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Abstract

Re�ned asymptotic methods are used to produce degrees-of-freedom-

adjusted Edgeworth and Cornish-Fisher size corrections of the t and F

testing procedures for the parameters of a S.U.R. model with serially

correlated errors. The corrected tests follow the Student-t and F distri-

butions, respectively, with an approximation error of order O(τ3), where

τ = 1/
√
T and T is the number of time observations. Monte Carlo sim-

ulations provide evidence that the size corrections suggested hereby have

better �nite sample properties, compared to the asymptotic testing pro-

cedures (either standard or Edgeworth corrected), which do not adjust for

the degrees of freedom.
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1 Introduction

The use of re�ned asymptotic techniques can considerably improve the �nite-

sample performance of testing procedures in applied econometric research (see,

e.g., Ullah (2004), for a survey). These techniques involve the use of Edge-

worth expansions which e�ectively provide higher-order asymptotic approxima-

tions of the �nite-sample distributions of well known economertic test statistics

(see Magdalinos and Symeonides (1995), Magee (1985), Rothenberg (1984b),

Symeonides et al. (2007), inter alia). In �nite samples, there are considerable

discrepancies between the actual (sample) and nominal size of many standard

testing procedures, employed in econometric literature. These discrepancies are

found to be very severe, especially for the generalized linear regression model

with a non-scalar covariance matrix of the error terms estimated by the feasible

generalized least squares (FGLS), or maximum likelihood (see, e.g., Kiviet and

Phillips (1996), Ullah (2004)).

Despite the substantial amount of work on re�ned asymptotic bias expan-

sions of alternative estimators for the linear regression model or simultane-

ous equations systems (see, e.g., Iglesias and Phillips (2010, 2012), Kiviet and

Phillips (1996), Kiviet et al. (1995), Phillips (2000, 2007), inter alia), there are

only a few papers applying these methods to conventional tests, like the F and

t. Rothenberg (1984b, 1988) used Edgeworth expansions in terms of the chi-

square and normal distributions to derive general formulae of corrected critical

values of the Wald (or F ) and t tests, respectively.

In this paper, we derive size corrections of the t and F tests for the system

of Seemingly Unrelated Regression (S.U.R.) equations with �rst-order autore-

gressive error terms, introduced by Parks (1967). The oversizedness of these

tests in �nite samples can be attributed to two sources: (i) the non-zero cross-

correlations of the error terms of the S.U.R. equations, and (ii) the speci�c

dynamic structure of these error terms, i.e., the existence of serial correlation

(with possibly distinct autocorrelation coe�cients) across the S.U.R. equations.

Since the Edgeworth expansions are not well-de�ned distribution functions

and they may assign negative `probabilities' to the tails of the approximated dis-

tributions, the paper suggests using the Cornish-Fisher expansion of the tests
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rather than the Edgeworth expansion of their distribution functions (see Cor-

nish and Fisher (1937), Fisher and Cornish (1960), Hill and Davis (1968), Mag-

dalinos (1985), Ogasawara (2012), inter alia). The above suggested corrections

are asymptotically equivalent, but there are arguments�both theoretical and

practical�in favour of the Cornish-Fisher correction: First, the Cornish-Fisher

corrected test statistics are theoretically superior because they are proper ran-

dom variables and their distributions have well-behaved tails; second, since they

do not require the calculation of new critical values, they can be readily imple-

mented in applied research based on the publicly available tables of standard

distributions.

The paper proposes the use of degrees-of-freedom-adjusted Edgeworth cor-

rected critical values and Cornish-Fisher corrected statistics of the t and F

tests when the S.U.R. model with serially correlated errors is estimated using

the Parks' estimator (see Parks (1967)). These corrections follow the Student-t

and F distributions, respectively, with an approximation error of order O(τ3),

where τ = 1/
√
T and T is the number of time observations of the sample. The

use of degree-of-freendom-adjusted forms of the above tests lead to approxima-

tions that are `locally exact' (see Magdalinos (1985)), which means that the

approximate distributions reduce to the exact ones, when the model is su�-

ciently simpli�ed. These approximations are found to improve the small-sample

performance of the tests (see Magdalinos and Symeonides (1995), Symeonides

et al. (2007)). To our knowledge, this is the �rst attempt in the literature to

develop analytic size corrected testing procedures for the S.U.R. model with

serially correlated errors.

The analytic size corrections suggested by the paper take into account the

magnitude of the various nuisance parameters, as well as the way in which

they in�uence the elements of the disturbance covariance matrix. They can

be implemented separately to correct for the non-zero cross-correlations of the

error terms, or their serial correlation e�ects, or the combination of the above.

The paper is organised as follows. Section 2 provides some preliminary no-

tations. Section 3 presents the S.U.R. model and the assumptions needed in

our expansions. Analytic formulae for the locally exact Edgeworth and Cornish-

Fisher second-order size corrections of the t and F test statistics are derived
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in Section 4. Section 5 conducts out a Monte Carlo simulation evaluating the

performance of the suggested corrected tests. Finally, Section 6 concludes the

paper. Proofs of the results of the paper are given in the Appendix.

2 Preliminary notation

Throughout the paper, we use the tr, vec, ⊗, and matrix di�erentiation notation

as de�ned in Dhrymes (1978, pages 518�540), and for any two indices i and j, we

denote Kronecker's delta as δij . Moreover, any (n×m) matrix L with elements

lij is denoted as

L = [(lij)i=1, ..., n; j=1, ..., m],

with obvious modi�cations for vectors and square matrices. If lij are (ni ×mj)

matrices, then L is the (
∑
ni×

∑
mj) partitioned matrix with submatrices lij .

The following matrices:

PX = X(X ′X)−1X ′, PX = I − PX = I −X(X ′X)−1X ′

denote the orthogonal projectors into the spaces spanned by the columns of the

matrix X and its orthogonal complement, respectively. Finally, for any stochas-

tic quantity (scalar, vector, or matrix) we use the symbol E(·) to denote the

expectation operator.

3 The model

Consider a S.U.R. system of M contemporaneously correlated regression equa-

tions of the form

yµ = Xµβµ + uµ (µ = 1, . . . , M), (1)

where yµ are (T ×1) vectors of observations on the dependent variables, Xµ are

(T ×nµ) matrices of observations on sets of nµ non-stochastic regressors, βµ are

(nµ×1) vectors of parameters to be estimated and uµ are (T×1) vectors of non-

observable serially correlated stochastic error terms of the µ-th equation, de�ned

as utµ (t = 1, . . . , T ). These terms are generated by the following stationary

�rst-order autoregressive (AR(1)) process:

utµ = ρµu(t−1)µ + εtµ, −1 < ρµ < 1 (t = 1, . . . , T ; µ = 1, . . . , M), (2)
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where εtµ are normally distributed innovations. For any two indices µ, µ′ =

1, . . . , M , we have E(εtµ) = 0, for all t. Moreover, for t 6= 1 or t′ 6= 1, the co-

variance between two innovations εtµ and εt′µ′ is given as E(εtµεt′µ′) = δtt′σµµ′ .

For t = t′ = 1 and µ, µ′ = 1, . . . , M , E(εtµεt′µ′) becomes

E(ε1µε1µ′) = σµµ′(1− ρ2µ)1/2(1− ρ2µ′)1/2/(1− ρµρµ′) (3)

(see Parks (1967, pages 507�508)). In addition to assumption ρµ ∈ (−1, 1),

stationarity of AR(1) processes (2) implies the following relationships on the

initial conditions of the error terms of the S.U.R. equations:

u1µ = (1− ρ2µ)−1/2ε1µ (t = 1; µ = 1, . . . , M). (4)

These relationships imply that, for all t = 1, . . . , T and µ, µ′ = 1, . . . , M , the

error terms utµ satisfy the following conditions:

E(utµ) = 0, E(u2tµ) = σµµ/(1− ρ2µ), E(utµutµ′) = σµµ′/(1− ρµρµ′). (5)

Let n =
∑M
µ=1 nµ, and de�ne the (MT × 1) vectors y and u, the (n × 1)

vector β and the (MT × n) block diagonal matrix X as follows:

y = [(yµ)µ=1, ..., M ], u = [(uµ)µ=1, ..., M ],

β = [(βµ)µ=1, ..., M ], (6)

X = [(δµµ′Xµ)µ,µ′=1, ..., M ].

Then, the system of equations (1) can be written in a matrix form as follows:
y1

y2
...

yM

 =


X1 0 · · · 0

0 X2 · · · 0
...

...
. . .

...

0 0 · · · XM




β1

β2
...

βM

+


u1

u2
...

uM

 , (7)

or more compactly as

y = Xβ + u. (8)

To derive size corrected signi�cance tests for the elements of the vector β, the

above representations of the S.U.R. system will be written in an autocorrelation-

free form, after applying appropriate transformations on y, X and u. Following
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Parks (1967), de�ne the (T × T ) matrices Pµ and Rµµ
′
as follows:

Pµ =



(1− ρ2µ)−
1
2 0 0 · · · 0

(1− ρ2µ)−
1
2 ρµ 1 0 · · · 0

(1− ρ2µ)−
1
2 ρ2µ ρµ 1 · · · 0

...
...

...
. . .

...

(1− ρ2µ)−
1
2 ρT−1µ ρT−2µ ρT−3µ · · · 1


, Rµµ

′
= P−1′µ P−1µ′ , (9)

and the following (MT ×MT ) block diagonal matrix

P = [(δµµ′Pµ)µ,µ′=1, ..., M ]. (10)

Then, (2) implies that the (T × 1) random vectors uµ can be written as

uµ = Pµεµ (µ = 1, . . . , M), (11)

where εµ are (T × 1) random vectors with non-autocorrelated elements εtµ, i.e.,

εµ = [(εtµ)t=1, ..., T ; µ=1, ..., M ]. (12)

As in (11), consider the (T ×1) vectors yµ∗ and (T ×nµ) matrices Xµ∗, with

non-autocorrelated elements, satisfying the following relations:

yµ∗ = P−1µ yµ, Xµ∗ = P−1µ Xµ, (13)

and de�ne the (MT × 1) vector y∗ and (MT × n) block diagonal matrix X∗ as

follows:

y∗ = [(yµ∗)µ=1, ..., M ], X∗ = [(δµµ′Xµ∗)µ,µ′=1, ..., M ]. (14)

Then, premultiplying the µ-th equation of (7) by P−1µ , we can derive the fol-

lowing S.U.R. model with non-autocorrelated error terms:
y1∗

y2∗
...

yM∗

 =


X1∗ 0 · · · 0

0 X2∗ · · · 0
...

...
. . .

...

0 0 · · · XM∗




β1

β2
...

βM

+


ε1

ε2
...

εM

 (15)

(see Zellner (1962, 1963), Zellner and Huang (1962), Zellner and Theil (1962)).

In more compact form, this model can be written as

y∗ = X∗β + ε, (16)
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where y∗ = P−1y, X∗ = P−1X and ε = P−1u. The above representation of

the S.U.R. system implies that the (MT × 1) error vector u in (8) is normally

distributed with mean and variance-covariance matrix given as follows:

E(u) = 0, E(uu′) = Ω−1 = PE(εε′)P ′ = P (Σ⊗ IT )P ′, (17)

where

Σ = [(σµµ′)µ,µ′=1, ..., M ]. (18)

The last relationship implies that

Ω = P ′−1(Σ−1 ⊗ IT )P−1 (19)

is a function of the ((M + M2) × 1) parameter vector γ = (%′, ς ′)′, where % =

(ρ1, . . . , ρM )′ is the (M × 1) vector of autocorrelation coe�cients in (2) and

the (M2 × 1) vector ς = vec(Σ−1) ∈ £ = RM2 − 0, where 0 is the subspace of

RM2

in which Σ is not positive de�nite. After de�ning the composite index

(µµ′) = µ+M(µ′ − 1) ((µµ′) = 1, . . . , M2), (20)

for any two indices µ, µ′ = 1, . . . , M , it can be easily seen that the (µµ′)-th

element of vector ς, denoted as ς(µµ′), is actually the (µ, µ′)-th element of matrix

Σ−1, denoted as σµµ
′
.

The system of equations (16) (or (15)) can be seen as the vectorization

outcome of the following form of the S.U.R. model of M equations:

Y∗ = ZB + E, (21)

where Y∗ and E are (T ×M) random matrices de�ned as

y∗ = vec(Y∗), ε = vec(E), (22)

respectively, where the rows of matrix E are NM (0,Σ) random vectors and B

is a (K ×M) matrix whose columns, denoted as bµ, are de�ned as

bµ = Ψµβµ (µ = 1, . . . , M), (23)

where Ψµ are (K × nµ) known submatrices of the (MK × n) block diagonal

matrix

Ψ = [(δµµ′Ψµ)µ,µ′=1, ..., M ]. (24)
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Finally, Z is a (T ×K) matrix with non-autocorrelated columns, de�ned by

the following relationship:

X∗ = [(δµµ′Xµ∗)µ,µ′=1, ..., M ] = [(δµµ′ZΨµ)µ,µ′=1, ..., M ]

= [(δµµ′Z)µ,µ′=1, ..., M ][(δµµ′Ψµ)µ,µ′=1, ..., M ]

= (IM ⊗ Z)Ψ. (25)

The above representation of the S.U.R. model, given by (21), will facilitate the

expansions needed in our derivations of the size corrected tests suggested in the

paper.

3.1 Assumptions

To carry out our expansions, it would be theoretically convenient to introduce

a reparameterization of the error covariance matrix of model (8) as follows:

y = Xβ + σu, σ > 0, u ∼ NMT (0,Ω−1), (26)

assuming that parameter σ2 can be estimated separately from the rest terms of

the covariance matrix Ω−1 of vector u.1

For the derivation of our size corrected tests, we need to make a number of

assumptions on the elements of matrix Ω, which is the inverse of the variance-

covariance matrix of the error vector u. To this end, we denote as Ωi, Ωij ,

etc., the (MT ×MT ) matrices of �rst-, second- and higher-order derivatives,

respectively, of the elements of matrix Ω with respect to the elements of the

((M + M2) × 1) vector of nuisance parameters γ = (%′, ς ′)′. For any estimator

of γ, de�ne the ((1 +M +M2)× 1) vector δ, with elements

δ0 =
σ̂2 − 1

τ
, δρµ =

ρ̂µ − ρµ
τ

, δς(µµ′) =
ς̂(µµ′) − ς(µµ′)

τ
, (27)

where µ = 1, . . . , M, (µµ′) = 1, . . . , M2 and τ = 1/
√
T is the `asymptotic

1The nuisance parameters σ and γ can be simultaneously identi�ed under the restriction

σ = 1, which implies that the estimate of matrix Σ, denoted as Σ̂, is accurate, up to a

multiplicative factor. This is not true in samples with small time dimension. A convenient

method to estimate σ is through the following feasible generalized least squares (GL) estimator

σ̂GL =
[
(y −Xβ̂)′

(
P̂ ′−1
GL (Σ̂−1

GL ⊗ IT )P̂−1
GL

)
(y −Xβ̂)/(MT − n)

]1/2
,

where β̂ is the feasible GL estimator based on any consistent estimators of Σ−1 and P−1.
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scale' of our second-order stochastic expansions. Then, our size corrected tests

can be derived based on the following assumption.

Assumption 1:

(i) The elements of matrices Ω and Ω−1 are bounded for all T , all vectors %

with elements ρµ ∈ (−1, 1), and all vectors ς ∈ £. Moreover, the following

matrices:

A = X ′ΩX/T, F = X ′X/T, Γ = Z ′Z/T (28)

converge to non-singular limits, as T →∞.

(ii) Up to the fourth order, the partial derivatives of the elements of Ω with

respect to the elements of % and ς, are bounded for all T , all vectors % with

elements in the interval (−1, 1), and all vectors ς ∈ £.

(iii) The estimators %̂ and ς̂ are even functions of u, and they are functionally

unrelated to the parameter vector β. As a result, they can be written as

functions of X, Z, and u only.

(iv) The vector of nuisance parameters δ admits a stochastic expansion of the

form

δ =
[
δ0, [(δρµ)µ=1, ..., M ]′, [(δς(µµ′))(µµ′)=1, ..., M2 ]′

]′
= d1 + τd2 + ω(τ2), (29)

where the order of magnitude ω(·), de�ned in the Appendix, has the same

operational properties as order O(·). Moreover, the expectations

E(d1d
′
1), E(

√
Td1 + d2) (30)

exist and have �nite limits, as T →∞.

The �rst two conditions of Assumption 1 imply that the following matrices:

Ai = X ′ΩiX/T, Aij = X ′ΩijX/T, A∗ij = X ′ΩiΩ
−1ΩjX/T (31)

are bounded. Thus, according to Magdalinos (1992), the Taylor series expansion

of β constitutes a stochastic expansion. Since the vectors of nuisance parameters

% and ς are functionally unrelated to β, condition (iii) of Assumption 1 is sat-

is�ed for a wide class of estimators %̂ and ς̂, including the maximum likelihood
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estimators and the simple or iterative estimators based on the regression resid-

uals (see Breusch (1980), Rothenberg (1984a)). Note that we need not assume

that estimators %̂ and ς̂ are asymptotically e�cient.

Further, conditions (i)�(iv) of Assumption 1 should be satis�ed by all the

estimators of vectors % and ς, considered in the paper. The estimators of the el-

ements of vector %, i.e., ρµ (µ = 1, ...,M) include the following: the least squares

(LS), Durbin-Watson (DW), generalized least squares (GL), Prais-Winsten (PW)

and maximum likelihood (ML).2 The elements of vector ς = vec(Σ−1) can be

estimated by

ς̂ = vec
[
(Y∗ − ZB̂)′(Y∗ − ZB̂)/T

]−1
, (32)

where B̂ is any consistent estimator of the matrix of parameters B of regression

model (21). Consistent estimators of B include the unrestricted and restricted

least squares (denoted as UL and RL, respectively), the simple and iterative

generalized least squares (denoted as GL and IG, respectively) and the maximum

likelihood (ML) estimators.3

To present the expansions suggested in the paper, expectations E(d1d
′
1) and

2The closed forms of these estimators of ρµ, for all µ, are given as follows:

(i) LS:

ρ̃µ =
∑T

t=2
ũtµũ(t−1)µ

/∑T

t=1
ũ2
tµ,

where ũtµ are the LS residuals of regression model (1).

(ii) DW:

ρ̂
(DW )
µ = 1− (DW/2),

where the DW is the Durbin-Watson statistic.

(iii) GL:

ρ̂µ =
∑T

t=2
ûtµû(t−1)µ

/∑T

t=1
û2
tµ,

where ûtµ denote the GL estimates of utµ, based on the autocorrelation-correction of

regression model (1), for all µ, using any asymptotically e�cient estimator of ρµ.

(iv) PW: This estimator of ρµ, denoted as ρ̂
(PW )
µ , together with the PW estimator of β, de-

noted as β̂
(PW )
µ , minimize the sum of squared GL residuals (Prais and Winsten (1954)).

(v) ML: This estimator, denoted as ρ̂
(ML)
µ , satis�es a cubic equation with coe�cients de�ned

in terms of the ML residuals (Beach and MacKinnon (1978)).

3The closed forms of these estimators of B are given as follows:

(i) UL:

B̂(UL) = (Z′Z)−1Z′Y∗.
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E(
√
Td1 + d2) will be de�ned as follows:

lim
T→∞

E(d1d
′
1) =


λ0 λ′% λ′ς

λ% Λ% Λ′%ς

λς Λ%ς Λς

 and lim
T→∞

E(
√
Td1 + d2) =


κ0

κ%

κς

 , (33)

respectively, where λ0 and κ0 are scalars, λ% and κ% are (M ×1) vectors, λς and

κς are (M2 × 1) vectors, Λ% is a (M ×M) matrix, Λς is a (M2 ×M2) matrix

and Λ%ς is a (M2 ×M) matrix. The following partitions of the above matrix

and vector will be of use in the paper:λ0 λ′

λ Λ

 and

κ0
κ

 , (34)

where

Λ =

Λ% Λ′%ς

Λ%ς Λς

 , λ =

λ%
λς

 and κ =

κ%
κς

 , (35)

where Λ is a ((M +M2)× (M +M2)) matrix, and λ and κ are ((M +M2)× 1)

vectors. The elements of the vectors and matrices in (33), (34) and (35) can be

interpreted as `measures' of the accuracy of the expansions of estimators σ̂2, ρ̂µ

and ς̂(µµ′) around the true values of the corresponding parameters.

4 Size corrected test statistics

In this section, we derive size corrected t, Wald and F test statistics, as well as

the second-order approximations of their distributions based on the conditions

of Assumption 1. The versions of the test statistics which adjust for the degrees

(ii) RL:

vec(B̂(RL)) = Ψ(X′∗X∗)
−1X′∗y∗.

(iii) GL:

vec(B̂(GL)) = Ψ
[
X′∗(Σ̂

−1
I ⊗ IT )X∗

]−1
X′∗(Σ̂

−1
I ⊗ IT )y∗,

where Σ̂−1
I is the UL or RL estimator of Σ.

(iv) IG: This estimator, denoted as B̂(IG), is computed by iterative implementation of the

GL estimator.

(v) ML: This estimator, denoted as B̂(ML), can be computed by iterating the GL estimation

process up to convergence (Dhrymes (1971)).
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of freedom, namely the Student-t and F , are locally exact. That is, if the vector

of parameters γ = (%′, ς ′)′ is known to belong to a ball of radius ϑ, then the

approximate distributions of these test statistics become exact, as ϑ→ 0.

The analytic size corrections developed in this section can provide size cor-

rections to either the non-zero cross-correlations of the error terms or their

serial correlation e�ects. The part of the size corrections corresponding to the

serial correlation e�ects constitutes a extension of the results in Magdalinos and

Symeonides (1995) to the multiple equation framework. On the other hand, the

part of the size corrections due to the non-zero cross-correlations constitutes a

completely genuine contribution to the literature, which can be readily imple-

mented to correct the size of the t and F tests in the standard Zellner's S.U.R.

model (see Zellner (1962)) alone.

4.1 The t test

Let the elements of the (n × 1) vector e and scalar e0 be known quantities.

Testing any null hypothesis of the form

H0 : e′β = e0 (36)

against its one-sided alternatives, can be based upon the following t statistic:

t = (e′β − e0)/
[
σ̂2e′(X ′Ω̂X)−1e

]1/2
, (37)

which is adjusted for the degrees of freedom of the Student-t distribution.

For the derivation of the suggested asymptotic expansions, we de�ne the

((M +M2)× 1) vector l and the ((M +M2)× (M +M2)) matrix L as follows:

l =
[

[(lρµ)µ=1, ..., M ]′, [(lς(µµ′))(µµ′)=1, ..., M2 ]′
]′
, (38)

L =


[(lρµρµ′ )µ,µ′=1,...,M ;] [(lρµς(νν′)) µ=1, ..., M ;

(νν′)=1,...,M2

]

[(lς(νν′)ρµ)(νν′)=1, ..., M2;
µ=1, ..., M

] [(lς(µµ′)ς(νν′))(µµ′)=1, ..., M2;

(νν′)=1, ..., M2

]

 , (39)

where the elements of vector l and matrix L are de�ned below:

lρµ = h′GAρµGh, lς(µµ′) = h′GAς(µµ′)Gh,

lρµρµ′ = h′GCρµρµ′Gh, lρµς(νν′) = h′GCρµς(νν′)Gh, (40)

lς(νν′)ρµ = h′GCς(νν′)ρµGh, lς(µµ′)ς(νν′) = h′GCς(µµ′)ς(νν′)Gh,
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where G = A−1 = (X ′ΩX/T )−1 is a (n×n) matrix, h = e/(e′Ge)1/2 is a (n×1)

vector and

Cρµρµ′ = A∗ρµρµ′ − 2AρµGAρµ′ +Aρµρµ′/2,

Cρµς(νν′) = A∗ρµς(νν′) − 2AρµGAς(νν′) +Aρµς(νν′)/2, (41)

Cς(µµ′)ς(νν′) = A∗ς(µµ′)ς(νν′) − 2Aς(µµ′)GAς(νν′) +Aς(µµ′)ς(νν′)/2,

with obvious modi�cations for Cς(νν′)ρµ .

The next two theorems give alternative Edgeworth approximations of the

distribution function of the t statistic, given in (37), in terms of the normal and

Student-t distributions, respectively.

Theorem 1. The distribution function of the t statistic (37), under the null

hypothesis (36), admits the Edgeworth expansion

Pr{t ≤ x} = I(x)− τ2

2

[(
p1 + 1

2

)
+
(
p2 + 1

2

)
x2
]
xi(x) +O(τ3), (42)

where I(·) and i(·) are the standard normal distribution and density functions,

respectively, and scalars p1 and p2 can be calculated as follows:

p1 = tr(ΛL) +
l′Λl

4
+ l′(κ+

λ

2
)−κ0 +

λ0 − 2

4
, p2 =

l′Λl − 2l′λ+ λ0 − 2

4
. (43)

Analytic formulae for the computation of scalars λ0, κ0, and the elements of λ,

κ, Λ, l and L are given in the Appendix (see Lemmas A.15 and A.17).

Instead of using the Edgeworth expansion (42), we can approximate the

distribution function of the t statistic in terms of the Student-t distribution as

follows:

Theorem 2. The distribution function of the t statistic (37), under the null

hypothesis (36), admits the Edgeworth expansion

Pr{t ≤ x} = IMT−n(x)− τ2

2

[
p1 + p2x

2
]
xiMT−n(x) +O(τ3), (44)

where IMT−n(·) and iMT−n(·) are the Student-t distribution and density func-

tions, respectively, with MT − n degrees of freedom, and scalars p1 and p2 are

de�ned in (43).

Theorem 1 implies that we can calculate the Edgeworth corrected α% critical

value of the t statistic (37) as

n∗α = nα +
τ2

2

[(
p1 + 1

2

)
+
(
p2 + 1

2

)
n2α
]
nα, (45)
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based on the α% signi�cant point of the standard normal distribution, denoted

as nα. Similarly, based on Theorem 2, we can calclulate the Edgeworth corrected

α% critical value of the t statistic (37) as

t∗α = tα +
τ2

2

[
p1 + p2t

2
α

]
tα, (46)

using the α% signi�cant point of the Student-t distribution, denoted as tα.

The Edgeworth approximation employed by Theorems 1 and 2 to obtain the

size corrected critical values n∗α and t∗α is not a proper distribution function, as it

may assign negative `probabilities' in the tails of the approximate distribution.

To overcome this problem, we can use a Cornish-Fisher expansion. This corrects

the test statistics of interest, instead of their critical values. The Cornish-Fisher

expansion is simply the inversion of the Edgeworth correction of the critical

values and, thus, it is expected to have very similar properties around the mean

of the approximate distribution. However, at the tails of this distribution, which

are important for inference, the properties of the Cornish-Fisher expansion are

di�erent. In fact, the Cornish-Fisher size corrected statistics constitute random

variables with well-behaved tails, and thus they do not assign negative `proba-

bilities' at the tails of their distributions.

The Cornish-Fisher corrected t statistic for testing null hypothesis (36) is

given in the following theorem.

Theorem 3. The Cornish-Fisher size corrected t statistic

t∗ = t− τ2

2

[
p1 + p2t

2
]
t (47)

is distributed, under the null hypothesis (36), as a Student-t random variable

with MT − n degrees of freedom, with an approximation error of order O(τ3).

The Cornish-Fisher size corrected t statistic t∗, given by equation (47), can

be readily used, in practice, to test null hypothesis (36) against its one-sided

alternatives. This can be done by using the standard tables of the Student-t

distribution with MT − n degrees of freedom.
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4.2 The Wald and F tests

Let H be a (m× n) matrix of rank m with known elements and h0 be a known

(m× 1) vector. Testing any null hypothesis of the form

H0 : Hβ = h0 (48)

against all possible alternatives, can be based upon the Wald statistic

w = (Hβ̂ − h0)′
[
H(X ′Ω̂X)−1H ′

]−1
(Hβ̂ − h0)/σ̂2, (49)

or the familiar F statistic

F = (Hβ̂ − h0)′
[
H(X ′Ω̂X)−1H ′

]−1
(Hβ̂ − h0)/mσ̂2, (50)

which is adjusted for the degrees of freedom of the F distribution.

For the derivation of the suggested asymptotic expansions, we de�ne the

(n× n) matrix

Q = H ′(HGH ′)−1H, (51)

and we partition the (n× n) matrices G = A−1 = (X ′ΩX/T )−1 and Ξ = GQG

and the (n× 1) vector h as follows:

G = [(Gij)i,j=1, ..., M ], Ξ = [(Ξij)i,j=1, ..., M ], h = [(hi)i=1, ..., M ], (52)

where Gij and Ξij are the (i, j)-th (ni × nj) submatrices of G and Ξ, respec-

tively, and hi = ei/(e
′Ge)1/2 is the i-th (ni × 1) subvector of h, where ei is the

corresponding i-th (ni × 1) subvector of the (n× 1) vector e.

Next, de�ne the ((M +M2)× 1) vector c, and the ((M +M2)× (M +M2))

matrices C and D∗ as follows:

c =
[

[(cρµ)µ=1, ..., M ]′, [(cς(µµ′))(µµ′)=1, ..., M2 ]′
]′
, (53)

C =


[(cρµρµ′ )µ,µ′=1, ..., M ] [(cρµς(νν′)) µ=1, ..., M ;

(νν′)=1, ..., M2

]

[(cς(νν′)ρµ)(νν′)=1, ..., M2;
µ=1, ..., M

] [(cς(µµ′)ς(νν′))(µµ′)=1, ..., M2;

(νν′)=1, ..., M2

]

 (54)

and

D∗ =


[(dρµρµ′ )µ,µ′=1, ..., M ] [(dρµς(νν′)) µ=1, ..., M ;

(νν′)=1, ..., M2

]

[(dς(νν′)ρµ)(νν′)=1, ..., M2;
µ=1, ..., M

] [(dς(µµ′)ς(νν′))(µµ′)=1, ..., M2;

(νν′)=1, ..., M2

]

 , (55)
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where the elements of vector c and matrices C and D∗ are de�ned as follows:

cρµ = tr(AρµΞ), cρµρµ′ = tr(Cρµρµ′ Ξ),

cρµς(νν′) = tr(Cρµς(νν′)Ξ),

cς(µµ′) = tr(Aς(µµ′)Ξ), cς(µµ′)ς(νν′) = tr(Cς(µµ′)ς(νν′)Ξ), (56)

dρµρµ′ = tr(D∗ρµρµ′ Ξ), dς(µµ′)ς(νν′) = tr(D∗ς(µµ′)ς(νν′)Ξ),

dρµς(νν′) = tr(D∗ρµς(νν′)Ξ),

where

D∗ρµρµ′ =
AρµΞAρµ′

2
, D∗ρµς(νν′) =

AρµΞAς(νν′)
2

,

(57)

D∗ς(µµ′)ς(νν′) =
Aς(µµ′)ΞAς(νν′)

2
,

with obvious modi�cations for cς(νν′)ρµ , dς(νν′)ρµ and D∗ς(νν′)ρµ .

The next two theorems give Edgeworth approximations of the distribution

functions of the Wald (w) and F statistics, given by (49) and (50), respectively.

Theorem 4. The distribution function of the Wald statistic (49), under the

null hypothesis (48), admits the Edgeworth expansion

Pr{w ≤ x} = Fm(x)− τ2 [ξ1 + (ξ2/(m+ 2))x]
x

m
fm(x) +O(τ3), (58)

where Fm(·) and fm(·) are the chi-square distribution and density functions,

respectively, and scalars ξ1 and ξ2 can be calculated as follows:

ξ1 = tr[Λ(C +D∗)]− c′Λc/4 + c′κ+m[c′λ/2− κ0 − (m− 2)λ0/4],

(59)

ξ2 = tr(ΛD∗) + [c′Λc− (m+ 2)(2c′λ−mλ0)]/4.

Analytic formulae for the computation of scalars λ0 and κ0, and the elements of

λ, κ, Λ, c, C and D∗ are given in the Appendix (see Lemmas A.16 and A.17).

Instead of using the Wald statistic (49) and the Edgeworth expansion of

its distribution, given in (58), we can use the F statistic, given by (50), and

approximate its distribution function in terms of the F distribution as follows:

16



Theorem 5. The distribution function of the F statistic (50), under null hy-

pothesis (48), admits the Edgeworth expansion

Pr{F ≤ x} = FmMT−n(x)− τ2 [q1 + q2x]xfmMT−n(x) +O(τ3), (60)

where FmMT−n(·) and fmMT−n(·) are the F distribution and density functions,

respectively, with m and MT − n degrees of freedom, and scalars q1 and q2 can

be calculated as follows:

q1 = ξ1/m+ (m− 2)/2, q2 = ξ2/(m+ 2)−m/2, (61)

where scalars ξ1 and ξ2 are de�ned in (59).

Theorem 4 implies that the Edgeworth corrected α% critical value of the

Wald statistic (49) is given as

χ∗α = χα + τ2
[
ξ1
m

+
ξ2

m(m+ 2)
χα

]
χα, (62)

based on the α% signi�cant point of the chi-square distribution, denoted as χα.

Theorem 5 enables us to calclulate the Edgeworth corrected α% critical value

of F statistic (50) as

F ∗α = Fα + τ2 [q1 + q2Fα]Fα, (63)

based on the α% signi�cant point of the F distribution, denoted as Fα.

The Cornish-Fisher size corrected F statistic for testing null hypothesis (48)

is given in the next theorem.

Theorem 6. The Cornish-Fisher size corrected F statistic

F∗ = F − τ2 [q1 + q2F ]F (64)

is distributed, under null hypothesis (48), as an F random variable with m and

MT − n degrees of freedom, with an approximation error of order O(τ3).

Unlike the Edgeworth approximation, the Cornish-Fisher corrected F statis-

tic, denoted as F∗ in equation (64), is a proper random variable and it does not

assign negative `probabilities' in the tails of its distribution. Thus, the Cornish-

Fisher corrected F statistic can be be readily implemented, in applied research,

to test null hypothesis (48). This can be done by using the standard tables of

the F distribution, with m and MT − n degrees of freedom.
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5 Monte-Carlo simulations

In this section, we evaluate the small-sample performance of the size corrected

tests suggested in the previous section, compared to their corresponding stan-

dard (�rst-order asymptotic approximation) versions. To this end, we rely on a

Monte Carlo simulation based on 5000 iterations and we consider small-smaples

of T = 15, 20, 40 observations.

In our simulation, we consider the S.U.R. model of M = 2 seemingly unre-

lated equations (see, e.g., Zellner (1962)), i.e.,

yt,1 = β0,1 + β1,1xt1,1 + β2,1xt2,1 + ut,1

yt,2 = β0,2 + β1,2xt1,2 + β2,2xt2,2 + ut,2
(t = 1, . . . , T ), (65)

where the error terms, ut,1 and ut,2, are contemporaneously correlated with co-

variance σ12. Both of these error terms follow AR(1) process (2), with normally

distributed innovations. The autoregressive coe�cients of this process ρ1 and

ρ2 are assumed to be equal, i.e., ρ1 = ρ2 = ρ = ±0.5, ±0.8. To ensure station-

arity of error terms ut,1 and ut,2, conditions (3) are satis�ed. For t = 0, these

conditions require that

y0,1 ∼ N (0, σ11/(1− ρ21))

y0,2 ∼ N (0, σ22/(1− ρ22))
and E(y0,1y0,2) = σ12

(1− ρ21)1/2(1− ρ22)1/2

1− ρ1ρ2
.

In our analysis, we assume σ11 = σ22 = 1 and we are focused on investigating

the consequences of the di�erent sign and magnitude of covariances σ12 on our

tests, for the following cases: σ12 = ±0.5, ±0.75, ±0.9. Since σ11 = σ22 = 1, σ12

is the correlation coe�cient between ut,1 and ut,2.

According to (15) (or (16)), the above S.U.R. model can be written in terms

of the following transformed equations, with non-autocorrelated errors:

y1∗ = X1∗β1 + ε1; y2∗ = X2∗β2 + ε2,

where y1∗ and y2∗ are (TX1) vectors of observations on the dependent variables,

with Pµyµ∗ = yµ, for µ = 1, 2, where Pµ is de�ned by (9), X1∗ and X2∗ are

(T × 3) matrices of regressors, with PµXµ∗ = Xµ and β1 = (β0,1, β1,1, β2,1)′,

β2 = (β0,2, β1,2, β2,2)′ are (3× 1) vectors of parameters, including the constant.

In terms of the S.U.R. representation (21), the above equations can be written
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as

Y∗ = ZB + E,

where Y∗ is a (T × 2) matrix of observations on vectors y1∗ and y2∗, E is a

(T × 2) matrix whose rows are vectors of normally distributed innovations with

variance-covariance Σ = [(σµµ′)µ,µ′=1,2], B is a (3× 2)-dimension matrix whose

columns, β1 and β2, are vectors of parameters, and Z is a (T × 6) matrix whose

columns are vectors of possibly collinear variables de�ned as

zt1 ≡ zt6 ≡ (1− ρ2)1/2 (t = 1),

zt1 ≡ zt6 ≡ (1− ρ) (t = 2, 3, ..., T ),

ztj = α1/2ζt1 + (1− α)1/2ζtj (j = 2, 3, 4, 5),

where ζtj (j = 2, 3, 4, 5) are N (0, 1) random variables and α stands for the

common correlation coe�cient between any two non-constant columns of Z

(see also McDonald and Galarneau (1975)). This captures the same degree of

multicollinearity between regressors xt1,µ and xt2,µ of S.U.R. model (65). In our

simulation, we consider the following two values of the collinearity coe�cient:

α = 0.5, 0.9. According to (25), submatrices X1∗ and X2∗ (collected in matrix

X∗) can be obtained from Z by assuming that submatrices Ψ1 and Ψ2, of the

block diagonal matrix Ψ are given as follows:

Ψ1 =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0


; Ψ2 =



0 0 0

0 0 0

0 0 0

0 1 0

0 0 1

1 0 0


.

In all iterations of our simulation, the two equations of S.U.R. model (65)

were estimated by LS. The residuals of these equations were used to compute

the LS estimates of autoregressive coe�cients ρ1 and ρ2, denoted as ρ̃1 and ρ̃2.

Then, the transformed variables y∗1,µ and x∗tj,µ, for j = 0, 1, 2 (where `0' stands

for the constant), are calculated as follows:

y∗1,µ = (1− ρ̃2µ)1/2y1,µ

y∗t,µ = yt,µ − ρ̃µy(t−1),µ

x∗1j,µ = (1− ρ̃2µ)1/2x1j,µ

x∗tj,µ = xtj,µ − ρ̃µx(t−1)j,µ

(t = 1),

(t 6= 1).
(66)
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These variables were then used to compute the feasible GL estimates of βj,µ

(j = 0, 1, 2; µ = 1, 2), denoted as β̂j,µ. The columns of matrix Z were obtained

as z1 = x∗0,1, z2 = x∗1,1, z3 = x∗2,1, z6 = x∗0,2, z4 = x∗1,2, z5 = x∗2,2, while

the unrestricted estimates of matrix B were based on the GL estimates β̂j,µ.

The unrestricted estimates of the inverse covariance matrix Σ−1 were estimated

based on (32) and the feasible GL estimate σ̂GL which is calculated by using

the following formula:

σ̂GL =
[
(y −Xβ̂)′

(
P̂ ′−1I (Σ̂−1I ⊗ IT )P̂−1I

)
(y −Xβ̂)/(MT − n)

]1/2
,

where I denotes any consistent estimators of matrices Σ−1 and P−1 (see Ap-

pendix), used to obtain a feasible GL estimator of β.

The results of our simlation are presented in Tables 1a, 1b and 2. The actual

sizes of our size corrected tests of the following null hypothesis:

H0 : β2,1 = 0, (67)

against its one-sized alternatives, are reported in Tables 1a and 1b. In partic-

ular, Table 1a presents results against alternative HA : β2,1 > 0, while Table

1b against HA : β2,1 < 0. The table presents the actual sizes (i.e., the rejection

probabilities) at the 5� signi�cance level of the following: the standard normal

and Student-t tests (denoted as z and t, respectively), their �nite-sample size

corrected versions based on the Edgeworth corrected critical values of the stan-

dard normal and Student-t distributions (denoted as E-z and E-t, respectively)

and the Cornish-Fisher �nite-sample size corrected Student-t test (denoted as

CF-t). Note that we do not examine the performance of the above t tests for

the null hypothesis (67) against its two-sided alternatives, since this is a special

case of the F test examined in Table 2.

Table 2 presents the actual sizes of our size correceted tests of the following

joint null hypothesis on the slope coe�cients of S.U.R. model (65), across its

two equations:

H0 : β1,1 = β2,1 = β1,2 = β2,2 = 0. (68)

This is done against the alternative hypothesis that at least one of these coe�-

cients are di�erent from zero, i.e., at least one βj,µ 6= 0 (j = 1, 2; µ = 1, 2). The

table presents the actual sizes at the 5� signi�cance level of the following: the
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standard Wald (chi-square) and F tests (denoted as χ2 and F , respectively),

their �nite-sample size corrected versions based on the Edgeworth corrected

critical values of the chi-square and F distributions (denoted by E-χ2 and E-F,

respectively) and the Cornish-Fisher �nite-sample size corrected F test (denoted

as CF-F ).

Turning now into the discussion of the results of our simulation, Tables 1a

and 1b clearly indicate that the size corrected tests have better size performance

in all reported sample sizes (T = 15, 20, 40), compared to the standard versions

of these tests, based on �rst-order approximations. This is true for both the

Edgeworth and Cornish-Fisher size corrections, and across all di�erent values

of ρ, σ12 and α examined.

Between the above di�erent categories of size corrected tests, our results

indicate that the CF-t test outperforms the E-z and E-t ones. This is true for

almost all cases of α and σ12 considered, if ρ takes large values, i.e., ρ = ±0.8.

The same is true for small samples (T = 15 or 20) and ρ = ±0.5.

Regarding the chi-square and F tests, the results of Table 2 indicate that, in

most of the cases examined, the size corrected versions of these tests, i.e., E-χ2,

E-F and CF-F, perform better in small samples, compared to their standard

versions. Between the Edgeworth and Cornish-Fisher size corrected versions of

these tests (i.e., E-F (or E-χ2) and CF-F ), the latter is found to perform better

than the former for all sample sizes considered, and across all values of ρ, σ12

and α examined. Notice that, for relatively large samples (T = 40), the E-χ2

test outperforms the degrees-of-freedom-adjusted E-F test. This suggests that,

for the model considered in our simulation, samples of 40 observations seem

to be large enough to induce the reduction of the magnitude of the degrees-of-

freedom-adjusted Edgeworth size corrections.

Summing up, the results of our simulation clearly indicate that the �nite-

sample size corrected tests E-χ2, E-F and CF-F can considerably improve the

performance of the standard (uncorrected) tests in small samples. This happens

even for very high levels of autocorrelation and/or cross-correlation between the

error terms of the equations of the S.U.R. model. Another interesting conclusion

that can be drawn from the results of this exercise is that the adjusted for the

degrees of freedom versions of the tests perform better than their unadjusted
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ones in most of the cases considered in our simulation. Note that this is also

true for the standard (uncorrected) versions of the tests.
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Table 1a: H0 : β2,1 = 0 against HA : β2,1 > 0 (Nominal size: 5�)

Actual sizes (�)
Test: z E-z t E-t CF-t z E-z t E-t CF-t z E-z t E-t CF-t z E-z t E-t CF-t
α σ12 T ρ = −0.8 ρ = −0.5 ρ = 0.5 ρ = 0.8

0.5

15 14.6 10.2 13.8 10.4 8.0 11.8 8.0 11.0 8.4 7.4 11.9 8.5 11.1 8.9 8.1 14.9 11.0 13.9 11.2 9.9
-0.90 20 12.4 8.6 11.8 8.8 7.3 9.7 6.7 9.1 6.9 6.6 10.5 7.5 9.6 7.7 7.5 12.9 9.5 12.4 9.9 8.8

40 9.0 7.2 8.7 7.3 7.0 6.9 5.3 6.6 5.4 5.3 7.4 5.9 7.3 6.1 6.0 9.8 7.7 9.5 7.9 7.5
15 14.6 10.1 13.9 10.3 7.9 11.1 7.7 10.3 8.0 7.3 11.7 8.2 10.9 8.6 7.9 14.5 10.5 13.5 10.7 9.6

-0.75 20 12.5 9.0 11.9 9.2 7.6 9.0 6.3 8.3 6.5 6.1 10.2 7.6 9.7 7.9 7.5 13.4 9.8 12.7 10.1 9.2
40 8.1 6.0 7.9 6.2 5.8 7.1 5.7 6.9 5.9 5.8 7.4 5.9 7.2 6.0 5.9 9.1 7.2 8.9 7.4 7.0
15 14.8 10.2 14.0 10.4 7.7 10.4 7.4 9.7 7.6 7.0 11.4 8.1 10.6 8.5 7.9 14.2 10.6 13.5 10.8 9.6

-0.50 20 12.4 7.8 11.8 9.0 7.3 9.0 6.6 8.4 6.8 6.6 9.4 6.9 9.0 7.2 6.8 12.9 9.5 12.3 9.7 8.6
40 8.5 6.5 8.3 6.7 6.4 7.0 5.4 6.8 5.6 5.5 7.4 6.1 7.2 6.2 6.1 9.2 7.1 9.0 7.3 7.1
15 14.0 9.7 13.2 9.9 7.7 10.5 7.2 9.8 7.4 6.9 11.5 8.1 10.6 8.5 7.9 14.9 10.7 14.0 11.1 9.9

0.50 20 11.9 8.1 11.4 8.3 6.8 8.7 6.4 8.3 6.6 6.3 10.3 7.7 9.7 8.0 7.5 13.3 10.2 12.8 10.3 9.3
40 8.1 6.3 7.9 6.4 6.2 6.8 5.4 6.5 5.5 5.4 7.1 5.7 6.9 5.9 5.7 9.0 6.9 8.8 7.0 6.8
15 14.7 10.2 14.0 10.4 8.0 11.5 8.0 10.5 8.2 7.5 12.2 8.5 11.3 8.9 8.3 13.8 10.3 13.1 10.5 9.3

0.75 20 12.2 8.8 11.6 8.9 7.4 9.3 6.7 8.8 6.9 6.5 10.2 7.3 9.6 7.7 7.3 12.5 9.4 11.9 9.6 8.6
40 8.8 6.8 8.6 6.9 6.5 7.2 5.9 7.0 6.1 6.0 7.5 5.9 7.2 6.1 6.0 9.2 7.0 8.9 7.2 6.8
15 13.8 9.7 13.0 9.8 7.5 11.2 7.7 10.3 8.0 7.3 12.2 8.7 11.6 9.0 8.4 15.0 11.0 14.1 11.2 10.1

0.90 20 12.9 9.0 12.4 9.2 7.7 9.4 6.6 8.7 6.8 6.3 10.0 7.3 9.4 7.5 7.2 12.9 9.5 12.3 9.8 8.8
40 9.1 6.9 8.7 7.1 6.7 7.0 5.4 6.8 5.6 5.4 7.2 5.7 7.0 5.8 5.7 9.4 7.3 9.2 7.5 7.2

0.9

15 14.6 10.4 13.8 10.5 7.7 11.2 7.7 10.4 7.9 7.3 11.8 8.5 11.0 8.7 8.2 14.5 10.9 13.8 11.1 9.8
-0.90 20 12.7 9.3 12.2 9.5 7.8 9.8 6.8 9.2 7.1 6.7 10.4 7.6 9.9 7.8 7.5 13.2 10.0 12.8 10.2 9.3

40 9.2 7.2 9.0 7.4 7.1 7.4 6.0 7.2 6.2 6.0 7.3 5.9 7.1 6.0 6.0 9.9 7.9 9.7 8.0 7.7
15 14.5 9.8 13.5 10.0 7.8 10.7 7.3 9.8 7.5 6.9 11.7 8.4 10.9 8.7 8.1 14.9 11.0 13.9 11.3 10.1

-0.75 20 11.9 8.3 11.4 8.5 7.0 9.9 7.2 9.4 7.4 7.0 9.7 6.9 9.1 7.2 6.8 13.0 9.9 12.5 10.1 9.0
40 8.5 6.5 8.3 6.7 6.4 6.7 5.2 6.4 5.3 5.2 7.5 5.9 7.3 6.1 6.0 9.7 7.8 9.4 7.9 7.7
15 14.2 9.6 13.3 9.8 7.3 10.8 7.4 9.9 7.6 7.1 11.7 8.3 10.8 8.6 8.2 14.5 10.9 13.6 11.1 9.7

-0.50 20 11.5 8.0 11.0 8.2 6.8 9.3 6.8 8.8 7.1 6.7 10.2 7.4 9.6 7.7 7.2 12.6 9.7 11.9 9.9 9.0
40 9.0 7.0 8.8 7.2 6.8 7.1 5.8 6.9 5.9 5.8 7.3 5.7 6.9 5.9 5.7 8.9 6.8 8.7 7.0 6.7
15 14.6 10.3 13.8 10.4 7.9 10.6 7.5 9.8 7.7 7.1 11.9 8.3 11.0 8.6 8.0 14.9 11.2 14.2 11.4 10.1

0.50 20 12.7 8.8 12.1 9.0 7.7 9.1 6.4 8.6 6.7 6.4 9.8 7.0 9.2 7.3 6.9 12.8 9.3 12.2 9.5 8.5
40 8.5 6.5 8.3 6.7 6.3 6.9 5.4 6.7 5.6 5.4 7.3 5.8 7.1 5.9 5.9 9.3 7.0 9.1 7.1 6.8
15 14.0 9.6 13.2 9.7 7.3 10.7 7.3 9.9 7.5 6.9 11.6 8.0 10.6 8.3 7.8 14.1 10.3 13.3 10.5 9.5

0.75 20 12.2 8.8 11.7 9.0 7.4 9.3 6.5 8.7 6.8 6.4 9.8 7.0 9.2 7.4 6.9 12.8 9.7 12.3 9.9 8.9
40 8.5 6.3 8.2 6.5 6.2 7.2 5.8 7.0 6.0 5.9 7.7 5.9 7.4 6.1 6.0 9.2 7.0 8.9 7.1 6.9
15 14.3 10.0 13.5 10.2 7.8 11.1 7.8 10.2 8.0 7.3 12.3 8.7 11.5 9.1 8.3 15.3 11.3 14.3 11.5 10.1

0.90 20 13.0 9.1 12.4 9.3 7.7 9.1 6.8 8.7 7.0 6.6 9.9 7.2 9.4 7.4 7.0 12.8 9.3 12.2 9.4 8.5
40 8.8 6.9 8.6 7.0 6.8 7.1 5.5 6.8 5.7 5.6 7.2 5.6 6.9 5.8 5.7 9.6 7.6 9.4 7.7 7.4
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Table 1b: H0 : β2,1 = 0 against HA : β2,1 < 0 (Nominal size: 5�)

Actual sizes (�)
Test: z E-z t E-t CF-t z E-z t E-t CF-t z E-z t E-t CF-t z E-z t E-t CF-t
α σ12 T ρ = −0.8 ρ = −0.5 ρ = 0.5 ρ = 0.8

0.5

15 15.0 10.5 14.1 10.6 8.2 11.2 7.7 10.3 8.0 7.2 12.0 8.5 11.1 8.8 8.2 14.7 10.9 13.9 11.1 9.9
-0.90 20 12.5 8.8 11.8 9.0 7.3 10.1 7.3 9.6 7.5 7.0 10.0 7.3 9.5 7.7 7.3 13.2 9.6 12.5 9.9 8.9

40 8.8 6.9 8.6 7.0 6.5 7.5 5.9 7.3 6.0 6.0 7.2 5.8 7.1 6.0 5.9 9.1 7.1 8.8 7.2 6.8
15 14.4 10.0 13.5 10.1 8.1 11.2 7.9 10.4 8.1 7.4 11.7 8.1 10.9 8.5 7.9 14.7 10.7 13.8 11.0 9.8

-0.75 20 12.9 9.4 12.2 9.5 8.1 9.3 6.6 8.7 6.8 6.4 9.6 6.8 9.0 7.1 6.7 12.7 9.4 12.1 9.6 8.8
40 8.7 6.8 8.4 6.9 6.7 7.3 6.0 7.1 6.1 6.1 7.6 5.9 7.3 6.2 6.0 8.9 7.1 8.7 7.2 6.9
15 14.5 10.2 13.7 10.3 7.6 10.7 7.4 10.0 7.7 7.2 11.7 8.1 10.8 8.4 7.8 14.6 10.9 13.7 11.1 9.9

-0.50 20 12.3 8.7 11.7 8.9 7.3 9.5 6.7 8.8 7.0 6.6 9.7 7.1 9.1 7.3 7.0 13.1 9.7 12.5 10.1 9.0
40 7.9 6.1 7.5 6.2 5.9 7.1 5.9 6.8 6.0 5.9 6.8 5.5 6.6 5.7 5.5 9.0 7.0 8.8 7.2 6.9
15 13.8 9.9 12.9 10.1 7.6 10.9 7.3 10.1 7.6 6.9 11.4 8.2 10.5 8.5 7.9 14.8 11.0 14.0 11.2 10.1

0.50 20 12.1 8.3 11.5 8.5 6.8 9.1 6.2 8.5 6.4 6.1 9.8 7.1 9.1 7.4 7.0 13.0 9.6 12.4 9.8 8.8
40 8.6 6.4 8.4 6.6 6.4 7.2 5.7 6.9 5.9 5.8 7.6 5.8 7.4 6.0 5.9 9.9 7.6 9.6 7.7 7.3
15 14.5 10.0 13.6 10.2 7.8 11.4 7.8 10.5 8.0 7.3 11.6 8.5 10.9 8.8 8.2 14.2 10.6 13.4 10.9 9.7

0.75 20 12.9 8.9 12.2 9.2 7.8 9.8 7.1 9.2 7.4 7.0 9.8 6.9 9.2 7.2 6.9 12.8 9.2 12.2 9.4 8.5
40 8.9 6.6 8.5 6.8 6.5 7.0 5.5 6.8 5.6 5.6 7.2 5.8 7.0 6.0 5.9 9.4 7.3 9.1 7.4 7.1
15 14.1 10.1 13.2 10.2 8.2 11.2 7.9 10.4 8.1 7.4 11.9 8.2 11.0 8.5 7.8 14.6 10.7 13.8 11.0 9.7

0.90 20 12.3 8.6 11.7 8.7 7.3 9.6 6.8 9.1 7.0 6.7 9.8 7.2 9.3 7.4 7.1 13.5 10.0 12.8 10.3 9.4
40 8.0 6.3 7.8 6.5 6.1 6.9 5.5 6.8 5.7 5.6 7.2 5.8 7.0 6.0 5.9 9.6 7.7 9.3 7.9 7.5

0.9

15 14.4 10.0 13.7 10.1 7.7 11.6 8.2 10.9 8.5 7.6 12.0 8.5 11.3 8.8 8.2 15.4 11.2 14.5 11.5 10.3
-0.90 20 12.4 8.9 11.8 9.1 7.5 9.3 6.5 8.7 6.7 6.4 9.9 7.2 9.2 7.4 6.9 13.0 9.8 12.3 10.1 8.9

40 8.7 6.1 8.5 6.8 6.4 7.1 5.6 6.8 5.8 5.7 7.3 5.8 7.1 6.0 5.9 9.7 7.7 9.4 7.8 7.6
15 14.5 10.4 13.8 10.5 8.2 11.0 7.6 10.2 7.9 7.4 11.7 8.4 11.0 8.7 8.1 14.7 10.6 13.9 10.9 9.4

-0.75 20 12.3 8.7 11.7 8.9 7.4 9.3 6.7 8.8 7.0 6.6 9.9 7.3 9.2 7.6 7.3 12.5 9.2 12.1 9.5 8.5
40 8.7 6.5 8.5 6.7 6.3 6.9 5.6 6.7 5.8 5.7 7.0 5.6 6.8 5.8 5.7 9.1 7.1 8.7 7.2 7.0
15 14.7 9.8 13.5 10.0 7.7 10.6 7.3 9.8 7.6 7.0 11.6 8.2 10.8 8.5 7.9 14.3 10.6 13.4 10.8 9.4

-0.50 20 11.7 8.1 11.2 8.4 6.7 9.5 6.8 9.0 7.1 6.6 10.2 7.5 9.6 7.9 7.3 12.5 9.0 12.0 9.3 8.4
40 8.9 6.8 8.7 7.0 6.6 6.9 5.6 6.7 5.7 5.6 6.7 5.4 6.4 5.6 5.5 9.0 6.9 8.7 7.1 6.8
15 14.0 9.6 13.1 9.7 7.6 10.2 7.0 9.5 7.2 6.6 11.2 8.0 10.5 8.3 7.7 14.0 10.5 13.3 10.7 9.5

0.50 20 11.5 8.2 11.0 8.3 7.0 9.6 6.9 9.0 7.3 6.8 9.9 7.3 9.4 7.6 7.2 12.5 9.2 12.0 9.5 8.7
40 8.5 6.3 8.1 6.5 6.2 7.2 5.7 6.9 5.9 5.8 7.4 5.7 7.1 6.0 5.9 8.9 6.8 8.7 7.0 6.7
15 14.2 9.9 13.3 10.0 7.6 11.4 7.9 10.6 8.2 7.3 12.0 8.6 11.2 8.8 8.3 14.5 10.7 13.7 10.9 9.8

0.75 20 12.0 8.6 11.4 8.8 7.1 9.3 6.9 8.7 7.1 6.8 9.5 6.9 9.0 7.2 6.7 12.8 9.6 12.2 9.8 9.0
40 8.4 6.4 8.2 6.6 6.3 7.3 5.8 7.1 6.0 5.9 10.0 5.7 6.8 5.8 5.7 9.2 7.3 9.0 7.5 7.1
15 15.3 10.5 14.4 10.6 8.2 11.3 7.9 10.4 8.2 7.6 11.2 7.8 10.4 8.1 7.5 15.3 11.5 14.5 11.7 10.3

0.90 20 13.0 9.2 12.4 9.3 7.7 9.4 6.7 8.7 7.0 6.5 10.6 8.0 10.1 8.3 7.8 13.2 9.9 12.5 10.2 9.2
40 9.1 7.0 8.8 7.2 6.9 7.1 5.6 6.8 5.8 5.6 7.1 5.9 7.0 6.1 6.0 10.3 7.9 10.1 8.1 7.7
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Table 2: H0 : β1,1 = β2,1 = β1,2 = β2,2 = 0 (Nominal size: 5�)

Actual sizes (�)

Test: χ2 E-χ2 F E-F CF-F χ2 E-χ2 F E-F CF-F χ2 E-χ2 F E-F CF-F χ2 E-χ2 F E-F CF-F
α σ12 T ρ = −0.8 ρ = −0.5 ρ = 0.5 ρ = 0.8

0.5

15 46.1 31.4 40.2 27.9 4.7 30.5 18.2 24.7 16.5 9.8 33.3 20.7 26.7 19.3 14.0 47.6 33.8 41.4 31.6 16.1
-0.90 20 38.2 25.0 33.6 23.6 6.4 22.7 13.2 18.6 12.9 9.6 26.1 15.6 21.6 15.2 11.9 39.9 27.6 35.6 26.5 15.3

40 20.5 13.3 18.7 13.5 10.7 12.6 7.6 11.1 8.2 7.4 12.9 8.0 11.3 8.4 7.7 23.0 15.4 21.2 15.6 13.1
15 45.8 31.5 39.9 28.4 5.8 28.4 16.6 22.4 15.4 10.9 33.2 21.4 27.1 20.2 15.9 47.0 33.7 40.8 31.6 18.2

-0.75 20 36.7 24.2 32.3 22.6 7.9 22.4 12.9 18.3 12.8 10.2 25.4 15.9 21.3 15.6 13.0 38.9 26.6 34.5 25.7 16.0
40 20.2 12.8 18.2 13.0 10.2 12.4 7.6 10.9 8.0 7.4 13.2 8.4 11.7 8.8 8.0 22.6 15.1 20.7 15.4 13.0
15 46.2 31.6 39.7 28.3 7.3 28.9 17.6 23.2 16.5 12.4 33.0 21.0 26.7 20.1 16.6 46.9 33.6 40.8 31.4 19.3

-0.50 20 36.0 23.1 31.6 21.7 8.9 21.1 12.1 17.1 12.1 10.0 23.1 14.2 19.1 14.2 12.2 39.2 27.4 34.8 26.5 16.7
40 17.6 11.4 16.2 11.7 9.7 11.9 7.5 10.4 7.9 7.5 12.8 8.1 11.2 8.5 7.8 21.3 14.0 19.4 14.4 12.2
15 45.8 31.1 39.8 28.1 7.6 29.2 17.5 23.3 16.4 12.4 32.6 20.6 26.3 19.6 16.2 47.4 33.7 41.2 31.5 19.3

0.50 20 35.9 23.4 31.5 21.9 8.7 21.2 12.5 17.6 12.4 10.4 24.4 14.6 20.0 14.5 12.2 39.2 26.9 34.5 26.0 17.1
40 18.3 11.4 16.4 11.6 9.4 12.1 7.6 10.7 8.1 7.6 13.2 8.1 11.5 8.5 8.0 21.8 14.2 19.8 14.4 12.1
15 45.5 31.1 39.4 28.1 6.2 30.3 18.5 24.1 17.2 11.6 33.9 21.8 27.8 20.6 16.2 48.5 34.7 42.3 32.5 18.3

0.75 20 36.9 24.0 32.3 22.7 8.2 22.6 13.5 18.5 13.3 10.7 24.9 15.4 20.6 15.2 12.4 40.5 28.1 36.2 27.1 17.0
40 19.2 12.6 17.5 12.8 10.2 12.9 7.9 11.4 8.4 7.7 13.3 8.2 11.8 8.8 8.0 21.9 14.5 20.0 14.8 12.1
15 46.1 31.7 40.1 28.2 4.9 29.9 18.0 24.2 16.4 9.7 35.0 22.2 28.9 20.7 14.9 47.4 33.7 41.5 31.3 15.6

0.90 20 37.8 24.5 33.3 23.0 7.2 23.1 13.2 18.9 12.9 9.6 25.0 15.5 20.7 15.2 12.2 40.7 28.0 36.2 26.7 15.4
40 20.6 13.5 18.9 13.7 10.8 12.2 7.4 10.7 7.9 7.2 13.2 7.8 11.4 8.4 7.4 23.6 15.7 21.9 16.0 13.1

0.9

15 46.23 32.0 40.1 28.9 5.4 29.8 18.2 23.8 17.0 11.2 34.4 22.4 28.3 21.2 16.6 48.2 34.7 42.1 32.2 17.7
-0.90 20 38.2 25.3 33.8 23.8 7.3 22.9 13.4 19.1 13.3 10.7 26.1 15.9 21.8 15.8 13.2 40.7 28.1 36.1 26.9 16.4

40 20.6 13.7 19.0 14.0 11.3 12.2 7.8 10.8 8.2 7.8 14.2 9.2 12.7 9.8 9.0 22.9 15.7 20.9 16.0 13.0
15 45.7 32.0 39.8 29.0 6.8 29.1 17.4 22.8 16.4 11.7 33.4 21.0 26.9 19.9 16.1 47.5 34.4 41.2 32.2 18.3

-0.75 20 36.9 24.9 32.8 23.5 8.6 21.2 11.9 17.2 11.8 9.7 24.6 15.1 20.5 15.2 12.9 39.8 27.5 35.4 26.6 16.0
40 18.8 11.8 17.1 12.1 9.7 12.3 7.6 10.5 8.0 7.5 13.0 8.2 11.4 8.6 7.9 22.7 15.7 21.0 15.9 13.6
15 44.5 30.4 38.3 27.6 7.4 27.7 16.1 21.8 15.2 11.7 32.4 21.0 26.5 20.2 16.9 47.2 33.6 40.5 31.5 19.0

-0.50 20 36.1 23.5 31.5 22.2 8.5 20.7 12.0 16.8 11.9 9.8 24.1 14.9 20.5 14.9 12.7 39.4 27.0 34.8 26.3 16.6
40 18.1 11.4 16.3 11.7 9.4 11.6 7.3 10.1 7.7 7.3 12.3 7.8 10.9 8.2 7.8 21.3 13.9 19.4 14.2 11.9
15 44.9 30.7 38.6 27.3 7.1 28.1 17.0 21.9 16.0 12.3 32.2 20.7 26.3 20.0 16.8 47.3 33.8 40.8 32.1 19.1

0.50 20 35.4 23.4 31.0 22.2 8.9 20.7 11.9 16.8 11.8 9.9 23.8 14.5 19.6 14.5 12.3 38.6 26.5 34.4 25.5 15.9
40 18.4 11.8 16.8 12.1 9.7 11.9 7.5 10.4 8.1 7.5 12.3 7.9 10.7 8.4 7.8 21.3 14.1 19.3 14.3 12.2
15 46.4 32.2 40.3 29.0 6.4 29.2 17.4 22.9 16.3 11.5 33.1 20.7 26.6 19.6 15.9 48.8 35.2 42.5 33.0 18.7

0.75 20 37.2 24.8 32.8 23.4 8.7 22.0 12.8 17.7 12.7 10.5 25.2 15.4 21.0 15.4 13.0 39.1 27.4 34.7 26.7 16.5
40 19.4 12.8 17.9 13.2 10.6 12.0 7.4 10.4 7.9 7.4 13.1 8.1 11.5 8.6 8.0 22.3 15.0 20.5 15.3 12.8
15 46.8 31.9 40.2 28.5 4.9 30.4 18.3 24.5 17.1 11.6 34.4 21.8 28.0 20.6 15.7 49.0 35.1 42.8 32.8 16.9

0.90 20 38.8 25.8 34.3 24.2 7.9 22.6 13.3 18.7 13.1 10.3 26.2 16.3 22.0 16.0 13.1 41.0 27.9 36.5 27.1 15.8
40 20.5 13.4 18.5 13.8 11.0 12.9 8.3 11.4 8.8 8.1 13.1 8.3 11.6 8.8 8.0 22.3 15.4 20.7 15.6 13.0
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6 Conclusions

In this paper, we have employed Edgeworth expansions of the standard nor-

mal (or Student-t) and chi-square (or F ) distributions to derive second-order

size corrected testing procedures for the coe�cient of the S.U.R. model with

�rst-order autocorrelated errors. These procedures include (i) the Edgeworth

corrected critical values of the well-known Wald (or F ) and t tests and (ii)

the Cornish-Fisher corrected F and t test statistics. Since the standard F and

t tests are adjusted for the degrees of freedom, they are locally exact, which

means that their approximate distributions become exact when the model is

su�ciently simpli�ed.

The Edgeworth and Cornish-Fisher expansions, employed by the paper, are

equivalent to each other, since the latter constitutes an inversion of the former.

However, in practice, the use of the Cornish-Fisher corrected test statistics is

recommended, since they are proper random variables with well-behaved dis-

tribution tails. The Edgeworth approximation, on the other hand, may assign

negative `probabilities' in the tails of the approximate distributions. Further-

more, the Cornish-Fisher size corrected tests can be easily implemented, in

practice, using the standard tables of the Student-t and the F distributions.

To evaluate the small-sample performance of the suggested tests, we have

conducted a Monte Carlo simulation. The results of this simulation indicate that

the size corrected t and F tests lead to substantial size improvements upon their

standard versions, which assume �rst-order asymptotic approximations. This is

true even for very small samples of 15 or 20 observations. Between the Edgeworth

and Cornish-Fisher categories of the size corrected tests suggested in the paper,

the second category is found to perform better than the �rst for almost all cases

of serial and cross-equation correlation of the error terms of the S.U.R. model

examined. This result is also robust across di�erent degrees of multicollinearity

between the explanatory variables of the model considered. In particular, both

the t and F Cornish-Fisher size corrected tests are found to outperform their

Edgeworth size corrected counterparts even when the degree of serial correlation

of the error terms is very high. This is true even for a close-to-unity degree of

correlation across the S.U.R equations.
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Appendix

In this appendix, we provide proofs of the main results of the paper. To prove these

results, we rely on a number of lemmas. Some of them are given with sketchy proofs

only for reasons of space. The complete proofs are available upon request. The pre-

sentation of our proofs is scheduled as follows: First, we provide some preliminary

matrix-algebra results, needed for the calculation of the quantities in the stochastic

expansions of all estimators and tests considered. Then, using these lemmas, we give

the proofs of the theorems.

Matrix-algebra results

Following Magdalinos (1992, page 344), let I be a given set of indices which, without

loss of generality, can be considered to belong to the open interval (0, 1). For any

collection of real-valued stochastic quantities (scalars, vectors, or matrices) Yτ (τ ∈ I),

we write Yτ = ω(τ i), if for any given n > 0, there exists a 0 < ε <∞ such that

Pr
[
‖Yτ/τ i‖ > (− ln τ)ε

]
= o(τn), (A.1)

as τ → 0, where the ‖ · ‖ is the Euclidean norm. If (A.1) is valid for any n > 0, we

write Yτ = ω(∞). The use of this order of magnitude is motivated by the fact that,

if two stochastic quantities di�er by a quantity of order ω(τ i), then, under general

conditions, the distribution function of the one provides an asymptotic approximation

of the distribution function of the other, with an error of order O(τ i). Furthermore,

orders ω(·) and O(·) have similar operational properties (Magdalinos (1992)).

De�ne the following (T × T ) matrices: D which is a band matrix whose (t, t′)-th

element is equal to 1 if |t − t′| = 1 and 0 elsewhere, Dj whose (t, t′)-th element is

equal to 1 if t − t′ = 1 and 0 elsewhere, Di whose (t, t′)-th element is equal to 1 if

t− t′ = −1 and 0 elsewhere. Also, de�ne the following (T × T ) matrices: ∆ with 1 in

(1, 1)-st and (T, T )-th positions and 0's elsewhere, ∆11 with 1 in (1, 1)-st position and

0's elsewhere, ∆TT with 1 in (T, T )-th position and 0's elsewhere. Moreover, by using

matrix Pµ in (9), we can calculate (T × T ) matrices Rij as follows:

Rij = PiP
′
j =

1

1− ρiρj



1 ρj · · · ρT−1
j

ρi 1 · · · ρT−2
j

...
...

...

ρT−1
i ρT−2

i · · · 1


. (A.2)
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Matrices Rij help us to write the elements of matrix Ω analytically. For these matrices

and their derivatives the following two lemmas hold:

Lemma A.1. For matrix Rii, which is the inverse of Rii, the following result holds:

Rii = P ′−1
i P−1

i = (1 + ρ2
i )IT − ρiD − ρ2

i∆, (A.3)

where Rii = R−1
ii (∀i). Moreover, for matrix Rij, the following result holds:

Rij = P ′−1
i P−1

j = (1 + ρiρj)IT − ρiDi − ρjDj − ρiρj∆TT

+[(1− ρ2
i )

1/2(1− ρ2
j )

1/2 − 1]∆11. (A.4)

Note that Rij is not the inverse of Rij, i.e., R
ij 6= R−1

ij (∀i 6= j).

Proof of Lemma A.1. For i = j, de�nition (A.2) implies that matrix Rii is the

exact analogue of the error covariance matrix in a single-equation regression model

with autocorrelated errors. And it is well-known from the autocorrelation literature

that the inverse matrixRii = R−1
ii can be expressed in the form of (A.3). Further, (A.4)

can be proved along the same lines, as a straightforward generalization for i 6= j.

De�ne the (M ×M) matrix Σ−1 = [(σµµ
′
)µ,µ′=1, ..., M ] and scalars:

aij = (1− ρ2
i )

1/2(1− ρ2
j )

1/2,

ξ′(i)j = ∂aij/∂ρi, ξ′′(i)j = ∂2aij/∂
2ρi, ξ′′(i)(j) = ∂2aij/∂ρi∂ρj , (A.5)

Rijρµ = ∂Rij/∂ρµ, Rijρµρµ′ = ∂2Rij/∂ρµ∂ρµ′ .

Lemma A.2. For the partial derivatives of matrix Rij the following results hold:

Riiρi = 2ρiIT −D − 2ρi∆, Riiρiρi = 2(IT −∆) (∀i),

Riiρj = Riiρjρj = Riiρiρj = 0 (∀i 6= j),

Rijρi = ρjIT −Di − ρj∆TT + ξ′(i)j∆11 (∀i, j), (A.6)

Rijρiρi = ξ′′(i)j∆11, Rijρiρj = IT −∆TT + ξ′′(i)(j)∆11 (∀i, j),

Rijρµ = Rijρµρµ = Rijρµρi = Rijρµρj = 0 (∀µ 6= i ∧ ∀µ 6= j),

with obvious modi�cations for Rijρj and Rijρjρj . Further,

ξ′(i)j = −ρi(1− ρ2
i )
−1/2(1− ρ2

j )
1/2 (∀i),

ξ′′(i)j = −(1− ρ2
i )
−3/2(1− ρ2

j )
1/2 (∀i),

ξ′′(i)(j) = ρiρj(1− ρ2
i )
−1/2(1− ρ2

j )
−1/2 (∀i, j), (A.7)

∂aij
∂ρµ

=
∂2aij
∂ρ2

µ

=
∂2aij
∂ρµ∂ρi

=
∂2aij
∂ρµ∂ρj

= 0 (∀µ 6= i ∧ ∀µ 6= j).
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Proof of Lemma A.2. To prove the results of the lemma, it su�ces to calculate the

�rst- and second-order derivatives of matrices Rii and Rij , de�ned in (A.3) and (A.4),

respectively, and of scalars aij , de�ned in (A.5).

Lemma A.3. For the elements of matrix Ω the following results hold:∑M

k=1
σikσ

ki =
∑M

k=1
σikσki = 1,∑M

k=1
σikσ

kj =
∑M

k=1
σikσkj = 0 (∀i 6= j),∑M

k=1
σikσ

kiRikR
ki =

∑M

k=1
σikσkiR

ikRki = ITM , (A.8)∑M

k=1
σikσ

kjRikR
kj =

∑M

k=1
σikσkjR

ikRkj = 0 (∀i 6= j).

Proof of Lemma A.3. The results of the lemma can be proved by noticing that

that

Ω−1 = P (Σ⊗ IT )P ′ = [(σijRij)i,j=1, ..., M ]⇒ Ω = [(σijRij)i,j=1, ..., M ], (A.9)

since P is block diagonal, ΣΣ−1 = Σ−1Σ = IM and ΩΩ−1 = Ω−1Ω = ITM .

To derive the partial derivatives of Ω with respect to nuisance parameters, given

in the next lemma, we need the following de�nitions. For the composite index (ij) =

1, . . . , M2, de�ned in (20), let ς(ij) = σij be the elements of the (M2 × 1) vector

ς = vec(Σ−1). Also, let ∆µµ′ = [(δµiδjµ′)i,j=1, ,..., M ] be a (M ×M) matrix with 1 in

the (µ, µ′)-th position and 0's elsewhere. Then, for all µ, µ′, ν and ν′, we have

∂

∂ς(µµ′)
(Σ−1 ⊗ IT ) = ∆µµ′ ⊗ IT ,

∂2

∂ς(µµ′)∂ς(νν′)
(Σ−1 ⊗ IT ) = 0. (A.10)

Lemma A.4. The partial derivatives of Ω, with respect to the elements of vectors %

and ς, can be analytically written as follows:

Ως(µµ′) = [(δµiδjµ′Rµµ
′
)i,j=1, ..., M ], Ως(µµ′)ς(νν′) = 0, (A.11)

Ωρµ = [(δµiσ
µjRµjρµ + δjµσ

iµRiµρµ − δµiδjµσ
µµRµµρµ )i,j=1, ..., M ],

Ωρµρµ = [(δµiσ
µjRµjρµρµ + δjµσ

iµRiµρµρµ − δµiδjµσ
µµRµµρµρµ)i,j=1, ..., M ], (A.12)

Ωρµρµ′ = [(δµiδjµ′σµµ
′
Rµµ

′
ρµρµ′

+ δµ′iδjµσ
µ′µRµ

′µ
ρµρµ′

− δµiδjµσµµδµµ′Rµµρµρµ′ )i,j=1, ..., M ],

Ωρµς(νν′) = [(δνiδjν′δµνR
µν′
ρµ + δνiδjν′δν′µR

νµ
ρµ − δνiδjν′δµνδν′µR

µµ
ρµ )i,j=1, ..., M ]

(A.13)

⇒ Ωρµς(νν′) = 0 (∀ν 6= µ ∧ ∀ν′ 6= µ).
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Proof of Lemma A.4. To prove the results of the lemma, we rely on the results of

Lemmas A.2 and A.3 in order to calculate the �rst- and second-order derivatives of

matrix Ω with respect to the elements of vectors % and ς. The results in (A.11) come

immediately from equations (A.9) and (A.10).

Some comments must be made for the derivation of the results in (A.12) and

(A.13). Matrix Ωρµ can be calculated as the sum of three matrices. The �rst matrix

has non-zero elements on its µ-th row; the second matrix has its non-zero elements

on its µ-th column; and the third matrix, which has only one non-zero element at the

(µ, µ)-th position, is subtracted to correct for the double-counting of the derivative of

the element at the intersection of the µ-th row with the µ-th column of matrix Ω. The

elements of matrix Ωρµρµ can be readily calculated by taking the derivatives of the

elements of Ωρµ with respect to ρµ.

On taking the derivatives of the elements of Ωρµ with respect to ρµ′ , we can

calculate the elements of matrix Ωρµρµ′ . Note that matrix Ωρµρµ′ has its non-zero

elemets at its (µ, µ′)-th and (µ′, µ)-th positions. The subtracted third term corrects

for the double-counting of the derivative of the (µ, µ)-th element of matrix Ω in cases

with µ′ = µ. The third term is eliminated, as it should be, in cases with µ′ 6= µ.

To derive the elements of the product of matrices ΩiΩ
−1Ωj , needed for the partial

derivatives of matrix A (see Lemmas A.14 � A.17), we de�ne the following matrices:

Wij = σiµσµµ′σµ
′jRiµρµRµµ′Rµ

′j
ρµ′

+ δµi
{[∑M

k=1
σµkσkµ′RµkρµRkµ′

]
− σµµσµµ′RµµρµRµµ′

}
σµ

′jRµ
′j
ρµ′

+ δjµ′σiµRiµρµ

{[∑M

r=1
σµrσ

rµ′
RµrR

rµ′
ρµ′

]
− σµµ′σµ

′µ′
Rµµ′Rµ

′µ′
ρµ′

}
+ δµiδjµ′

{∑M

k=1

∑M

r=1
σµkσkrσ

rµ′
RµkρµRkrR

rµ′
ρµ′

−
[∑M

k=1
σµkσkµ′RµkρµRkµ′

]
σµ

′µ′
Rµ

′µ′
ρµ′

− σµµRµµρµ
[∑M

r=1
σµrσ

rµ′
RµrR

rµ′
ρµ′

]
+ σµµσµµ′σµ

′µ′
RµµρµRµµ′Rµ

′µ′
ρµ′

}
, (A.14)

Ω∗ρµρµ′ = ΩρµΩ−1Ωρµ′ , Ω∗ς(µµ′)ς(νν′) = Ως(µµ′)Ω
−1Ως(νν′) ,

(A.15)

Ω∗ρµς(νν′) = ΩρµΩ−1Ως(νν′) and Ω∗ς(νν′)ρµ = Ως(νν′)Ω
−1Ωρµ .
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Lemma A.5. The elements of matrices Ω∗ρµρµ′ , Ω∗ς(µµ′)ς(νν′) , Ω∗ρµς(νν′) and Ω∗ς(νν′)ρµ

can be analytically written as follows:

Ω∗ρµρµ′ = [(Wij)i,j=1, ..., M ],

Ω∗ς(µµ′)ς(νν′) = [(δµiδjν′σµ′νR
µν′)i,j=1, ..., M ],

Ω∗ρµς(νν′) =

[((∑M

k=1
σikσkνR

ik
ρµRkν

)
δjν′R

νν′
)
i,j=1, ..., M

]
, (A.16)

Ω∗ς(νν′)ρµ =

[(
δνiR

νν′
(∑M

r=1
σν′rσ

rjRν′rR
rj
ρµ

))
i,j=1, ..., M

]
.

Proof of Lemma A.5. The results in (A.16) can be easily proved by combining

Lemma A.4 with equations (A.9) and (A.14).

Asymptotic expansions of estimators

In the next lemmas we derive useful asymptotic expansions for all estimators of ma-

trix B and of the nuisance patameters considered in the paper. In each case, these

estimators are indexed by I (see footnotes 2 and 3).

Lemma A.6. All estimators B̂I (I = UL,RL,GL, IG,ML) of matrix B, de�ned in

(21), admit a stochastic expansion of the form

B̂I = B + τBI1 + ω(τ2), (A.17)

where

BUL1 =
√
T (Z′Z)−1Z′E,

vec(BRL1 ) =
√
TΨ(X ′∗X∗)

−1X ′∗ε, (A.18)

vec(BGL1 ) = vec(BIG1 ) = vec(BML
1 )

=
√
TΨ

[
X ′∗(Σ

−1
I ⊗ IT )X∗

]−1
X ′∗(Σ

−1
I ⊗ IT )ε.

Proof of Lemma A.6. The results of the lemma follow immediately from models

(16) and (21), and the de�nitions of all estimators BI considered (see footnote 3).

Thus, since τ = 1/
√
T , we can readily �nd that

B̂UL = (Z′Z)−1Z′(ZB + E) = B + τ [
√
T (Z′Z)−1Z′E] = B +BUL1 . (A.19)

Similarly, since (23) implies that vec(B) = Ψβ, we can easily �nd that

vec(B̂RL) = Ψ(X ′∗X∗)
−1X ′∗(X∗β + ε) = vec(B) + τ [

√
TΨ(X ′∗X∗)

−1X ′∗ε]

= vec(B) + τvec(BRL1 ). (A.20)
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The result for estimator B̂GL can be proved according to (A.20), taking into account

that Σ̂I = Σ + ω(τ), for any consistent estimator Σ̂I of matrix Σ, indexed by I.

Let ÊI be the residuals corresponding to the estimators B̂I . Then, the following

lemma holds for the estimators Σ̂I and Σ̂−1
I of matrix Σ and its inverse, respectively,

based on ÊI .

Lemma A.7. All estimators Σ̂I (I = UL,RL,GL, IG,ML) of matrix Σ admit a

stochastic expansion of the form

Σ̂I = Σ + τ(Σ1 + τΣI2) + ω(τ3), (A.21)

where

Σ1 =
√
T (E′E/T − Σ), ΣI2 = (BI1 −BUL1 )′Γ(BI1 −BUL1 )− E′PZE, (A.22)

Γ is any conformable matrix and PZ is the orthogonal projector spanned by the columns

of matrix Z. Estimator Σ̂−1
I admits a stochastic expansion of the form

Σ̂−1
I = Σ−1 − τS1 + τ2SI2 + ω(τ3), (A.23)

where

S1 = Σ−1Σ1Σ−1, SI2 = Σ−1(Σ1Σ−1Σ1 − ΣI2)Σ−1. (A.24)

Proof of Lemma A.7. By using model (21) and Lemma A.6 we �nd that

ÊI = Y∗ − ZB̂I = ZB + E − Z(B + τBI1 + ω(τ2)) = E − τZBI1 + ω(τ2). (A.25)

Moreover, from the de�nition of matrix Γ and (A.18) we �nd that

(BI1)′Z′E/
√
T = (BI1)′(Z′Z/T )(Z′Z/T )−1Z′E/

√
T = (BI1)′ΓBUL1 . (A.26)

Then, since Σ̂I = Ê′IÊI/T , equations (A.22), (A.25) and (A.26) imply that

Σ̂I = E′E/T + τ2
[
(BI1)′ΓBI1 − (BUL1 )′ΓBI1 − (BI1)′ZΓBUL1

]
+ ω(τ3)

= Σ + τ
√
T (E′E/T − Σ)

+τ2
[
(BI1 −BUL1 )′Γ(BI1 −BUL1 )− E′PZE

]
+ ω(τ3), (A.27)

which completes the proof of (A.21). To prove (A.23), it su�ces to use (A.24) and

equation (2.6) in (Magdalinos 1992, Corollary 1), which implies that

Σ̂−1
I =

[
Σ + τ(Σ1 + τΣI2) + ω(τ3)

]−1

= Σ−1 − τΣ−1(Σ1 + τΣI2)Σ−1

+τ2Σ−1(Σ1 + τΣI2)Σ−1(Σ1 + τΣI2)Σ−1 + ω(τ3). (A.28)
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The stochastic expansion of estimator of vector ς, denoted as ς̂I , is given in the

next lemma:

Lemma A.8. All estimators ς̂I = vec
(

[Ê′IÊI/T ]−1
)
of vector ς, indexed by I = UL,

RL, GL, IG, ML, admit a stochastic expansion of the form

ς̂I = ς − τvec(S1) + τ2vec(SI2 ) + ω(τ3) (A.29)

and thus, the (M2 × 1) vector δς = (ς̂ − ς)/τ , with elements δς(µµ′) de�ned in (27),

admits a stochastic expansion of the form

δς = −vec(S1) + τvec(SI2 ) + ω(τ2)

= d1ς + τd2ς + ω(τ2), (A.30)

which implies that

d1ς = −vec(S1), d2ς = vec(SI2 ). (A.31)

Proof of Lemma A.8. The proof follows immediately from equations (21), (29),

(32) and (A.23).

To derive the stochastic expansion of the estimators of σ, denoted as σ̂I , we de�ne

the following (M ×M) matrices, indexed by I:

∆I = lim
T→∞

TE [(B̂I − B̂UL)′Γ(B̂I − B̂UL)]

= lim
T→∞

E [(BI1 −BUL1 )′Γ(BI1 −BUL1 )], (A.32)

where Γ is any conformable matrix.

Lemma A.9. All estimators σ̂2
I (I = UL,RL,GL, IG,ML) of σ2 (see footnote 1)

satisfy the relation

σ̂2
I = tr(Σ̂−1

I Σ̂J)/(M − τ2n)

= {M + τ2tr[(SI2 − SJ2 )Σ]}/(M − τ2n) + ω(τ3). (A.33)

The last equation implies that

(σ̂2
I − 1)/τ = {M/τ + τtr[(SI2 − SJ2 )Σ]}/(M − τ2n)− 1/τ + ω(τ2)

= τ{tr[(SI2 − SJ2 )Σ] + n}/M + ω(τ2), (A.34)

i.e., scalar δ0, de�ned in (27), admits a stochastic expansion of the form

δ0 = σ0 + τσ1 + ω(τ2), (A.35)

which in turn implies that

σ0 = 0 and σ1 = {tr[(SI2 − SJ2 )Σ] + n}/M. (A.36)
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Proof of Lemma A.9. To prove the lemma we rely on the following results (see

(A.37) and (A.38)): Since the rows εt (t = 1, . . . , T ) of E are independent NM (0,Σ)

random vectors, matrix E′E is a Wishart matrix with weight matrix Σ and T degrees

of freedom, i.e., E′E ∼ WM (Σ, T ) and E(E′E) = TΣ. Then, it is easy to show that

E(E′EΣ−1E′E) = T (M + T + 1)Σ. (A.37)

Moreover, since E′E ∼ WM (Σ, T ) and PZ is idempotent of rank K, it follows that

matrix E′PZE ∼ WM (Σ,K) and E(E′PZE) = tr(PZ)Σ = KΣ. Further, E(Σ1) = 0,

E(Σ1Σ−1Σ1) = (M + 1)Σ and

E(S1) = 0, E(SI2 ) = (M +K+ 1)Σ−1−Σ−1E [(BI1 −BUL1 )′Γ(BI1 −BUL1 )]Σ−1. (A.38)

Let ε̂GL = vec(ÊGL) be the GL residuals of regression equation (16). Then, the

corresponding estimator of Σ is Σ̂J = Ê′GLÊGL/T . Also, let β̂GL be the GL estimator

of β in (16). De�ne the (M ×M) matrices MI = limT→∞ E(SI2 ) (I = UL, RL, GL,

IG, ML) and the (M2 ×M2) matrix N whose ((ij), (kr))-th element is ν(ij)(kr) =

σikσjr + σirσjk (i, j, k, r = 1, . . . , M). Then, (A.32) and (A.38) imply that

MI = (M +K + 1)Σ−1 − Σ−1∆IΣ
−1 (A.39)

⇒ lim
→∞

TE [(SI2 − SJ2 )Σ] = (MI −MGL)Σ = Σ−1(∆GL −∆I), (A.40)

where

∆UL = 0,

∆RL =
[[(

tr(B−1
ii BijB

−1
jj Bji)− ni − nj +K

)
σij
]
i,j=1, ..., M

]
, (A.41)

∆GL = ∆IG = ∆ML = KΣ−
[
(tr(GijBji))i,j=1, ..., M

]
.

Since E′E ∼ WM (Σ, T ) and E(E′E) = TΣ, matrix W∗ =
√
TΣ1 = E′E − TΣ, with

elements wij , is a Wishart matrix in deviations from it expected values. Following

Zellner (1971, page 389, equation (B.58)), we �nd that

E(wijwkr) = T (σikσjr + σirσjk) = Tν(ij)(kr) (A.42)

⇒ lim
T→∞

E [(vec(S1))(vec(S1))′] = (Σ−1 ⊗ Σ−1)N(Σ−1 ⊗ Σ−1). (A.43)

The proof of the lemma can be completed using the following relationship:

(M − τ2n)−1 = M−1(1− τ2n/M)−1 = (1 + τ2n/M)/M + ω(τ4). (A.44)
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Before deriving the asymptotic expansion of the estimators of ρµ, next we de�ne

the following (T × T ) matrices:

Rµµi = Rµµρµ + iρµ∆ (i = 1, 2), Vµ =
[
I −Xµ(X ′µR

µµXµ)−1X ′µRµµ
]
Rµµ. (A.45)

The �rst assumption in Subsection 3.1 implies that matrices

Bµµ = X ′µR
µµXµ/T and Fµµ = X ′µXµ/T (A.46)

converge to non-singular matrices, as T →∞, and that matrices

X ′µ∆Xµ/T, X ′µ∆RµµXµ/T, X ′µRµµ∆Xµ/T,

(A.47)

X ′µ∆Rµµ∆Xµ/T and Θµµ = X ′µRµµXµ/T

are of order O(T−1). All the above matrices help to derive expectations of products

of quadratic forms of u, needed in the expansions of estimators of ρµ. These are given

in the next lemma:

Lemma A.10. For quadratic forms of vector u, we have the following results:

E(u′µR
µµ
2 uµ) =

2ρµσµµ
1− ρ2

µ

,

E(u′µuµu
′
µR

µµ
2 uµ) = −

2Tρµσ
2
µµ

(1− ρ2
µ)2

+O(1),

E(u′µR
µµ
2 uµu

′
µR

µµ
2 uµ) =

4Tσ2
µµ

1− ρ2
µ

+O(1),

E(u′µR
µµ
2 uµu

′
µ′Rµ

′µ′

2 uµ′) =
4Tσµµσµ′µ′

1− ρµρµ′
+O(1),

E(u′µPXµR
µµ
2 PXµVµR

µµuµ) =
σµµ
ρµ

[
nµ − tr(F−1

µµ BµµF
−1
µµ Θµµ)

]
+O(T−1), (A.48)

E(u′µPXµR
µµ
2 PXµuµ) =

σµµ
ρµ

[
2
[
ρ2
µ/(1− ρ2

µ)− nµ
]

+ (1− ρ2
µ)tr(F−1

µµ Θµµ)

+ tr(F−1
µµ BµµF

−1
µµ Θµµ)

]
+O(T−1),

E(u′µR
µµVµPXµR

µµ
2 PXµVµR

µµuµ) =
σµµ
ρµ

[ [
tr(F−1

µµ BµµF
−1
µµ Θµµ)− nµ

]
+ (1− ρ2

µ)
[
tr(FµµB

−1
µµ )− tr(F−1

µµ Θµµ)
] ]

+O(T−1).

Proof of Lemma A.10. We begin the proof by noticing that tr(Rµµ) = T/(1− ρ2
µ)

and tr(Rµµ1 Rµµ) = 0. Next, we de�ne r = ρ2
µ, which implies that |r| < 1. Then, using
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the following results:∑T

i=1
ri =

r(1− rT )

1− r ,
∑T

i=0
ri =

1− rT+1

1− r ,

(A.49)∑T

i=1
iri =

∑T

i=0
iri =

r[1− (T + 1)rT + TrT+1]

(1− r)2
,

which hold for any 0 5 r < 1, we can readily calculate the following traces:

tr(Rµµ2 Rµµ) =
2ρµ

1− ρ2
µ

, tr(∆Rµµ) =
2

1− ρ2
µ

, tr{(∆Rµµ)2} =
2(1 + ρ

2(T−1)
µ )

(1− ρ2
µ)2

,

tr{(∆Rµµ)3} =
2(1 + 3ρ

2(T−1)
µ )

(1− ρ2
µ)3

, tr(∆R3
µµ) =

2

(1− ρ2
µ)4

+O(T−1),

tr(Rµµ∆Rµµ) =
2(1− ρ2T

µ )

(1− ρ2
µ)3

,

tr{Rµµ(∆Rµµ)2} =
2

(1− ρ2
µ)3

[
Tρ2(T−1)

µ +
1− ρ2T

µ

1− ρ2
µ

]
, (A.50)

tr(R2
µµ)/T =

1 + ρ2
µ

(1− ρ2
µ)3

+O(T−1), tr(R3
µµ)/T =

1 + ρ4
µ

(1− ρ2
µ)5

+O(T−1),

tr(ρ2
µ∆Rµµ∆Rµµ) =

2ρ2
µ(1 + ρ

2(T−1)
µ )

(1− ρ2
µ)2

,

tr(ρµR
µµ
1 Rµµ∆Rµµ) =

2

1− ρ2
µ

+
2(1− ρ2T

µ )

(1− ρ2
µ)2

.

Note that in calculating the traces in (A.50), terms of the form Tnρ2T
µ → 0 since

0 ≤ ρµ < 1 and L' Hospital's rule implies that limT→∞ T
nρ2T

µ = 0.

Then, by using de�nitions (A.45), (A.46) and (A.47), the results in (A.50) and a

large amount of tedious algebra, we can compute the following traces:

tr(RµµR
µµ
i Rµµ) = − 2Tρµ

(1− ρ2
µ)2

+O(1), tr{(Rµµi Rµµ)2} =
2T

1− ρ2
µ

+O(1),

tr{Rµµ(Rµµi Rµµ)2} =
2T (2ρ2

µ − 1)

(1− ρ2
µ)3

+O(1), tr{(Rµµi Rµµ)3} =
2T (2− 3ρ2

µ)

ρµ(1− ρ2
µ)2

+O(1),

tr(PXµR
µµ
i ) =

1

ρµ

[
tr(BµµF

−1
µµ )− (1− ρ2

µ)nµ
]

+O(T−1), (A.51)

tr(PXµR
µµ
i Rµµ) =

1

ρµ

[
nµ − (1− ρ2

µ)tr(F−1
µµ Θµµ)

]
+O(T−1),

tr(PXµR
µµ
i PXµRµµ) =

1

ρµ

[
tr(F−1

µµ BµµF
−1
µµ Θµµ)− (1− ρ2

µ)tr(F−1
µµ Θµµ)

]
+O(T−1),

where i = 1, 2. Working similarly we can calclulate the following traces:

tr(PXµR
µµ
2 PXµRµµ) =

1

ρµ

[2[ρ2
µ − nµ(1− ρ2

µ)]

1− ρ2
µ

+ (1− ρ2
µ)tr(F−1

µµ Θµµ)

+tr(F−1
µµ BµµF

−1
µµ Θµµ)

]
+O(T−1), (A.52)

tr(PXµR
µµ
2 PXµRµµ) =

1

ρµ

[
nµ − tr(F−1

µµ BµµF
−1
µµ Θµµ)

]
+O(T−1),
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and

tr(RµµVµPXµR
µµ
2 PXµVµR

µµRµµ) =
1

ρµ

[
tr(F−1

µµ BµµF
−1
µµ Θµµ)− nµ

]
+

1− ρ2
µ

ρµ

[
tr(FµµB

−1
µµ )− tr(F−1

µµ Θµµ)
]

+O(T−1). (A.53)

The results in (A.48) follow then by using the result given in page 389 of Magnus

and Neudecker (1979).

The stochastic expansion of the LS estimator of ρµ is given in the next lemma:

Lemma A.11. The LS estimator of ρµ, denoted as ρ̃µ, admits a stochastic expansion

of the form

ρ̃µ = ρµ + τ
(
ρ(1)
µ + τρ(2)

µ

)
+ ω(τ3), (A.54)

where

ρ(1)
µ = −

u′µR
µµ
2 uµ

2
√
Tσ2

uµ

, ρ(2)
µ = −

u′µPXµR
µµ
2 PXµuµ

2σ2
uµ

+
u′µuµu

′
µR

µµ
2 uµ

2Tσ4
uµ

. (A.55)

Proof of Lemma A.11. To prove the lemma, we rely on the following results (see

(A.56) � (A.59)): Let εti be the (t, i)-th element of matrix E. Then, the (i, j)-th

element of matrix E′E/T is

eij =
∑T

t=1
εtiεtj/T = ε′iεj/T, (A.56)

where εi is the i-th column of matrix E. Since σij and σij are the (i, j)-th ele-

ments of matrices Σ and Σ−1, respectively, Σ−1 = Σ−1ΣΣ−1 implies that σij =∑M
k=1

∑M
r=1 σ

ikσkrσ
rj . Hence, the (i, j)-th element of matrix Σ1 in Lemma A.7 is

given as

σ
(1)
ij =

√
T (eij − σij) (A.57)

and the (ij)-th element of the (M2 × 1) vector vec(S1), where S1 = Σ−1Σ1Σ−1, is

given as

s
(1)

(ij) =
√
T
{∑M

k=1

∑M

r=1
σik(ε′kεr/T )σrj − σij

}
. (A.58)

Since uµ = Pµεµ ⇒ u′µR
µµ
2 uµ = ε′µP

′
µR

µµ
2 Pµεµ and Rµµ = PµP

′
µ, we can show

that

E(u′µR
µµ
2 uµ) = σµµtr(R

µµ
2 Rµµ)⇒

⇒ E [(ε′kεr/T )u′µR
µµ
2 uµ] = σkrσµµ

2ρµ
1− ρ2

µ

+O(T−1)

⇒ E
(
s

(1)

(ij)u
′
µR

µµ
2 uµ

)
=
√
Tσµµ

2ρµ
1− ρ2

µ

{∑M

k=1

∑M

r=1
σikσkrσ

rj − σij
}

+O(T−1/2)

⇒ lim
T→∞

E
(
s

(1)

(ij)u
′
µR

µµ
2 uµ

)
= 0. (A.59)

The rest of the proof follows using Lemma A.10.
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The stochastic expansions of the rest of the estimators of ρµ, listed in footnote 2,

are given in the next lemma:

Lemma A.12. The GL, PW , ML and DW estimators of ρµ admit the following

stochastic expansions, respectively:

ρ̂GLµ = ρ̂PWµ = ρ̃µ − τ2 1− ρ2
µ

σµµ

[
u′µPXµR

µµ
2 PXµVµR

µµuµ

+u′µR
µµVµPXµR

µµ
2 PXµVµR

µµuµ/2
]

+ ω(τ3),

ρ̂ML
µ = ρ̂GLµ + τ2

[
ρµ

1− ρ2
µ

σµµ
(u2

1µ + u2
Tµ)− ρµ

]
+ ω(τ3), (A.60)

ρ̂DWµ = ρ̃µ + τ2 1− ρ2
µ

2σµµ
(u2

1µ + u2
Tµ) + ω(τ3).

Proof of Lemma A.12. The results of the lemma can be easily proved based on

Magee (1985, pages 279�281) for the GL and iterative PW estimators of ρµ, Beach

and MacKinnon (1978, pages 52�54) and Magee (1985, pages 281�284) for the ML

estimator, and using Lemma A.11 and the de�nition of the DW estimator of ρµ.

The stochastic expansion of the elements of vector δ%, are given in the next lemma:

Lemma A.13. The (M × 1) vector δ% =
√
T (%̂− %)/τ , with elements δρµ de�ned in

(27), admits a stochastic expansion of the form

δ% = d1% + τd2% + ω(τ2). (A.61)

For estimators ρ̂Iµ (I = LS,GL, PW,ML,DW ), the elements of d1% and d1% in (A.61)

are analytically given as follows: dGL(1)ρµ
= dPW(1)ρµ

= dML
(1)ρµ

= dDW(1)ρµ
= dLS(1)ρµ

and

dLS(1)ρµ = ρ(1)
µ ,

dLS(2)ρµ = ρ(2)
µ ,

dGL(2)ρµ = dPW(2)ρµ = dLS(2)ρµ −
1− ρ2

µ

σµµ

[
u′µPXµR

µµ
2 PXµVµR

µµuµ

+u′µR
µµVµPXµR

µµ
2 PXµVµR

µµuµ/2
]
, (A.62)

dML
(2)ρµ = dGL(2)ρµ + ρµ

1− ρ2
µ

σµµ
(u2

1µ + u2
Tµ)− ρµ,

dDW(2)ρµ = dLS(2)ρµ +
1− ρ2

µ

2σµµ
(u2

1µ + u2
Tµ).

Proof of Lemma A.13. The proof is straightforward using Lemmas A.11 and A.12.

Next, we provide analytic forms of the elements of vectors l and c, and matrices

L, C and D∗, employed in the stochastic expansions of the tests statistics given in the
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paper. To this end, we �rst derive the partial derivatives of matrix A, given in (28),

with respect to the elements of % and ς. Using matrices Bij = X ′iR
ijXj/T , matrix A

can be partitioned as follows:

A = [(σijBij)i,j=1, ..., M ]. (A.63)

Lemma A.14. The partial derivatives of matrix A, with respect to the elements of %

and ς, can be analytically written as follows:

Aρµ = [(
σij

T
X ′iR

ij
ρµXj)i,j=1,..., M ], Aρµρµ′ = [(

σij

T
X ′iR

ij
ρµρµ′

Xj)i,j=1, ..., M ],

A∗ρµρµ′ = [(X ′iWijXj/T )i,j=1, ..., M ], Aς(µµ′) = [(δµiδjµ′Bµµ′)i,j=1, ..., M ],

Aς(µµ′)ς(νν′) = 0, A∗ς(µµ′)ς(νν′) = σµ′νAς(µν′) ,

Aρµς(νν′) = [(δνiδjν′X
′
νR

νν′
ρµ Xν′/T )i,j=1, ..., M ], (A.64)

A∗ρµς(νν′) =

[(∑M

k=1

δjν′σ
ikσkν
T

X ′iR
ik
ρµRkνR

νν′Xν′

)
i,j=1, ..., M

]
,

A∗ς(νν′)ρµ =

[(∑M

r=1

δνiσν′rσ
rj

T
X ′νR

νν′Rν′rR
rj
ρµXj

)
i,j=1, ..., M

]
.

Proof of Lemma A.14. The proof follows immediately from equation (31), and

Lemmas A.4 and A.5.

Analytic formulae of the elements of vector l and matrix L are given in the following

lemma:

Lemma A.15. The elements of vector l and matrix L can be calculated as follows:

lρµ =
∑M

i=1

∑M

j=1

∑M

k=1

∑M

r=1
σkrh′iGikX

′
kR

kr
ρµXrGrjhj/T, (A.65)

lς(µµ′) =
∑M

i=1

∑M

j=1
h′iGiµBµµ′Gµ′jhj , (A.66)

lρµρµ′ =
∑M

q=1

∑M

s=1

∑M

i=1

∑M

j=1

∑M

k=1

∑M

r=1
σikσrj

×h′qGqiX ′iRikρµ(σkrRkr − 2XkGkrX
′
r/T )Rrjρµ′XjGjshs/T

+
∑M

q=1

∑M

s=1

∑M

i=1

∑M

j=1
σij

×h′qGqiX ′iRijρµρµ′XjGjshs/2T, (A.67)

lς(µµ′)ς(νν′) = σµ′ν lς(µν′) − 2
∑M

i=1

∑M

j=1
h′iGiµBµµ′Gµ′νBνν′Gν′jhj , (A.68)

lρµς(νν′) =
∑M

q=1

∑M

s=1

∑M

i=1

∑M

k=1
σikh′qGqiX

′
iR

ik
ρµ

×(σkνRkν − 2XkGkνX
′
ν/T )Rνν

′
Xν′Gν′shs/T

+
∑M

q=1

∑M

s=1
h′qGqνX

′
νR

νν′
ρµ Xν′Gν′shs/2T, (A.69)
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lς(νν′)ρµ =
∑M

q=1

∑M

s=1

∑M

j=1

∑M

r=1
σrjh′qGqνX

′
νR

νν′

×(σν′rRν′r − 2Xν′Gν′rX
′
r/T )RrjρµXjGjshs/T

+
∑M

q=1

∑M

s=1
h′qGqνX

′
νR

νν′
ρµ Xν′Gν′shs/2T. (A.70)

Proof of Lemma A.15. The results of the lemma follow by using the de�nitions in

(41), the partition of matrix G in (52) and Lemmas A.1 � A.14.

Analytic formulae of the elements of vector c and matrices C and D∗ are given in

the following lemma:

Lemma A.16. The elements of vector c and matrices C and D∗ can be calculated as

follows:

cρµ =
∑M

i=1

∑M

j=1
σijtr(X ′iR

ij
ρµXjΞji)/T, (A.71)

cς(µµ′) = tr(Bµµ′Ξµ′µ), (A.72)

cρµρµ′ =
∑M

i=1

∑M

j=1

∑M

k=1

∑M

r=1
σikσkrσ

rj

×tr(X ′iRikρµRkrR
rj
ρµ′
XjΞji)/T

−2
∑M

i=1

∑M

j=1

∑M

k=1

∑M

r=1
σikσrj

×tr(X ′iRikρµXkGkrX
′
rR

rj
ρµ′
XjΞji)/T

2

+
∑M

i=1

∑M

j=1
σijtr(X ′iR

ij
ρµρµ′

XjΞji)/2T, (A.73)

cς(µµ′)ς(νν′) = σµ′νcς(µν′) − 2tr(Bµµ′Gµ′νBνν′Ξν′µ), (A.74)

cρµς(νν′) =
∑M

i=1

∑M

k=1
σikσkνtr(X

′
iR

ik
ρµRkνR

νν′Xν′Ξν′i)/T

−2
∑M

i=1

∑M

k=1
σiktr(X ′iR

ik
ρµXkGkνBνν′Ξν′i)/T

+tr(X ′νR
νν′
ρµ Xν′Ξν′ν)/2T, (A.75)

cς(νν′)ρµ =
∑M

j=1

∑M

r=1
σν′rσ

rjtr(X ′νR
νν′Rν′rR

rj
ρµXjΞjν)/T

−2
∑M

j=1

∑M

r=1
σrjtr(Bνν′Gν′rX

′
rR

rj
ρµXjΞjν)/T

+tr(X ′νR
νν′
ρµ Xν′Ξν′ν)/2T, (A.76)

dρµρµ′ =
∑M

i=1

∑M

j=1

∑M

k=1

∑M

r=1
σikσrj

×tr(X ′iRikρµXkΞkrX
′
rR

rj
ρµ′
XjΞji)/2T

2, (A.77)

dς(µµ′)ς(νν′) = tr(Bµµ′Ξµ′νBνν′Ξν′µ)/2, (A.78)

dρµς(νν′) =
∑M

i=1

∑M

k=1
σiktr(X ′iR

ik
ρµXkΞkνBνν′Ξν′i)/2T, (A.79)

dς(νν′)ρµ =
∑M

j=1

∑M

r=1
σrjtr(Bνν′Ξν′rX

′
rR

rj
ρµXjΞjν)/2T. (A.80)
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Proof of Lemma A.16. The results of the lemma can be easily calculated by using

the de�nitions (56) and (57), partition of matrix Ξ in (52) and the following traces:

tr(AρµΞ), tr(Aρµρµ′ Ξ), tr(Aς(µµ′)Ξ), tr(Aς(µµ′)ς(νν′)Ξ),

tr(Aρµς(νν′)Ξ), tr(A∗ρµρµ′ Ξ), tr(A∗ς(µµ′)ς(νν′)Ξ), tr(A∗ρµς(νν′)Ξ), (A.81)

tr(AρµGAρµ′ Ξ), tr(AρµGAς(νν′)Ξ), tr(Aς(µµ′)GAς(νν′)Ξ),

with obvious modi�cations for

tr(Aς(νν′)ρµΞ), tr(A∗ς(νν′)ρµΞ), tr(Aς(νν′)GAρµΞ),

tr(AρµΞAρµ′ Ξ), tr(AρµΞAς(νν′)Ξ), tr(Aς(νν′)ΞAρµΞ), tr(Aς(µµ′)ΞAς(νν′)Ξ).

By using the above results and Lemmas A.1 � A.14, the proof completes.

Analytic formulae of the scalars and vectors given in (33) are derived in the fol-

lowing lemma:

Lemma A.17. Scalars λ0 and κ0, vectors λ%, λς , κ% and κς , and matrices Λ%, Λς

and Λ%ς can be calculated as follows:

λ0 = 0, λ% = 0, λς = 0, (A.82)

Λς = (Σ−1 ⊗ Σ−1)N(Σ−1 ⊗ Σ−1), (A.83)

where N is a (M2 ×M2) matrix whose ((ij), (kr))-th element is

ν(ij)(kr) = σikσjr + σirσjk (i, j, k, r = 1, . . . , M). (A.84)

The µ-th diagonal element of the matrix Λ% is

lim
T→∞

E(d2
(1)ρµ) = 1− ρ2

µ, (A.85)

and its (µ, µ′)-th o�-diagonal element is

lim
T→∞

E(d(1)ρµd(1)ρµ′
) =

(1− ρ2
µ)(1− ρ2

µ′)

(1− ρµρµ′)
, (A.86)

for µ 6= µ′. Further, we have

Λ%ς = 0 and Λς% = 0. (A.87)

For all estimators σ̂I and ς̂I (I = UL, RL, GL, IG, ML), we can compute the

following (M ×M) matrices:

∆UL = 0, ∆GL = ∆IG = ∆ML = KΣ−
[
(tr(GijBji))i,j=1, ..., M

]
,

∆RL =
[[(

tr(B−1
ii BijB

−1
jj Bji)− ni − nj +K

)
σij
]
i,j=1, ..., M

]
. (A.88)
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Given them, we can calculate κ0 and κς as follows:

κ0 = tr
[
Σ−1(∆GL −∆I)

]
/M + n/M, (A.89)

and

κς = vec
{

(M +K + 1)Σ−1 − Σ−1∆IΣ
−1} . (A.90)

Also, de�ne scalars

c1 = (1− ρ2
µ)[(1− ρ2

µ)tr(F−1
µµ Θµµ) + tr(F−1

µµ BµµF
−1
µµ Θµµ)], (A.91)

and

c2 = (1− ρ2
µ)tr(FµµB

−1
µµ ), (A.92)

where the (nµ × nµ) matrices Fµµ, Θµµ and Bµµ are de�ned in (A.46) and (A.47).

For all estimators ρ̂Iµ (I = LS,GL, PW,ML, DW ), we calculate the elements κρµ of

(M × 1) vector κ% as follows:

κLSρµ = −[(nµ + 3)ρµ + (c1 − 2nµ)/2ρµ], (A.93)

and

κGLρµ = κPWρµ = κLSρµ +
c1−(1−ρ2µ)(c2+nµ)

2ρµ
,

κML
ρµ = κGLρµ + ρµ, (A.94)

κDWρµ = κLSρµ + 1.

Proof of Lemma A.17. From (33), (A.30), (A.35), and (A.61) we can easily show

that

λ0 = lim
T→∞

E(σ2
0), λρ = lim

T→∞
E(σ0d1ρ) and λς = lim

T→∞
E(σ0d1ς). (A.95)

The results in (A.82) follows immediately since σ0 = 0 (see(A.36)). Equations (33)

and (A.30) imply

Λς = lim
T→∞

E(d1ςd
′
1ς). (A.96)

This result together with (A.31), (A.42) and (A.43) yield (A.83).

Since (33) and (A.61) imply that

Λ% = lim
T→∞

E(d1%d
′
1%) (A.97)

and σ2
uµ = σ2

µµ/(1 − ρ2
µ), we can prove that the µ-th diagonal element of the matrix

Λ% is

lim
T→∞

E(d2
(1)ρµ) = lim

T→∞
E(u′µR

µµ
2 uµu

′
µR

µµ
2 uµ)/4Tσ2

uµ

= lim
T→∞

[
4Tσ2

µµ

1− ρ2
µ

+O(1)

]
/4Tσ2

uµ , (A.98)
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by combining the third result in Lemma A.10 with (A.55) and (A.62). The last result

proves (A.85). Working along the same lines for µ 6= µ′, we can prove (A.86), for the

(µ, µ′)-th o�-diagonal element of Λ%.

To prove (A.87), �rst note that (33), (A.30) and (A.61) imply

Λ%ς = lim
T→∞

E(d1%d
′
1ς). (A.99)

Substituting (A.31), (A.58) and (A.55) into (A.99), we can calculate the (µ, (ij))-th

element of (M ×M2) matrix Λ%ς as −d(1)ρµs
(1)

(ij). Following the same steps to that of

the proof of (A.59) we can show that

lim
T→∞

E
(
−d(1)ρµs

(1)

(ij)

)
= 0. (A.100)

(A.87) can be proved immediately using Λς% = Λ′%ς .

For all estimators σ̂I (I = UL, RL, GL, IG, ML), we can �nd that

κ0 = lim
T→∞

E
(√

Tσ0 + σ1

)
= lim
T→∞

E (σ1) , (A.101)

by combining (33) with (A.40), (A.35) and (A.36). The last result proves (A.89). For

all estimators ς̂I (I = UL, RL, GL, IG, ML),we can show that

κς = lim
T→∞

E
(√

Td1ς + d2ς

)
= vec

{
lim
T→∞

E
(
SI2

)}
, (A.102)

since E (S1) = 0 and limT→∞ E
(
SI2
)

= MI [see (A.40)], by using (33), (A.30), (A.31)

and (A.40). This result implies (A.90).

Finaly, we can calclulate

κLSρµ = lim
T→∞

E
(√

TdLS(1)ρµ + dLS(2)ρµ

)
, (A.103)

by using (33) and (A.55), Lemmas A.10 and A.13. This yields (A.93). Along the same

lines, we can calculate the following quantities:

κGLρµ = κPWρµ = lim
T→∞

E
(√

TdLS(1)ρµ + dGL(2)ρµ

)
,

κML
ρµ = lim

T→∞
E
(√

TdLS(1)ρµ + dML
(2)ρµ

)
and (A.104)

κDWρµ = lim
T→∞

E
(√

TdLS(1)ρµ + dDW(2)ρµ

)
,

which proves (A.94).
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Asymptotic expansions of size corrected tests: Proofs of

theorems

Given the lemmas of the previous subsections, next we give the proofs of the theo-

rems presented in the main text. These are based on known expansions of standard

normal and chi-square distributed tests. We derive new expansions of the degrees-

of-freedom-adjusted versions of these tests, by inverting their characteristic functions.

These degrees-of-freedom-adjusted approximations of distribution functions are proved

to be locally exact.

Proof of Theorems 1 and 2. Approximation (42) of Theorem 1 can be proved fol-

lowing the steps of the proof in Rothenberg (1988). The quantities in (40) can be

obtained by expanding the corresponding quantities given by Rothenberg and retain-

ing the �rst term in each of these expansions. The approximation (44) of Theorem

2 follows from the approximation (42) and the following asymptotic approximations

of the Student-t distribution and density functions, which are given in terms of the

standard normal distribution and density functions, respectively (see Fisher (1925)):

IT−n(x) = I(x)− (τ2/4)(1 + x2)xi(x) +O(τ4),

(A.105)

iT−n(x) = i(x) +O(τ2).

Note that approximation (44) of Theorem 2 is locally exact. This can be easily

seen as follows: If parameter vector γ = (%′, ς ′)′ is known to belong to a ball of radius

ϑ, then, as ϑ→ 0, γ becomes a �xed known vector. By using (27), (29), (33) and (35)

we can prove that

Λ = 0, λ = κ = 0, λ0 = 2, κ0 = 0. (A.106)

Then, the analytic formulae of p1 and p2, given in (43), become

p1 = p2 = 0. (A.107)

This result implies that, with an error of order O(τ3), approximation (44) becomes

the Student-t distribution function with MT − n degrees of freedom.

Proof of Theorem 3. We begin the proof by noticing that, under null hypothesis

(36), the t statistic, given by (37), admits a stochastic expansion of the form

t = t0 + τt1 + τ2t2 + ω(τ3), (A.108)
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where the �rst term in the expansion is given as

t0 = e′b/(e′Ge)1/2 = h′b, where b = GX ′Ωu/
√
T .

The result given by equation (A.108) implies that the Cornish-Fisher corrected statistic

t∗, given by (47), admits a stochastic expansion of the form

t∗ = t0 + τt1 + τ2(t2 − t3) + ω(τ3), (A.109)

where

t3 = (p1 + p2t
2
0)t0/2.

Let s be an imaginary number, and ψ(s) and φ(s) denote the characteristic func-

tions of the t statistic, given by (37), and a standard normal random variable, respec-

tively. Using (A.109) and the relationships:

E[exp(st0)t0] = sφ(s) and E[exp(st0)t30] = (3s+ s3)φ(s),

we can show that the characteristic function of the Cornish-Fisher corrected statistic

t∗, denoted as ψ∗(s), can be approximated as follows:

ψ∗(s) = ψ(s)− τ2s E[exp(st0)t3] +O(τ3)

= ψ(s)− τ2

2
s [p1s+ p2(3s+ s3)]φ(s) +O(τ3).

Dividing ψ∗(s) by −s, applying the inverse Fourier transform and using Theorem 2,

we can show that

Pr {t∗ ≤ x} = Pr {t ≤ x}+
τ2

2
(p1 + p2x

2)xiT−n(x) +O(τ3)

= IT−n(x)− τ2

2
(p1 + p2x

2)xiT−n(x)

+
τ2

2
(p1 + p2x

2)xiT−n(x) +O(τ3)

= IT−n(x) +O(τ3). (A.110)

The last result means that the Cornish-Fisher corrected statistic t∗ is distributed as a

Student-t random variable with MT − n degrees of freedom.

Proof of Theorems 4 and 5. Approximation (58) of Theorem 4 can be proved fol-

lowing the steps of the proof in Rothenberg (1984b). The quantities in (56) can be

obtained by expanding the corresponding quantities given by Rothenberg and retain-

ing the �rst term in each of these expansions. Approximation (60) of Theorem 5 follows

45



from approximation (58) and the following asymptotic approximations of the F distri-

bution and density functions, which are given in terms of the chi-square distribution

and density functions, respectively:

FmT−n(x) = Fm(mx) + (τ2/2)(m− 2−mx)mxfm(mx) +O(τ4),

(A.111)

fmT−n(x) = mfm(mx) +O(τ2).

Note that approximation (60) of Theorem 5 can be easily seen to be locally exact.

By using (A.106), (59), and (61), we can show that

ξ1 = −m(m− 2)/2 and ξ2 = m(m+ 2)/2 (A.112)

⇒ q1 = q2 = 0. (A.113)

This result means that, with an error of order O(τ3), approximation (60) becomes the

F distribution function with m and MT − n degrees of freedom.

Proof of Theorem 6. To begin the proof, we �rst notice that, under null hypothesis

(48), the F statistic, given by (50), admits a stochastic expansion of the form

F = F0 + τF1 + τ2F2 + ω(τ3), (A.114)

where the �rst term in the expansion is

F0 = b′Qb/m, b = GX ′Ωu/
√
T .

Equation (A.114) implies that the Cornish-Fisher corrected statistic F∗, given by (64),

admits a stochastic expansion of the form

F∗ = F0 + τF1 + τ2(F2 − F3) + ω(τ3), (A.115)

where

F3 = (q1 + q2F0)F0.

Let s be an imaginary number, and ψ(s) and φ(s) now denote the characteristic

functions of the F statistic, given by (50), and a chi-square random variable with m

degrees of freedom, respectively. Using (A.115) and the following relationships:

E[exp(sF0)F0] = φm+2(s/m) and E[exp(sF0)F 2
0 ] =

m+ 2

m
φm+4(s/m),
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we can show that the characteristic function of the Cornish-Fisher corrected statistic

F∗, denoted as ψ∗(s), can be approximated as follows:

ψ∗(s) = ψ(s)− τ2s E[exp(sF0)F3] +O(τ3)

= ψ(s)− τ2s [q1φm+2(s/m) + q2
m+ 2

m
φm+4(s/m)] +O(τ3).(A.116)

For the chi-square density fm(x), the following results can be shown:

(mx)fm(mx) = mfm+2(mx) and (mx)2fm(mx) = m(m+ 2)fm+4(mx). (A.117)

Dividing (A.116) by −s, applying the inverse Fourier transform, and using Theorem

5 and the results of equations (A.111) and (A.117), we can show that

Pr {F∗ ≤ x} = Pr {F ≤ x}+ τ2[(q1mfm+2(mx) + q2
m+ 2

m
mfm+4(mx)] +O(τ3)

= Pr {F ≤ x}+ τ2[(q1mxfm(mx) + q2mx
2fm(mx)] +O(τ3)

= Pr {F ≤ x}+ τ2(q1 + q2x)mxfm(mx) +O(τ3)

= FmT−n(x)− τ2(q1 + q2x)xfmT−n(x)

+τ2(q1 + q2x)xfmT−n(x) +O(τ3)

= FmT−n(x) +O(τ3). (A.118)

The last result implies that the Cornish-Fisher corrected statistic F∗ is distributed as

an F random variable with m and MT − n degrees of freedom.
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