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INTEGRATING COMPRESSED AIR ENERGY STORAGE WITH A DIESEL 1 

ENGINE FOR ELECTRICITYGENERATION IN ISOLATED AREAS 2 

Yongliang Li*, Adriano Sciacovelli, Xiaodong Peng, Jonathan Radcliffe and Yulong Ding 3 

School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK 4 

Abstract 5 

This paper reports an integrated system consisting of a diesel genset and a Compressed Air 6 

Energy Storage (CAES) unit for power supply to isolated end-users in remote areas. The 7 

integration is through three parts: direct-driven piston-compression, external air turbine-driven 8 

supercharging, and flue gas waste recovery for super-heating. The performance of the 9 

integrated system is compared for a single diesel unit and a dual-diesel unit with a capacity of 10 

electricity supply to a village of 100 households in the UK setting. It is found the fuel 11 

consumption of the integrated system is only 50% of the single-diesel unit and 77% of the 12 

dual-diesel unit. The addition of the CAES unit not only provides a shift to electrical energy 13 

demand, but also produces more electricity due to the recovery of waste heat.  14 

Key words: district energy supply; compressed air energy storage; thermal energy storage; 15 

supply side management; system integration. 16 

 17 
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 19 

Nomenclature  
A Constant Eq. (8) (K) 
h  Specific enthalpy (J kg-1) 
hv  Volumetric heat transfer coefficient (W m-3 

K-1) 
m  Mass flow rate (kg s-1) 
m Mass (kg) 
n Polytrophic factor  
N Number of stages (-) 
P Pressure (Pa) 
R Universal gas constant (J kg-1 K-1) 
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T Temperature (K) 
t Time (s) 
V Volume (m3) 
W Power (W) 
  
Superscripts  
rated Rated conditions 
max maximum 
  
Subscripts  
a Air 
AT Air turbine 
am Ambient conditions 
ex Exhaust  
f Fuel 
DE Diesel engine 
EU End user 
IC Inlet compressor 
LHV Lower heating value 
PC Piston compressor 
PCM  Phase change material 
s storage 
SD Supercharged diesel engine 
  
Greek letters  
γ Adiabatic index (-) 
η Diesel engine thermal efficiency (-); 

isoentropic efficiency (-)  
λ Air to fuel ratio (-) 
ξ Constant parameter Eq. (2) 
ρ  Density (kg m-3) 
σ Normalized standard deviation (-) 
  
  20 



1. Introduction 21 

The use of diesel generators is a preferred option for electricity production in remote areas 22 

where the cost of national grid extension is prohibitively expensive [1-4]. While diesel power 23 

generating unit requires relatively little investment, the fuel costs increase by up to a multiple 24 

of six to ten when the associated transportation charges are taken into account [2, 5]. 25 

Therefore operating a diesel power generator at a higher efficiency is critical for saving fuel 26 

cost, which also brings environmental benefits. A typical load pattern for remote area power 27 

supplies (especially for village scales) is characterized by a small to medium base load, and 28 

several periods of high electricity demand during a day [1, 6]. In addition with the intermittent 29 

renewable electricity generation such as wind power, in most cases diesel generators have to 30 

be operated at a low load factor for most of the time. Figure 1 shows fuel consumption and 31 

efficiency characteristics of a typical diesel engine operated at different load factors (as 32 

described in details in Section 3.1). It can be seen that, for a low- and medium-penetration 33 

system, the diesel fuel consumption even at zero load, is approximately 35% of that at the 34 

rated power output. Moreover, operating a diesel generator at light loads (< 30-50% of rated 35 

load) can accelerate carbon deposits of wear and tear and thus shorten the lifetime of the 36 

equipment, leading to a high maintenance cost [7, 8]. As a consequence, interests in the 37 

integration of diesel engine with energy storage technologies have been growing enormously 38 

over the past decades. Studies have been done on enabling diesel generators to be operated 39 

above a certain minimum level of load in order to maintain an acceptable efficiency and to 40 

reduce the rate of premature failures [9-12]. 41 

 42 

Attention has also been paid to the waste heat recovery of diesel engines to enhance the 43 

overall performance. An inspection of the energy balance of internal combustion engines 44 

indicates that the input energy can be roughly divided into three equal parts: energy converted 45 



to useful work, energy transferred to coolant and energy lost through exhaust [13, 14]. 46 

Thermal energy loss from the exhaust can be regarded as a high grade, which has a 47 

temperature ranging approximately from 400 to 600°C [15]. Recent work has shown a 48 

potential increase in the overall efficiency by up to 30% through efficient recovery of waste 49 

heat [16]. Technologies proposed for the recovery of waste heat include Organic Rankine 50 

Cycle (ORC) [17], thermoelectric generation [18] and the use of heat pumps [19]. However, 51 

when a diesel engine is used for remote electricity generation, the temperature of the exhaust 52 

gas changes frequently as does the load factor [20]. Thermoelectric power generation is 53 

expensive and has a low efficiency. The unsteady exhaust gas temperature is disadvantageous 54 

for the operation of an ORC engine or a heat pump. Compressed Air Energy Storage (CAES) 55 

presents an alternative solution to the issue, which can store excessive shaft power, and 56 

recover the waste heat of the diesel engine in the energy extraction process. Using CAES to 57 

deal with the stochastic fluctuations of wind power in wind-diesel hybrid systems has been 58 

examined numerically, and the results are promising in enhancing the wind energy penetration 59 

[2, 21]. In this paper, an integrated diesel-CAES power system is proposed and investigated. 60 

The aim is to reduce fuel consumption and production costs for electricity generation in rural 61 

areas. Specific attention is paid to the operating principle and the influence of demand patterns 62 

of end-users. This may lead to a real system to be developed accordingly to demonstrate the 63 

advantages.  64 

 65 

2. System configuration and operating principle 66 

Most modern diesel engines are turbocharged or even supercharged. A turbocharger or a 67 

supercharger is made up of a coupled compressor-turbine unit aiming to increase the density 68 

of the engine air intake. This results in the engine producing significantly more power than a 69 

naturally aspirated engine with the same combustion-chamber volume. The difference 70 



between the turbocharger and supercharger is that the supercharger has a compressor driven 71 

mechanically by external power such as the engine's crankshaft, while a turbocharger is 72 

powered by the engine exhaust, therefore does not require any mechanical power.  73 

 74 

This paper focuses on an integrated diesel-CAES system in which the diesel engine could be 75 

supercharged by a CAES unit, as illustrated in Figure 2. The diesel engine used in such an 76 

integrated system differs from the traditional engine in the air intake method: the atmospheric 77 

air can either be naturally aspirated or forcibly compressed into the combustion-chamber 78 

depending on the switch conditions of a 3-way valve located at the engine inlet. The CAES 79 

unit is made up of a piston compressor, a compressed air reservoir, two heat exchangers and a 80 

two-stage air turbine. The diesel engine and the CAES unit are integrated by three parts: first 81 

the diesel engine shaft and the piston compressor shaft could be mechanically connected or 82 

disconnected through using Clutch 1. Second, the air turbine shaft in the CAES unit and the 83 

compressor shaft in the diesel engine can be mechanically connected or disconnected by the 84 

use of Clutch 3.  Third, the flue gas from the diesel engine and the compressed air from the 85 

reservoir are both fed into Heat exchangers 1 and 2 for waste heat recovery. It is worth 86 

mentioning that two heat exchangers are used not only for the heat transfer between the flue 87 

gas and compressed air, but also for the storage of thermal energy in cases where the engine 88 

and air turbine operate at different times. Phase Change Materials (PCMs) can be packed into 89 

the heat exchangers for high-density thermal energy storage. Examples of PCMs for such an 90 

application are composite materials consisting of an inorganic salt (PCM) and a ceramic 91 

matrix due to their favorable costs, good energy density and a wide range of melting 92 

temperatures [22].  93 

 94 



From the above one can see there are three power-related components in the integrated system: 95 

diesel engine, piston compressor and air turbine (includes the coupled compressor for 96 

supercharging). Theoretically, based on the operating status of the three components, the 97 

system has 8 operating modes, as listed in Table 1. 98 

 99 

Of the modes shown in Table 1, Mode 6 is the off state of the integrated system whereas Mode 100 

7 is almost inapplicable as the air turbine is not connected to the piston compressor in the 101 

system. In addition, from an energy utilization point of view, Mode 7 is not practical as it 102 

produces nothing, but consumes compressed air, due to process irreversibility. Similarly, 103 

Mode 8 is virtually impossible as no power is available to drive the piston compressor. As a 104 

result, the integrated diesel-CAES system has the following five potentially useful operating 105 

modes: 106 

• Mode 1 focuses on a supercharged-diesel process to respect the high demand of end-107 

users. In this process Clutch 3 is connected while Clutch 1 and Clutch 2 are 108 

disconnected. The 3-way valve is turned towards the compressor side so that the 109 

coupled air turbine-compressor is able to intake more air to be compressed into the 110 

diesel chamber. The reason for using a coupled air turbine-compressor instead of 111 

charging the diesel chamber directly with compressed air from the reservoir, is that the 112 

air pressure in the reservoir is much higher than the required pressure of diesel 113 

chamber. With waste heat recovery from flue gas the high-pressure compressed air in 114 

the reservoir can drive the coupled air turbine-compressor to produce about 5 times of 115 

low-pressure compressed air that is required by the diesel chamber.  116 

• Mode 2 is a mode with all the clutches disconnected and the 3-way valve turned 117 

towards the atmospheric side. As a result the diesel engine runs in a traditional manner: 118 

the atmospheric air is naturally aspirated into the cylinder for combusting the diesel 119 



fuel. The shaft power produced by the diesel engine is used to generate electricity for 120 

end-users. The exhaust gas of the diesel engine is used to heat the PCMs in Heat 121 

Exchangers 1 and 2 in order to recover the high grade heat for later uses in the 122 

compressed air expansion process. 123 

• Mode 3 is similar to Mode 1 but with Clutch 1 connected. The power generated by the 124 

supercharged diesel engine is used to respect the end-users’ demand, as well as drive 125 

the piston compressor to produce the compressed air. 126 

• Mode 4 is similar to Mode 2 but with Clutch 1 connected. The power generated by the 127 

diesel engine is used to respect the end-users’ demand as well as drive the piston 128 

compressor to produce the compressed air. 129 

• Mode 5 is a case with the diesel engine turned off, Clutch 1 and Clutch 3 disconnected 130 

and Clutch 2 connected. The compressed air is heated up first by the thermal energy 131 

stored in Heat exchanger 1 and Heat exchanger 2 prior to the expansion in the air 132 

turbines to drive Generator 2 to produce electricity for end-users. Such a process 133 

avoids the diesel engine to operate at a very low load factor and as a result saves on 134 

fuel consumption. 135 

 136 

The proposed integrated diesel-CAES system is designed to match the load of typical end-137 

users in remote areas without access to electric grids. Therefore, the operation mode of the 138 

system has to be updated regularly after each operating step. In the operational mode selection 139 

process, not only the end-user’s demand, but also the pressure of the air reservoir and the 140 

status of the heat stored in the heat exchangers play decisive roles. In this study a control 141 

algorithm is developed and programmed in MATLAB. In this program, the power 142 

consumption of the piston engine, the maximum power outputs of the air turbine and the 143 



supercharged diesel engine are calculated based on the updated inputs. Table 2 presents the 144 

logic to select the operation mode at each instant of time. First pressure PS in the CAES 145 

reservoir and end user demand WEU are assessed. If PS is higher than the maximum allowed 146 

value CAES charging is not possible; otherwise CAES charging can potentially take place in 147 

the case power output of the asset is large enough to satisfy both the end user demand and 148 

provide power to the piston compressor to charge the CAES. If this is not the case meet the 149 

satisfying the end user demand has the priority over CAES charging.  When storage pressure 150 

is within the allowed range ( maxmin
SSS PPP <<  ) CAES discharge can occur and if the end user 151 

demand is smaller than the power delivered by the air turbines. It should be noted that such a 152 

selection principle is based on the assumption that the rated mass flowrate of the piston engine 153 

is higher than that of the air turbine. This ensures the possibility to charge the CAES reservoir. 154 

In fact, if  0≠PCm ; 0≠ATm  ≠ 0 and  ATPC mm  < under design conditions the mass flow rate 155 

withdrawn from the CAES would be higher that the injected one without the necessary 156 

conditions for air accumulation in the reservoir.   157 

 158 

Compared to non-charged diesel engines, the integrated diesel-CAES system can downsize the 159 

scale of the facility due to the application of supercharging, thus enabling the system to be 160 

operated at a high load factor. In addition, the integrated system could supply electric power 161 

solely by air turbine when the end-users’ demand is low (Mode 5), thus avoiding the diesel 162 

engine to be operated at a very low load factor. In the following, attention is given to fuel 163 

consumption of the integrated diesel-CAES system using the results of traditional diesel sets 164 

as the baseline. 165 

 166 

3. Thermodynamic modelling of the key processes 167 



Numerical modeling is employed in this section to examine the effect of the use of CAES on 168 

the efficiency and fuel consumption of the diesel engine. As described in Section 2, the 169 

integration is through 3 main parts in the diesel-CAES integrated system consisting of the 170 

diesel engine, the piston-compressor and compressed air reservoir, the air turbines (including 171 

the heat exchangers) and a coupled compressor. In the following, each of the components will 172 

be numerically modeled to evaluate the overall performance of the integrated system. It should 173 

be noted that many factors influence the performance of the components including the 174 

manufacturer, the operational conditions, and sizes etc. However, as this work represents a 175 

first step towards developing such an integrated system, generic models are adopted. 176 

 177 

3.1 Diesel engine (including the inlet compressor) 178 

This study focuses on two main performance indicator for the diesel engine: the efficiency and 179 

the fuel consumption. In a diesel engine the fuel consumption rate is governed mechanically or 180 

electronically by a fuel injection system to meet the required load factor. In our study the 181 

diesel engine works in two different modes depending on the end-users’ demand. When the 182 

demand is lower than the rated power (the maximum power output without supercharging), the 183 

supercharging unit is switched off (Mode 2 and 4). Therefore the fuel consumption and 184 

thermal efficiency of the engine could be estimated as[6, 23]: 185 
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In the above equations, and are respectively the real-time and rated flow rate of the 188 

diesel fuel, and are respectively the real-time and rated power output,  is a 189 

fm rated
fm

DEW max
DEW x



constant related to the consumption curve of the generator and is equal to 0.34 for a non-190 

charging diesel engine, is the lower heating value of diesel fuel equal to 43.4 MJ/kg. 191 

The rated thermal efficiency of the diesel engine LHV
rated
fDE

rated QmW ⋅= maxη is set at 0.32 in this 192 

study. As the diesel engine operates at a constant rotational speed for electricity generation, 193 

the mass flow rate is considered to also be constant in this mode with the rated air/fuel ratio194 

 equal to 14.7 based on stoichiometric balance.  195 

 196 

When the end-users’ demand is higher than the rated power, the supercharging unit is 197 

switched on so more air can be blown into the combustion-chamber by the inlet compressor 198 

(operational mode 1/3). For a constant speed diesel engine with pre-cooling, the mass of air 199 

entering the engine is proportional to the inlet pressure as: 200 

am
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m
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                                                                                                                  (Eq. 3) 201 

In the above equation  is the outlet pressure of the inlet compressor, Pam is the ambient 202 

pressure, and am is the mass flow rate of air entering the engine The power consumption of the 203 

compressor is featured with isentropic efficiency.  This is the comparison between the actual 204 

performance and the performance that would be achieved under idealized circumstances 205 

(isentropic processes) for the same inlet state and the same exit pressure. In order to meet the 206 

users’ demand at all times, the compressor has to operate under off-design conditions using 207 

different outlet pressure and flow rate. The isentropic efficiency ηIC of the inlet compressor 208 

varies with the real-time outlet pressure and can be evaluated as [24]: 209 
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In the above equation  indicates the enthalpy change in an isentropic process, while the 211 

superscript denotes the reference state at the design point or process.  The necessary work 212 

for compression then can be expressed as: 213 

ICsaIC WmW η/⋅=                                                                                                            (Eq. 5) 214 

In the above equation  is the specific power consumption in an isentropic process  and WIC 215 

is the actual power required for the compression process   216 

The thermal efficiency ηSD of the diesel engine relates to the real-time air/fuel ratio217 

following a quadratic model [2]: 218 
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                                                                    (Eq. 6) 219 

The power generated by the engine when supercharged can then be calculated by: 220 

LHVSD
rated
fSD QmW ⋅⋅= η

                                                                                                (Eq. 7) 221 

The temperature of the exhaust gases can also be calculated using the following estimate [2]: 222 

B
ATT amex ⋅+

+=
λ1                                                                                                          (Eq. 8) 223 

In the above equation is the ambient temperature. and are constants which equal to 224 

1000K and 0.0667 based on the experimental tests.  225 

It should be noted that such a selection principle is based on the assumption that the rated 226 

mass flowrate of the piston engine is higher than that of the air turbine. This ensures the 227 

possibility to charge the CAES reservoir. In fact, if 0≠PCm ; 0≠ATm  ≠ 0 and  ATPC mm  <  228 

under design conditions the mass flow rate withdrawn from the CAES would be higher that 229 

the injected one without the necessary conditions for air accumulation in the reservoir.  230 
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 232 

3.2 Piston compressor and compressed air reservoir 233 

Air compression and storage is an unsteady process due to the air pressure in the compressed 234 

air reservoir varying over time. Hence, the power consumption of the piston compressor has to 235 

be taken into account. The piston compressor is mechanically connected to the diesel engine 236 

and as a result operates at a constant rotational speed and mass flow rate when clutch 1 is on. 237 

As a general observation in multistage piston compressor, pressure ratio of initial stage (low 238 

pressure stages) is higher compare to final stage (high pressure stage). However in a 239 

preliminary study an equal compression ratio model is adequately accurate [25]. Therefore for 240 

a -stage piston, assuming the compression ratio is the same for each stage and the 241 

compression is polytropic, the power consumption WPC is then calculated by: 242 
















−








−
⋅

⋅=
⋅
−

1
1

1
Nn

n

am

S
amPCPC P

PRT
n

nNmW                                                                       (Eq. 9) 243 

In equation 9 and  represent the mass flow rate of air and the stage number of 244 

compression with inter-cooling, R is the universal gas constant, n is the polytropic factor 245 

which has a value ranging between 1.0 and (the adiabatic index) with  being the 246 

isothermal process and  the adiabatic process,  and  stand respectively for the 247 

ambient pressure and temperature, and  is the pressure in the compressed air reservoir. This 248 

study uses data from available commercial compressors with a polytrophic factor of  249 

and a stage number of . It is worth noting that from modeling point of view the 250 

compressor operates with time variable compression ratio since pressure in the compressed air 251 

reservoir changes over time.  252 

 253 
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It is also assumed that the temperature of the compressed air in the reservoir is constant which 254 

equals to the ambient temperature. Such an assumption is reasonable due to inter-cooling in 255 

the multistage compression process. And furthermore compression heat will also release to 256 

surroundings in the storage period. Based on this assumption the process of compressing the 257 

air into the reservoir, or releasing compressed air from the reservoir, affects only the storage 258 

pressure .  This can be calculated from the total mass of compressed air and the volume of 259 

the reservoir. It's also worth mentioning that in this study we only consider isochoric  storage 260 

instead of isobaric storage which ideally is more efficient but less developed [10]. 261 

 262 

3.3 Air turbine and heat exchangers 263 

Similar to the inlet compressor, the air turbine has to operate under off-design conditions in 264 

order to respect the power requirement of the inlet compressor (operational modes 1 and 3) or 265 

end-users (operational mode 5). Similarly it is assumed that the expansion processes in high-266 

pressure stage and low-pressure stage of the air turbine have the same pressure ratio. In a 267 

rotary turbine the mass flow rate depends on the inlet conditions and the corrected mass flow 268 

rate of the air turbine under off-design conditions is expressed as: 269 
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In equation 10 and  denote respectively, the reference inlet pressure and temperature 271 

(values at the design point) while and are the real-time inlet pressure and temperature. 272 

The isentropic efficiency of the air turbine and the generated power can then be calculated 273 

similarly according to the inlet compressor. Eq. (10) is applied separately to both high pressure 274 

turbine and low pressure turbine. Table 3 lists the design conditions for the two turbines; 275 

SP
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ATP ATT



nominal inlet temperature is 200°C while nominal expansion ratio is 10 for both turbines. Inlet 276 

pressure for the high pressure turbine is the same as CAES pressure at each given time. 277 

 278 

It is worth mentioning that the heat exchangers are used for both heat transfer and thermal 279 

energy storage. In cases of operational modes 1 and 3, the flue gas and the compressed air 280 

exchange heat directly in conventional ways. In cases of operational modes 2 and 4 the 281 

thermal energy of the flue gas is stored within the PCMs of the heat exchangers and, the stored 282 

thermal energy is recovered in Mode 5,when the diesel engine is turned off. It is also worth 283 

mentioning that under design conditions the air turbine is coupled with the inlet compressor to 284 

drive the air pre-compression process. As mentioned, due to the much higher expansion ratio 285 

in air turbine and much lower compression ratio in inlet compressor, the rated mass flow rate 286 

in air turbine is generally a forth to a fifth of that in inlet compressor. In another word the 287 

waste heat generated in diesel engine is much more than the required heat in air turbine in 288 

modes 1 and 3. The excessive heat, as well as the waste heat generated in modes 2 and 4, are 289 

stored in the PCMs which is quantitatively adequate to supply heat to air turbine in mode 5.  290 

From our modelling study the longest contiuous period of mode 5 operation is 10 hours. Thus 291 

the size of PCM storage should guarantee a continuous  heat supply for such period of time. it 292 

results that using a phase change material with energy storage density of 200 kJ/kg (molten 293 

salt) the storage system has to accommodate about 0.5 m3 of PCM.  294 

 295 

3.4 Balance of the system 296 

The problem to be resolved in this study consists of finding the correct operational mode and 297 

the operational state for a given load and real-time states (pressures) of compressed air. Thus 298 

the following equations are verified: 299 

1) Balance equation of the diesel engine’s crankshaft 300 



The power supplied by the diesel engine (either supercharged or non-charged) must be equal 301 

to the total load requirement, including the power consumption of the piston compressor: 302 

EUSD WW = for Mode 1; 303 

EUDE WW = for Mode 2; 304 

PCEUSD WWW += for Mode 3; 305 

PCEUDE WWW += for Mode 4. 306 

2) Balance equation of the air turbine 307 

The power generated by the air turbine must be equal to the power consumption of the inlet 308 

compressor or the power requirement of the external end-users: 309 

ICAT WW = for Modes 1 and 3;  310 

EUAT WW = for Mode 5. 311 

As described above the power output, together with the mass flow rate of the air turbine, 312 

relates to the pressure ratio. The inlet pressure of the high-pressure air turbine in the system 313 

could be adjusted using the valve located at the outlet of the compressed air reservoir. This 314 

should be lower than either the reference value or the pressure in the reservoir.  315 

( )S
ref

HATHAT PPP ,min ,, <
 316 

The inlet temperature of the air turbine should also lower than both the design value and the 317 

temperatures of the flue gas or the PCMs in the heat exchangers. This is physically achievable 318 

by the design of a multi-channel heat exchanger: in modes 1 and 3 the high pressure air 319 

exchanges heat with flue gas and in mode 5 the high pressure air exchanges heat with PCMs.  320 

lossexAT TTT ∆−=  for Modes 1 and 3;  321 

lossPCMsAT TTT ∆−=  for Mode 5.  322 



In the above equation Tex and are the temperatures of flue gas and the PCMs medium.  323 

is the temperature loss in the heat transfer process. 324 

3) Balance equation of the compressed air reservoir 325 

In anisometric storage system the balance of compressed air in the reservoir is governed by the 326 

following equation:   327 

( ) ( ) S
t
S

tt
SATPC Vtmm ⋅−=∆⋅− ∆+ ρρ                                                                                (Eq. 11) 328 

In equation 11  and are the operational time and time interval respectively, is the 329 

volume of the compressed air reservoir, PCm  and  PCm  are the piston compressor mass flow 330 

rate and the air turbine mass flow rate,  and respectively are the density of 331 

compressed air before and after the time-step operation.   This can be calculated from the 332 

corresponding storage pressures based on the isothermal assumptions. 333 

The equations presented in Sect. 3 were implemented in Matlab 2014®. The equations 334 

constitute a close set of equation that was solved at each instant of time to evaluate all the 335 

variable of interests including mass flow rates, pressures, temperatures and electric power. 336 

 337 

4. System performance evaluation and discussion 338 

The diesel-CAES integrated system is proposed to generate electricity for domestic users in 339 

remote areas. A small isolated village of 100 households is used as an example for the external 340 

end-users. The individual household electricity consumption recorded with 5-minutes intervals 341 

in Newcastle (England) and Llanelli (Wales) is selected as the data resources of elementary 342 

electricity consumption profiles. However in this study we reset the time interval to be 2 hours 343 

by averaging the numbers within the period. This is because in real applications once the 344 

diesel engine is started, it should remain in service for a minimum amount of time of at least 345 
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one hour [26, 27] and short-term intermittence should be met by power quality improvement 346 

technologies such as rechargeable batteries.  347 

Figure 3 shows a one-year electricity consumption profile of the isolated village on a day-to-348 

day basis starting from the first of January.  This reveals that the power consumption in winter 349 

is higher than in summer due to space heating. Figure 4 indicates accordingly, the electricity 350 

requirement distribution based on a 2-hour interval. It is found that the power requirement was 351 

mainly in the region of 20kW to 80kW. However, the maximum electricity requirement is as 352 

high as 180kW. As a result the high capacity generation has to be installed to supply the peak 353 

demand, but will ultimately be idle most of the time. It should be noted in Figure 3, the 354 

average daily electricity requirement shows the peak value is lower than those based on a 2-355 

hour interval in Figure 4. 356 

 357 

The conventional generation capacities of two different schemes with diesel-only engines are 358 

used as benchmarks to evaluate and compare the performance of the diesel-CAES integrated 359 

system. Three systems considered in this study are: 360 

• System 1: This system is a non-charged diesel engine. In order to produce electricity 361 

for the end-users independently, the rated capacity of the engine is set to equal the 362 

maximum load requirement for a full year . 363 

• System 2: This system is made up of two non-charged diesel engines. One is used as 364 

the base capacity while the other is used as the peak load. The rated capacity of the 365 

base load engine is equal to the average load of the end-users  where is 366 

the annual average load of the end-users. And the peak load engine helps cover the 367 

maximum load requirement with the rated capacity of (generally368 

). This system operates based on the following rules: in the case that the 369 
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end-users’ load is lower than the average load, only the base load engine works.  Else 370 

when the end-users’ load is lower than the peak engine’s rated capacity, only the peak 371 

engine works.  Otherwise while the end-users’ load is higher than the peak engine’s 372 

rated capacity, both the engines are turned on to accommodate the end-users’ demand. 373 

It should be noted that although theoretically more diesel engines with different 374 

capacity can be adopted, it causes much more frequent starting and stopping which has 375 

negative effects on the efficiency and lifetime of the engine [3]. 376 

• System 3: This is the diesel-CAES integrated system. The maximum electricity output 377 

of this system with supercharging is set as where is the safety 378 

coefficient. This is because the maximum power output of the integrated system 379 

depends on the storage pressure of the compressed air. If the storage pressure  is 380 

lower than the reference pressure of air turbine, the maximum power output of the 381 

integrated system is then lower than the rated value. Apart from the scale of the engine 382 

and the settings described in Section 3, the other key parameters for the integrated 383 

system are listed in Table 3. 384 

 385 

The fuel consumption rate and efficiency (diesel engine efficiency for system 3) of the three 386 

systems are shown respectively in Figures 5 and 6 (in order to make the images clearer, only 387 

one point is plotted per day). It demonstrates that the idling fuel consumption plays an 388 

important role in the performance of the diesel engine. System 1 has the biggest scale diesel 389 

engine and, as a result, the largest idling fuel consumption. This leads to a fuel consumption 390 

rate of 22 L/hour or higher even at idling or low load factor operation, resulting in the engine 391 

operating at an efficiency that is lower than 20% for the majority of the time. As shown in the 392 

figures, Systems 2 using two engines as an alternative is an efficient way to save fuel. As 393 
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shown in Figure 5 the two diesel engines in System 2 operate simultaneously while the 394 

electricity demand is higher than the single engine’s rated power. During these times, fuel 395 

consumption and efficiency are almost the same as System 1. However, when the end-users’ 396 

demand is lower than the single engine’s rated power, only one engine is used.  Consequently 397 

the fuel rate decreases lower than 15 L/hour, enabling efficiency to be maintained in excess of 398 

20%.  This advantage avoids the diesel engine operating at very low load factors and, as a 399 

result, significantly improves the overall performance of the system. 400 

 401 

Compared with System 2, System 3 enhances performance by removing the idling fuel 402 

consumption at lower demands. As seen in Figure 5, the diesel engine is turned off 403 

(operational mode 5) for a considerable part of the operating times when the end-users’ 404 

demand is powered solely by the air turbine. This keeps the diesel engine operating at only 405 

high load factors and, as a result, the efficiency is always more than 25%. Figure 6 illustrates 406 

the high efficiency of the engine in System 3, which is often as high as 53% when the diesel 407 

engine is supercharged. It should be noted that this efficiency, as defined in Section 3, is 408 

higher than the traditional thermal efficiency. This is becasue the diesel engine is externally 409 

powered by the air turbine. The overall fuel consumption of the diesel-CAES integrated 410 

system is far less than Systems 1 and 2, as shown in Figure 7. This results in the annual diesel 411 

fuel consumption of the three systems being 242m3, 158m3 and 121 m3, respectively. Thus, 412 

using System 2 to replace System 1 leads to a reduction in fuel of 34.7%.  Moreover, using 413 

system 3 to replace system 2 brings a further 23.4% reduction, thanks to the integration of the 414 

compressed air energy storage unit. 415 

 416 

Overall, one can see that system 1 has only one operational mode, while system 2 and system 417 

3 have 3 and 5 operational modes respectively. The more operational modes the system has, 418 



the higher the efficiency it works at to keep variable load profiles consistent. Figure 8 plots the 419 

operational modes of system 3 at varying times. Apart from the most frequent operational 420 

modes 5 and 2, operational modes 3 and 4 account for a large part of the overall operation. 421 

The participation of operational modes 3 and 4 changes the distribution pattern of the 422 

electricity generated by the diesel engine, as illustrated in Figure 9.  When comparing with 423 

Figure 4, the load of the diesel engine below 50 kW is removed, partially by operational 424 

modes 3 and 4 to a region higher than 100 kW. This indicates that the piston compressor is an 425 

additional help to the diesel engine when operating at very high load factors and, as a result, 426 

enhances the overall performance of the system.  427 

 428 

The overall performance of the CAES unit is important to the system. Because of the energy 429 

losses in the compression and expansion processes, the isolated CAES (without combustion) is 430 

restricted due to its low efficiency. However, in the diesel-CAES integrated system this 431 

disadvantage is overcomed by the recovery of the waste heat in the flue gas. Figure 10 shows 432 

the overall energy generation of the diesel engine in three systems. It is found the net power 433 

generation of the diesel engine in system 3 is 408 MWh, which is lower than those of system 1 434 

and 2 (419 MWh). Therefore, the overall power generation of the air turbine is greater than the 435 

overall power consumption of the piston compressor. This results in an effective energy 436 

storage efficiency (the ratio of energy generated by air turbine and energy consumed by piston 437 

compressor) of more than 100% due to the use of heat recovery. This is easily understandable 438 

due to the high temperature of the flue gas being 200°C to 500°C or even higher. From the 439 

thermodynamic view, heating the compressed gas from ambient to 300 °C prior to expansion 440 

roughly doubles the net power output. In particular, as the air expansion is an open cycle the 441 

compressed air can be heated up as high as possible even with variable flue gas, making the 442 

heat recovery process quite efficient. 443 



 444 

The advanced pressure storage vessel is always an issue for small scale CAES as it is costly to 445 

develop and to safety-test. Therefore a smaller volume of the advanced pressure vessel makes 446 

the diesel-CAES integrated system more competitive from an economic aspect. In the above 447 

example, the volume of the vessel is set at 10m3 with the real-time storage pressure illustrated 448 

in Figure 11. Increasing the vessel volume will decrease the pressure fluctuation as shown in 449 

Figure 12, while based on the simulation changes of the fuel consumption are negligible (the 450 

annual average efficiency increases from 34.7% to 34.9% when changing the storage volume 451 

from 10m3 to 20m3). However by decreasing the storage volume to a lower than critical value 452 

this may cause failure of the electricity supply as the peak load generation (operational mode 1) 453 

requires continuous compressed air supply. The time interval is the key parameter affecting 454 

the critical storage volume. Generally the decrease in the time interval results in a proportional 455 

decrease of the critical storage volume. For example the critical storage volumes for system 3 456 

above are respectively 10m3, 4.75m3 and 2.8m3 for the time intervals of 2 hours, 1 hour and 457 

0.5 hour. However, it should be noted that in the above simulation the switching time of 458 

different operational modes are ignored, while in practice the heating up of compressed air 459 

may take several minutes or even longer. Furthermore, the frequent switch of the operational 460 

mode also shortens its lifetime as mentioned. As a result, selection of the storage volume is a 461 

balance of contributing factors mentioned above, together with the costs of power quality 462 

improvement and load following facilities. 463 

 464 

As discussed above, the diesel-CAES integrated system in this study is proposed to efficiently 465 

generate electricity for isolated end-users with highly variable load patterns. Therefore the 466 

characteristics of the load pattern play a pivotal role in assessing the performance of the 467 

system. The load patterns of the end-users vary significantly with the location, the users’ 468 



composition, economics and many other factors. However in this first step of a feasibility 469 

study a statistical parameter named ‘Normalized standard deviation’ is used to roughly 470 

evaluate the characteristics of the load profile defining as:  471 
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 472 

In equation 12 is the end-users’ load in a specific time (in this study the average load is 473 

within 2 hours),  is the number of timed intervals in a full year. From this 474 

definition one can see the specific load is normalized first by dividing the max load in the year 475 

 and then the standard deviation is calculated in a normal way. As a result the 476 

normalized standard deviation measures the normalized spread of the specific load when 477 

calculating the yearly mean load. 478 

 479 

Using the example load profile in Figure 3 as the baseline, different load profiles are 480 

developed numerically by changing the altitude and the base-load. If these developed loads are 481 

supplied independently by the three systems discussed above, the annual average efficiencies 482 

are plotted in Figure 13. It is found the efficiency of system 1 decreases linearly with the 483 

increase of the normalized standard deviation, indicating the single engine is not suitable for a 484 

highly variable load. In comparison, system 2 can efficiently cover slightly changing load 485 

profiles with the normalized standard deviation lower than 0.14, otherwise the annual average 486 

efficiency decreases linearly as system 1. For system 3 the result is adverse. When the load is 487 

very stable with the normalized standard deviation lower than 0.14, the annual average 488 

efficiency decreases while the normalized standard deviation goes down. Alternatively, the 489 

annual average efficiency keeps a high level if the normalized standard deviation is higher 490 
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than 0.14. This again suggests that system 3 has a greater advantage, particularly for highly 491 

variable end-users, in particular for the cases with high share of wind power generation. Of 492 

course it should be noted that the efficiency of system 3 is always much higher than system 1 493 

and system 2, in part thanks to the efficient recovery of the waste heat in the flue gas.  494 

 495 

5. Conclusions and future work 496 

This paper proposes a diesel-CAES integrated system to supply electricity for isolated end-497 

users such as a remote village. The integrated system has five operational modes with the 498 

operational principles developed accordingly. Using a single diesel system and a dual-diesel 499 

system as baselines, the system performance is numerically studied to power a UK small-scale 500 

village solely. The results show the fuel consumption of the integrated system is only 50% of 501 

the single diesel system and 77% of the dual-diesel system. Meanwhile, the volume of the 502 

high-pressure vessel for such an integrated system is found to be feasible approximately 5m3 503 

for use in a small village with an interval time of 1 hour. The characteristics of the end-users’ 504 

load pattern is also studied using a statistical parameter named ‘Normalized standard deviation’ 505 

and shows the integrated system performs very well, particularly for highly variable load 506 

patterns or for high share wind power generation. The authors are currently working on the 507 

construction of a lab-scale pilot system and the results will be reported in the near future. 508 
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