that f |Y has h-shadowing. Let ε > 0 and choose δ > 0

so that every finite δ-pseudo orbit in Y is ε/2 h-shadowed some y ∈ Y . let

Γ = 〈x0, x1, . . . , xr〉 be a δ/3-pseudo orbit in X. By the argument of Lemma

3.1, for each n > 0 there is a δ-pseudo orbit in Y , Γ∗n = 〈yn,0, yn,1, . . . , yn,r〉,
such that d(xi, yn,i) ≤ ε/2 and d(xr, yn,r) < 1/2n. By h-shadowing in Y ,

there is a point yn ∈ Y which ε/2 shadows Γ∗n. Then, if y is the limit in X

of a convergent subsequence from {yn : n ≥ 1}, y ε-h-shadows Γ. �

The converse of Lemma 4.4 is not true. To see this, let f : [0, 1]→ [0, 1]

be the full tent map with slope 2. Then, according to [1, Example 5.4], f has

h-shadowing. Let Y = ([0, 1]−Q)∪{0, 1}. Then Y is a dense invariant (but

not strongly invariant) subset of [0, 1], but f |Y does not have h-shadowing

because for any δ there are δ-pseudo orbits ending in 1, which obviously

cannot be shadowed by an orbit that ends in 1. However, it is true that f

has h-shadowing if and only if 2f has shadowing.

Theorem 4.5. Let X be a compact metric space and let f : X → X be

a continuous function. Then 2f : 2X → 2X has h-shadowing if and only if

f<ω : F (X)→ F (X) has h-shadowing.

Proof. Assume first that 2f has h-shadowing, let ε > 0 and let δ > 0 be given

by h-shadowing for 2f . Let Γ = {A0, A1, A2, . . . Ar} be a δ-pseudo orbit in

F (X). Then Γ is a δ-pseudo orbit in 2X . Since 2f has h-shadowing, there

is a point C in 2X such that H (f i(C), Ai) < ε/2 for i ∈ {0, 1, . . . , r − 1}
and f r(C) = Ar. Let Br = Ar and assume that Br = {b1r, b2r, . . . bnr

r }. Since

Br = f r(C), then for each point bjr in Br there is a point bjr−1 in f r−1(C) such

that f(bjr−1) = bjr. Let B∗r−1 = {b1r−1, b2r−1, . . . bnr
r−1}. If H

(
B∗r−1, f

r−1(C)
)
<

ε/2, let Br−1 = B∗r−1. Otherwise, if H
(
B∗r−1, f

r−1(C)
)
≥ ε/2, then there are

finitely many points bnr+1
r−1 , b

nr+2
r−1 , . . . b

nr+k
r−1 in f r−1(C)\NX(Br, ε/2) such that

if Br−1 = {b1r−1, b2r−1, . . . bnr
r−1, b

nr+1
r−1 , b

nr+2
r−1 , . . . b

nr+k
r−1 } then Br−1 ⊆ f r−1(C)

and H (Br−1, f
r−1(C)) < ε/2, which implies H (Br−1, Ar−1) < ε. Rename

the points in Br−1 as follows: Br−1 =
{
b1r−1, b

2
r−1, . . . , b

nr−1

r−1
}

. Continuing this

process we obtain B0 = {b10, b20, . . . b
n0
0 }, finite subset of C, which ε-shadows

Γ and, by construction, f r(B0) = Ar. Thus, f<ω has h-shadowing.

For the converse just recall that 2f |F (X) = f<ω, therefore, if f has h-

shadowing then so does 2f by Lemma 4.4.

�

As a consequence of Theorem 4.3 and Theorem 4.5 we have the following

theorem.
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Theorem 4.6. Let X be a compact metric space and let f : X → X be

a continuous function. Then f has h-shadowing if and only if 2f has h-

shadowing.
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