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Abstract

Refined asymptotic methods are used to produce degrees-of-freedom-
adjusted Edgeworth and Cornish-Fisher size corrections of the ¢ and F
testing procedures for the parameters of a S.U.R. model with serially
correlated errors. The corrected tests follow the Student-t and F' distri-
butions, respectively, with an approximation error of order 0(7'3), where
7 = 1/V/T and T is the number of time observations. Monte Carlo sim-
ulations provide evidence that the size corrections suggested hereby have
better finite sample properties, compared to the asymptotic testing pro-
cedures (either standard or Edgeworth corrected), which do not adjust for
the degrees of freedom.

Key words: Linear regression; S.U.R. models; stochastic expansions;
asymptotic approximations; AR(1) errors.

JEL classification: C10, C12, D24.

*Department of Economics, University of loannina, loannina 455 00, Greece. Email:

ssymeoni@cc.uoi.gr
fCorresponding Author, School of Economics, University of Birmingham.  Email:

i.karavias@bham.ac.uk
fDepartment of Economics, Athens University of Economics and Business, 76 Patission

Str., 10434 Athens, Greece. Email: etzavalisQaueb.gr



1 Introduction

The use of refined asymptotic techniques can considerably improve the finite-
sample performance of testing procedures in applied econometric research (see,
e.g., Ullah (2004), for a survey). These techniques involve the use of Edge-
worth expansions which effectively provide higher-order asymptotic approxima-
tions of the finite-sample distributions of well known economertic test statistics
(see Magdalinos and Symeonides (1995), Magee (1985), Rothenberg (1984b),
Symeonides et al. (2007), inter alia). In finite samples, there are considerable
discrepancies between the actual (sample) and nominal size of many standard
testing procedures, employed in econometric literature. These discrepancies are
found to be very severe, especially for the generalized linear regression model
with a non-scalar covariance matrix of the error terms estimated by the feasible
generalized least squares (FGLS), or maximum likelihood (see, e.g., Kiviet and
Phillips (1996), Ullah (2004)).

Despite the substantial amount of work on refined asymptotic bias expan-
sions of alternative estimators for the linear regression model or simultane-
ous equations systems (see, e.g., Iglesias and Phillips (2010, 2012), Kiviet and
Phillips (1996), Kiviet et al. (1995), Phillips (2000, 2007), inter alia), there are
only a few papers applying these methods to conventional tests, like the ' and
t. Rothenberg (1984b, 1988) used Edgeworth expansions in terms of the chi-
square and normal distributions to derive general formulae of corrected critical
values of the Wald (or F') and ¢t tests, respectively.

In this paper, we derive size corrections of the ¢t and F tests for the system
of Seemingly Unrelated Regression (S.U.R.) equations with first-order autore-
gressive error terms, introduced by Parks (1967). The oversizedness of these
tests in finite samples can be attributed to two sources: (i) the non-zero cross-
correlations of the error terms of the S.U.R. equations, and (ii) the specific
dynamic structure of these error terms, i.e., the existence of serial correlation
(with possibly distinct autocorrelation coefficients) across the S.U.R. equations.

Since the Edgeworth expansions are not well-defined distribution functions
and they may assign negative ‘probabilities’ to the tails of the approximated dis-

tributions, the paper suggests using the Cornish-Fisher expansion of the tests



rather than the Edgeworth expansion of their distribution functions (see Cor-
nish and Fisher (1937), Fisher and Cornish (1960), Hill and Davis (1968), Mag-
dalinos (1985), Ogasawara (2012), inter alia). The above suggested corrections
are asymptotically equivalent, but there are arguments—both theoretical and
practical—in favour of the Cornish-Fisher correction: First, the Cornish-Fisher
corrected test statistics are theoretically superior because they are proper ran-
dom variables and their distributions have well-behaved tails; second, since they
do not require the calculation of new critical values, they can be readily imple-
mented in applied research based on the publicly available tables of standard
distributions.

The paper proposes the use of degrees-of-freedom-adjusted Edgeworth cor-
rected critical values and Cornish-Fisher corrected statistics of the ¢t and F
tests when the S.U.R. model with serially correlated errors is estimated using
the Parks’ estimator (see Parks (1967)). These corrections follow the Student-¢
and F distributions, respectively, with an approximation error of order O(7?),
where 7 = 1/+/T and T is the number of time observations of the sample. The
use of degree-of-freendom-adjusted forms of the above tests lead to approxima-
tions that are ‘locally exact’ (see Magdalinos (1985)), which means that the
approximate distributions reduce to the exact ones, when the model is suffi-
ciently simplified. These approximations are found to improve the small-sample
performance of the tests (see Magdalinos and Symeonides (1995), Symeonides
et al. (2007)). To our knowledge, this is the first attempt in the literature to
develop analytic size corrected testing procedures for the S.U.R. model with
serially correlated errors.

The analytic size corrections suggested by the paper take into account the
magnitude of the various nuisance parameters, as well as the way in which
they influence the elements of the disturbance covariance matrix. They can
be implemented separately to correct for the non-zero cross-correlations of the
error terms, or their serial correlation effects, or the combination of the above.

The paper is organised as follows. Section 2 provides some preliminary no-
tations. Section 3 presents the S.U.R. model and the assumptions needed in
our expansions. Analytic formulae for the locally exact Edgeworth and Cornish-

Fisher second-order size corrections of the ¢ and F' test statistics are derived



in Section 4. Section 5 conducts out a Monte Carlo simulation evaluating the
performance of the suggested corrected tests. Finally, Section 6 concludes the

paper. Proofs of the results of the paper are given in the Appendix.

2 Preliminary notation

Throughout the paper, we use the tr, vec, ®, and matrix differentiation notation
as defined in Dhrymes (1978, pages 518-540), and for any two indices 7 and j, we
denote Kronecker’s delta as J;;. Moreover, any (n x m) matrix L with elements
l;; is denoted as

L =1[(lij)i=1, ..., n; j=1, ..., ml,

with obvious modifications for vectors and square matrices. If [;; are (n; x m;)
matrices, then L is the (3 n; x )" m;) partitioned matrix with submatrices l;;.

The following matrices:
Px =X(X'X)'X', Px=1-Px=I-X(X'X)"'X'

denote the orthogonal projectors into the spaces spanned by the columns of the
matrix X and its orthogonal complement, respectively. Finally, for any stochas-
tic quantity (scalar, vector, or matrix) we use the symbol £(-) to denote the

expectation operator.

3 The model

Consider a S.U.R. system of M contemporaneously correlated regression equa-

tions of the form
Y = XpBu+up (p=1, ..., M), (1)

where y,, are (T x 1) vectors of observations on the dependent variables, X, are
(T x n,) matrices of observations on sets of n,, non-stochastic regressors, f3,, are
(n,, x 1) vectors of parameters to be estimated and u,, are (T x 1) vectors of non-
observable serially correlated stochastic error terms of the p-th equation, defined
as uy, (t =1, ..., T). These terms are generated by the following stationary

first-order autoregressive (AR(1)) process:

Uty = Pult—typ T Etpy —1<py <1 (t=1,...., Ty p=1,..., M), (2)



where €;, are normally distributed innovations. For any two indices p, p/ =

1, ..., M, we have £(ey,) = 0, for all t. Moreover, for t # 1 or t’ # 1, the co-
variance between two innovations e, and ey, is given as £ (e ) = S Ty -
Fort=t=1and pu, o' =1, ..., M, E(esuer,r) becomes

5(51u51;ﬂ) = Uuu/(l - 93)1/2(1 - pi')l/z/(l = PuPu) (3)

(see Parks (1967, pages 507-508)). In addition to assumption p, € (—1,1),
stationarity of AR(1) processes (2) implies the following relationships on the

initial conditions of the error terms of the S.U.R. equations:
uy =1 =pp) ey, (t=1p=1,..., M). (4)

These relationships imply that, forall t =1, ..., T and pu, ' =1, ..., M, the

error terms wuy, satisfy the following conditions:

E(ugy,) =0, 5(“?;4) =ouu/(1 - pi), E(upu) = o [(1 = pupur)- (5)

Let n = Zﬂiﬂlm and define the (MT x 1) vectors y and u, the (n x 1)
vector 8 and the (MT x n) block diagonal matrix X as follows:

M U= [(uu)uzL . Ml

p= [(Bﬂ)uzl,...,M]’ (6)
X = [(5u#’Xﬂ)#,u/:1, M}

,,,,,

Then, the system of equations (1) can be written in a matrix form as follows:

1 Xl 0 0 61 U1
Y2 0 X2 0 BQ u9
YMm 0o 0 - Xy Bar un

or more compactly as

y=XB+u. (8)

To derive size corrected significance tests for the elements of the vector 3, the
above representations of the S.U.R. system will be written in an autocorrelation-

free form, after applying appropriate transformations on y, X and u. Following



Parks (1967), define the (T' x T') matrices P, and R as follows:

- 1 -
(1—pi)_§ 0 0 .o 0
1
(1=p2)2p0 1 0 -0
1 ' —1p—
Po=| (1-p2)"2p2  pp 1 o 0 |, R =P;VPLY,(9)
2 -1 T—1 T—2 T—3
L A=pp) " 2p, " P " pp o e 1]

and the following (MT x MT) block diagonal matrix
P = [(5H#/Pﬂ)#»ll’:17 M]- (10)
Then, (2) implies that the (7" x 1) random vectors u, can be written as
uy, =Py, (p=1,..., M), (11)
where ¢, are (T x 1) random vectors with non-autocorrelated elements e, i.e.,

en = Em)imr, 7 e, ) (12)

As in (11), consider the (7" x 1) vectors y,,, and (T x n,) matrices X,,,, with

non-autocorrelated elements, satisfying the following relations:
Yux = P,flym Xu* = Pu_lX;m (13)

and define the (MT x 1) vector y, and (MT x n) block diagonal matrix X, as

follows:
Y = [(yu*)“zl, M,M]a X =[O Xy )uwr=1, ..., ml- (14)

Then, premultiplying the p-th equation of (7) by P 1 we can derive the fol-

lowing S.U.R. model with non-autocorrelated error terms:

Y1+ X1« O <o 0 B1 €1
Yo 0 Xow -+ 0 Ba )

=0, R (15)
s 0 0 s Xars B EM

(see Zellner (1962, 1963), Zellner and Huang (1962), Zellner and Theil (1962)).

In more compact form, this model can be written as



where 3y, = Py, X, = P7'X and ¢ = P~'u. The above representation of
the S.U.R. system implies that the (MT x 1) error vector u in (8) is normally

distributed with mean and variance-covariance matrix given as follows:
Eu) =0, E(uu')=Q""' =PE(e )P = P(E®Ir)P, (17)

where
Y= [(Uuu’)u,u’:L M- (18)

The last relationship implies that
Q=P ' 'eIy)P? (19)

is a function of the ((M + M?) x 1) parameter vector v = (¢’,<’)’, where ¢ =
(p1, ---, pam) is the (M x 1) vector of autocorrelation coefficients in (2) and
the (M2 x 1) vector ¢ = vec(X71) € £ = RM* — 15, where U is the subspace of

RM” in which ¥ is not positive definite. After defining the composite index

(') = p+ M =1) (') =1, ..., M?), (20)

for any two indices p,u’ = 1, ..., M, it can be easily seen that the (up')-th
element of vector ¢, denoted as ¢(,,,,/, is actually the (p, u’)-th element of matrix
¥1, denoted as o+ .

The system of equations (16) (or (15)) can be seen as the vectorization

outcome of the following form of the S.U.R. model of M equations:
Y., =ZB+E, (21)
where Y, and E are (T x M) random matrices defined as
ye = vec(Yy), € =wvec(E), (22)

respectively, where the rows of matrix E are N/(0,X) random vectors and B

is a (K x M) matrix whose columns, denoted as b, are defined as

b,u:\I/,uﬂﬂ (M:]-aaM)v (23)

where ¥, are (K x n,) known submatrices of the (MK x n) block diagonal

matrix

U= [(5;1#"1’#)#,#’:1, oy M- (24)



Finally, Z is a (T x K) matrix with non-autocorrelated columns, defined by

the following relationship:

Xe = [(%u’Xu*)mu’:l, M] = [(5HH’Z\IIM)#7#':1, M]

= [(5uu’Z)u7u’:1, M} [(5%’\1/#)#,#/:1, M]

= (IM®Z)\I’. (25)

The above representation of the S.U.R. model, given by (21), will facilitate the

expansions needed in our derivations of the size corrected tests suggested in the

paper.

3.1 Assumptions

To carry out our expansions, it would be theoretically convenient to introduce

a reparameterization of the error covariance matrix of model (8) as follows:
y=XB+ou, 0>0, u~Nyr(0,Q71), (26)

assuming that parameter o2 can be estimated separately from the rest terms of
the covariance matrix Q! of vector u.!

For the derivation of our size corrected tests, we need to make a number of
assumptions on the elements of matrix €2, which is the inverse of the variance-
covariance matrix of the error vector u. To this end, we denote as €;, £,
etc., the (MT x MT) matrices of first-, second- and higher-order derivatives,
respectively, of the elements of matrix €2 with respect to the elements of the
((M + M?) x 1) vector of nuisance parameters v = (¢’,s’)’. For any estimator
of v, define the ((1 + M + M?) x 1) vector &, with elements

Pt S S ey P SN (170 Rk (10 (27)

T 9 Pu T I §(MM/) - T 9

where p = 1, ..., M, (uu') = 1, ..., M? and 7 = 1/3/T is the ‘asymptotic

IThe nuisance parameters o and v can be simultaneously identified under the restriction

o = 1, which implies that the estimate of matrix X, denoted as f), is accurate, up to a
multiplicative factor. This is not true in samples with small time dimension. A convenient
method to estimate o is through the following feasible generalized least squares (GL) estimator
. A [ Br—1 o1 51 5 1/2

bar = [(v—XB) (PG} (Sgh @ In b1 ) (w— XB)/(MT = m)] "™,

where B is the feasible GL estimator based on any consistent estimators of ¥~ and P!,



scale’ of our second-order stochastic expansions. Then, our size corrected tests

can be derived based on the following assumption.

Assumption 1:

(i) The elements of matrices 2 and Q27! are bounded for all T, all vectors o
with elements p, € (—1,1), and all vectors ¢ € £. Moreover, the following
matrices:

A=X'QX)T, F=X'X)T, T'=2'Z)T (28)
converge to non-singular limits, as 7" — oo.
(if) Up to the fourth order, the partial derivatives of the elements of Q with

respect to the elements of ¢ and ¢, are bounded for all T', all vectors ¢ with

elements in the interval (—1,1), and all vectors ¢ € £.

(iii) The estimators ¢ and ¢ are even functions of u, and they are functionally
unrelated to the parameter vector 5. As a result, they can be written as

functions of X, Z, and u only.

(iv) The vector of nuisance parameters § admits a stochastic expansion of the

form

0 = [50, (00, ) =1, ..., M), [(5%,,))(,“1/):1,..A,MQ}’]

di + 7doy + UJ(TQ), (29)

where the order of magnitude w(-), defined in the Appendix, has the same

operational properties as order O(-). Moreover, the expectations
E(dydy), E(VTdy + do) (30)
exist and have finite limits, as T — oo.
The first two conditions of Assumption 1 imply that the following matrices:
A= X'0GX/T, A =X'QX/T, A5 =X'QQ0'0X/T (31)

are bounded. Thus, according to Magdalinos (1992), the Taylor series expansion
of 5 constitutes a stochastic expansion. Since the vectors of nuisance parameters
o and ¢ are functionally unrelated to [, condition (iii) of Assumption 1 is sat-

isfied for a wide class of estimators ¢ and ¢, including the maximum likelihood



estimators and the simple or iterative estimators based on the regression resid-
uals (see Breusch (1980), Rothenberg (1984a)). Note that we need not assume
that estimators ¢ and ¢ are asymptotically efficient.

Further, conditions (i)—(iv) of Assumption 1 should be satisfied by all the
estimators of vectors g and ¢, considered in the paper. The estimators of the el-
ements of vector g, i.e., p, (u = 1,..., M) include the following: the least squares
(LS), Durbin-Watson (DW), generalized least squares (GL), Prais-Winsten (PW)
and maximum likelihood (ML).2 The elements of vector ¢ = vec(3~1) can be
estimated by

¢ = vec| (Y. — ZB)(Y, — ZB) /T} - (32)
where B is any consistent estimator of the matrix of parameters B of regression
model (21). Consistent estimators of B include the unrestricted and restricted
least squares (denoted as UL and RL, respectively), the simple and iterative
generalized least squares (denoted as GL and IG, respectively) and the maximum

likelihood (ML) estimators.?

To present the expansions suggested in the paper, expectations £(d;d}) and

2The closed forms of these estimators of p, for all u, are given as follows:
(i) Ls:
Pu = 212 ﬁwﬁuq)u/ Zthl i3y,
where @y, are the LS residuals of regression model (1).
(i) DW:
") =1- (DW/2),
where the DW is the Durbin-Watson statistic.
(iif) GL:
Pu = Zjﬁ ﬂwﬁ(tq)u/ Zthl a7,
where 4y, denote the GL estimates of wu¢,, based on the autocorrelation-correction of

regression model (1), for all p, using any asymptotically efficient estimator of p,,.

(iv) PW: This estimator of p,, denoted as ﬁfbpw), together with the PW estimator of 3, de-

noted as B&Pw), minimize the sum of squared GL residuals (Prais and Winsten (1954)).

(v) ML: This estimator, denoted as ﬁLML), satisfies a cubic equation with coefficients defined

in terms of the ML residuals (Beach and MacKinnon (1978)).
3The closed forms of these estimators of B are given as follows:

(i) UL:
By =(Z2'2)"'2'Y..

10



S(ﬁdl + d2) will be defined as follows:

oo A, N Ko
Jim E(ddy) = |X, A, Aj | and Tlg%oe(\/fdﬁdg): Kol . (33)
A A A R

respectively, where \g and kg are scalars, A, and x, are (M x 1) vectors, A; and
ke are (M? x 1) vectors, A, is a (M x M) matrix, A¢ is a (M? x M?) matrix
and Ay is a (M? x M) matrix. The following partitions of the above matrix

and vector will be of use in the paper:

X N K
0 and 0 , (34)
A A K
where
A, N A
A=|7e Pl =17 and k= |, (35)
AQC A¢ A R

where A is a (M + M?) x (M + M?)) matrix, and A and x are (M + M?) x 1)
vectors. The elements of the vectors and matrices in (33), (34) and (35) can be
interpreted as ‘measures’ of the accuracy of the expansions of estimators 62, p,,

and ¢,y around the true values of the corresponding parameters.

4 Size corrected test statistics

In this section, we derive size corrected ¢, Wald and F' test statistics, as well as
the second-order approximations of their distributions based on the conditions

of Assumption 1. The versions of the test statistics which adjust for the degrees

(ii) RL:
vee(Bgrr)) = U(X[X.) ' Xy..
(if) GL:
. B —1 .
vee(Bigr)) = ¥ [X{(S7 @ In)X.] XS @ Iy,
where ﬁ?;l is the UL or RL estimator of 3.

(iv) IG: This estimator, denoted as B([G)7 is computed by iterative implementation of the

GL estimator.

(v) ML: This estimator, denoted as B(ML), can be computed by iterating the GL estimation

process up to convergence (Dhrymes (1971)).

11



of freedom, namely the Student-t and F', are locally exact. That is, if the vector
of parameters v = (¢,¢’)’ is known to belong to a ball of radius ¥, then the
approximate distributions of these test statistics become exact, as 19 — 0.

The analytic size corrections developed in this section can provide size cor-
rections to either the non-zero cross-correlations of the error terms or their
serial correlation effects. The part of the size corrections corresponding to the
serial correlation effects constitutes a extension of the results in Magdalinos and
Symeonides (1995) to the multiple equation framework. On the other hand, the
part of the size corrections due to the non-zero cross-correlations constitutes a
completely genuine contribution to the literature, which can be readily imple-
mented to correct the size of the ¢ and F' tests in the standard Zellner’s S.U.R.
model (see Zellner (1962)) alone.

4.1 The t test

Let the elements of the (n x 1) vector e and scalar ey be known quantities.

Testing any null hypothesis of the form
Hy: eB=eg (36)
against its one-sided alternatives, can be based upon the following ¢ statistic:
. 1/2
t= (B —eo)/ [&%’(X/QX)—le] : (37)

which is adjusted for the degrees of freedom of the Student-¢ distribution.
For the derivation of the suggested asymptotic expansions, we define the

((M + M?) x 1) vector [ and the ((M + M?) x (M + M?)) matrix L as follows:

/
= [(lpu,),u:L sy M],7 [(ls‘w“/))(u;t’):l, ey MQ}/ :| ) (38)
[(lp,ip“/)u,u’:h--,M;] [(lpug(w/)) p=1, ..., M; ]
(1/1//):1,...,M2
I = ; (39)
[(l%W/)pu)(w’):l: MQ;] [(l<<w)<<w/) )(w’)zl, M2;]
p=1, ..., M (v')=1, ..., M?

where the elements of vector [ and matrix L are defined below:

ZPN = h/GAP;LGh7 ZC(ML/) = hIGAC(ML/)Gha
lfmpm = h’GCpH,,“,Gh7 mew,) = h’G’CM(W,)Gh, (40)
— N
l‘(w/)”ﬂ =h GC<<:/V'>/’MGh’ l<<uu'><<w'> =h Gcﬂw')%u')Gh’

12



where G = A~! = (X'QX/T) ' is a (n x n) matrix, h = e¢/(e/Ge)'/? is a (n x 1)

vector and
. *
CPMPH/ - Ap“,l)#/ - 2Apu GAP;/ + APMF‘L/ /27
— * _
CPMC(W/) - Apug(,,l,/) QAPHGAC(W/) + APMC(W/)/27 (41)
p— * —
S(up")Swv’y T A§(Mu)<(w’) 2A§(w’)GA§(w’> + Ag(w/)g(w’)/Q’

with obvious modifications for C}(W,) P
The next two theorems give alternative Edgeworth approximations of the
distribution function of the ¢ statistic, given in (37), in terms of the normal and

Student-t¢ distributions, respectively.

Theorem 1. The distribution function of the t statistic (87), under the null

hypothesis (36), admits the Edgeworth expansion
2

T .
Pr{t <z} =1I(x) — 5 [(p1+3) + (p2 + 3) 2?] zi(z) + O(7%),  (42)
where I(-) and i(-) are the standard normal distribution and density functions,

respectively, and scalars p1 and p2 can be calculated as follows:

z'AzH,( +5)7 Lo=2 VAL 24 Ay 2
4 R 9 Ro 4 , P2 = 1

p1 =tr(AL)+ . (43)

Analytic formulae for the computation of scalars A\, ko, and the elements of X,

k, A, I and L are given in the Appendiz (see Lemmas A.15 and A.17).

Instead of using the Edgeworth expansion (42), we can approximate the
distribution function of the ¢ statistic in terms of the Student-¢ distribution as

follows:

Theorem 2. The distribution function of the t statistic (37), under the null
hypothesis (36), admits the Edgeworth expansion

72

Pr{t < o} = Inr—n(z) = 5 [P+ pot”] winir—n(x) + O(7°),  (44)

where Inr—n(+) and ipgr—n(-) are the Student-t distribution and density func-

tions, respectively, with M'T — n degrees of freedom, and scalars p1 and ps are

defined in (43).

Theorem 1 implies that we can calculate the Edgeworth corrected a% critical

value of the ¢ statistic (37) as

2
m= et g (1 D)+ (et 3 nd] e ()

13



based on the a% significant point of the standard normal distribution, denoted
as ng. Similarly, based on Theorem 2, we can calclulate the Edgeworth corrected
a% critical value of the t statistic (37) as

2

th = ta+ = [p1+pat?] ta, (46)

using the a% significant point of the Student-t¢ distribution, denoted as t.

The Edgeworth approximation employed by Theorems 1 and 2 to obtain the
size corrected critical values n}, and ¢}, is not a proper distribution function, as it
may assign negative ‘probabilities’ in the tails of the approximate distribution.
To overcome this problem, we can use a Cornish-Fisher expansion. This corrects
the test statistics of interest, instead of their critical values. The Cornish-Fisher
expansion is simply the inversion of the Edgeworth correction of the critical
values and, thus, it is expected to have very similar properties around the mean
of the approximate distribution. However, at the tails of this distribution, which
are important for inference, the properties of the Cornish-Fisher expansion are
different. In fact, the Cornish-Fisher size corrected statistics constitute random
variables with well-behaved tails, and thus they do not assign negative ‘proba-
bilities’ at the tails of their distributions.

The Cornish-Fisher corrected ¢ statistic for testing null hypothesis (36) is

given in the following theorem.

Theorem 3. The Cornish-Fisher size corrected t statistic
72 9
t*:t*?[lerPQt]t (47)
is distributed, under the null hypothesis (36), as a Student-t random variable

with MT — n degrees of freedom, with an approxvimation error of order O(73).

The Cornish-Fisher size corrected ¢ statistic t., given by equation (47), can
be readily used, in practice, to test null hypothesis (36) against its one-sided
alternatives. This can be done by using the standard tables of the Student-¢
distribution with MT — n degrees of freedom.
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4.2 The Wald and F tests

Let H be a (m x n) matrix of rank m with known elements and hg be a known

(m x 1) vector. Testing any null hypothesis of the form
Hy: HB=ho (48)
against all possible alternatives, can be based upon the Wald statistic
w = (HB ~ ho) [HXQX)" 1] (1B~ ho)/”, (19)
or the familiar I statistic
F=(HB — ho) [H(X’QX)*IH’} T (HB — ho)mé?, (50)

which is adjusted for the degrees of freedom of the F' distribution.
For the derivation of the suggested asymptotic expansions, we define the

(n X n) matrix

Q=H'(HGH'H, (51)

and we partition the (n x n) matrices G = A~! = (X’QX/T)~! and = = GQG

and the (n x 1) vector h as follows:

(1

G =[(Gij)ij=1,..,m], E=[Ei)ij=1,..,ml, h=[(hi)i=1, ., m],  (52)

where G;; and Z;; are the (7,7)-th (n; x n;) submatrices of G and Z, respec-
tively, and h; = e;/(e/Ge)'/? is the i-th (n; x 1) subvector of h, where e; is the
corresponding i-th (n; x 1) subvector of the (n x 1) vector e.

Next, define the ((M + M?) x 1) vector ¢, and the ((M + M?) x (M + M?))

matrices C' and D, as follows:

/
s L Y (A (CHS T O I (53)
[(Cp#pul)u,u’zl, e M] [(Cpuq(w/)) /1,/:1, oy M 2]
C: (l/l/ ):1,...,M (54)
[(Cﬂw’)Pu)(W’):L Mz;] [(C<<w’)<<w’) )(uu’)zl, Mz;]
L p=1, ..., M (w)=1, ..., M?
and
[(dpupu/ )mu’=1, e M} [(dpus‘(w/)) p=1, ..., M; ]
. (vv)=1, ..., M?
[(d%w/)l)u)(w/):l, 2] [(d<<w’><<w’> )(w’)zl, pven
L p=1,..., M (wv)=1, ..., M?

15



where the elements of vector ¢ and matrices C and D, are defined as follows:

Cp, = tr(4,,5), Couppr = tr(cﬂup,uE)>
cpui(w’) = tr(CPu§(w’)E)7
CSlunty = tr(Ag(W,)E), CSunny Sty = tr(cﬂw')%w')E)’ (56)

dP;LP“/ = tr(‘D*PHP“/‘:’)v dc(uu’)c(wf’) = tT(D*C(u“/)C(VU/)‘:‘)v

dpﬂg(uu’) = tr(D*p;ﬁ(uy’) ':‘)’

where
D _ ApM:Ap“/ D B APM:Ag(W,)
*PuP f7 *PuSuly f7
(57)
D _ Ay =45
#S(un)Swv’y T 2 ’
with obvious modifications for Copurypur Ao AN Dagip,, -

The next two theorems give Edgeworth approximations of the distribution

functions of the Wald (w) and F statistics, given by (49) and (50), respectively.

Theorem 4. The distribution function of the Wald statistic (49), under the
null hypothesis (48), admits the Edgeworth expansion

Pr{w < x} = Fy(x) — 7% €1 + (&2/(m + 2))a] %fm(ﬂf) +0(7°), (58)

where Fp,(-) and fp,(-) are the chi-square distribution and density functions,

respectively, and scalars &1 and & can be calculated as follows:
& =tr[A(C + D) — dAc/d + K+ m[d' N2 — ko — (m — 2)\o /4],
(59)
& =tr(AD,) + [ Ac— (m +2)(2¢ X — mAg)]/4.

Analytic formulae for the computation of scalars Ay and ko, and the elements of

A, k, A, ¢, C and D, are given in the Appendiz (see Lemmas A.16 and A.17).

Instead of using the Wald statistic (49) and the Edgeworth expansion of
its distribution, given in (58), we can use the F statistic, given by (50), and

approximate its distribution function in terms of the F' distribution as follows:

16



Theorem 5. The distribution function of the F' statistic (50), under null hy-

pothesis (48), admits the Edgeworth expansion
Pr{F <a} = Fiip_,(2) = 7% g1 + el e i, (x) + O(7°),  (60)

where Ftp_ (1) and fijr_,(-) are the F distribution and density functions,
respectively, with m and MT — n degrees of freedom, and scalars q, and qs can

be calculated as follows:

@ =&/m+(m=2)/2, q=8&/(m+2)—m/2, (61)
where scalars & and & are defined in (59).

Theorem 4 implies that the Edgeworth corrected a% critical value of the

Wald statistic (49) is given as

2 [ €1 &

*: o - % [e'5) 62
Xoy=Xa+T m+m(m+2)x X (62)

based on the a% significant point of the chi-square distribution, denoted as x.
Theorem 5 enables us to calclulate the Edgeworth corrected a% critical value

of F statistic (50) as
F;:Fa+72[q1+q2Fa]Fa7 (63)

based on the a% significant point of the F' distribution, denoted as Fy,.
The Cornish-Fisher size corrected F statistic for testing null hypothesis (48)

is given in the next theorem.
Theorem 6. The Cornish-Fisher size corrected I statistic
F.=F—71%[q +@F]F (64)

is distributed, under null hypothesis (48), as an F random variable with m and

MT — n degrees of freedom, with an approzimation error of order O(73).

Unlike the Edgeworth approximation, the Cornish-Fisher corrected F' statis-
tic, denoted as F, in equation (64), is a proper random variable and it does not
assign negative ‘probabilities’ in the tails of its distribution. Thus, the Cornish-
Fisher corrected F' statistic can be be readily implemented, in applied research,
to test null hypothesis (48). This can be done by using the standard tables of
the F distribution, with m and MT — n degrees of freedom.
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5 Monte-Carlo simulations

In this section, we evaluate the small-sample performance of the size corrected
tests suggested in the previous section, compared to their corresponding stan-
dard (first-order asymptotic approximation) versions. To this end, we rely on a
Monte Carlo simulation based on 5000 iterations and we consider small-smaples
of T'= 15,20, 40 observations.

In our simulation, we consider the S.U.R. model of M = 2 seemingly unre-

lated equations (see, e.g., Zellner (1962)), i.e.,

Y1 = Bo,1 + Br,1Tu,1 + B2,1Te21 + U1 (=1, ... T), (65)

Ye.2 = Bo,2 + Br2%e12 + P22Ti22 + U2
where the error terms, u; ; and w2, are contemporaneously correlated with co-
variance o12. Both of these error terms follow AR(1) process (2), with normally
distributed innovations. The autoregressive coefficients of this process p; and
p2 are assumed to be equal, i.e., p1 = pa = p = £0.5, £0.8. To ensure station-
arity of error terms u;; and ug 2, conditions (3) are satisfied. For ¢ = 0, these

conditions require that

Yo1 ~N(0,011/(1 — p? 1— p2)1/2(1 — p2)1/2
( /( ;)) and 5(y0,1y072) _ 0_12( /01:5 ( pQ) )
Yo,2 ~ N(0,022/(1 — p3)) = p1p2

In our analysis, we assume 0117 = 099 = 1 and we are focused on investigating
the consequences of the different sign and magnitude of covariances o152 on our
tests, for the following cases: 015 = +0.5, £0.75, £0.9. Since 011 = 022 = 1, 012
is the correlation coefficient between u;; and uy .

According to (15) (or (16)), the above S.U.R. model can be written in terms

of the following transformed equations, with non-autocorrelated errors:

Y1x = X101+ €15 Yor = Xouf2 + 2,

where y1. and yo. are (T'X1) vectors of observations on the dependent variables,
with P,y,« = yu, for p = 1,2, where P, is defined by (9), X1+ and X, are
(T x 3) matrices of regressors, with P, X, = X, and 81 = (Bo,1, B1,1, B2,1),
B2 = (Bo,2, P1,2, B2,2)" are (3 x 1) vectors of parameters, including the constant.

In terms of the S.U.R. representation (21), the above equations can be written

18



as

Y, =ZB +E,

where Y is a (T x 2) matrix of observations on vectors yi. and yo., E is a
(T x 2) matrix whose rows are vectors of normally distributed innovations with
variance-covariance ¥ = [(0,u/ ) u/=1,2), B is a (3 x 2)-dimension matrix whose
columns, 81 and s, are vectors of parameters, and Z is a (T x 6) matrix whose

columns are vectors of possibly collinear variables defined as

21 = R = (1 — p2)1/2 (t = 1)7
zn = 26 = (1 - p) (t=23,..7),
Ztj = a2 + (1 - a)l/QCtj (7 =2,3,4,5),

where (;; (j = 2,3,4,5) are N(0,1) random variables and « stands for the
common correlation coefficient between any two non-constant columns of Z
(see also McDonald and Galarneau (1975)). This captures the same degree of
multicollinearity between regressors x4 ,, and x4, of S.U.R. model (65). In our
simulation, we consider the following two values of the collinearity coefficient:
a = 0.5,0.9. According to (25), submatrices X, and Xs. (collected in matrix
X,) can be obtained from Z by assuming that submatrices Uy and U, of the

block diagonal matrix ¥ are given as follows:

1 0 0 0 0 O

01 0 0 0 O

0 0 1 0 0 O
v, = ;o WUa =

0 0 O 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

In all iterations of our simulation, the two equations of S.U.R. model (65)
were estimated by LS. The residuals of these equations were used to compute
the LS estimates of autoregressive coefficients p; and p3, denoted as g1 and po.
Then, the transformed variables y7 , and Ty for j =0,1,2 (where ‘0’ stands

for the constant), are calculated as follows:

1/2 1/2

yi,u = (1 - ﬁz) Y, ij,M = (1 - ﬁi) Lij,p (t = 1)7

l/ik,u =Yt,u — ﬁuy(tfl),y ‘T:]}M = Ttju — ﬁux(tfl)j,,u (t 7é 1)'

(66)
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These variables were then used to compute the feasible GL estimates of §;,
(j=0,1,2; p=1,2), denoted as Bj,u- The columns of matrix Z were obtained
as z1 = Xyq, 22 = T{y, 23 = Ty, 6 = Tog, 24 = Tia, 25 = T3, while
the unrestricted estimates of matrix B were based on the GL estimates Bj,#.
The unrestricted estimates of the inverse covariance matrix ¥ ~! were estimated
based on (32) and the feasible GL estimate 6 which is calculated by using
the following formula:
A R . . 1/2
bor = |- XB) (P S @ InPt) (- XB)/(MT —m)]
where I denotes any consistent estimators of matrices ¥~! and P~! (see Ap-
pendix), used to obtain a feasible GL estimator of 3.
The results of our simlation are presented in Tables 1a, 1b and 2. The actual

sizes of our size corrected tests of the following null hypothesis:
Hoy:pB21 =0, (67)

against its one-sized alternatives, are reported in Tables la and 1b. In partic-
ular, Table la presents results against alternative H4 : 821 > 0, while Table
1b against Hy4 : B2,1 < 0. The table presents the actual sizes (i.e., the rejection
probabilities) at the 57 significance level of the following: the standard normal
and Student-t tests (denoted as z and ¢, respectively), their finite-sample size
corrected versions based on the Edgeworth corrected critical values of the stan-
dard normal and Student-t distributions (denoted as E-z and E-t, respectively)
and the Cornish-Fisher finite-sample size corrected Student-¢ test (denoted as
CF-t). Note that we do not examine the performance of the above t tests for
the null hypothesis (67) against its two-sided alternatives, since this is a special
case of the F' test examined in Table 2.

Table 2 presents the actual sizes of our size correceted tests of the following
joint null hypothesis on the slope coefficients of S.U.R. model (65), across its
two equations:

Ho: 11 =321 =012=p22=0. (68)

This is done against the alternative hypothesis that at least one of these coeffi-
cients are different from zero, i.e., at least one 3;, # 0 (j =1,2; p=1,2). The

table presents the actual sizes at the 5/ significance level of the following: the
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standard Wald (chi-square) and F tests (denoted as x? and F, respectively),
their finite-sample size corrected versions based on the Edgeworth corrected
critical values of the chi-square and F distributions (denoted by E-x? and E-F,
respectively) and the Cornish-Fisher finite-sample size corrected F test (denoted
as CF-F).

Turning now into the discussion of the results of our simulation, Tables 1a
and 1b clearly indicate that the size corrected tests have better size performance
in all reported sample sizes (T' = 15, 20, 40), compared to the standard versions
of these tests, based on first-order approximations. This is true for both the
Edgeworth and Cornish-Fisher size corrections, and across all different values
of p, 012 and « examined.

Between the above different categories of size corrected tests, our results
indicate that the CF-t test outperforms the F-z and FE-t ones. This is true for
almost all cases of « and 012 considered, if p takes large values, i.e., p = £0.8.
The same is true for small samples (T" = 15 or 20) and p = £0.5.

Regarding the chi-square and F' tests, the results of Table 2 indicate that, in
most of the cases examined, the size corrected versions of these tests, i.e., E-x?,
E-F and CF-F, perform better in small samples, compared to their standard
versions. Between the Edgeworth and Cornish-Fisher size corrected versions of
these tests (i.e., E-F (or E-x?) and CF-F), the latter is found to perform better
than the former for all sample sizes considered, and across all values of p, 012
and « examined. Notice that, for relatively large samples (T = 40), the E-y?
test outperforms the degrees-of-freedom-adjusted E-F test. This suggests that,
for the model considered in our simulation, samples of 40 observations seem
to be large enough to induce the reduction of the magnitude of the degrees-of-
freedom-adjusted Edgeworth size corrections.

Summing up, the results of our simulation clearly indicate that the finite-
sample size corrected tests E-x2, E-F and CF-F can considerably improve the
performance of the standard (uncorrected) tests in small samples. This happens
even for very high levels of autocorrelation and/or cross-correlation between the
error terms of the equations of the S.U.R. model. Another interesting conclusion
that can be drawn from the results of this exercise is that the adjusted for the

degrees of freedom versions of the tests perform better than their unadjusted
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ones in most of the cases considered in our simulation. Note that this is also

true for the standard (uncorrected) versions of the tests.

22



€¢

Table la: Hy : f2,1 = 0 against Hq : 21 > 0 (Nominal size: 57)

Actual sizes ()

Test: z -z t -t -t z -z t -t -t z -z t -1 -1 z -z t - -
« 012 T =—-0.8 p=—0.5 p=0.5 p =038

15 14.6 10.2 13.8 104 8.0 11.8 8.0 11.0 84 74 11.9 8.5 11.1 8.9 8.1 14.9 11.0 13.9 11.2 99

-0.90 20 12.4 8.6 11.8 8.8 7.3 9.7 6.7 9.1 6.9 6.6 10.5 7.5 9.6 7775 12.9 9.5 124 9.9 8.8

40 9.0 7.2 8.7 73 1.0 69 5.3 6.6 54 5.3 74 5.9 7.3 6.1 6.0 9.8 7.7 95 79 7.5

15 14.6 10.1 13.9 10.3 7.9 11.1 7.7 10.3 8.0 7.3 11.7 8.2 10.9 8.6 7.9 14.5 10.5 13.5 10.7 9.6

-0.75 20 12.5 9.0 11.9 92 76 9.0 6.3 8.3 6.5 6.1 10.2 7.6 9.7 79 1.5 13.4 9.8 12.7 10.1 9.2

40 8.1 6.0 7.9 6.2 5.8 7.1 5.7 6.9 5.9 5.8 7.4 5.9 7.2 6.0 5.9 9.1 7.2 8.9 7.4 7.0

15 14.8 10.2 14.0 104 7.7 10.4 7.4 9.7 7.6 7.0 11.4 8.1 10.6 8.5 7.9 14.2 10.6 13.5 10.8 9.6

-0.50 20 12.4 7.8 11.8 9.0 7.3 9.0 6.6 8.4 6.8 6.6 9.4 6.9 9.0 7.2 6.8 12.9 9.5 12.3 9.7 8.6

0.5 40 8.5 6.5 8.3 6.7 6.4 7.0 5.4 6.8 5.6 5.5 7.4 6.1 7.2 6.2 6.1 9.2 7.1 9.0 7.3 7.1

’ 15 14.0 9.7 132 99 7.7 105 7.2 98 74 6.9 115 81 106 85 7.9 14.9 10.7 14.0 11.1 9.9

0.50 20 11.9 8.1 114 83 6.8 8.7 64 8.3 6.6 6.3 10.3 7.7 9.7 8.0 7.5 13.3 10.2 12.8 10.3 9.3

40 8.1 6.3 79 64 6.2 6.8 54 6.5 55 54 7.1 5.7 6.9 59 5.7 9.0 6.9 88 7.0 6.8

15 14.7 10.2 14.0 104 8.0 11.5 8.0 10.5 8.2 7.5 12.2 8.5 11.3 8.9 8.3 13.8 10.3 13.1 10.5 9.3

0.75 20 12.2 8.8 11.6 89 7.4 9.3 6.7 8.8 6.9 6.5 10.2 7.3 9.6 7.7 7.3 12.5 94 119 9.6 8.6

40 8.8 6.8 8.6 6.9 6.5 7.2 5.9 7.0 6.1 6.0 7.5 5.9 7.2 6.1 6.0 9.2 7.0 8.9 72 6.8

15 13.8 9.7 13.0 9.8 7.5 11.2 7.7 10.3 8.0 7.3 12.2 8.7 11.6 9.0 8.4 15.0 11.0 14.1 11.2 10.1

0.90 20 12.9 9.0 124 9.2 7.7 9.4 6.6 8.7 6.8 6.3 10.0 7.3 9.4 7.5 7.2 12.9 9.5 12.3 9.8 8.8

40 9.1 6.9 8.7 7.1 6.7 70 5.4 6.8 56 54 7.2 5.7 7.0 58 5.7 9.4 7.3 92 75 7.2

15 14.6 10.4 13.8 10.5 7.7 11.2 7.7 10.4 7.9 7.3 11.8 8.5 11.0 8.7 8.2 14.5 10.9 13.8 11.1 9.8

-0.90 20 12.7 9.3 12.2 9.5 7.8 9.8 6.8 9.2 7.1 6.7 10.4 7.6 9.9 7.8 7.5 13.2 10.0 12.8 10.2 9.3

40 9.2 7.2 9.0 74 7.1 74 6.0 72 6.2 6.0 7.3 5.9 7.1 6.0 6.0 9.9 7.9 9.7 80 7.7

15 14.5 9.8 13.5 10.0 7.8 10.7 7.3 9.8 7.5 6.9 11.7 8.4 10.9 8.7 8.1 14.9 11.0 13.9 11.3 10.1

-0.75 20 11.9 8.3 11.4 8.5 7.0 9.9 7.2 9.4 74 7.0 9.7 6.9 9.1 7.2 6.8 13.0 9.9 12.5 10.1 9.0

40 8.5 6.5 8.3 6.7 6.4 6.7 5.2 6.4 5.3 5.2 7.5 5.9 7.3 6.1 6.0 9.7 7.8 9.4 7.9 7.7

15 14.2 9.6 13.3 9.8 7.3 10.8 7.4 9.9 7.6 7.1 11.7 8.3 10.8 8.6 8.2 14.5 10.9 13.6 11.1 9.7

-0.50 20 11.5 8.0 11.0 82 6.8 93 6.8 8.8 7.1 6.7 10.2 7.4 9.6 7.7 7.2 12.6 9.7 119 99 9.0

0.9 40 9.0 7.0 8.8 72 6.8 7.1 5.8 6.9 5.9 5.8 7.3 5.7 6.9 5.9 5.7 8.9 6.8 8.7 7.0 6.7

: 15 146 103 13.8 104 7.9 106 7.5 98 7.7 7.1 11.9 83 11.0 86 8.0 149 11.2 142 114 10.1

0.50 20 12.7 8.8 12.1 9.0 7.7 9.1 6.4 8.6 6.7 6.4 9.8 7.0 9.2 7.3 6.9 12.8 9.3 12.2 9.5 8.5

40 8.5 6.5 83 6.7 6.3 69 54 6.7 56 54 7.3 5.8 71 59 5.9 9.3 7.0 9.1 7.1 6.8

15 14.0 9.6 13.2 9.7 7.3 10.7 7.3 9.9 7.5 6.9 11.6 8.0 10.6 8.3 7.8 14.1 10.3 13.3 10.5 9.5

0.75 20 12.2 8.8 11.7 9.0 7.4 9.3 6.5 8.7 6.8 6.4 9.8 7.0 9.2 74 6.9 12.8 9.7 123 9.9 8.9

40 8.5 6.3 8.2 6.5 6.2 7.2 5.8 7.0 6.0 5.9 7.7 5.9 7.4 6.1 6.0 9.2 7.0 8.9 7.1 6.9

15 14.3 10.0 13.5 10.2 7.8 11.1 7.8 10.2 8.0 7.3 12.3 8.7 11.5 9.1 8.3 15.3 11.3 14.3 11.5 10.1

0.90 20 13.0 9.1 124 9.3 7.7 9.1 6.8 8.7 7.0 6.6 9.9 7.2 9.4 74 7.0 12.8 9.3 12.2 94 8.5

40 8.8 6.9 8.6 7.0 6.8 71 55 6.8 5.7 56 72 5.6 6.9 5.8 5.7 9.6 7.6 9.4 7T 74
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Table 1b: Hy : 821 = 0 against Hy : f21 <0 (Nominal size: 57)

Actual sizes ()

Test: z -z t -t -t z -z t -t -t z -z t -1 -1 z -z t - -
« 012 T p=—0.8 p=—0.5 p=0.5 p =038

15 15.0 10.5 14.1 106 8.2 11.2 7.7 10.3 8.0 7.2 12.0 8.5 11.1 8.8 8.2 14.7 10.9 13.9 11.1 9.9

-0.90 20 12.5 8.8 11.8 9.0 7.3 10.1 7.3 9.6 7.5 7.0 10.0 7.3 9.5 77 7.3 13.2 9.6 12.5 9.9 8.9

40 8.8 6.9 86 7.0 6.5 75 5.9 73 6.0 6.0 7.2 5.8 71 6.0 5.9 9.1 7.1 88 7.2 6.8

15 14.4 10.0 13.5 10.1 8.1 11.2 7.9 104 8.1 7.4 11.7 8.1 10.9 8.5 7.9 14.7 10.7 13.8 11.0 9.8

-0.75 20 12.9 9.4 122 95 8.1 9.3 6.6 8.7 6.8 6.4 9.6 6.8 9.0 7.1 6.7 12.7 94 121 9.6 8.8

40 8.7 6.8 8.4 69 6.7 7.3 6.0 7.1 6.1 6.1 7.6 5.9 7.3 6.2 6.0 8.9 7.1 8.7 72 6.9

15 14.5 10.2 13.7 10.3 7.6 10.7 7.4 10.0 T 7.2 11.7 8.1 10.8 84 7.8 14.6 10.9 13.7 11.1 9.9

-0.50 20 12.3 8.7 11.7 8.9 7.3 9.5 6.7 8.8 7.0 6.6 9.7 7.1 9.1 7.3 7.0 13.1 9.7 12.5 10.1 9.0

0.5 40 7.9 6.1 7.5 6.2 59 7.1 5.9 6.8 6.0 5.9 6.8 5.5 6.6 5.7 5.5 9.0 7.0 8.8 7.2 6.9

: 15 13.8 9.9 129 10.1 7.6 109 73 10.1 76 6.9 114 82 105 85 7.9 14.8 11.0 14.0 11.2 10.1

0.50 20 12.1 8.3 11.5 85 6.8 9.1 6.2 8.5 6.4 6.1 9.8 7.1 9.1 74 7.0 13.0 9.6 124 9.8 8.8

40 8.6 6.4 84 66 6.4 72 5.7 69 59 58 7.6 5.8 7.4 6.0 5.9 9.9 7.6 96 7.7 7.3

15 14.5 10.0 13.6 10.2 7.8 114 7.8 10.5 8.0 7.3 11.6 8.5 10.9 8.8 8.2 14.2 10.6 134 109 9.7

0.75 20 12.9 8.9 12.2 9.2 7.8 9.8 7.1 9.2 74 7.0 9.8 6.9 9.2 7.2 6.9 12.8 9.2 12.2 9.4 8.5

40 8.9 6.6 8.5 6.8 6.5 7.0 5.5 6.8 5.6 5.6 7.2 5.8 7.0 6.0 5.9 9.4 7.3 9.1 7.4 7.1

15 14.1 10.1 13.2 102 8.2 11.2 7.9 10.4 8.1 7.4 11.9 8.2 11.0 8.5 7.8 14.6 10.7 13.8 11.0 9.7

0.90 20 12.3 8.6 11.7 87 7.3 9.6 6.8 9.1 7.0 6.7 9.8 7.2 9.3 74 7.1 13.5 10.0 12.8 103 94

40 8.0 6.3 7.8 6.5 6.1 69 5.5 6.8 5.7 5.6 7.2 5.8 7.0 6.0 5.9 9.6 7.7 93 79 75

15 14.4 10.0 13.7 10.1 7.7 11.6 8.2 10.9 8.5 7.6 12.0 8.5 11.3 8.8 8.2 15.4 11.2 14.5 11.5 10.3

-0.90 20 12.4 8.9 11.8 9.1 7.5 9.3 6.5 8.7 6.7 6.4 9.9 7.2 9.2 74 6.9 13.0 9.8 12.3 10.1 8.9

40 8.7 6.1 85 68 64 71 56 6.8 58 5.7 7.3 5.8 7.1 6.0 5.9 9.7 7.7 94 7.8 7.6

15 14.5 104 13.8 10.5 8.2 11.0 7.6 10.2 7.9 7.4 11.7 8.4 11.0 8.7 8.1 14.7 10.6 139 109 94

-0.75 20 12.3 8.7 11.7 8.9 7.4 9.3 6.7 8.8 7.0 6.6 9.9 7.3 9.2 7.6 7.3 12.5 9.2 12.1 9.5 8.5

40 8.7 6.5 8.5 6.7 6.3 6.9 5.6 6.7 5.8 5.7 7.0 5.6 6.8 5.8 5.7 9.1 7.1 8.7 7.2 7.0

15 14.7 9.8 13.5 10.0 7.7 10.6 7.3 9.8 7.6 7.0 11.6 8.2 10.8 8.5 7.9 14.3 10.6 13.4 10.8 94

-0.50 20 11.7 8.1 11.2 84 6.7 95 6.8 9.0 7.1 6.6 10.2 7.5 96 79 7.3 12.5 9.0 120 9.3 8.4

0.9 40 8.9 6.8 8.7 7.0 6.6 6.9 5.6 6.7 5.7 5.6 6.7 5.4 6.4 5.6 5.5 9.0 6.9 8.7 7.1 6.8

’ 15 14.0 9.6 13.1 97 7.6 10.2 7.0 95 7.2 6.6 11.2 80 105 83 7.7 14.0 105 13.3 10.7 9.5

0.50 20 11.5 8.2 11.0 8.3 7.0 9.6 6.9 9.0 7.3 6.8 9.9 7.3 9.4 7.6 7.2 12.5 9.2 12.0 9.5 8.7

40 8.5 6.3 8.1 6.5 6.2 7.2 5.7 6.9 59 5.8 74 5.7 71 6.0 5.9 8.9 6.8 8.7 7.0 6.7

15 14.2 9.9 13.3 10.0 7.6 114 7.9 10.6 8.2 7.3 12.0 8.6 11.2 8.8 8.3 14.5 10.7 13.7 109 9.8

0.75 20 12.0 8.6 114 88 7.1 9.3 6.9 8.7 7.1 6.8 9.5 6.9 9.0 7.2 6.7 12.8 9.6 122 9.8 9.0

40 8.4 6.4 8.2 6.6 6.3 7.3 5.8 7.1 6.0 5.9 10.0 5.7 6.8 5.8 5.7 9.2 7.3 9.0 7.5 7.1

15 15.3 10.5 14.4 106 8.2 11.3 7.9 10.4 8.2 7.6 11.2 7.8 10.4 8.1 7.5 15.3 11.5 14.5 11.7 10.3

0.90 20 13.0 9.2 124 9.3 7.7 9.4 6.7 8.7 7.0 6.5 10.6 8.0 10.1 8.3 7.8 13.2 9.9 12,5 10.2 9.2

40 9.1 7.0 8.8 72 6.9 71 56 6.8 58 5.6 7.1 5.9 7.0 6.1 6.0 10.3 7.9 10.1 8.1 7.7
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Table 2: Hy: f1,1 = P21 = P12 = P22 =0 (Nominal size: 57)

Actual sizes (/)
Test: X E-x> F E-F CF-F x° Ex° F E-F CF-F x> Ex° F E-F CF-F x> Ex* F E-F CF-F
« 012 T p=—0.8 p=—0.5 p=0.5 p=0.8

15 46.1 314 402 279 4.7 30.5 18.2 247 16.5 9.8 33.3  20.7 26.7 193 14.0 47.6  33.8 414 316 16.1

-0.90 20 38.2 250 336 23.6 6.4 22,7 132 186 129 9.6 26.1 156 21.6 152 119 399 276 356 265 15.3

40 20.5 133 187 13.5 10.7 12.6 7.6 11.1 8.2 7.4 12.9 8.0 11.3 8.4 7.7 23.0 15.4 21.2 156 13.1

15 45.8 31.5 399 284 5.8 284 166 224 154 109 33.2 214 271 202 159 47.0 33.7 40.8 31.6 182

-0.75 20 36.7 242 323 226 7.9 224 129 183 128 10.2 254 159 21.3 156 13.0 38.9 26.6 345 25.7 16.0

40 20.2 128 182 13.0 10.2 12.4 7.6 10.9 8.0 7.4 13.2 8.4 11.7 8.8 8.0 22.6 15.1  20.7 154 13.0

15 46.2  31.6 39.7 283 7.3 28,9 176 232 16.5 124 33.0 21.0 26.7 20.1 16.6 46.9 33.6 40.8 314 19.3

-0.50 20 36.0 23.1 316 21.7 8.9 21.1 12.1 17.1 12.1  10.0 23.1 14.2  19.1 142 122 39.2 274 348 265 16.7

40 176 114 16.2 11.7 9.7 11.9 7.5 10.4 7.9 7.5 12.8 8.1 11.2 8.5 7.8 21.3 14.0 194 144 122

0.5 15 45.8 31.1  39.8 28.1 7.6 29.2 175 233 164 124 32.6 206 26.3 196 16.2 47.4 337  41.2 315 193
0.50 20 359 234 315 219 8.7 21.2 125 176 124 104 24.4 146 20.0 145 122 39.2 269 345 26,0 17.1

40 183 114 164 11.6 9.4 12.1 7.6  10.7 8.1 7.6 13.2 8.1 11.5 8.5 8.0 21.8 142 19.8 144 121

15 455 31.1 394 28.1 6.2 30.3 185 241 172 11.6 33.9 21.8 278 206 16.2 48.5 34.7 423 325 183

0.75 20 36.9 24.0 323 227 8.2 226 13.5 185 13.3 10.7 249 154 206 152 124 405  28.1 36.2 271 170

40 19.2 126 17.5 12.8 10.2 12.9 79 114 8.4 7.7 13.3 8.2 11.8 8.8 8.0 219 145 20.0 148 121

15 46.1  31.7  40.1  28.2 4.9 29.9 18.0 242 16.4 9.7 35.0 222 289 207 149 47.4 337 415 313 156

0.90 20 37.8 245 333 23.0 7.2 23.1 132 189 129 9.6 25.0 15,5 20.7 152 122 40.7 28.0 36.2 26.7 154

40 20.6 13.5 189 13.7 10.8 12.2 7.4 10.7 7.9 7.2 13.2 7.8 114 8.4 7.4 23.6 157 219 16.0 13.1

15 46.23  32.0 40.1 28.9 5.4 29.8 18.2 238 17.0 11.2 34.4 224 283 212 16.6 48.2 347 421 322 177

-0.90 20 38.2 253 338 238 7.3 229 134 191 133 10.7 26.1 159 21.8 158 13.2 40.7 281 36.1 269 164

40 20.6 13.7 19.0 14.0 11.3 12.2 7.8 10.8 8.2 7.8 14.2 9.2 12.7 9.8 9.0 229 157 209 16.0 13.0

15 45.7  32.0 39.8 29.0 6.8 29.1 174 228 164 11.7 33.4 21.0 269 199 16.1 475 344 41.2 322 183

-0.75 20 36.9 249 328 23.5 8.6 21.2 119 172 118 9.7 24.6 15.1 20.5 152 129 39.8 27.5 354 26.6 16.0

40 18.8 11.8 17.1 12.1 9.7 12.3 7.6 105 8.0 7.5 13.0 8.2 114 8.6 7.9 22,7 15,7 21.0 159 13.6

15 44.5 304 383 27.6 7.4 277 16.1  21.8 152 11.7 324 21.0 26.5 202 16.9 472 33.6  40.5 315 19.0

-0.50 20 36.1 235 31.5 222 8.5 20.7 12.0 16.8 11.9 9.8 24.1 149 205 149 127 39.4 27.0 34.8 263 16.6

0.9 40 18.1 114 163 11.7 9.4 11.6 7.3 10.1 7.7 7.3 12.3 7.8 10.9 8.2 7.8 21.3 139 194 14.2 119

15 44.9  30.7 386 273 7.1 281 17.0 219 16.0 123 32.2 207 26.3 200 16.8 47.3 33.8 40.8 321 19.1
0.50 20 354 234 310 222 8.9 20.7 119 16.8 11.8 9.9 23.8 145 19.6 145 123 38.6 26.5 344 255 159
40 18.4 11.8 16.8 12.1 9.7 11.9 7.5 104 8.1 7.5 12.3 7.9 10.7 8.4 7.8 21.3 141 193 143 122
15 46.4 322 40.3  29.0 6.4 29.2 174 229 163 11.56 33.1  20.7 266 196 159 48.8 352 425 33.0 18.7
0.75 20 372 248 328 234 8.7 22.0 128 17.7 12.7 105 25.2 154 21.0 154 13.0 39.1 274 347 26.7 165
40 19.4 128 179 13.2 10.6 12.0 74 104 7.9 7.4 13.1 8.1 11.5 8.6 8.0 223 150 20.5 15.3 128
15 46.8 319 402 285 4.9 304 183 245 17.1 11.6 34.4 21.8 28.0 206 15.7 49.0 35.1 42.8 32.8 16.9
0.90 20 38.8 25.8 343 24.2 7.9 226 13.3 187 13.1 103 26.2 163 22.0 16.0 13.1 41.0 279 36.5 27.1 158
40 205 134 185 13.8 11.0 12.9 8.3 114 8.8 8.1 13.1 8.3 11.6 8.8 8.0 22.3 154 20.7 15.6 13.0




6 Conclusions

In this paper, we have employed Edgeworth expansions of the standard nor-
mal (or Student-t) and chi-square (or F') distributions to derive second-order
size corrected testing procedures for the coefficient of the S.U.R. model with
first-order autocorrelated errors. These procedures include (i) the Edgeworth
corrected critical values of the well-known Wald (or F) and t tests and (ii)
the Cornish-Fisher corrected F' and ¢ test statistics. Since the standard F' and
t tests are adjusted for the degrees of freedom, they are locally exact, which
means that their approximate distributions become exact when the model is
sufficiently simplified.

The Edgeworth and Cornish-Fisher expansions, employed by the paper, are
equivalent to each other, since the latter constitutes an inversion of the former.
However, in practice, the use of the Cornish-Fisher corrected test statistics is
recommended, since they are proper random variables with well-behaved dis-
tribution tails. The Edgeworth approximation, on the other hand, may assign
negative ‘probabilities’ in the tails of the approximate distributions. Further-
more, the Cornish-Fisher size corrected tests can be easily implemented, in
practice, using the standard tables of the Student-¢ and the F' distributions.

To evaluate the small-sample performance of the suggested tests, we have
conducted a Monte Carlo simulation. The results of this simulation indicate that
the size corrected t and F' tests lead to substantial size improvements upon their
standard versions, which assume first-order asymptotic approximations. This is
true even for very small samples of 15 or 20 observations. Between the Edgeworth
and Cornish-Fisher categories of the size corrected tests suggested in the paper,
the second category is found to perform better than the first for almost all cases
of serial and cross-equation correlation of the error terms of the S.U.R. model
examined. This result is also robust across different degrees of multicollinearity
between the explanatory variables of the model considered. In particular, both
the ¢t and F' Cornish-Fisher size corrected tests are found to outperform their
Edgeworth size corrected counterparts even when the degree of serial correlation
of the error terms is very high. This is true even for a close-to-unity degree of

correlation across the S.U.R equations.
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Appendix

In this appendix, we provide proofs of the main results of the paper. To prove these
results, we rely on a number of lemmas. Some of them are given with sketchy proofs
only for reasons of space. The complete proofs are available upon request. The pre-
sentation of our proofs is scheduled as follows: First, we provide some preliminary
matrix-algebra results, needed for the calculation of the quantities in the stochastic
expansions of all estimators and tests considered. Then, using these lemmas, we give

the proofs of the theorems.

Matrix-algebra results

Following Magdalinos (1992, page 344), let Z be a given set of indices which, without
loss of generality, can be considered to belong to the open interval (0,1). For any
collection of real-valued stochastic quantities (scalars, vectors, or matrices) Y- (7 € Z),

we write Y; = w(7*), if for any given n > 0, there exists a 0 < € < co such that
Pr[IIV; /7]l > (~n7)] = o(r™), (A1)

as 7 — 0, where the || - || is the Euclidean norm. If (A.1) is valid for any n > 0, we
write Y, = w(oo). The use of this order of magnitude is motivated by the fact that,
if two stochastic quantities differ by a quantity of order w(Ti), then, under general
conditions, the distribution function of the one provides an asymptotic approximation
of the distribution function of the other, with an error of order O(7"). Furthermore,
orders w(-) and O(-) have similar operational properties (Magdalinos (1992)).

Define the following (T x T') matrices: D which is a band matrix whose (¢,t')-th
element is equal to 1 if |t — ¢'| = 1 and 0 elsewhere, D; whose (¢,t')-th element is
equal to 1 if t —# = 1 and 0 elsewhere, D; whose (t,t')-th element is equal to 1 if
t —t' = —1 and 0 elsewhere. Also, define the following (7' x T') matrices: A with 1 in
(1,1)-st and (T, T')-th positions and 0’s elsewhere, Ay with 1 in (1, 1)-st position and
0’s elsewhere, App with 1 in (7, T)-th position and 0’s elsewhere. Moreover, by using

matrix P, in (9), we can calculate (T' x T') matrices R;; as follows:

1 pi Py
1 _
RZ]:PZPJ/:W Pi 1 p]T 2 . (AZ)
i0j
Lot =t i 1




Matrices R¥ help us to write the elements of matrix Q analytically. For these matrices

and their derivatives the following two lemmas hold:
Lemma A.1. For matriz R, which is the inverse of Ri;, the following result holds:
R =P 'P ' = (14 p})Ir — piD — pi A, (A.3)
where R = R;l (Vi). Moreover, for matriz R", the following result holds:
RY =P'P7Y = (14 pipj)Ir — piDi — p;Dj — pip;Arr
+HA =) 21 - )2 — 1A, (A4)
Note that R is not the inverse of Rij;, i.e., RV # Ri_j1 (Vi # j).

Proof of Lemma A.1. For i = j, definition (A.2) implies that matrix R;; is the
exact analogue of the error covariance matrix in a single-equation regression model
with autocorrelated errors. And it is well-known from the autocorrelation literature
that the inverse matrix R” = Rj;' can be expressed in the form of (A.3). Further, (A.4)

can be proved along the same lines, as a straightforward generalization for ¢ # 5. [

Define the (M x M) matrix 7' = [(J““/)H,wzl, ..., m) and scalars:

ai; = (1= p)2 (1= p))"2,

Ely; = 0aij [Opi, &l = 0%aij |07 pi, E(y) = 0%aij/0pidp;, (A.5)
R, = ORY [0pu, Ry, , =0"R7/0pOpy.

Lemma A.2. For the partial derivatives of matriz R the following results hold:

RY =2pIr — D —2p;A, RE . =2(Ir — A) (¥i),
R}, =Ry, =Ry, =0 (Yi#})),
RY = pjlr — Di — pjArr + £y An (Vi ), (A.6)
R, = E(y;An, R, =Ir — Arr + &l An (Vi,]),
R}, =R}y, = Ry, p = Rjp, =0 (Yu# i AV #j),

with obvious modifications for Rg and Rgpj. Further,

fEi)j = *Pi(1*P?)71/2(1*P§)1/2 (i),

gy = —(L=p)TPQ=p)'? (vi),

oy = pips(L=p) 2= p) TP (i), (A7)
Oaij 62aij 62(14']' 82a¢j

= = = =0 (Vu#iAVuj).
Opu  Opi  Opudpi  Opu0p; (Vi # n#d)
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Proof of Lemma A.2. To prove the results of the lemma, it suffices to calculate the
first- and second-order derivatives of matrices R and R, defined in (A.3) and (A.4),

respectively, and of scalars a;;, defined in (A.5). O

Lemma A.3. For the elements of matriz ) the following results hold:

E M a-kaki— E M Oikak-—l
k=1 " k=1 ¢ ’

M ki _N~M ik S,
g oy IR0 = E oy O Ok = 0 (Vi#j3),
M o”kO’kiR'kRki _ Z]\/f O'iko'k‘RikRk' — ITM (AS)
g k=1 k2 T k=1 1 T )

M kj kj Mo g ik N
Zk:l O;k0 JRZ‘kR J — Zk:l (o2 O’ij Rk]’ =0 (Vl ;é ]).

Proof of Lemma A.3. The results of the lemma can be proved by noticing that
that

Q' =P(ERI)P =[(0iRij)ij=1. ... m] = QL=[0"R)i =1, m], (A9

since P is block diagonal, X! =X 7'Y = Iy and QQ ' = Q7'Q = I O

To derive the partial derivatives of (2 with respect to nuisance parameters, given
in the next lemma, we need the following definitions. For the composite index (ij) =
1, ..., M?, defined in (20), let (;jy = 0/ be the elements of the (M? x 1) vector
¢ =wvec(X71). Also, let A, = [(84i05,0)ij=1, ..., m] be a (M x M) matrix with 1 in
the (u, 1')-th position and 0’s elsewhere. Then, for all u, u, v and v/, we have

0 0?

("' ®Ir)=0. (A.10)
S(upt) Oty Os ()

' @Ir) =A@ I,

Lemma A.4. The partial derivatives of €, with respect to the elements of vectors o

and s, can be analytically written as follows:

Qc(uu’) = [(5Hi6j,u’RHH )i,jzl, N M]; Q<(Mu’)<(u,/) = 0, (A.ll)

Qp, = [(5uiamR5Z + 5jHO'iMR;Z — 5N¢5jHO'HuRg5)i,j:1, oy M5
Qpop = [(6ma“ij,pr“ —+ 5]'HUWR;‘:,,M — (Sui(sjuauuRﬁfij)i,j:L o M), (A.12)
pr“/ = [(%iéju’auuleﬁ;’M/ + 5u’i5ju0u/uR5;7)H,
= 0ui0u 0" Oy Rgﬁ:p“r )ij=1, ..., M],
’
Qopsiury = [(0vi05u/ 0uw Ry, + 00i0jur 00 Ry — 60000 8000 W R )i =1, ..., M)

(A.13)

= Qmﬁ(w/) =0 (Ww#pAW #p).
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Proof of Lemma A.4. To prove the results of the lemma, we rely on the results of
Lemmas A.2 and A.3 in order to calculate the first- and second-order derivatives of
matrix 2 with respect to the elements of vectors ¢ and ¢. The results in (A.11) come
immediately from equations (A.9) and (A.10).

Some comments must be made for the derivation of the results in (A.12) and
(A.13). Matrix €,, can be calculated as the sum of three matrices. The first matrix
has non-zero elements on its u-th row; the second matrix has its non-zero elements
on its p-th column; and the third matrix, which has only one non-zero element at the
(1, )-th position, is subtracted to correct for the double-counting of the derivative of
the element at the intersection of the p-th row with the p-th column of matrix 2. The
elements of matrix Q,,,, can be readily calculated by taking the derivatives of the
elements of €),, with respect to pj.

On taking the derivatives of the elements of €,, with respect to p,,, we can
calculate the elements of matrix €2,,, ,. Note that matrix €2,,, , has its non-zero
elemets at its (i, u')-th and (p, p)-th positions. The subtracted third term corrects
for the double-counting of the derivative of the (u, u)-th element of matrix Q) in cases

with g’ = p. The third term is eliminated, as it should be, in cases with p’ # p. O

To derive the elements of the product of matrices ;2 '€);, needed for the partial
derivatives of matrix A (see Lemmas A.14 — A.17), we define the following matrices:
Wi = o"0u,0" R R, RL
+ Opui { [Zil UukgWR;‘fRW} — 0" 0 RO R 0 gu/jR;;;a/'
+ 5”,01'#]%1; { [Zil Uwam/RwR;Z:] - UHH’UM/M/RHH/RZZLI}
o {3, D0, o owno™ By R R
_ [Ziil Uukaku’RZ‘liju’] OH/MR)‘;;*I‘,

M ’ ’
_Hp DR i T
R[S0 ourd™ Ry By

r ! i
B Bt ppp B
+o oo RPM RW‘/RP“I }7 (A.14)
* _ -1 * _ -1
QPMPHI - QPuQ QP“/’ QC(MMI)C(UUI) - QC(ML/)Q QC(VV/)7
(A.15)
* _ -1 * _ -1
prw’) =19,,0 Qg<w'> and Q%mﬁu - Q<<WI>Q Qp,,-
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* * *
Lemma A.5. The elements of matrices qup . Qg(w,>§(yu,), pr( o (md Qg(w,)pM

can be analytically written as follows:

PuPH [( i )ZJ 1, 1},
<(Mu’)<(uu’) [(6“16 v O R " )i,j:l, o M]a
— I/l//
e, = ( | oo R Rku) ;R )i,jzl,...,M:|, (A.16)

vv'! rJ 7
C(w')l’u - {(&”R ( r=1 Tvird RV’T'RP“))M:L s M:| ’

Proof of Lemma A.5. The results in (A.16) can be easily proved by combining
Lemma A.4 with equations (A.9) and (A.14). O

Asymptotic expansions of estimators

In the next lemmas we derive useful asymptotic expansions for all estimators of ma-
trix B and of the nuisance patameters considered in the paper. In each case, these

estimators are indexed by I (see footnotes 2 and 3).

Lemma A.6. All estimators B (I =UL,RL,GL,IG,ML) of matriz B, defined in

(21), admit a stochastic expansion of the form
Br = B+ 7B +w(?), (A.17)
where

BYY =VT(Z2'2)"'Z'E,
vece(BfY) = VTU(X.X.) ' Xle, (A.18)
vece(BYY) = vece(B19) = vec(Bi'F)

-1

=VTU [X.(S' @ In)X.]  X.Z['®Ir)e.

Proof of Lemma A.6. The results of the lemma follow immediately from models
(16) and (21), and the definitions of all estimators B considered (see footnote 3).
Thus, since 7 = 1/+/T, we can readily find that

Byy=(2'2)"'Z'(ZB+E)=B+7|VT(2'2)"'Z'E] = B + B{*. (A.19)
Similarly, since (23) implies that vec(B) = ¥f3, we can easily find that

vec(BRrr)

W(X. X)) XX +e) = vee(B) + T[VTU(X.X.) ' XLe]

= vec(B) + Tvec(BiY). (A.20)
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The result for estimator EGL can be proved according to (A.20), taking into account

that 3 = ¥ + w(7), for any consistent estimator 3; of matrix ¥, indexed by I. [

Let E; be the residuals corresponding to the estimators B;. Then, the following
lemma holds for the estimators 3; and 2;1 of matrix ¥ and its inverse, respectively,

based on E;.

Lemma A.7. All estimators 3; (I = UL,RL,GL,IG, ML) of matriz ¥ admit a

stochastic expansion of the form
B =24 7(2 + 78 + w(r?), (A.21)
where
Y1 =VT(E'E/T -%), %5 =(B{ —B{/"T(B] - B{") - E'P4E, (A.22)

T is any conformable matriz and Pz is the orthogonal projector spanned by the columns

of matriz Z. Estimator 2;1 admits a stochastic expansion of the form
St =2 - 78 #7788 + w(r?), (A.23)

where

S;=x7'mx7, S =nTi(EeTiy —uheTh (A.24)
Proof of Lemma A.7. By using model (21) and Lemma A.6 we find that
Er =Y.~ ZB=ZB+E—Z(B+7B{ +w(t’) = E—7ZBi +w(t). (A.25)
Moreover, from the definition of matrix I" and (A.18) we find that
(BY)'Z'E/NT = (B{)(Z'2/T)(Z'Z/T)" ' Z'E/NT = (Bi)TB{*. (A.26)
Then, since 3; = E}Er/T, equations (A.22), (A.25) and (A.26) imply that

S = E’E/T+72[(B{)’PB{ —(BYYTB! - (B{)’ZFB{]L} +w(r®)

S+ 7VT(E'E/)T - %)
472 [(B{ — BUYYT(B! - BV - E’PZE] +w(r®), (A.27)

which completes the proof of (A.21). To prove (A.23), it suffices to use (A.24) and
equation (2.6) in (Magdalinos 1992, Corollary 1), which implies that

5t =[S sl +ui)] o
= X' —iE 42!
+722 7N S + 12N TN + 72T Fw (). (A.28)
O
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The stochastic expansion of estimator of vector ¢, denoted as {7, is given in the

next lemma:

Lemma A.8. All estimators {1 = vec([E‘}E‘I/T}_I) of vector ¢, indexed by I = UL,
RL, GL, IG, ML, admit a stochastic expansion of the form

& = ¢ — 1vec(S1) + T2vec(S3) + w(r?) (A.29)

and thus, the (M? x 1) vector §; = (¢ —¢)/7, with elements Oc 0y defined in (27),

admits a stochastic expansion of the form
6. = —vec(S1) + Tvec(S3) + w(r?)

= dic + 7dac + w(7‘2), (A.30)

which tmplies that
dic = —vec(S1), doc = vec(Ss). (A.31)

Proof of Lemma A.8. The proof follows immediately from equations (21), (29),
(32) and (A.23). O

To derive the stochastic expansion of the estimators of o, denoted as 61, we define
the following (M x M) matrices, indexed by I:
Ap= lim TE((Br — Bur)'T(Br — Buw)]
= Jim g[(B] - BYYT(B] - BY")], (A.32)
— 00

where I is any conformable matrix.

Lemma A.9. All estimators 67 (I = UL, RL,GL,IG,ML) of 0 (see footnote 1)

satisfy the relation
67 =tr(37'8)/(M — 7°n)

= {M +7?tr[(S3 — S3)E]}/(M — 7°n) + w(r?). (A.33)

The last equation implies that
(67 —1)/7 = {M/7 4 7tr[(S5 — S3)Z)} /(M — 7°n) — 1/7 4+ w(?)

= 7{tr[(Sz — S3)%] + n}/M + w(r?), (A.34)

i.e., scalar do, defined in (27), admits a stochastic expansion of the form
0o =00 +TO1 + <,;1(7'2)7 (A.35)

which in turn implies that

00 =0 and o1 = {tr[(S5 — S3)%] +n}/M. (A.36)
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Proof of Lemma A.9. To prove the lemma we rely on the following results (see
(A.37) and (A.38)): Since the rows e (t=1, ..., T) of E are independent N (0, )
random vectors, matrix E'F is a Wishart matrix with weight matrix ¥ and T degrees

of freedom, i.e., E'E ~ Wy (X, T) and £(E’'E) = TX. Then, it is easy to show that
E(E'EX'E'E)=T(M+T+1)%. (A.37)

Moreover, since E'E ~ Wy (2, T) and Pz is idempotent of rank K, it follows that
matrix E'PzE ~ Wy (3, K) and E(E'PZE) = tr(Pz)X = KX. Further, £(31) = 0,
E(Z1X7I8) = (M +1)X and

E(S1) =0, £(83) = M+ K+1)2 ' =27 '¢[(B] - BY")T(B{ — BY")|=7". (A.38)

Let éo1 = vec(Egr) be the GL residuals of regression equation (16). Then, the
corresponding estimator of ¥ is 2] = EA"GLEA’GL/T. Also, let BGL be the GL estimator
of B in (16). Define the (M x M) matrices My = limp_ £(S3) (I = UL, RL, GL,
IG, ML) and the (M? x M?) matrix N whose ((ij), (kr))-th element is v(;)kr) =

0ik0jr + 0iroji (4,7, k,r =1, ..., M). Then, (A.32) and (A.38) imply that
Mi=M+K+1)S ' —27'An! (A.39)
= lim TE[(S3 — S9)%] = (M — Mgr)2 =¥ ' (Agr — Ar), (A.40)
where
Aur =0,

ARL = [[(tT(B;lB”B;JlBJZ) — N — Ny + K) Jij]i,j:l, - IM:| y (A41)

Agr = Arg = Anp = KX - [(tT(Giiji))i,j:L JW] :

Since E'E ~ Wy (2,T) and £(E'E) = TE, matrix W = VTY, = E'E — T, with
elements w;j;, is a Wishart matrix in deviations from it expected values. Following

Zellner (1971, page 389, equation (B.58)), we find that
S(wi]-wkr) = T(Gikdjr =+ O'iTO'jk) = TV(ij)(kr) (A42)

= lim &[(vec(81))(vec(S1))') = E'er THNE T ez . (A.43)

The proof of the lemma can be completed using the following relationship:

(M —7*n)"' =M1 —7*n/M)"" = (1 +7°n/M)/M + w(r?). (A.44)
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Before deriving the asymptotic expansion of the estimators of p,, next we define

the following (7' x T') matrices:
RI* =RO¥ +ipyA (i=1,2), Vu=[I—Xu(X,R"X,) ' X/, Ruu] R*. (A.45)
The first assumption in Subsection 3.1 implies that matrices
By, =X, R"*X,/T and F,, = X,X,/T (A.46)
converge to non-singular matrices, as 7" — oo, and that matrices

X, AX, /T, X, AR, X,/T, X, RuAX,/T,
(A.47)
X, AR AX,/T and O, = X, RuuX,/T
are of order O(T~'). All the above matrices help to derive expectations of products

of quadratic forms of u, needed in the expansions of estimators of p,. These are given

in the next lemma:

Lemma A.10. For quadratic forms of vector u, we have the following results:

2p,0
S(u' R _ Oy
(U’H 2 UH) 1 _pi )
2Tpuo;,
S(u;uuu;R’;“u#) = 7%+O(1)’
(1—=p7)
4To;
E(up, R upu;, R uy) = 1_;5 +O(1),
m
7! 4T '
E(up, R upu) RY " uy) = %4—0(1)7
= PubPu’
I 5 g — _
E(u,Px, Ry Px, Vu R uy) = % [nu - tr(F#ulBuuFu;}@uu)]
i
+0(T™), (A.48)
- — o
£ P, B Pryun) = T [2[ /(1= ) = ]
i

+(1- pi)tr(Fu:}@MH)

n tr(F;ulBWF;:@W)} +o(T,

£(ul, R*V,, Px, R Px, Vi, RM'u,,) = %[[tr(F[;BWFL}@W)—nM]
+ (1= 1) [tr(FuBu}) — tr(F310,)] |
+0(T™h).

Proof of Lemma A.10. We begin the proof by noticing that tr(R,,.) = T/(1 — p}.)
and tr(R{*R,,) = 0. Next, we define 7 = p7,, which implies that |r| < 1. Then, using
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the following results:

T+1

T Z-_7~(1—7~T) T , 1-—r
Zi:lT - 1—17r ’ Zi_or - 1—17r ?

(A.49)
T =T . r[l—(T+ )T+ T
Zi:l we= Zi:o we= (1 _ 1")2 ’
which hold for any 0 < r < 1, we can readily calculate the following traces:
2p 2 2 _ 20+ 00" Y)
tr(RMR,, ) = b tr(ARu) = ———, tr{(AR =k 7
( 2 NH) 1_pa ( H#) 1—03 {( HH) } (1 _Pi)Q
2(1 435" Y) 3 2 4
tr{(AR,,)*} =P __ /(AR +0(T ),
{( Hl) } (1 _ Pi)?’ ( uu) (1 _ pz)4 ( )
2(1 = pi")
tr(RuuARu,) = (1— p{)s s
1 2T
2y _ 2(T—1) Pu
tT{RHH(ARHH) } - (1 _ pﬁ)g |:T 14 + 1— pﬁ :|7 (ABO)
(2T = 1P oY), (Rt )T = TP o)
s (1—pf)? ’ " (1 -pp)° ’
(T-1)
2 2001+ pi V)
A A = ——
tr(pu Rup Ruu) = pa)g )
2(1 — 2T
tr(ppRY* RupARy,) = 2 ( Pu )

+ .
L—pp  (1=pi)?
Note that in calculating the traces in (A.50), terms of the form 7"p>" — 0 since

oT
27 = 0.

Then, by using definitions (A.45), (A.46) and (A.47), the results in (A.50) and a

0 < pu < 1 and L’ Hospital’s rule implies that limr_, o T"p

large amount of tedious algebra, we can compute the following traces:

2T 2T
tr(Ryuu R Ruy) = — L4 1 0(1), tr{(R* Ru)’} = ——— +O(1),
(1—p7) L= pi
2T (2p% — 1) 5, 2T(2 —3p2)
tr{Ruu (R Rpp)’ = =2+ 0(1), tr{(RM™R =" +0(),
{ #H( HH) } (1*Pﬁ)3 ( ) {( HH) } p,u(lfpi)Q ( )
" 1 _ _
tr(Px, ) = - - [tr(BuFl) = (1= p)ma] + 0T, (A.51)
n
o _ 1 2 -1 —1
tT(PXuRz‘ Ruu) = pﬁ ny — (1= pu)tT(Fuu Ouu)| +0(T7),
n
1 _ _ _ _
tT(PXuR?MPXuRMu) = ? [tr(FMulBuuFuuleuu) - (1- Pi)tT(Fuuleuu)} +O0(T 1)»
N
where ¢ = 1,2. Working similarly we can calclulate the following traces:
_ _ 1 12[p% —nu(1—p? -
(P, B P, ) = [P eO by o e,
Pu Pu
+tr(F;;BWF;;eW)] +o(rh, (A.52)
— 1 _ _ _
tr(quR’;”quRuu) = ; [nu - tT(FuulBuuFMLl@MM)} +O(T 1)7
n
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and

1 _ _
tT(RWVuPXu RS#PXM VMRWRML) = ? [tT(Fuuleleew) - nu]
I
1- Pi -1 —1
+ P [tT(Fuqu) - tT(Fuu ew)}
"
+O(T™H). (A.53)

The results in (A.48) follow then by using the result given in page 389 of Magnus
and Neudecker (1979). O

The stochastic expansion of the LS estimator of p, is given in the next lemma:

Lemma A.11. The LS estimator of p., denoted as p,, admits a stochastic expansion

of the form

Pu=putT (pff) + Tpf)) +w(r?), (A.54)
where
o _u Ry 2 = _u;ﬁquS"ﬁxuuu N upupu, RY uy, (A.55)
. 2WTo2, =~ " 2073, 2Toy . .
Uy, w w

Proof of Lemma A.11. To prove the lemma, we rely on the following results (see
(A.56) — (A.59)): Let 4 be the (¢,i)-th element of matrix E. Then, the (4,j)-th

element of matrix E'E/T is

€ij = Zthl et /T = eiej /T, (A.56)
where ¢; is the i-th column of matrix E. Since o;; and ¢/ are the (i,)-th ele-
ments of matrices ¥ and Y71, respectively, 7! = 271¥¥2 7! implies that ¢ =

],:I:l Zfil o* oo™ . Hence, the (i,j)-th element of matrix ¥; in Lemma A.7 is
given as

o) = VT (ei — 04;) (A.57)

and the (ij)-th element of the (M? x 1) vector vec(S1), where S1 = L7!'3; 271 is
given as

VS S et -} o

Since u, = Puey = u, Ry u, = €}, P R" Puey, and Ry, = P, P, we can show

that

E(uLRé‘“uH) = ouutr(RY" Ryuy) =

= E[(eher /T RE ] = 0r oy —PE 4 O(T)

1—p2
m
1 2p M Mo ik rj _ _ij -
=& (sgi;)u;Rg”uu) = \/TUW 1 _’;a {Zkzl Zr:l c“opro’? — o J} +O(T 1/2)
= Th_I)I;og (sfiz)u;LRg“uH) =0. (A.59)
The rest of the proof follows using Lemma A.10. O
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The stochastic expansions of the rest of the estimators of p,, listed in footnote 2,

are given in the next lemma:

Lemma A.12. The GL, PW, ML and DW estimators of p, admit the following

stochastic expansions, respectively:

2

1— _
piE=pE" = pu— 7270 P [u;, Px, Ry Px,, V, R"uy,
o
+uj, RV, Px,, Rb" Px,, Vi R""u, /2] + w(7?),
R R 1-pl
it = B o ) — | (), (A60)
oz

~DW ~ 21— Pi 2 2 3
p,u = Pu +7 (ul,u + uTu) + w(T )

20,
Proof of Lemma A.12. The results of the lemma can be easily proved based on
Magee (1985, pages 279-281) for the GL and iterative PW estimators of p,, Beach
and MacKinnon (1978, pages 52-54) and Magee (1985, pages 281-284) for the ML
estimator, and using Lemma A.11 and the definition of the DW estimator of p,. [

The stochastic expansion of the elements of vector J,, are given in the next lemma:

Lemma A.13. The (M x 1) vector 6, = VT (6 — 0)/7, with elements J,, defined in

(27), admits a stochastic expansion of the form
8o = dig + Td2g + w (7). (A.61)

For estimators p, (I = LS,GL, PW, ML, DW), the elements of d1, and di, in (A.61)

are analytically given as follows: d(Gl)Lp“ = dﬁg‘;“ = dg)i“ = dgg/‘;u = d%‘lé;p“ and

LS
d(l)pu = p;(tl),
e, = P
QGE grw  _grs Ll pap g g
@ = 4@ = F@pp T T [u, Px, R5" Px, V. R"u,
+u, R"V, Px , RY" Px,, V,R" u, /2] (A.62)
ML _ GL 1- Pi 2 2
A2y, = d@)p, +pu—" (Ul +up,) = pus
Opup
DW _ LS 1- Pi 2 2
d(g)Pu - d(Q)P;L + (ul,u + uT,u)'

20
Proof of Lemma A.13. The proof is straightforward using Lemmas A.11 and A.12.
O

Next, we provide analytic forms of the elements of vectors | and ¢, and matrices

L, C' and D, employed in the stochastic expansions of the tests statistics given in the
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paper. To this end, we first derive the partial derivatives of matrix A, given in (28),
with respect to the elements of ¢ and ¢. Using matrices B;; = X{R"” X; /T, matrix A

can be partitioned as follows:
A= [(UijBij)i,jzl, oy M- (A.63)

Lemma A.14. The partial derivatives of matriz A, with respect to the elements of o
and s, can be analytically written as follows:

ol ol
Ap, = [(TXZ{R,;J“XJ')M:LM,M]7 Apup, = [(7XQRpJupH1XJ')M=1, ooy M),

App = XWX T)ig=1, o)y Asg, iy = [00i65 By ij=1. ... m],

.
AC(wU)C(w') =0, AS’(w/)%wq - U#/VAWW)’

A (603850 XL REY Xt [T)i e, ... ma], (A.64)

PuS(uty —

M § 0oy ; ,
* — jv Vot ik u
Apsiur, = [(Zk_l LT XIR) Riu R X, ,
i,5=1, ..., M

M §,i0p.0"0 ’ .
* _ viOy/r ! prv TJ )
Al o = (§ Tl XLR" Ry RLX, :
=1, ..., M

r=1

Proof of Lemma A.14. The proof follows immediately from equation (31), and
Lemmas A.4 and A.5. O

Analytic formulae of the elements of vector [ and matrix L are given in the following

lemma:

Lemma A.15. The elements of vector | and matriz L can be calculated as follows:

M M M Mo kr
bow =D Dy D Dy O WGk XLR X Gy [ T, (A.65)

M M
Ly = ZZ_:I ijl RiGip B G urihi, (A.66)
. M M M M M M ik _rj
lp“pu/ - Zq:l Zs:l Zi:l Zj:l Zk:l 27‘21 g o
xhyGai X Ry (o1r Rier = 2XiGir X1/ T)Ry!, X;Gshs /T
M M M M ij
DD DD DD DRI

xhyGaiX|RY, ,  X;Gishs /2T, (A.67)

PPyt

M Mo,
l‘(uM)‘(w’) - U”'”l‘(w’) -2 Zi=1 Zj:1 hiGip By Gy Buyr Gorjhy, (A.68)

M M M M . .
ikt G ):l Rzk
lp"’g(VV/) Zq:l Zs:l Zizl Zk:l g hq qiXillp),

X (Uk;)/Rky — 2Xka,/X,/,/T)RVV,XV/GV/ShS/T

M M !
+ Zq:1 > haGaXUR, X, Gyrshs 2T, (A.69)
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l

S(vv!)Pu

M M M M . ,
T3y’ ! prv
Zq:1 25:1 ijl Zr:l g thqVXVR
X (JV/TR”/T - ZXV/GV'TX;‘/T)R;{L Xjsths/T

M M, PR
+ Zq:1 25:1 hyGa XL RS X, Gyrohs /2T

(A.70)

Proof of Lemma A.15. The results of the lemma follow by using the definitions in

(41), the partition of matrix G in (52) and Lemmas A.1 — A.14.

O

Analytic formulae of the elements of vector ¢ and matrices C' and D, are given in

the following lemma:

Lemma A.16. The elements of vector ¢ and matrices C and D can be calculated as

follows:

Copp,,s

M 13 ij —_
ZZ ) Z otr(Xi Ry, X;Z;:)/T,

ci(u“/) = tT(BHH/‘:‘HIM)v

M M M M ik rj
Do D D Dy, O OO
xtr(X; Ry, R Ry!, X,;550)/T

2) L o
— g o
i=1 Jj=1 k=1 r=1

xtr(X{Rf,iXkarXiR;j,XjEji)/T2

M M i —_
+Zi=12jzlgjtr( RPJ/U‘" j:ji)/QT’

Cc(;m/)c(w,/) = O'M/VC<WU/) - ztr(Buu’Gu’uBuu’:u’u)7

Cpilg(uz»')

CsuuryPu

PMPM

Pug(m/

d<(w’)f’u

M

Z D> 10 Eoutr(X{ R Ry R X, Z,00,) /T
_221 12 RZkaGkV Vu’Eu'i)/T

-I—tT(X RVV Xl,/.:l,/,,)/QT,

P

S S e R R, B 5
) Oyl pO t’f‘(X,,R Ru/er“Xj‘:jV)/T

-2 ZJ ) Z o"tr(By, Gy X Ry X,;55,) /T

+tT(XVRZ: XU/.:U/,,)/QT,

SED D DD DD DE.a
i=1 j=1 k=1 r=1

xtr(X{ Ry, X1Eir X/ Ry, X;E53) 2T,

dq(w NSy — tT(Buu’EM’VBW’EV’M)/Z

S S (IR XiZi B BT,

M - _ . _
— Zj:1 Zr:l o ]tT(ByV/:V/TX;RPi X]-:].V)/QT.
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Proof of Lemma A.16. The results of the lemma can be easily calculated by using

the definitions (56) and (57), partition of matrix = in (52) and the following traces:

tr(4,,5), tr(A =), tr(A =), tr(A

S(upy=

(1]

)7
tr(Apus,n 2), tr(Ap,, ,E), tr(A; E), tr(A4; =), (A.81)

PPl = NOTON Prsy?)

H PPy’ S(uu”)S(vr’)

)
—/»

tr(A,,GA, ,B), tr(A,,GAg,,, 5), tr(A,,, GA

) S(wv’)

with obvious modifications for

tr(A =), tr(Al =), tr(A

C(WI)PME §(W/)Pu:

=), tr(A

., GA,,B),

S(vv

), tr(A =ZA

Sty =S @t

tr(Ap,EA,,, B), tr(A,,EA

[1]

i
A

[1]

[1]

).

S(wu) S(wu’)

By using the above results and Lemmas A.1 — A.14, the proof completes. O

Analytic formulae of the scalars and vectors given in (33) are derived in the fol-

lowing lemma:

Lemma A.17. Scalars Ao and ko, vectors Ao, Ac, Ko and ke, and matrices Ny, A

and A, can be calculated as follows:
X=0, \g=0, A =0, (A.82)

A= HNETex™), (A.83)

where N is a (M? x M?) matriz whose ((i7), (kr))-th element is
V(ij)(kr) = Oik0jr + 0iroji (4,5, k,r =1, ..., M). (A.84)
The p-th diagonal element of the matriz A, is
Jim E(dty,,) =1~ pp, (A.85)

and its (u, 1')-th off-diagonal element is

(L=pp)(1=pk)

Th—rgo g(d(l)Pud(l)Pu’) = (1 — pu/);u) (ASG)
for p # u'. Further, we have
Ao =0 and A, =0. (A.87)

For all estimators 61 and ¢ (I = UL, RL, GL, IG, ML), we can compute the
following (M x M) matrices:

Avr =0, Agr=Arc =AML =KY~ [(tr(Giiji))i,jzl, M] ;

Agrp = [[(tr(B;ilBijB;leﬁ) —ni—nj +K)oy], M] : (A.88)
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Given them, we can calculate ko and k¢ as follows:

Ko = tr [Z_I(AGL—A[)} /]\4-{-77,/]\47 (A89)

and
ke =vec{(M +K+1)S7' —S7'A/D 7). (A.90)

Also, define scalars

1= (1= pp) (1 = pp)tr(Fp ©pup) + tr(F BuuFru © )], (A.91)

and
c2=(1- pi)tr(FWB;#l), (A.92)

where the (n, X n,) matrices Fu,, ©,, and By, are defined in (A.46) and (A.47).
For all estimators ﬁﬂ (I =LS,GL,PW,ML, DW), we calculate the elements r,, of

(M x 1) vector ko as follows:

s
Ky = —[(nu +3)pu + (c1 — 2n,) /2p,], (A.93)
and
GL PW Ls | e1—(1—p2)(catn,)
Ko = Fp, = FKp, + +l’
Koo = Rpy o+ Pus (A.94)
WDV o LS

Proof of Lemma A.17. From (33), (A.30), (A.35), and (A.61) we can easily show
that

Mo = lim &£(05), A, = lim E(oodi,) and A = lim &(oodi.). (A.95)
T—o0 T— o0

T — o0

The results in (A.82) follows immediately since oo = 0 (see(A.36)). Equations (33)
and (A.30) imply
A = lim E(dicd,y). (A.96)

T— o0

This result together with (A.31), (A.42) and (A.43) yield (A.83).
Since (33) and (A.61) imply that

Ao = Tlijréog(dlgdllg) (A.97)

and aiu =o02,/(1 — p’), we can prove that the u-th diagonal element of the matrix

A, is

Thjnoog(d(zl)/’u) = Tlgt;o E(u;R’;“uuu;R‘;“uM)/élTai#
L 4To?, 9
= Jlim [q +0(1)| /4Tas,, (A.98)
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by combining the third result in Lemma A.10 with (A.55) and (A.62). The last result
proves (A.85). Working along the same lines for p # i, we can prove (A.86), for the
(u, 1')-th off-diagonal element of A,.

To prove (A.87), first note that (33), (A.30) and (A.61) imply

Ao = Tli_{noog(dlgdﬁc)- (A.99)

Substituting (A.31), (A.58) and (A.55) into (A.99), we can calculate the (y, (ij))-th
element of (M x M?) matrix A, as —d<1)p“sgg). Following the same steps to that of

the proof of (A.59) we can show that

lim & (~dgy,, (1)) = 0. (A.100)

T— o0

(A.87) can be proved immediately using A, = Al
For all estimators 67 (I = UL, RL, GL, IG, ML), we can find that

ko = lim & (\/Tao + 01) = lim & (01), (A.101)
T— o0 T—o0
by combining (33) with (A.40), (A.35) and (A.36). The last result proves (A.89). For

all estimators ¢ (I = UL, RL, GL, IG, M L),we can show that

Ke = jliinwf (\/leg + dgg) =vecq lim & (Sé)} , (A.102)

T— o0

since £ (S1) = 0 and lim7r o € (S3) = M; [see (A.40)], by using (33), (A.30), (A.31)
and (A.40). This result implies (A.90).

Finaly, we can calclulate
K,f;f = hm £ (fd(l)ﬁp + d(g)p ) (A103)

by using (33) and (A.55), Lemmas A.10 and A.13. This yields (A.93). Along the same

lines, we can calculate the following quantities:

“gf = ”fuw = hm € (\Fd(l)/m (%ﬂ,) )
mont = Jim & (VTAES,, +dls,,) and (A.104)
REHW = hm E (\Fd(l)pH + dg%u> )
which proves (A.94). O
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Asymptotic expansions of size corrected tests: Proofs of

theorems

Given the lemmas of the previous subsections, next we give the proofs of the theo-
rems presented in the main text. These are based on known expansions of standard
normal and chi-square distributed tests. We derive new expansions of the degrees-
of-freedom-adjusted versions of these tests, by inverting their characteristic functions.
These degrees-of-freedom-adjusted approximations of distribution functions are proved

to be locally exact.

Proof of Theorems 1 and 2. Approximation (42) of Theorem 1 can be proved fol-
lowing the steps of the proof in Rothenberg (1988). The quantities in (40) can be
obtained by expanding the corresponding quantities given by Rothenberg and retain-
ing the first term in each of these expansions. The approximation (44) of Theorem
2 follows from the approximation (42) and the following asymptotic approximations
of the Student-t distribution and density functions, which are given in terms of the

standard normal distribution and density functions, respectively (see Fisher (1925)):

Ir—n(z) = I(2) = (7°/4)(1 + 2*)zi(z) + O(r"),
(A.105)
ir—n(z) = i(z) + O(T°).
Note that approximation (44) of Theorem 2 is locally exact. This can be easily
seen as follows: If parameter vector v = (¢’,<’)’ is known to belong to a ball of radius
9, then, as ¥ — 0, v becomes a fixed known vector. By using (27), (29), (33) and (35)

we can prove that

AIO, )\IH:O, AOIQ, HOIO. (A106)

Then, the analytic formulae of p1 and p2, given in (43), become
p1=p2 =0. (A.107)

This result implies that, with an error of order O(7*), approximation (44) becomes

the Student-t distribution function with MT — n degrees of freedom. O

Proof of Theorem 3. We begin the proof by noticing that, under null hypothesis

(36), the t statistic, given by (37), admits a stochastic expansion of the form

t=to 4+ 7t + 72t2 4+ w(T?), (A.108)
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where the first term in the expansion is given as
to = €'b/(e'Ge)'/* = h'b, where b= GX'Qu/VT.

The result given by equation (A.108) implies that the Cornish-Fisher corrected statistic

t., given by (47), admits a stochastic expansion of the form
te =to + 7t + 72 (ta — t3) + w(r?), (A.109)

where
ts = (p1 + pato)to/2.

Let s be an imaginary number, and 1 (s) and ¢(s) denote the characteristic func-
tions of the ¢ statistic, given by (37), and a standard normal random variable, respec-

tively. Using (A.109) and the relationships:
Elexp(sto)to] = sp(s) and Elexp(sto)ty] = (35 + 5°)o(s),

we can show that the characteristic function of the Cornish-Fisher corrected statistic

t., denoted as 1.(s), can be approximated as follows:

Uals) = w(s) — s Elexp(sto)ts] +O(+°)
= W(s) = s s+ pa(3s + 87)]6(s) + O().

Dividing 1.(s) by —s, applying the inverse Fourier transform and using Theorem 2,
we can show that

2
Pr{t <} + o (pr + paa®)air—(z) + O(7°)
2
.

2

Pr{t. <z}

= Ir-n(x) — o (p1 + poa®)wir—n ()

2

5 (01 + paa®)air o (@) + O(r°)

= Ir_n(z) + O(T°). (A.110)

The last result means that the Cornish-Fisher corrected statistic ¢. is distributed as a

Student-t random variable with MT — n degrees of freedom. O

Proof of Theorems 4 and 5. Approximation (58) of Theorem 4 can be proved fol-
lowing the steps of the proof in Rothenberg (1984b). The quantities in (56) can be
obtained by expanding the corresponding quantities given by Rothenberg and retain-

ing the first term in each of these expansions. Approximation (60) of Theorem 5 follows
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from approximation (58) and the following asymptotic approximations of the F' distri-
bution and density functions, which are given in terms of the chi-square distribution

and density functions, respectively:

FP o (z) = Fo(ma) + (72/2)(m — 2 — ma)ma fr, (mz) + O (),
(A.111)

(@) = mfm(mz) + O(7).

Note that approximation (60) of Theorem 5 can be easily seen to be locally exact.

By using (A.106), (59), and (61), we can show that
& =-m(m—2)/2 and & =m(m+2)/2 (A.112)

This result means that, with an error of order O(73), approximation (60) becomes the

F distribution function with m and MT — n degrees of freedom. O

Proof of Theorem 6. To begin the proof, we first notice that, under null hypothesis

(48), the F statistic, given by (50), admits a stochastic expansion of the form
F=Fy+71F 4+ 7°F +w(r?), (A.114)
where the first term in the expansion is
Fo =b'Qb/m, b=GX Qu/VT.

Equation (A.114) implies that the Cornish-Fisher corrected statistic Fl, given by (64),

admits a stochastic expansion of the form
F.=Fy+7F +7°(F2 — F3) +w(r?), (A.115)

where
Fs = (q1 + q2Fo) Fo.
Let s be an imaginary number, and ¢ (s) and ¢(s) now denote the characteristic
functions of the F' statistic, given by (50), and a chi-square random variable with m

degrees of freedom, respectively. Using (A.115) and the following relationships:

Elexp(sFo) Fo] = ¢m+2(s/m) and Elexp(sFo)Fy] = mTJrzqﬁmH(S/m),
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we can show that the characteristic function of the Cornish-Fisher corrected statistic

F., denoted as 1. (s), can be approximated as follows:

$a(s) = (s) —7°s Elexp(sFo)Fs] + O(7%)
m + 2

= P(s) = 77 [@1dmr2(s/m) + ¢ bma(s/m)] + O(r%).(A.116)

For the chi-square density fm(z), the following results can be shown:
(M) fm(mz) = mfmia(me) and (mz)?fom(mz) = m(m + 2) fmra(mz). (A.117)

Dividing (A.116) by —s, applying the inverse Fourier transform, and using Theorem
5 and the results of equations (A.111) and (A.117), we can show that

PriF. <z} = PriF <ab+r@mfna(me) + 6" 2mfmes(ma)] +O(r°)
= Pr{F <z} + 7’ [(@umzfm(mz) + gema® frn (mzx)] + O(7%)
= Pr{F <a}+7°(q1 + g2x)ma frm(mz) + O(°)
= Fi.(z) = (@1 + )z frp (x)
+7%(q1 + )z fi, (z) + O(r%)
= Ff'.(x)+0(°). (A.118)
The last result implies that the Cornish-Fisher corrected statistic Fi is distributed as

an F' random variable with m and MT — n degrees of freedom. O
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