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ABSTRACT
Improving survey specifications are causing an exponential rise in pulsar candidate numbers
and data volumes. We study the candidate filters used to mitigate these problems during the
past fifty years. We find that some existing methods such as applying constraints on the total
number of candidates collected per observation, may have detrimental effects on the success
of pulsar searches. Those methods immune to such effects are found to be ill-equipped to deal
with the problems associated with increasing data volumes and candidate numbers, motivating
the development of new approaches. We therefore present a new method designed for on-line
operation. It selects promising candidates using a purpose-built tree-based machine learning
classifier, the Gaussian Hellinger Very Fast Decision Tree (GH-VFDT), and a new set of
features for describing candidates. The features have been chosen so as to i) maximise the
separation between candidates arising from noise and those of probable astrophysical origin,
and ii) be as survey-independent as possible. Using these features our new approach can process
millions of candidates in seconds (∼1 million every 15 seconds), with high levels of pulsar
recall (90%+). This technique is therefore applicable to the large volumes of data expected to
be produced by the Square Kilometre Array (SKA). Use of this approach has assisted in the
discovery of 20 new pulsars in data obtained during the LOFAR Tied-Array All-Sky Survey
(LOTAAS).

Key words: pulsars: general, methods: statistical, methods: data analysis

1 INTRODUCTION

The search techniques used to isolate the radio emission of pulsars,
are designed to find periodic broadband signals exhibiting signs
of dispersion caused by travel through the interstellar medium.
Signals meeting these criteria are recorded as a collection of
diagnostic plots and summary statistics, in preparation for analysis.
Together these plots and statistics are referred to as a pulsar
‘candidate’, a possible detection of a new pulsar. Each candidate
must be inspected by either an automated method, or a human
expert, to determine their authenticity. Those of likely pulsar
origin are highlighted for further analysis, and possibly allocated
telescope time for confirmation observations. The remainder are
typically ignored. The process of deciding which candidates
are worthwhile investigating has become known as candidate
‘selection’. It is an important step in the search for pulsars since
it allows telescope time to be prioritised upon those detections
likely to yield a discovery. Until recently (early 2000’s) candidate

? E-mail: robert.lyon@cs.man.ac.uk

selection was a predominately manual task. However advances
in telescope receiver design, and the capabilities of supporting
computational infrastructures, significantly increased the number
of candidates produced by modern pulsar surveys (Stovall et
al. 2013). Manual approaches therefore became impractical,
introducing what has become known as the ‘candidate selection
problem’. In response, numerous graphical and automated selection
methods were developed (Johnston et al. 1992; Manchester et
al. 2001; Edwards et al. 2001; Navarro et al. 2003; Keith et
al. 2009), designed to filter candidates in bulk. The filtering
procedure used ranged in complexity from a simple signal-to-noise
ratio (S/N) cut, through to more complex functions (Lee et
al. 2013). In either case, automated approaches enabled large
numbers of candidates to be selected at speed in a reproducible way.

Despite these advances the increasing number of candidates
produced by contemporary pulsar surveys, tends to necessitate a
pass of manual selection upon the candidates selected by software.
Many have therefore turned to machine learning methods to build
‘intelligent’ filters (Eatough et al. 2010; Bates et al. 2012; Zhu et
al. 2014; Morello et al. 2014), capable of reducing the dependence
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on human input. This has achieved some success. However these
methods are often developed for a specific pulsar survey search
pipeline, making them unsuitable for use with other surveys without
modification. As a consequence, new selection mechanisms are
often designed and implemented per survey. As more methods
continue to emerge, it becomes increasingly unclear which of these
best address the candidate selection problem, and under what
circumstances. It is also unclear which are best equipped to cope
with the trend for increasing candidate numbers, the overwhelming
majority of which arise from noise. Existing approaches are not
explicitly designed to mitigate noise, rather they are designed to
isolate periodic detections. This does not achieve the same effect
as explicitly mitigating noise. For example, isolating periodic
candidates as potential pulsars, does not necessarily mitigate the
impact of periodic noise. Thus it is possible that these techniques
will become less effective over time, as noise becomes responsible
for an increasing proportion of all candidates detected.

Existing ‘intelligent’ approaches are also ill-equipped to deal
with the data processing paradigm shift, soon to be brought about by
next-generation radio telescopes. These instruments will produce
more data than can be stored, thus survey data processing, including
candidate selection, will have to be done on-line in real-time (or
close to). In the real-time scenario it is prohibitively expensive to
retain all data collected (see Section 4.3.1). It therefore becomes
important to identify and prioritise data potentially containing
discoveries for storage. Otherwise such data could be discarded
and discoveries missed. Thus new techniques are required (Keane
et al. 2014) to ensure preparedness for this processing challenge.

In this paper we describe a new candidate selection approach
designed for on-line operation, that mitigates the impact of
increasing candidate numbers arising from noise. We develop our
arguments for producing such a technique in progressive stages. In
Section 2 we describe the candidate generation process. We show
that improvements in pulsar survey technical specifications have
led to increased candidate output, and infer a trend for exponential
growth in candidate numbers which we show to be dominated by
noise. We also demonstrate why restricting candidate output based
on simple S/N cuts, runs the risk of omitting legitimate pulsar
signals. The trend in candidate numbers and the ineffectiveness of
S/N filters, allows us to identify what we describe as a ‘crisis’ in
candidate selection. In Section 3 we review the different candidate
selection mechanisms employed during the past fifty years, to look
for potential solutions to the issues raised in Section 2. Based on this
review, in Section 4, we discuss these methods. We identify how all
will be challenged by the transition to on-line processing required by
telescopes such as the Square Kilometre Array (SKA), motivating
the development of new approaches. In addition we critique the
existing features used to describe pulsar candidates, fed as inputs to
the machine learning methods employed by many to automate the
selection process. In Section 5 we present our own set of eight
candidate features, which overcome some of these deficiencies.
Derived from statistical considerations and information theory,
these featureswere chosen tomaximise the separation between noise
and non-noise arising candidates. In Section 6 we describe our new
data stream classification algorithm for on-line candidate selection
which uses these features. Section 6 also presents classification
results that demonstrate the utility of the new approach, and its
high level of pulsar recall. Finally in Section 7 we summarise the
paper, and comment on how the use of our method has helped to

find 20 new pulsars during the LOFAR Tied-Array All-Sky Survey
(LOTAAS), though discovery details will be published elsewhere.

2 CANDIDATE GENERATION

Since the adoption of the Fast Fourier Transform (FFT) (Burns
& Clark 1969; Taylor, Dura & Huguenin 1969; Hulse & Taylor
1974) the general pulsar search procedure has remained relatively
unchanged. Signals focused at the receiver of a radio telescope
observing at a central frequency fc (MHz), with bandwidth B
(MHz), are sampled and recorded at a predetermined rate at
intervals of tsamp (µs), chosen to maximise sensitivity to the class
of signals being searched for. The data are subsequently split in to
nchans frequency channels, each of width ∆v (kHz). An individual
channel contains stot samples of the signal taken at the interval
tsamp, over an observational period of length tobs seconds, such that
stot =

tobs
tsamp

. Each unique observation is therefore representable as
an nchans × stot matrix M .

A pulsar search involves a number of procedural steps applied
to the data in M . The principal steps are similar for all searches,
however the order in which these are undertaken can vary, as too
can their precise implementation. In general, the first step involves
radio frequency interference (RFI) excision, via the removal of
channels (rows of the matrix) corresponding to known interference
frequencies (Keith et al. 2010). Subsequently ‘Clipping’ (Hogden
et al. 2012) may be applied to the data, which aims to reduce
the impact of strong interference. This is achieved by setting to
zero (or to the local mean) those samples which exhibit intensities
higher than some pre-determined threshold in a given column in
M (e.g. an intensity 2σ above the mean). Once these initial steps
are complete, processing enters a computationally expensive phase
known as de-dispersion.

Dispersion by free electrons in the interstellar medium
(ISM) causes a frequency dependent delay in radio emission as
it propagates through the ISM. This delay temporally smears
legitimate pulsar emission (Lorimer & Kramer 2006) reducing the
S/N of their pulses. The amount of dispersive smearing a signal
receives is proportional to a quantity called the Dispersion Measure
(DM, Lorimer & Kramer 2006). This represents the free electron
column density between an observer and a pulsar, integrated along
the line of sight. The degree to which a signal is dispersed for an
unknown pulsar cannot be known a priori (e.g. Keith et al. 2010;
Levin 2012), thus several dispersion measure tests or ‘DM trials’
must be conducted to determine this value. This can be used to
mitigate the dispersive smearing, thereby increasing the S/N of a
signal (Lorimer & Kramer 2006). For a single trial, each frequency
channel (row in M) is shifted by an appropriate delay before each
time bin is integrated in frequency. This produces 1 de-dispersed
time series for each DM trial value.

Periodic signals in de-dispersed time series data, can be found
using a Fourier analysis. This is known as a periodicity search
(Lorimer & Kramer 2006). The first step after performing the
FFT of a periodicity search usually involves filtering the data to
remove strong spectral features known as ‘birdies’ (Manchester
et al. 2001; Hessels et al. 2007). These may be caused by
periodic or quasi-periodic interference. Summing techniques are
subsequently applied, which add the amplitudes of harmonically
related frequencies to their corresponding fundamentals. This step
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Figure 1. An annotated example candidate summarising the detection of PSR J1706-6118. The candidate was obtained during processing of High Time
Resolution Universe Survey data by Thornton (2013).

is necessary as in the Fourier domain, the power from a narrow
pulse is distributed between its fundamental frequency and its
harmonics (Lorimer & Kramer 2006). Thus for weaker pulsars
the fundamental may not rise above the detection threshold, but
the harmonic sum generally will. Periodic detections with large
Fourier amplitudes post summing (above the noise background or
a threshold level), are then considered to be ‘suspect’ periods.

A further process known as sifting (e.g. Stovall et al. 2013) is
then applied to the collected suspects, which removes duplicate
detections of the same signal at slightly different DMs, along
with their related harmonics. A large number of suspects survive
the sifting process. Diagnostic plots and summary statistics are
computed for each of these remaining suspects forming candidates,
which are stored for further analysis. The basic candidate consists
of a small collection of characteristic variables. These include the
S/N, DM, period, pulse width, and the integrated pulse profile. The
latter is an array of continuous variables that describe a longitude-
resolved version of the signal that has been averaged in both time and
frequency. More detailed candidates also contain data describing
how the signal persists throughout the time and frequency domains
(Eatough et al. 2010). This can be seen in plots (A) and (B) in
Figure 1. Here persistence in frequency (A) is represented by a
two-dimensional matrix showing pulse profiles integrated in time,
for a set of averaged frequency channels (i.e. not full frequency
resolution). Persistence through time (B), is represented by a two-
dimensional matrix showing the pulse profile integrated across
similarly averaged frequency channels as a function of time.

2.1 Modelling Candidate Numbers

Candidate numbers are anecdotally understood to be increasing
steadily over time. Here we provide historical evidence supporting

this view, obtained by reviewing most of the large-scale pulsar
surveys conducted since the initial pulsar discovery by Hewish et
al. (1968). The surveys studied are listed in Tables 2 & 3. This
information has also been made available via an interactive on-line
resource found at www.jb.man.ac.uk/pulsar/surveys.html.

Candidate numbers reported in the literature are summarised
in Table 1, providing empirical evidence for rising candidate
numbers. The rise is understood to be the result of expanding survey
technical specifications (Stovall et al. 2013) occurring during the
period depicted in Tables 2 & 3. Finer frequency resolution, longer
dwell times, and acceleration searches (Eatough et al. 2013), have
significantly increased the candidate yield (Lyon 2015). However
at present there is no accepted method for quantifying the effects
of improving survey specifications on candidate numbers. It is
therefore difficult to understand precisely how candidate numbers
are changing, and what the S/N distribution of candidates should
look like in practice. Such knowledge is needed if we are to design
candidate selection approaches robust to error, and accurately plan
survey storage requirements. Although it is difficult to capture all
the steps involved in pulsar data analysis, we describe a model here
that can be used as a proxy for estimating candidate numbers, linked
to the number of dispersion trials undertaken per observation.

2.1.1 Approximate Model of Candidate Numbers

Selection begins in the spectral S/N regime as described in Section
2. Here each suspect period associated with a spectral S/N, is
found through a Fourier analysis of a de-dispersed time series.
However, we have incomplete knowledge of the S/N distribution of
spectral suspects, which arise from either i) variations in Galactic
background noise, ii) RFI, iii) instrument noise, or iv) legitimate
phenomena. To overcome this we model only the most significant
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Survey Year Candidates Per Sq. Degree

2nd Molonglo Survey(Manchester et al. 1978) 1977 2, 500 ∼0.1

Phase II survey (Stokes et al. 1986) 1983 5, 405 ∼1

Parkes 20 cm survey (Johnston et al. 1992) 1988 ∼ 150, 000 ∼188

Parkes Southern Pulsar Survey (Manchester et al. 1996) 1991 40, 000 ∼2

Parkes Multibeam Pulsar Survey (Manchester et al. 2001) 1997 8, 000, 000 ∼5,161

Swinburne Int. Lat. Survey (Edwards et al. 2001) 1998 > 200, 000 ∼168∗

Arecibo P-Alfa all configurations (Cordes et al. 2006; Lazarus 2012; P-Alfa Consortium 2015) 2004 > 5, 000, 000 ∼16,361∗

6.5 GHz Multibeam Survey (Bates et al. 2011a; Bates 2011) 2006 3, 500, 000 ∼77,778 †

GBNCC survey (Stovall et al. 2014) 2009 > 1, 200, 000 ∼89∗

Southern HTRU (Keith et al. 2010) 2010 55, 434, 300 ∼1,705

Northern HTRU (Barr et al. 2013; Ng 2012) 2010 > 80, 000, 000 ∼2,890∗

LOTAAS (Cooper, private communication, 2015 ) 2013 39, 000, 000 ∼2,000

Table 1. Reported folded candidate numbers. Note ∗ indicates a lower bound on the number of candidates per square degree, calculated from incomplete
candidate numbers. † indicates very long integration times, with further details supplied in Tables 2 & 3.

contributor of candidates, Gaussian distributed background
noise. Empirical evidence suggests most candidates originate
from background noise. Our analysis of High Time Resolution
Universe Survey (HTRU) data (Thornton 2013) supports this view,
held by others (Lee et al. 2013; Morello et al. 2014). It is also
logically consistent, since if most candidates arose from legitimate
phenomena discovery would be trivial. Whilst if most arose from
RFI, this would be concerning, as telescopes used for surveys
are situated in low RFI environments. It thus appears sensible to
conclude that candidates are noise dominated.

By modelling candidates arising only from background noise,
we can estimate the approximate number of candidates a survey
will yield. To achieve this, we assume there is a 1:1 mapping from
spectral suspects to folded candidates1. We can then model the
folded S/N distribution of noise-originating candidates only, from
there onwards. By assuming at least 1 folded candidate is generated
per dispersion trial, which also subsequently survives sifting, it is
possible to calculate an indicative candidate numbers. As folded
candidate S/Ns are empirically well approximated by a Gaussian
distribution2, we can also estimate the folded S/N distribution using
a simple Gaussian model. The number of candidates arising from
noise with a folded S/N of nσ (i.e. 1σ, ..., nσ), is estimated as
follows using a Gaussian probability density function,

f (d, λ, µ, σ) =
1

σ
√
2π

e−
1
2 ( λ−µσ )2 · d, (1)

where λ is the folded S/N, µ is the mean of the noise
distribution, σ its standard deviation, and d the total number of
dispersion trials. This model considers each dispersion trial to be
a single draw from the noise distribution. Thus candidate numbers
here are determined by d, and not a top C candidate cut, as is often
used to limit candidate numbers (e.g. Thornton 2013). However
since cuts are used in practice to remove weak candidates (arising
from noise), we will incorporate them into our model. This is
achievable whilst retaining knowledge of the resulting folded S/N

1 A candidate obtained by folding a de-dispersed time series at a specific
suspect period.
2 Empirically observed in HTRU survey data.

Figure 2. Diagram of 1 − CDF of Equation 1, showing the relationship
between nσ and constant cuts. This illustrates their impact on the number
of noise candidates making it through to the candidate selection stage.

distribution for a cut C ∈ (0,∞]. First we compute the total number
of candidates arising from Gaussian distributed noise, with a folded
S/N > nσ using,

k (d, µ, σ, nσ ) =
∫ ∞

nσ
f (d, λ, µ, σ)dλ. (2)

In practice Gaussian noise possessing a S/N in excess of 30σ is
rare. Thus we can replace the upper limit of ∞ with nmax

σ = 30,
beyond which a detection is almost certainly not noise. Here nσ is
the cut off S/N that is n standard deviations from the mean, and we
do not count candidates with S/Ns below this. Equation 2 is related
to the cumulative distribution function (CDF), of the probability
distribution in Equation 1, where k = 1 − CDF as shown in Figure
2. From this we can compute the number of nσ candidates surviving
a top C cut, using h( f ,C − k). Here C − k gives the number of
remaining candidate places in a top C cut, and h is defined by,

MNRAS 000, 1–20 (2015)
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Figure 3. Candidate numbers predicted by Equation 4 (using nσ = 7 and
nmax
σ = 100), varied according to the total number of survey pointings for

a single beam receiver. Coloured dashed lines indicate the total number
of candidates returned when using a conservative C = 100 cut. The
corresponding solid colour lines indicate the total number of candidates
returned when the cut is discarded. The solid lines are truncated such that
they begin whereC = 100 to avoid overlapping lines complicating the plot.

h( f , s) =




0, s ≤ 0
f , f − s ≤ 0
s, f − s > 0,

(3)

where 0 is returned if there are no spaces in a top C cut,
f is returned if all nσ candidates make the cut, and finally s is
returned if some nσ candidates miss the cut. Now the total number
of candidates returned during a survey using a single telescope, with
an nbeam receiver making p pointings, can be estimated by,

p ·
(
nbeams ·max(k,C)), (4)

where k is given by Equation 2 and C is the numerical cut-off
per beam (e.g. C = 100). This allows us to identify what we
describe as a ‘crisis’ in candidate selection. Since the functions f
and k are linearly dependent on d, and since we can see empirically
from Tables 2 and 3 that d is increasing, this means that even if nσ
is fixed, the number of noise-originating candidates to be evaluated
will increase with d. Indeed, Equation 4 implies the existence of a
discernible trend in candidate numbers. Much like the exponential
rise in data volumes described by Bates (2011), this model shows
candidate numbers to be increasing exponentially as a function of
d. This is shown more clearly in Figure 3. This illustrates how
candidate numbers change as d and the number of survey pointings
increase. The plot is colour coded according to total pointings,
with dashed lines indicating candidate numbers when C = 100,
and the corresponding solid lines showing candidate numbers
when C is discarded. We note here that we have concentrated on

utilising d as the number of dispersion trials to show a rise in
candidate numbers. This should not be seen simply as relating
to the maximum DM being searched. As the sampling time is
increased and more channels are used, either to preserve high
time resolution at higher dispersion measures, or as the bandwidth
increases, or both, then the number of ‘dispersion’ trials increases.
Therefore d is also a good proxy for survey sensitivity. Of course
the higher the time resolution, the greater stot increases, longer
observations also increase stot considerably. In both cases this
increases the likelihood of detecting more than one candidate per
DM trial. For simplicity this is not modelled here, and so what we
present can be considered a lower limit.

There are two strategies available for dealing with the implied
rise of noisy candidates. The first is to increase the lower S/N limit
nσ in Equation 2. This effectively implements a S/N cut-off, used
by many to filter in the spectral domain (Foster et al. 1995; Hessels
et al. 2007; Burgay et al. 2013; Thornton 2013), and the folded
domain (Damashek et al. 1978; Manchester et al. 1978; Stokes et
al. 1986; Manchester et al. 2001; Burgay et al. 2013). However
in practice this cut-off would become high enough to reject weaker
detections of interest (i.e. weaker pulsars, see Section 4.2.1) if it is to
reduce candidate numbers. The second option is to impose a smaller
constant cut-off C to the candidates collected per observation or
beam, also done by many (Edwards et al. 2001; Jacoby et al. 2009;
Bates et al. 2012; Thornton 2013) and accounted for in our model.
Figure 2 shows these two methods to be fundamentally the same.
Imposing a fixed limit C on the output of Equation 2, can only be
achieved by increasing the lower value of nσ in the integral, since
the integrand is fixed by Equation 1. This corresponds to setting
a high S/N cut-off. Using either of these approaches impacts our
ability to detect legitimate pulsar signals. This is particularly true
of a top C cut, as it would appear that noise alone can fill up a top C
cut, without even taking into consideration the influence of RFI, or
legitimate phenomena. Taking d to the limit increases the certainty
that noise will dominate a candidate cut, and reduces the likelihood
of weak legitimate signals making it through to analysis. We now
turn our attention to determining how to deal with these issues.

3 CANDIDATE SELECTION METHODS

3.1 Manual Selection

During the earliest surveys, manual selection involved the
inspection of analogue pen chart records for periodic signals (Large
et al. 1968; Manchester et al. 1978). This process was subsequently
replaced by digital data inspection, with the adoption of early
computer systems. From then on, manual selection involved the
inspection ‘by eye’ of digitally produced diagnostic plots describing
each candidate. Those found exhibiting pulsar-like characteristics
were recorded for analysis, whilst the remainder were ignored
(though retained on disk for possible reanalysis).

During the initial period of digitization, pulsar surveys
produced very few candidates with respect to modern searches. The
2nd Molonglo survey conducted during the 1970’s, produced only
2, 500 candidates in total (Manchester et al. 1978). These yielded
224 pulsar detections (Manchester et al. 2005), a hit rate of almost

MNRAS 000, 1–20 (2015)
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9 per cent3. Thus during this period manual selection was entirely
practical. Soon after however, increasing candidate numbers began
to cause problems. The first mention of this within the literature
(to the best of our knowledge) was made by Clifton & Lyne (1986)
regarding Jodrell Survey B. The number of candidates produced
during this survey necessitated extensive manual selection on
the basis of pulse profile appearance and S/N. Although such
heuristic judgements were not new, their explicit mention with
respect to candidate selection indicated that a shift in procedure had
occurred. Whereas before it was possible to evaluate most, if not all
candidates by eye, here it became necessary to expedite the process
using heuristics. Contemporary surveys reacting to similar issues
imposed high S/N cut-offs to limit candidate numbers directly. The
Arecibo Phase II survey used an 8σ S/N cut, thus only ∼5,405
candidates required manual inspection (Stokes et al. 1986).

The use of heuristics and S/N cuts proved insufficient to
deal with candidate number problems. Additional processing steps
such as improved sifting were applied in response, and these
became increasingly important during this period. However as
these measures apply high up the processing pipeline (close to
the final data products), their capacity to reduce candidate numbers
was limited. Consequently attempts were made to automatically
remove spurious candidates lower down the pipeline, with the aim
of preventing them ever reaching human eyes. During the Parkes
20-cm survey, two software tools were devised by Johnston et al.
(1992) to achieve this. Together these encapsulated and optimised
the general search procedure discussed in Section 2. The software
(‘MSPFind’ and another unnamed tool) was explicitly designed
to reduce the quantity of spurious candidates, while maintaining
sensitivity to millisecond pulsars (MSPs). Only candidates with a
S/N > 8 were allowed through the pipeline to manual inspection. It
is unclear howmany candidates required manual inspection, though
the number was less than 150, 000 (Johnston et al. 1992). During
the same period, a similar software tool known as the Caltech
Pulsar Package (Deich 1994), was developed for the Arecibo 430
MHz Intermediate Galactic Latitude Survey (Navarro et al. 2003).
These represent some of the earliest efforts to systematise the search
process in a reproducible way.

3.2 Summary Interfaces

The success achieved via low-level filtering and sifting, continued
to be undermined by ever-increasing candidate numbers brought
about by technological advances. By the late 1990’s, manual
selection was therefore becoming increasingly infeasible. This
spawned many graphical tools, designed to summarise and filter
candidates for speedy and concise evaluation. The first of these,
runview (Burgay et al. 2006), was created to analyse data output
by the Parkes Multibeam Survey (PMPS, Manchester et al. 2001).
During the Swinburne Intermediate-latitude survey, Edwards et al.
(2001) devised a similar graphical tool that included distributional
information of candidate parameters. A later reprocessing of PMPS
data for binary and millisecond pulsars, spawned the development
of a more sophisticated graphical tool for candidate viewing called
reaper. reaper used a dynamic customizable plot (Faulkner et
al. 2004) that enabled heuristic judgements of candidate origin
to be made using multiple variables. The use of reaper led to

3 The hit rate of the recent southern HTRU medium latitude search was
much lower, at around 0.01 per cent (Lyon 2015).

the discovery of 128 unidentified pulsars in PMPS data. This
corresponds to ∼ 15.4 per cent of the known pulsars in PMPS data,
given that 833 have now been identified (Lorimer et al. 2015).

Following the success of reaper, an updated version of the tool
called jreaperwas developed by Keith et al. (2009). It incorporated
algorithms which assigned numerical scores to candidates based on
their parameters, permitting candidate rankings. By ignoring those
candidates achieving low rankings, the amount of visual inspection
required was reduced. When applied to data gathered during the
PMPS, use of jreaper led to the discovery of a further 28 new
pulsars (Keith et al. 2009), corresponding to∼ 3.4 per cent of known
PMPS pulsars. Thus by 2009, summary interfaces had helped find
∼ 18.7 per cent of all PMPS pulsars illustrating the usefulness of
graphical approaches. More recently, web-based candidate viewing
systems incorporating similar scoring mechanisms have appeared
(Cordes et al. 2006; Deneva et al. 2009, 2013). One such tool, The
Pulsar Search Collaboratory (Rosen et al. 2010) 4, also incorporates
human scoring via the input of high school students. Students taking
part in the programme have discovered several new pulsars (Rosen
et al. 2013). This includes PSR J1930-1852, a pulsar in a double
neutron star system (Swiggum et al. 2015).

3.3 Semi-automated Ranking Approaches

Semi-automated selection approaches have recently begun to
emerge. Amongst the most popular are those employing ranking
mechanisms to prioritise promising candidates for human attention.
The most notable of these is the PEACE system developed by Lee
et al. (2013). PEACE describes each candidate via six numerical
features, combined linearly to form a candidate score. Ranked
candidates are then analysed via graphical viewing tools by students
in the Arecibo Remote Command Centre Programme (ARCC). To
datePEACE has been used during theGreenbankNorthernCelestial
Cap Survey (GBNCC, Stovall et al. 2014) and the Northern High
Time Resolution Universe Survey (HTRU North, Ng 2012; Barr et
al. 2013). Periodic and single-pulse candidates obtained during the
A0327 survey (Deneva et al. 2013), were similarly ranked using
an algorithm based on PEACE. Over 50 participants (of varying
expertise) from four universities, were then invited to view the
A0327 candidates via a web-based interface.

3.4 Automated ‘Intelligent’ Selection

Intelligent selection techniques are gaining widespread adoption.
The nature of the intelligence arises from the domain of statistical
learning theory, more generally known as machine learning
(ML). In particular, from a branch of ML known as statistical
classification. The aim of classification is to build functions that
accurately map a set of input data points, to a set of class labels. For
pulsar search this means mapping each candidate to its correct label
(pulsar or non-pulsar). This is known as candidate classification,
a form of supervised learning (Mitchell 1997; Duda et al. 2000;
Bishop 2006). If S = {X1, . . . , Xn} represents the set of all candidate
data, then Xi is an individual candidate represented by variables
known as features. Features describe the characteristics of the
candidate such that Xi = {X

j
i, ..., Xm

i }, where each feature X j
i ∈ R

for j = 1, . . . ,m. The label y associated with each candidate, may
have multiple possible values such that y ∈ Y = {y1, . . . , yk} (e.g.

4 http://pulsarsearchcollaboratory.com .
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Figure 4. Example of the varying separability of features from highly
separable in (a), to poorly separable in (b).

millisecond pulsar, RFI, noise etc). However since the goal here
is to separate pulsar and non-pulsar candidates, we consider the
binary labels y ∈ Y = {−1, 1}, where y1 = −1 equates to non-pulsar
(synonymous with negative) and y2 = 1 to pulsar (synonymous
with positive).

To build accurate classification systems, it is desirable to
utilise features that separate the classes under consideration.
This is illustrated in Figure 4. An ML function ‘learns’ to
separate candidates described using features, from a labelled input
vector known as the training set T . It contains pairs such that
T = {(X1, y1), . . . , (Xn, yn)}. The goal of classification is to induce
a mapping function between candidates and labels based on the
data in T , that minimises generalisation error on test examples
(Kohavi & John 1997). The derived function can then be used to
label new unseen candidates.

The first application of ML approaches to candidate selection
was accomplished by Eatough et al. (2010). In this work each
candidate was reduced to a set of twelve numerical feature values
inspired by the scoring system first adopted in jreaper. A predictive
model based on a multi-layered perceptron (MLP), a form of
artificial neural network (Haykin 1999; Bishop 2006), was then
constructed. Using this model, a re-analysis of a sample of PMPS
data was completed and a new pulsar discovered (Eatough 2009).
Neural network classifiers based on the MLP architecture were
also developed to run on data gathered during the HTRU survey.
Bates et al. (2012) modified the earlier approach by describing
candidates using 10 further numerical features (22 in total). The
same features were used to train neural network classifiers applied
to HTRU medium latitude data by Thornton (2013). More recently
the SPINN system developed by Morello et al. (2014), utilised
developments from the field of computer science to optimise neural
network performance on a set of 6 features. SPINN is currently
being applied as part of the Survey for Pulsars and Extragalactic
Radio Bursts (SUPERB, Barr 2014; Keane et al. in prep).

Convolutional neural networks (CNN, Bengio 2009), which
achieved prominence due to their high accuracy on difficult learning
problems such as speech and image recognition, have been adapted
for candidate selection. The Pulsar Image-based Classification
System (pics) developed by Zhu et al. (2014), uses the CNN
and other types of machine learning classifier to perform image
classification on candidate plots. pics is technically the most
sophisticated approach available, and it appears to possess high
accuracy. However this comes at the expense of high computational
costs. Particularly with respect to runtime complexity.

4 DISCUSSION

4.1 Critique of Manual Selection

Manual selection has retained a vital role in pulsar search (Keith et
al. 2010), as demonstrated by its use during recent surveys (Bates
et al. 2011a; Boyles et al. 2013; Coenen et al. 2014). The strongest
argument in favour of manual selection is its presumed accuracy
i.e by Eatough (2009) and Morello et al. (2014). However, to the
best of our knowledge, no study of the accuracy of expert selection
has been conducted. Although intuitively one would expect manual
accuracy to be high, studies in other domains indicate otherwise.
Most famously studies inmedicine and finance (Meehl 1954; Barber
& Odean 2000) suggest that expert decision-making is flawed due
to unconscious biases. Indeed manual selection is already known
to be a subjective and error prone process (Eatough 2009; Eatough
et al. 2010). In any case, it is infeasible to continue using manual
approaches given the rise in candidate numbers predicted in Section
2.1, also anticipated by others (Keane et al. 2014). Thus irrespective
of the true accuracy of manual selection, it must be supplanted to
keep pace with increasing data capture rates and candidate numbers.

4.2 Critique of Automated Approaches

Machine learning approaches are becoming increasingly important
for automating decision making processes in finance (Chandola
et al. 2009), medicine (Markou & Singh 2003; Chandola et al.
2009), safety critical systems (Markou & Singh 2003; Hodge &
Austin 2004; Chandola et al. 2009) and astronomy (Borne. 2009;
Ball & Brunner. 2009; Way et al. 2012). Given the widespread
adoption of ML, the continued application of manual selection
raises a fundamental question: why has a transition to completely
automated selection not yet occurred? Specific barriers to adoption
may be responsible, such as the expertise required to implement
and use ML methods effectively. Where this barrier is overcome,
approaches emerge that are typically survey and search specific.

A further problem is the limited public availability of pulsar
specific code and data. Thus to adopt ML approaches new
systems generally need to be built from scratch. Machine learning
approaches also have to be ‘trained’ upon data acquired by the same
pipeline they will be deployed upon5. If training data is not shared,
it has to be collected before a survey begins. The cost of doing so
may be a further barrier to adoption. Perhaps more simply, existing
automated approaches may not yet be accurate enough to be trusted
completely. If this is the case, it is unlikely to be caused by the choice
of ML system (e.g. neural network, probabilistic classifier, or any
other). Those methods described in Section 3.4 employ well studied
ML techniques, proven to be effective for a variety of problems.
Drops in performance are more likely to be due to deficiencies in
i) the features describing candidates, and ii) the data used to train
learning algorithms. In the following section we present evidence
suggesting that existing candidate features may well be sub-optimal.

4.2.1 Sub-optimal Candidate Features

Candidate features can be categorized as being either fundamental
to, or as being derived from candidate data. The latter derive new
information on the assumption that it will possess some utility,

5 The data an algorithm ‘learns’ from must possess the same distribution
as the data it will be applied to, otherwise its performance will be poor.
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Survey Year Fc (MHz) B (MHz) ∆v (kHz) nchans tsamp (µs) tobs (s) DM Trials
1st Molonglo Survey (Large et al. 1968) 1968 408 4 2000 2 5000 15 ?
Search at low Galactic Lat. (Davies et al. 1970) 1969 408 4 ? ? 50000 819 ?
Arecibo Survey 1 (Hulse & Taylor 1974) 197? 430 8 250 32 5600 198 64
Jodrell Survey A (Davies et al. 1977) 1972 408 4 2000 2 40000 660 ?
2nd Molonglo Survey (Manchester et al. 1978) 1977 408 4 800 4 20000 44.7 ?
Green Bank Northern Hemisphere Survey
(Damashek et al. 1978, 1982) 1977 400 16 2000 8 16700 144 8

Princeton-NRAO Survey (Dewey et al. 1985) 1982-83 390 16 2000 8 5556 138 8
Green Bank short-period (Stokes et al. 1985) 1983 390 8 250 32 2000 132 ?
Jodrell Survey B (Clifton & Lyne 1986) 1983-84 1400 40 5000 8 2000 540 ?
Arecibo survey 2 (a) - Phase II Princeton-NRAO
(Stokes et al. 1986) 1983 390 8 250 32 2000 132 ?

Arecibo survey 2 (b) (Stokes et al. 1986) 1984-85 430 0.96 60 16 300 39 ?
Jodrell Survey C Biggs & Lyne (1992) 1985-87 610/925/928/1420 4/8/32 125/500/1000 32 300 79 39
Parkes Globular Cluster Survey (20cm)
(Manchester et al. 1990a,b)∗ 1989-90 1491 80/320 1000/5000 80/64 300 3000 100

Parkes Globular Cluster Survey (50cm)
(Manchester et al. 1990a,b)∗ 1988-90 640 32 250 128 300 3000/4500 100

Arecibo Survey 3 (Nice et al. 1995) 198? 430 10 78.125 128 516.625 67.7 256
Parkes 20-cm Survey (I) (Johnston et al. 1992) 1988 1434 800 1000 80 300 78.6 100
Parkes 20-cm Survey (II) (Johnston et al. 1992) 1988 1520 320 5000 64 1200 157.3 100
Arecibo 430 MHz Intermediate Galactic
Latitude Survey (Navarro et al. 2003) 1989-91 430 10 78.125 128 506.625 66.4 163

High Galactic Latitude Pulsar Survey of the
Arecibo Sky (H1) (Foster et al. 1995) 1990 430 10 250 128 506 40 64

High Galactic Latitude Pulsar Survey of the
Arecibo Sky (H2) (Foster et al. 1995) 1991 430 8 250 32 250 40 64

High Galactic Latitude Pulsar Survey of the
Arecibo Sky (H3) (Foster et al. 1995) 1992 430 8 250 32 250 40 64

High Galactic Latitude Pulsar Survey of the
Arecibo Sky (H4) (Foster et al. 1995) 1993 430 8 250 32 250 40 64

High Galactic Latitude Pulsar Survey of the
Arecibo Sky (H5) (Foster et al. 1995) 1994-95 430 8 250 32 250 40 64

Arecibo Survey 4 Phase I (Nice et al. 1993) 1991 430 10 78.125 128 516.625 67.7 ?
Arecibo Survey 4 Phase II (Camilo et al. 1993) 1992 429 8 250 64 250 40 192
Parkes Southern (Manchester et al. 1996) 1991-93 436 32 1250 256 300 157.3 738
GreenBank fast pulsar survey (Sayer et al. 1997) 1994-96 370 40 78.125 512 256 134 512
PMPS (Manchester et al. 2001) 1997 1374 288 3000 96 250 2100 325
Swinburne Int. Lat. survey (Edwards et al. 2001) 1998-99 1374 288 3000 96 125 265 375

Table 2.Technical specifications of pulsar surveys conducted between 1968-1999. Here Fc (MHz) is the central observing frequency, B (MHz) is the bandwidth,
∆v (kHz) is the channel width (to 3.d.p), nchans indicates the number of frequency channels, tsamp (µs) is the sample frequency (to 3.d.p), and tobs (s) the
length of the observation (to 1.d.p). Note * indicates more than one configuration used during the survey. The omission of a survey should be treated as an
oversight as opposed to a judgement on its significance.

whilst the former do not. For instance the S/N or period of a
candidate, can be considered fundamental. A good example of
a derived feature is the χ2 value of a sine curve fit to the pulse
profile as used by Bates et al. (2012). Using curve fittings in this
manner expresses an underlying hypothesis. In this case Bates et
al. (2012) suppose a good χ2 fit to be indicative of sinusoidal RFI.
Whilst the reasoning is sound, such a feature represents an untested
hypothesis which may or may not hold true.

The majority of existing features are derived (see Eatough
et al. 2010; Bates et al. 2012; Thornton 2013; Morello et al.
2014) , and are based upon the heuristics used when selecting
candidates manually. As manual selection is imperfect, we cannot
rule out the possibility of having designed features, and thereby
automated methods, which make the same mistakes as ourselves.
Some features in use have been found to introduce unwanted and
unexpected biases against particular types of pulsar candidate
(Bates et al. 2012; Morello et al. 2014). Fundamental features are
not necessarily better. For example the folded or spectral S/N, is
often used as a primitive filter and as a feature for learning. As noise
candidates possessing folded S/Ns of 6σ are common (Nice et al.
1995), using an S/N cut at this level allows large numbers of likely
noise-originating candidates to be rejected. However as noted by
Bates et al. (2012), such cuts are helpful only if one assumes all low

S/N candidates are attributable to noise. In practice the application
of cuts has prevented the detection of weaker pulsar signals as
warned in Section 2.1. PSR J0812-3910 went unseen in High
Latitude survey data (Burgay et al. 2006), as its spectral S/N was
below the survey’s threshold for folding. Similarly PSR J0818-3049
went undetected during the same survey, as its folded S/N was
below the cut applied prior to manual selection. What’s more,
there is no agreed upon S/N cut level for any stage in the search
pipeline. Domain experience usually plays a role in determining
the level, but this is often not specified and difficult to quantify.
Levels used include 6σ (Damashek et al. 1978; Thornton 2013),
6.3σ (Manchester et al. 1978), 7σ (Foster et al. 1995; Hessels et
al. 2007), 7.5σ (Manchester et al. 1996), 8σ (Stokes et al. 1986;
Johnston et al. 1992; Manchester et al. 2001; Edwards et al. 2001;
Burgay et al. 2006, 2013), 8.5σ (Nice et al. 1995), 9σ (Jacoby
et al. 2009; Bates et al. 2011a), and finally 9.5σ (Jacoby et al. 2009).

A further problem with many existing features is that they
are implementation-dependent. They are described using concepts
that can be expressed in various ways mathematically (S/N used by
Bates et al. 2011a; Thornton 2013; Lee et al. 2013; Morello et al.
2014), are subject to interpretation without precise definition (pulse
width used by Bates et al. 2011a; Thornton 2013; Lee et al. 2013;
Morello et al. 2014), or implicitly use external algorithms which
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Survey Year Fc (MHz) B (MHz) ∆v (kHz) nchans tsamp (µs) tobs (s) DM Trials
Parkes high-lat multibeam (Burgay et al. 2006) 2000-03 1374 288 3000 96 125 265 ?
Survey of the Magellanic Clouds (Manchester et al. 2006) 2000-01 1374 288 3000 96 1000 8400 228
1.4 GHz Arecibo Survey (DM < 100) (Hessels et al. 2007) 2001-02 1175 100 390.625 256 64 7200 ?
1.4 GHz Arecibo Survey (DM > 100) (Hessels et al. 2007) 2001-02 1475 100 195.313 512 128 7200 ?
Large Area Survey for Radio Pulsars (Jacoby et al. 2009) 2001-02 1374 288 3000 96 125 256 375
EGRET 56 Pulsar survey (Crawford et al. 2006) 2002-03 1374 288 3000 96 125 2100 150
EGRET error box survey (Champion et al. 2005) 2003 327 25 48.828 512 125 260 392
A0327 Pilot (Deneva et al. 2013) 2003 327 25 48.828 512 256 60 6358
The Perseus Arm Pulsar Survey (Burgay et al. 2013)∗ 2004-09 1374 288 3000 96 125 2100 183/325
The 8gr8 Cygnus Survey (Rubio-Herrera et al. 2007;
Janssen et al. 2009) 2004 328 10 19.531 512 819.2 6872 488

Parkes deep northern Galactic Plane (Lorimer et al. 2013) 2004-05 1374 288 3000 96 125 4200 496
P-ALFA Survey (intial) (WAPP) (Cordes et al. 2006;
Deneva et al. 2009) 2004 1420 100 390.625 256 64 134 96

P-ALFA Survey (anticipated) (WAPP) (Cordes et al. 2006;
Deneva et al. 2009)∗ 2004-10 1420 300 390.625 1024 64 134 96/1272

6.5 Ghz Multibeam Pulsar Survey (Bates et al. 2011a) 2006-07 6591 576 3000 192 125 1055 286
Green Bank 350 MHz Drift Scan (Boyles et al. 2013) 2007 350 50 24.414 2048 81.92 140 ?
GBT350 (Spigot) (Deneva et al. 2013) 2007 350 50 24.414 2048 82 140 ?
P-ALFA Survey (MOCK) (Spitler et al. 2014; Deneva et al.
2009; Lazarus 2012)∗ 2009-14 1375 322.6 336.042 960 65.5 120/300 5016

GBNCC (GUPPI) (Deneva et al. 2013; Stovall et al. 2014)∗ 2009-14 350 100 24.414 4096 82 120 17352/26532
Southern HTRU (LOW) (Keith et al. 2010) 2010-12 1352 340 390.625 870 64 4300 ?
Southern HTRU (MED) (Keith et al. 2010) 2010-12 1352 340 390.625 870 64 540 1436
Southern HTRU (HIGH) (Keith et al. 2010) 2010-12 1352 340 390.625 870 64 270 8000
A0327 (MOCK) (Deneva et al. 2013) 2010 327 57 55.664 1024 125 60 6358
LPPS (Coenen et al. 2014) 2010 142 6.8 12.143 560 655 3420 3487
LOTAS (Coenen et al. 2014)∗ 2010-11 135 48 12.295 3904 1300 1020 16845/18100
Northern HTRU (LOW) (Barr et al. 2013; Ng 2012)∗ 2010-14 1360 240 585.9 410 54.61 1500 406/3240
Northern HTRU (MED) (Barr et al. 2013; Ng 2012)∗ 2010-14 1360 240 585.9 410 54.61 180 406/3240
Northern HTRU (HIGH) (Barr et al. 2013; Ng 2012)∗ 2010-14 1360 240 585.9 410 54.61 90 406/3240
SPAN512 (Desvignes et al. 2012) 2012 1486 512 500 1024 64 1080 ?
LOTAAS (Lofar Working Group 2013; Cooper 2014) 2013 135 95 12.207 2592 491.52 3600 7000
A0327 (PUPPI) (Deneva et al. 2013) 2014 327 69 24.503 2816 82 60 6358
SUPERB (Barr 2014; Keane et al., in prep. ) 2014 1374 340 332.031 1024 32 540 1448
GMRT High Resolution Southern Sky Survey (MID)
(Bhattachatyya 2014, 2015) 2014 322 32 15.625 2048 60 1200 6000

GMRT High Resolution Southern Sky Survey (HIGH)
(Bhattachatyya 2014, 2015) 2014 322 32 31.25 1024 30 720 6000

FAST* (Smits et al. 2009b) 2016 1315 400 42.105 9500 100 600 ?
SKA** (Configuration A) (Smits et al. 2009a) 2020-22 1250 500 50 9500 64 1800 ?
SKA** (Configuration B) (Smits et al. 2009a) 2020-22 650 300 50 9500 64 1800 ?

Table 3. Technical specifications of pulsar surveys conducted between 2000-present, and projected specifications for instruments under development. X-ray
pulsar searches undertaken during this period (Abdo et al. 2009; Ransom et al. 2011) are omitted. Here Fc (MHz) is the central observing frequency, B (MHz)
is the bandwidth, ∆v (kHz) is the channel width (to 3.d.p), nchans indicates the number of frequency channels, tsamp (µs) is the sample frequency (to 3.d.p),
and tobs (s) the length of the observation (to 1.d.p). Note * indicates more than one configuration used during the survey. The omission of a survey should be
treated as an oversight as opposed to a judgement on its significance.

go undefined (e.g. curve fitting employed by Bates et al. 2011a;
Thornton 2013). It is therefore difficult to build upon the work of
others, as features and reported results are not reproducible. Thus
direct comparisons between features are rare (Morello et al. 2014)
and impractical.

4.2.2 Feature Evaluation Issues

The techniques most often used to evaluate features are inadequate
for determining how well they separate pulsar and non-pulsar
candidates. The most common form of evaluation is undertaken in
two steps. The first determines the presence of linear correlations
between features and class labels (Bates et al. 2011a), the second
compares the performance of different classifiers built using the
features (Bates et al. 2011a; Lee et al. 2013; Morello et al. 2014)
— the standard ‘wrapper’ method (Kohavi & John 1997; Guyon &
Elisseeff 2003). This two-step evaluation considers strong linear
correlations and accurate classification performance, characteristic
of ‘good’ feature sets. However this fails to consider the presence
of useful non-linear correlations in the data. Finally using classifier

outputs to assess feature performance is known to give misleading
results (Brown et al. 2012), as performance will vary according to
the classifier used.

In order to build robust shareable features tolerant to bias,
it is necessary to adopt standard procedures that facilitate
reproducibility and independent evaluation within the pulsar search
community. Morello et al. (2014) began this process via the sharing
of a fully labelled data set, and by providing a clear set of design
principles used when creating their features. Here we make similar
recommendations, closely followed when designing and evaluating
the new feature set described in section 5. It is recommended that
features,

• minimise biases & selection effects (Morello et al. 2014)
• be survey-independent for data interoperability
• be implementation-independent, with concise
mathematical definitions allowing for reproducibility

• be evaluated using a statistical framework that enables
comparison and reproducibility
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Figure 5. Scatter plot showing the total number of samples per second
recorded by all pulsar surveys listed in Tables 2 & 3, as a function of time.

• guard against high dimensionality (Morello et al. 2014)
• be accompanied by public feature generation code,
to facilitate co-operation and feature improvement

• be supplied in a standard data format
• be evaluated on multiple data sets to ensure robustness.

4.3 Future Processing Challenges

The number of samples per second recorded by pulsar surveys
has been increasing steadily over time, as shown in Figure 5. This
measure serves as a useful proxy for estimating raw data throughput
per second,

bits/s =
(
106

tsamp

)
· nchans · npol · nbeams · nbits, (5)

where npol is the number of polarisations, nbits the number of
bits used to store an individual sample, and tsamp the sampling
rate expressed in microseconds. Finer frequency resolution, faster
sampling rates and longer observations, increase the data capture
rate and thereby the total volume of data generated during a survey.
These have been increasing over time as shown in Tables 2 and
3, a trend likely to continue (Smits et al. 2009a,b; Keane et al.
2014). If it does continue, it will become infeasible to store all raw
observational data permanently. It will similarly become impractical
to store all candidate data. This is perhaps best illustrated via an
example SKA scenario. Suppose for a single observation there are
1, 500 beams and 4, 000 DM trials. If just one candidate is above
the S/N selection threshold per DM-acceleration combination,
this leads to 4, 000 candidates produced per beam and 6 × 106
per observation. If each candidate is 50kB in size6 then 0.3TB of
candidate data will be generated per observation. For a hypothetical

6 Existing surveys already produce candidates larger than this (Cooper
2014; Barr 2014; Bhattachatyya 2015).

survey lasting 50 days, where there are 120 observations per day,
this equates to 3.6 × 1010 individual candidates, and 1.8PB of
candidate data alone (raw data storage requirements are much
greater). In the absence of sufficient archiving capacity, here it
becomes important to find and prioritise candidates of scientific
value for storage. To achieve this, the processing of observational
data will have to be done in real-time, from candidate generation to
candidate selection. Given the real-time constraint it is impossible
to incorporate human decision making into the candidate selection
process, thus automated approaches will have to be trusted to
accurately determine which data to retain, and which to discard.
This will need to be done at high levels of data throughput, with a
strict execution time constraint (i.e. before more data arrives). The
machine learning methods currently used for candidate filtering as
described in Section 3, are not optimised for real-time operation.
Rather they are designed for high accuracy, and as such their
learning models are not designed to be resource efficient. Their
memory and runtime requirements typically grow linearly with
the number of candidates observed, whilst quadratic growth or
worse is also common. In environments with high data rates, these
filters can quickly become processing bottlenecks as their runtime
increases. Increasing data rates therefore present two distinct
problems for candidate selection: they make it implausible to store
all observational data reducing the feasibility of off-line analysis,
and restrict our use of candidate selection approaches to those that
can operate within strict real-time constraints.

The shift to on-line processing has already occurred in
other domains in response to similar data pressures (ATLAS
Collaboration 2008). Indeed closer to home, some pulsar/fast
transient searches are already being undertaken with real-time
processing pipelines (Thompson et al. 2011; Ait-Allal et al. 2012;
Barr 2014; van Heerden et al. 2014). Real-time searches for fast
radio bursts (FRBs, Lorimer et al. 2007; Keane et al. 2012; Thornton
et al. 2013) are also becoming increasingly common (Law et al.
2014; Petroff et al. 2015; Karastergiou et al. 2015). These concerns
are returned to in Section 6.

5 NEW CANDIDATE FEATURES

Themodel introduced in Section 2.1 implies that candidate numbers
are rising exponentially, and increasingly dominated by noise. We
aim to address these problems by finding candidate features that
maximise the separation between noise and non-noise candidates,
reducing the impact of the largest contributor to high candidate
numbers. We also seek to minimise the number of features we
use, so as to avoid the problems associated with the ‘curse of
dimensionality’ (Hughes 1968), which reduces classification
performance. In total we extracted eight new features for this
purpose from two components of the typical pulsar candidate
following the recommendations of Section 4.2.1. These features
are defined in full in Table 4.

The first four are simple statistics obtained from the integrated
pulse profile (folded profile). The remaining four similarly obtained
from the DM-SNR curve shown in plot (E) in Figure 1. These
features are fundamental to the data, are dissociated with any
specific hypothesis, and are few in number. Likewise they possess
no intrinsic biases, except perhaps resolution, with respect to the
number of profile/DM curve bins used to describe a candidate.
The chosen features are also survey/implementation-independent,
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Feature Description Definition

Pro fµ
Mean of the integrated
profile P.

1
n

n∑
i=1

pi

Pro fσ

Standard deviation of
the integrated profile
P.

√∑n
i=1 (pi − P̄)2

n − 1

Pro fk
Excess kurtosis of the
integrated profile P.

1
n (

∑n
i=1 (pi − P̄)4)

( 1
n (

∑n
i=1 (pi − P̄)2))2

− 3

Pro fs
Skewness of the
integrated profile P.

1
n

∑n
i=1 (pi − P̄)3(√ 1

n

∑n
i=1 (pi − P̄)2

)3
DMµ

Mean of the DM-SNR
curve D.

1
n

n∑
i=1

di

DMσ

Standard deviation of
the DM-SNR curve
D.

√∑n
i=1 (di − D̄)2

n − 1

DMk
Excess kurtosis of the
DM-SNR curve D.

1
n (

∑n
i=1 (di − D̄)4)

( 1
n (

∑n
i=1 (di − D̄)2))2

− 3

DMs
Skewness of the DM-
SNR curve D.

1
n

∑n
i=1 (di − D̄)3(√ 1

n

∑n
i=1 (di − D̄)2

)3
Table 4. The eight features derived from the integrated pulse profile P =

{p1, . . . , pn }, and the DM-SNR curve D = {d1, . . . , dn }. For both P and
D, all pi and di ∈ N for i = 1, ..., n.

provided integrated profile and DM-SNR curve data has the
same numerical range, and the same “natural” DM window7 for
candidates output by different surveys.

These features were selected by returning to first principles
with respect to feature design. By incorporating knowledge of the
increasing trend in candidate numbers predicted in Section 2.1,
potential features were evaluated according to how well they each
separated noise and non-noise candidates. Starting with simple
lower-order statistics as possible features (mean, mode, median
etc.), the ability of each to reject noise was considered statistically
via a three-stage process. Higher order statistics and derived
features described by Thornton (2013) were then added to the
pool of possible features, and evaluated similarly. Those achieving
the best separation, and the best classification results when used
together with machine learning classifiers (see Section 6.3), were
then selected for use. Thus these features were chosen with no
preconceived notions of their suitability or expressiveness. Rather
features were chosen on a statistical basis to avoid introducing bias.

5.1 Feature Evaluation

There are three primary considerations when evaluating new
features. A feature must i) be useful for discriminating between the
various classes of candidate, ii) maximise the separation between
them, and iii) perform well in practice when used in conjunction
with a classification system. Three separate evaluation procedures
have therefore been applied to the features listed in Table 4. The first
two forms of evaluation are presented in the section that follows,
whilst classification performance is described in Section 6.3, to
allow for a comparison between standard classifiers and our stream
algorithm described in Section 6. As features in themselves are

7 The same number of DM steps, the same DM range.

Dataset Examples Non-pulsars Pulsars

HTRU 1 91,192 89,995 1,196

HTRU 2 17,898 16,259 1,639

LOTAAS 1 5,053 4,987 66

Table 5. The pulsar candidate data sets used.

without meaning unless obtained from data, we first describe the
data sets used during our analysis, before presenting details of the
evaluation.

5.1.1 Data

Three separate datasets were used to test the discriminating
capabilities of our features. These are summarised in Table 5. The
first data set (HTRU 1) was produced by Morello et al. (2014).
It is the first labelled8 candidate dataset made publicly available.
It consists of 1, 196 pulsar and 89, 995 non-pulsar candidates,
in pulsar hunter xml files (.phcx files). These candidates were
generated from a re-processing of HTRU Medium Latitude data,
using the GPU-based search pipeline peasoup (Barr et al., in
prep.). The pipeline searched for pulsar signals with DMs from 0
to 400 cm−3pc, and also performed an acceleration search between
−50 to +50 m s−2. The HTRU 1 candidate sample possesses varied
spin periods, duty cycles, and S/Ns.

In addition two further data sets were used during this
work. The first (HTRU 2), is made available for analysis9. It
comprises 1, 639 pulsar and 16, 259 non-pulsar candidates. These
were obtained during an analysis of HTRU Medium Latitude data
by Thornton (2013), using a search pipeline that searched DMs
between 0 to 2000 cm−3pc. The pipeline produced over 11 million
candidates in total. Of these 1, 610 pulsar and 2, 592 non-pulsar
candidates were manually labelled by Bates et al. (2012) and
Thornton (2013). These were combined with an additional 13, 696
candidates, sampled uniformly from the same data set according to
observational session and month. These additional candidates were
manually inspected and assigned their correct labels. Together the
two sets of labelled candidates form HTRU 2. It contains 725 of the
known 1,108 pulsars in the survey region (Levin 2012), along with
re-detections and harmonics. HTRU 2 also contains noise, along
with strong and weak forms of RFI. The third and final candidate
data set (LOTAAS 1), was obtained during the LOTAAS survey
(Lofar Working Group 2013; Cooper 2014) and is currently private.
The data set consists of 66 pulsar and 4, 987 non-pulsar candidates.
Feature data was extracted from these data sets using a new custom
written python tool, the Pulsar Feature Lab. This tool is made
available for use10.

5.1.2 General Separability

The discriminating capabilities of the new features when applied
to HTRU 1, are summarised in Figure 6 via standard box and
whisker plots. For each feature there are two distinct box plots. A
coloured box plot representing the feature distribution of known
pulsars, and a plain black box plot showing the feature distribution

8 Containing correctly labelled pulsar and non-pulsar candidates.
9 https://dx.doi.org/10.6084/m9.figshare.3080389.v1 .
10 http://dx.doi.org/10.6084/m9.figshare.1536472
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Figure 6. Box plots (median and IQR) showing the linear separability of our new features. Feature data was extracted from 90, 000 labelled pulsar candidates
produced by Morello et al. (2014), via the pulsar feature lab. There are two box plots per feature. The coloured boxes describe the feature distribution for
known pulsars, where corresponding coloured dots represent extreme outliers. Those box plots in black describe the RFI/noise distribution. Note that the data
of each feature was scaled to the interval [0, 1], before the median of the RFI/noise distribution was subtracted to centre the non-pulsar plots on zero.

of non-pulsars. As the features have numerical ranges which
differ significantly, feature data was scaled to within the range
[0, 1] prior to plotting. This enables a separability comparison
on the same scale. For each individual feature, the median value
of the negative distribution was also subtracted. Thus the plots
are centred around the non-pulsar median, allowing differences
between pulsar and non-pulsar distributions to be seen more clearly.

The visualisation shows there to be a reasonable amount of
separation between the pulsar and non-pulsar feature distributions.
This is initial evidence for the usefulness of these features11 but
only on a visual level. Thus we applied a two-tailed students t-
test to feature data, in order to determine if the means of the
pulsar and non-pulsar distributions were significantly different. A
rejection of the null hypothesis (no significant difference) would
provide statistical evidence for the separability indicated in the box
plots. For all data sets, there was a statistically significant difference
between the pulsar and non-pulsar distributions at α = 0.01. A
non-parametric Wilcoxon signed-rank test (Wilcoxon 1945), was
also undertaken with no difference in results. This suggested the
features to be worthy of further, more rigorous investigation. The
next step involved determining the extent of any linear correlation
between the features and the target class variable.

11 Similar levels of separability were observed when the same plot was
produced for both the HTRU 2 and LOTAAS 1 data sets.

Feature
Dataset

Avg. rpb
HTRU 1 HTRU 2 LOTAAS 1

Pro fµ -0.310 -0.673 -0.508 -0.512

Pro fσ -0.084 -0.364 -0.337 -0.266

Pro fk 0.545 0.792 0.774 0.719

Pro fs 0.601 0.710 0.762 0.697

DMµ -0.174 0.401 0.275 0.175

DMσ 0.059 0.492 0.282 0.287

DMk 0.178 -0.391 0.426 0.074

DMs 0.190 -0.230 -0.211 -0.096

Table 6. The point-biserial correlation coefficient for each feature on the
three test data sets.

5.1.3 Correlation Tests

The point-biserial correlation coefficient rpb (Das Gupta 1960),
measures the linear correlation between variables, when the target
variable is dichotomous. It is equivalent to the Pearson product
moment (Pearson 1895; Guyon& Elisseeff 2003), though it is better
suited to candidate data, as it naturally assumes a discrete target label
y ∈ Y as described previously. The value of rpb for a data sample is
given by,

rpb =
x̄1 − x̄2
σ

·

√
n2 · n1

n · (n − 1)
, (6)
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where n is the total number of samples, x̄1 and x̄2 the mean value
of groups one and two respectively, and σ the sample standard
deviation. Much like Pearson’s product moment, the coefficient
obtains a value in the range [−1, 1]. A positive correlation implies
that moving from group one to group two, is associated with an
increase in the output variable (high values tend to co-occur with
group two). A negative correlation implies that moving from group
one to group two, is associated with a decrease in the output
variable. Table 6 shows the correlation between the eight features
and the target class variable, for the three sample data sets. The
average (mean) correlation has also been computed. Since rpb is
non-additive, this average had to be determined using Fisher’s Z
transformation (Fisher 1921),

z =
1
2
ln

( 1 + rpb
1 − rpb

)
. (7)

Using Equation 7 the corresponding correlations of each feature on
the three datasets were transformed into additive z values, summed,
and themean obtained. Themean z valuewas then transformed back
into a meaningful correlation using the inverse of the Fisher-Z,

rpb =
e2·z − 1
e2·z + 1

. (8)

The data in Table 6 shows there to be three features that on
average, exhibit strong correlations (> |0.5|). These include the
mean, excess kurtosis, and skew of the integrated pulse profile. All
features exhibit a weak correlation on at least one data set, which
is stronger on others. The lowest correlation witnessed on HTRU 1,
between the standard deviation of the DM-SNR curve and the target
variable, performed much better on HTRU 2. This is probably due
to differences between the DM ranges of candidates in each dataset
(0-400 cm−3pc for HTRU 1 and 0-2000 cm−3pc for HTRU 2).
Irrespective of this no features are completely uncorrelated. Whilst
there is variation in the effective linear separability of features across
all data sets, it is surprising that such simple measures possess
discriminatory ability at all. However, caution must be used when
judging features based upon their linear correlations. Those features
which possess linear correlations close to zero, may possess useful
non-linear correlations which are harder to discern. Thus we turn to
the tools of information theory (MacKay 2002; Guyon & Elisseeff
2003; Brown 2009) to look for such relationships.

5.1.4 Information Theoretic Analysis

Information theory uses the standard rules of probability to learn
more about features and their interactions. Features which at first
appear information-poor, may when combined with one or more
other features, impart new and meaningful knowledge (Guyon &
Elisseeff 2003). Applying this theory to candidate features enables
their comparison, evaluation, and selection within an established
framework for the first time.

Information theory describes each feature X j in terms of
entropy. Entropy is a fundamental unit of information borrowed
from Thermodynamics by (Shannon & Weaver 1949), that
quantifies the uncertainty present in the distribution of X j.

The entropy of X j is defined as,

H (X j) = −
∑
x∈X j

P(x)log2P(x), (9)

where x corresponds to each value that X j can take, and P(x)
the probability of x occurring. If a given value of x occurs with

a high probability, then the entropy of X j is low. Conceptually
this can be understood to mean that there is little uncertainty over
the likely value of X j. Likewise if all possible values of a feature
are equally likely, then there is maximum uncertainty and therefore
maximumentropy12.Whilst entropy can provide an indication of the
uncertainty associated with a feature variable, its main usefulness
arises when conditioned on the target variable (true class label) Y .
The conditional entropy of X j given Y is,

H (X j |Y ) = −
∑
y∈Y

p(y)
∑
x∈X j

P(x |y)log2P(x |y), (10)

where P(x |y) is the probability of x given y such that,

P(x |y) =
P(x ∩ y)

P(y)
. (11)

This quantifies the amount of uncertainty in X j once the value
of Y is known. Using Equations 9-11 it is possible to define the
mutual information (MI, Brown et al. 2012)13 between the feature
X j, and the class label Y . This can be considered another method of
measuring the correlation between a feature and the target variable
which detects non-linearities. Mutual information is defined as,

I (X j;Y ) = H (X j) − H (X j |Y ). (12)

The MI expresses the amount of uncertainty in X j removed by
knowingY . If I (X j |Y ) = 0 then X j andY are independent. Whereas
if I (X j |Y ) > 0, then knowing Y helps to better understand X j. As
mutual information is symmetric, knowing X j equivalently helps
to better understand Y . Thus MI is often described as the amount of
information that one variable provides about another (Brown et al.
2012). It is desirable for features to possess high MI with respect
to pulsar/non-pulsar labelling.

The MI metric helps identify relevant features, by enabling
them to be ranked according to those that result in the greatest
reduction of uncertainty. It is one of the most common filter
methods (Kohavi & John 1997; Guyon & Elisseeff 2003; Brown
et al. 2012) used for feature selection (Brown 2009). The entropy
and MI of our features are listed in Table 7, ranked according to
their mean MI content, where higher MI is desirable. To produce
this table feature data was discretised, for reasons set out by Guyon
& Elisseeff (2003), enabling use with the information-theoretic
feast14 and mitoolbox15 toolkits developed by Brown et al.
(2012). The data was discretised using 10 equal-width bins using
the filters within the weka data mining tool16. Simple binning was
chosen ahead of more advanced Minimum Description Length
(MDL) based discretization procedures (Fayyad & Irani 1993), to
simplify feature comparisons.

The four features extracted from the integrated profile contain
the largest amounts of MI. These are the most relevant features.
The MI content of features extracted from the DM-SNR is much
lower. It is tempting therefore to write off these low scoring features
since their linear correlation coefficients were also shown to be

12 Max entropy for a feature with n possible values is given by log2 (n).
13 Also known as information gain, or a specific case of theKullback-Leibler
divergence (MacKay 2002).
14 http://www.cs.man.ac.uk/~gbrown/fstoolbox.
15 http://www.cs.man.ac.uk/~pococka4/MIToolbox.html.
16 http://www.cs.waikato.ac.nz/ml/weka.
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Feature
Dataset

Avg.
HTRU 1 HTRU 2 LOTAAS 1

H (X j) I (X j;Y ) H (X j) I (X j;Y ) H (X j) I (X j;Y ) H (X j) I (X j;Y )

Pro fk 1.062 0.073 1.549 0.311 0.948 0.088 1.186 0.157

Pro fµ 1.993 0.065 2.338 0.269 1.986 0.085 2.106 0.139

Pro fs 0.545 0.063 0.523 0.245 0.114 0.074 0.394 0.127

DMk 1.293 0.021 2.295 0.146 1.842 0.083 1.810 0.083

Pro fσ 2.011 0.007 1.972 0.115 2.354 0.061 2.112 0.061

DMσ 2.231 0.004 2.205 0.171 0.013 0.006 1.483 0.060

DMµ 1.950 0.028 0.835 0.114 0.015 0.008 0.933 0.050

DMs 0.138 0.013 1.320 0.041 2.243 0.045 1.233 0.033

Table 7. The entropy H (X j), and mutual information I (X j;Y ) of each feature. Features are ranked according to their mutual information content with respect
to the class label Y . Higher mutual information is desireable.

low in Section 5.1.2. However whilst mutual information indicates
which features are relevant, it is entirely possible for these to
contain redundant information (Guyon & Elisseeff 2003). Thus
choosing themost relevant features may not produce optimal feature
subsets (Kohavi & John 1997), since these could contain the same
information. The joint mutual information criterion (JMI, Yang &
Moody 1999) can detect and minimise such redundancy (Guyon
& Elisseeff 2003; Brown et al. 2012). Given a set of features
the JMI selects those with complementary information, starting
with the feature possessing the most mutual information X1. In
‘forward selection’ (Kohavi & John 1997; Guyon& Elisseeff 2003),
a common method of feature selection, a greedy iterative process is
used to decide which additional features are most complementary
to X1, using the notion of the JMI score,

JMI(X j) =
∑

Xk∈F

I (X jXk;Y ), (13)

where X jXk can be understood as a joint probability, and F is
the set of features. The iterative process continues until a desired
number of features are selected. This produces a feature set that
minimises redundancy. Alternatively, if the desired number of
features to select equals the total number of those available, features
are ranked according to the JMI. Using the JMI in this manner, our
features have been ranked such that a lower rank is preferable. Upon
applying this criterion poor features are revealed to be useful. This
is shown in Table 8 which demonstrates that features extracted from
the DM-SNR curve impart complementary information, and are
therefore ranked higher than profile features which possess greater
mutual information. The standard deviation of the DM-SNR curve
in particular, is ranked as the 2nd ‘best’ feature on two of the three
test datasets. Likewise the excess kurtosis and skewness of the DM-
SNR curve, are the second and fourth ‘best’ features for LOTAAS
data respectively. In the next section we describe a new data stream
classification algorithm, which takes advantage of these features.

6 STREAM CLASSIFICATION

Data streams are quasi-infinite sequences of information, which are
temporally ordered and indeterminable in size (Gaber et al. 2005;
Lyon et al. 2013, 2014). Data streams are produced bymanymodern
computer systems (Gaber et al. 2005) and are likely to arise from
the increasing volumes of data output by modern radio telescopes,

Feature
Dataset

Avg. Rank
HTRU 1 HTRU 2 LOTAAS 1

Pro fk 1 1 1 1

Pro fµ 3 3 3 3

DMσ 2 2 8 4

Pro fs 4 4 6 4.7

DMk 6 6 2 4.7

Pro fσ 7 5 5 5.7

DMµ 5 7 7 6.4

DMs 8 8 4 6.7

Table 8. The joint mutual information rank of each feature. Features are
ranked according to their average JMI across the three test data sets, where
a lower rank is better.

especially the SKA. However many of the effective supervised
machine learning techniques used for candidate selection do not
work with streams (Lyon et al. 2014). Adapting existing methods
for use with streams is challenging, it remains an active goal of
data mining research (Yang & Wu 2006; Gaber et al. 2007). Until
that goal is realised, new stream-ready selection approaches are
required.

6.1 Unsuitability of Existing Approaches

Supervised machine learning methods induce classification models
from labelled training sets (Mitchell 1997; Bishop 2006). Provided
these are large, representative of rare and majority class examples,
and independent & identically distributed (i.i.d.) to the data being
classified (Bishop 2006) good classification performance can be
expected to result. However the notion of a training set does not
exist within a data stream. There are instead two general processing
models used for learning.

• Batch processing model: at time step i a batch b of n
unlabelled instances arrives, and is classified using some model
trained on batches b1 to bi−1. At time i+1 labels arrive for batch bi,
along with a new batch of unlabelled instances bi+1 to be classified.
• Incremental processing model: a single data instance arrives

at time step i defined as Xi, and is classified using some model
trained on instances X1 to Xi−1. At time i + 1 a label arrives for Xi,
along with a new unlabelled instance Xi+1 to be classified.
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In both models learning proceeds continually, as labelled data
becomes available. This allows for adaptive learning. Standard
supervised classifiers simply cannot be trained in this way. Even
if they could, the CPU and memory costs of their training phases
make them impractical for streams (Gaber 2012). This was
recognised by Zhu et al. (2014) with respect to their pics system17.

Given these problems how should candidate selection be
addressed in streams? One may consider training an existing
supervised candidate classifier off-line, which could then be applied
to a candidate stream. This is a plausible approach, provided the
classifier processes each example before the next one arrives. For
this to be viable, the classifier must also be trained with data
that is i.i.d. with respect to the data in the stream. However data
streams are known to exhibit distributional shifts over varying time
periods. For example a changing RFI environment can exhibit shifts
over both short (minutes/hours), and/or long (days/weeks/years)
time-scales. In either case the shifts cause violations of the i.i.d.
assumption, a phenomena known as ‘concept drift’ (Widmer &
Kubat 1996; Gaber et al. 2005). To mitigate the impact of drift,
adaptive algorithms able to learn from distributional changes are
required, as pre-existing training data no longer characterises the
post-drift data distribution (Lyon 2015). Such algorithms must be
capable of completely reconstructing their internal learning models
in an efficient manner per each significant distributional shift.
Standard supervised learning models are ‘static’, i.e. they remain
unchanged once learned. A static classifier applied to streaming
data subject to drifts, will exhibit a significant deterioration in
classification performance over time (Aggarwal et al. 2004). This
makes standard supervised learning unsuitable for data streams.
In the next section we describe our new ‘intelligent’ data stream
classifier, which overcomes these deficiencies.

6.2 Gaussian-Hellinger Very Fast Decision Tree

The Gaussian-Hellinger Very Fast Decision Tree (GH-VFDT) is
an incremental stream classifier, developed specifically for the
candidate selection problem (Lyon et al. 2014). It is a tree-based
algorithm based on the Very Fast Decision tree (VFDT) developed
by Hulten et al. (2001). It is designed to maximise classification
performance on candidate data streams, which are heavily
imbalanced in favour of the non-pulsar class. It is the first candidate
selection algorithm designed to mitigate the imbalanced learning
problem (He & Garcia 2009; Lyon et al. 2013, 2014), known to
reduce classification accuracy when one class of examples (i.e.
non-pulsar) dominates the other. The algorithm uses tree learning
(Mitchell 1997) to achieve this, whereby the data is partitioned
using feature split point tests (see Figures 7 and 8) that aim to
maximise the separation of pulsar and non-pulsar candidates.
This involves first choosing the variable that acts as the best class
separator, and then finding a numerical threshold ‘test point’ for
that variable that maximises class separability.

The tree is ‘grown’ with labelled data to determine optimal
splits, using the Hoeffding bound (Hoeffding 1963). The bound is
used to choose statistically with high probability, those split points
that would have been selected, if given access to all training data in
advance (as in the traditional learning scenario). By calculating the
observed mean X̄ j of a feature, the bound is able to determine with

17 Zhu et al. (2014) indicated efforts are under way to rectify this.

... ... ... ... ... ...

Figure 7. An overview of how a streaming decision tree partitions the data
space to derive a classification. Each candidate is passed down the tree, and
tested at each node it reaches including the root. Each node test outcome
determines which branch the candidate continues down, until it reaches a
leaf at the bottom of the tree. The tree shown here assigns the class labels
A, B and C to examples reaching the leaf nodes.

confidence 1 − δ (where δ is user supplied), that the true mean of
the feature is at least X̄ j − ε where,

ε =

√
R2 ln(1/δ)

2n
, (14)

and R2 is the feature range squared. This ensures that the
statistically optimal split is always chosen. A split is not made until
enough examples in the stream have been seen, i.e. until there is
enough evidence to advocate its use. The quality of the splits, and
therefore the accuracy of the approach, improve over time. This is
because the model of the underlying data distributions improves
as more examples are observed. The performance of the algorithm
approaches that of a non-streamed classifier as the number of
examples observed approaches infinity (Hulten et al. 2001). The
tree is also able to adapt to change (Lyon 2015) by updating the data
distributions with each observed labelled example. Once there is
evidence to suggest an alternative split point is better than one in use,
the tree replaces the sub-optimal split. This is achieved by pruning
the branch of the tree containing the sub-optimal split, and replacing
it with a new branchwhich begins to ‘grow’ from the new split point.

The key feature of the GH-VFDT, is its use of the skew-
insensitive Hellinger distance measure (Hellinger 1909; Nikulin
2001) to evaluate split points during learning. This measure makes
the classifier robust to the imbalanced learning problem, preventing
the classifier from becoming biased towards the abundant non-
pulsar class (Lyon 2015). By modelling each feature distribution
as a Gaussian, the Hellinger distance between the pulsar and non-
pulsar distributions can be measured. If Q and N are the pulsar
and non-pulsar distributions respectively, the distance for a single
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Figure 8. An overview of how a decision tree partitions the data space using binary split point ‘tests’ at each node. The best feature variable at each node is first
determined, then an optimal numerical split point threshold chosen. Candidates with feature values below the threshold are passed down the left hand branch
of the tree, and possibly subjected to further split tests. Similarly for candidates with feature values above the threshold, except these are passed down the right
hand branch. Eventually candidates reach the leaf nodes, where they are assigned class labels.

feature is given by,

dH (Q, N ) =

√√√√
1 −

√
2σ1σ2

σ2
1 + σ

2
2
e
− 1

4
(µ1−µ2 )2

σ2
1+σ

2
2 , (15)

where Q has mean µ1, variance σ2
1 and standard deviation σ1,

with N defined similarly. The goal of split evaluation is to choose
the split which maximises the Hellinger distance, maximising
pulsar and non-pulsar separation. This approach requires that
only the mean and standard deviation of each feature be known.
This significantly reduces the GH-VFDT memory overheads, as
knowledge of the entire feature distribution(s) is not required for
learning. Therefore the runtime and memory requirements of the
algorithm are sub-linear with respect to the number of examples
processed, and grow in only constant time for each new node added
to the tree. This makes the algorithm suitable for use upon very
high throughput data streams such as those described in Section 4.3.

A complete outline of the GH-VFDT is given in Algorithm
1. On line 7 tree statistics used to compute the Hellinger distance
are updated. In particular the running mean and standard deviation
maintained at each leaf, for feature j, and class k are updated. The
call to getBest(dist, X j

i ) returns the best and second best features
found at a leaf. This is achieved by choosing those that maximise
the Hellinger distance via an iterative process. On line 18 tree split
points are first generated and evaluated. Here data is discretized
using 10 equal-width bins, and a binary split point chosen.

This approach has already been shown to significantly improve
recall rates for pulsar data, above the levels achieved by established
stream classifiers. When applied to a data stream containing 10,000
non-pulsar candidates for every legitimate pulsar (HTRU data
obtained by Thornton (2013)), it raised the recall rate from 30
to 86 per cent (Lyon et al. 2014). This was achieved using candidate
data described using the features designed by Bates et al. (2012)
and Thornton (2013). A full implementation of the algorithm can
be found on-line for public use18.

18 https://github.com/scienceguyrob/GHVFDT

Algorithm 1 Gaussian Hellinger Very Fast Decision Tree
Require: An input stream S = {..., (Xi, yi), ... }, such that each Xi is

a candidate, X j
i its j-th feature and yi its class label. The parameter

δ ∈ (0, 1) is the confidence desired, and τ ∈ (0, 1) a parameter which
if set, prevents split point ties.

1: procedure GH-VFDT(S, δ, τ)
2: Let DT be a decision tree with leaf l1
3: for i ← 1 to |S | do . For each stream instance.
4: l ← sor t (Xi, yi) . Sort instance Xi to leaf l .
5: k ← yi . Get class.
6: for j ← 1 to |X j

i | do . For each feature.
7: update µjk (l, X j

i ) . Update observed µ at leaf.
8: update σjk (l, X j

i ) . Update observed σ at leaf.
9: Label l with majority class of instances seen at l
10: if all Xi seen at l don’t belong to same class then
11: Fa ← null . Best feature.
12: Fb ← null . 2nd best feature.
13: for j ← 1 to |X j

i | do . For each feature.
14: dist ← dH (X j

i ) . From equation 15.
15: Fa, Fb ← getBest (dist, X j

i )

16: ε =

√
R2 ln (1/δ)

2n . Hoeffding bound.
17: if dH (Fa) − dH (Fb) > ε or ε < τ then
18: Replace l with new leaf that splits on Fa
19: for each branch of split do
20: Add new leaf lm
21: for k ← 1 to |S | do . For each class.
22: for j ← 1 to |Xi | do . For each X

j
i .

23: µijk (lm) ← 0
24: σijk (lm) ← 0
25: return DT

6.3 Classification Performance

Existing features and algorithms have been evaluated predominantly
in terms of classification accuracy. Such an analysis considers
candidate selection as a binary classification problem, whereby
candidates arising from pulsars are considered positive (+), and
those from non-pulsars negative (-). There are then four possible
outcomes for an individual classification decision. These outcomes
are summarised in Table 10 and are evaluated using standardmetrics
such as those outlined in Table 9. The goal of classification is to
minimise the number of false positives, whilst maximising the true
positives. Features in this domain aremost often chosen according to
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Statistic Description Definition

Accuracy Measure of overall
classification accuracy.

(TP+TN )
(TP+FP+FN+TN )

False
positive
rate (FPR)

Fraction of negative
instances incorrectly
labelled positive.

FP
(FP+TN )

G-Mean

Imbalanced data metric
describing the ratio
between positive and
negative accuracy.

√
TP

TP+FN ×
TN

TN+FP

Precision Fraction of retrieved
instances that are positive.

TP
(TP+FP)

Recall Fraction of positive
instances that are retrieved.

TP
(TP+FN )

F-Score
Measure of accuracy that
considers both precision
and recall.

2 × precision×recall
precision+recall

Specificity
Fraction of negatives
correctly identified as
such.

TN
(FP+TN )

Table 9. Standard evaluation metrics for classifier performance. True
Positives (TP) are those candidates correctly classified as pulsars. True
Negatives (TN) are those correctly classified as not pulsars. False Positives
(FP) are those incorrectly classified as pulsars, False Negatives (FN) are
those incorrectly classified as not pulsars. All metrics produce values in the
range [0, 1].

Predicted
- +

Actual
- True Negative (TN) False Positive (FP)
+ False Negative (FN) True Positive (TP)

Table 10.Confusionmatrix describing the outcomes of binary classification.

how well they maximise classifier recall (the fraction of legitimate
pulsar candidates correctly classified) and specificity (fraction of
non-pulsar candidates correctly classified)19. Those classifiers with
high recall and specificity exhibit high accuracy, often interpreted
to mean that underlying features are good discriminators.

This form of evaluation enables approaches to be tested
quickly, with readily interpretable results. However using classifier
performance as a proxy to measure feature-separability tests
the classification system used as much as the features under
investigation (Brown et al. 2012). The choice of classifier can
influence the outcome of the evaluation giving misleading results.
Evaluation metrics themselves can also be misleading. Pulsar
data sets are imbalanced with respect to the total number of
pulsar and non-pulsar candidates within them (Lyon et al. 2013,
2014). Thus for data sets consisting of almost entirely non-pulsar
examples, high accuracy can often be achieved by classifying all
candidates as non-pulsar. In these situations it is an unhelpfulmetric.

To overcome these possible sources of inaccuracy when
evaluating the GH-VFDT, wemake use of the G-mean metric (He &
Garcia 2009). This describes the ratio between positive and negative
accuracy, ameasure insensitive to the distribution of pulsar and non-
pulsar examples in test data sets. Additionally we employ multiple

19 The approaches in Section 3.4 evaluate in this manner.

classifiers in our evaluation which differ greatly in terms of their
internal learning models. This allows for a more general view of
feature performance in practice to be revealed. This is also useful
for evaluating the performance of the GH-VFDT with respect to
standard static supervised classifiers, which are at an advantage in
such tests. Here wemake use of four standard classifiers found in the
weka tool. These include the decision tree algorithm C4.5 (Quinlan
2007), MLP neural network (Haykin 1999), a simple probabilistic
classifier Naïve Bayes (NB, Bishop 2006), and the standard linear
soft-margin support vector machine (SVM, Cortes 1995).

6.3.1 GH-VFDT Classification Evaluation Procedure

Feature data was extracted from the data sets listed in Table
5, and then independently sampled 500 times. Each sample
was split into test and training sets. For HTRU 1 & 2, sampled
training sets consisted of 200 positive and 200 negative examples,
with remaining examples making up the test sets. LOTAAS 1
training sets contained 33 positive examples and 200 negative,
with remaining examples similarly making up the test sets. Each
classifier (five in total) was then trained upon, and made to classify
each independent sample, therefore there were 3× 500× 5 = 7, 500
tests in total. The performance of each algorithm per data set
was then averaged to summarise overall performance. To evaluate
classifier performance results, one-factor analysis of variance
(ANOVA) tests were performed, where the algorithm used was the
factor. Tukey’s Honestly Significant Difference (HSD) test (Tukey
1949), was then applied to determine if differences in results were
statistically significant at α = 0.01. The full results are shown in
Table 11.

These results indicate that it is possible to achieve high levels
of classifier performance using the features described in Section
5. What’s more, the classification results are consistent across all
three data sets. Recall rates on all three test data sets are high,
with 98 per cent recall achieved by the MLP on HTRU 1 and
LOTAAS 1 data. High levels of accuracy were observed throughout
testing and G-mean scores on HTRU 1 were particularly high. The
algorithms also exhibited high levels of specificity and generally
low false positive rates. The exception being the 6 per cent false
positive rate achieved by the NB classifier on HTRU 2 data. This
outcome is unremarkable for NB, the simplest classifier tested,
as the HTRU 2 data set is populated with noise and borderline
candidates. Thus we suggest that these represent the first survey
independent features developed for the candidate selection problem.

The results also show that the GH-VFDT algorithm
consistently outperformed the static classifiers, in terms of both
specificity and false positive return rate. This is a highly desirable
outcome for a stream classifier, since assigning positive labels
too often will return an unmanageable number of candidates. The
classifier does not always predict ‘non-pulsar’ to give this result. It
is precise, achieving the best precision on two out of the three data
sets. G-mean and recall rates were also high for the GH-VFDT, the
latter reaching 92.8 per cent on HTRU 1 data. The recall rates are
lower on the remaining two data sets. However it is worth noting
that these data sets are considerably smaller than HTRU 1. This is
important, since the performance of the GH-VFDT (and of other
stream algorithms) improves as more examples are observed. The
lower levels of recall on HTRU 2 and LOTAAS 1 are therefore to be
expected given the smaller dataset size. In terms of the usefulness
of this algorithm for SKA data streams, the GH-VFDT returns
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Dataset Algorithm G-Mean F-Score Recall Precision Specificity FPR Accuracy

HTRU 1
C4.5 0.962∗ 0.839∗ 0.961 0.748 0.962 0.038 0.962
MLP 0.976 0.891 0.976 0.820 0.975 0.025∗ 0.975
NB 0.925 0.837∗ 0.877 0.801 0.975 0.025∗ 0.965
SVM 0.967 0.922 0.947 0.898 0.988 0.012 0.984

GH-VFDT 0.961∗ 0.941 0.928 0.955 0.995 0.005 0.988

HTRU 2
C4.5 0.926 0.740 0.904 0.635∗ 0.949∗ 0.051∗ 0.946∗
MLP 0.931 0.752 0.913 0.650∗ 0.950∗ 0.050∗ 0.947∗
NB 0.902 0.692 0.863 0.579 0.943 0.057 0.937
SVM 0.919 0.789 0.871 0.723 0.969 0.031 0.961

GH-VFDT 0.907 0.862 0.829 0.899 0.992 0.008 0.978

LOTAAS 1
C4.5 0.969 0.623 0.948 0.494 0.991 0.009 0.990
MLP 0.988 0.846∗ 0.979 0.753 0.998 0.002 0.997∗
NB 0.977 0.782 0.959 0.673 0.996 0.004 0.996
SVM 0.949 0.932 0.901 0.966 0.999∗ 0.001∗ 0.999

GH-VFDT 0.888 0.830∗ 0.789 0.875 0.999∗ 0.001∗ 0.998∗

Table 11. Results obtained on the three test data sets. Bold type indicates the best performance observed. Results with an asterisk indicate no statistically
significant difference at the α = 0.01 level.

consistently less than 1 per cent of candidates as false positives.
This greatly reduces the quantity of candidates to be analysed. The
GH-VFDT also classifies candidates rapidly. It classified candidates
at a rate of ∼ 70, 000 per second using a single 2.2 GHz Quad Core
mobile CPU (Intel Core i7-2720QM Processor) when applied to a
larger sample of HTRU 2 data consisting of 11 million examples.
A discussion of the statistics of the pulsars incorrectly classified by
the new methods will be discussed in a future paper.

7 SUMMARY

This paper has described the pulsar candidate selection process,
and contextualised its almost fifty year history. During this time
candidate selection procedures have been continually adapting to
the demands of increased data capture rates and rising candidate
numbers, which has proven to be difficult. We have contributed
a new solution to these problems by demonstrating eight new
features useful for separating pulsar and non-pulsar candidates,
and by developing a candidate classification algorithm designed
to meet the data processing challenges of the future. Together
these enable a high fraction of legitimate pulsar candidates to
be extracted from test data, with recall rates reaching almost 98
per cent. When applied to data streams, the combination of these
features and our algorithm enable over 90 per cent of legitimate
pulsar candidates to be recovered. The corresponding false positive
return rate is less than half a percent. Thus together these can
be used to significantly reduce the problems associated with
high candidate numbers which make pulsar discovery difficult,
and go some way towards mitigating the selection problems
posed by next generation radio telescopes such as the SKA. The
combination of these features and our classification algorithm
has already proven useful, aiding in the discovery of 20 new
pulsars in data collected during the LOFAR Tied-Array All-Sky
Survey (Cooper 2014). Details of these discoveries will be provided
elsewhere, demonstrating the utility of our contributions in practice.

The features described in this paper are amongst the most
rigorously tested in this domain. However whilst we advocate their
use on statistical grounds, we do not demonstrate their superiority
to other features. Future work will consider how these compare to
those used previously, and determine if combining them with those
already in use is worthwhile. Thus for the time being it is advisable

to construct as large a set of features as possible, and use the tools
described herein to select feature sets statistically.

8 ACKNOWLEDGEMENTS

This work was supported by grant EP/I028099/1 from the UK
Engineering and Physical Sciences Research Council (EPSRC).
HTRU 2 data was obtained by the High Time Resolution
Universe Collaboration using the Parkes Observatory, funded by the
Commonwealth of Australia and managed by the CSIRO. LOFAR
data was obtained with the help of the DRAGNET team, supported
by ERC Starting Grant 337062 (PI Hessels). We would also like to
thank Konstantinos Sechidis for some insightful discussions with
respect to information theoretic feature selection, Dan Thornton for
initially processing HTRU 2 data, and our reviewer for their helpful
feedback.

REFERENCES

ATLAS Collaboration, 2008, JINST, 3
Abdo A. A. et al., 2009, Science, 325, 5942, p.840
Aggarwal C. et al., 2004, Proc. of the tenth Int. Conf. on Knowledge

discovery and data mining, p.503-508
Ait-Allal D., Weber R., Dumez-Viou C., Cognard I., Theureau G., 2012, C.

R. Physique, 13, 1, p.80
Ball N., Brunner R. J., 2009, Int. J. Mod. Phys. D, 19, 7
Barber B. M., Odean T., 2000, Journal of Finance, 55, 2
Barr E. D. et al., 2013, MNRAS, 435, 2234
Barr E. D., 2014, presentation at "Extreme-Astrophysics in an Ever-

Changing Universe: Time-Domain Astronomy in the 21st Century",
Ierapetra, Crete, 16-20 June 2014. http://www3.mpifr-bonn.

mpg.de/div/jhs/Program_files/EwanBarrCrete2014.pdf

(accessed January 6th, 2016)
Bates S. D. et al., 2011a, MNRAS, 411, 1575
Bates S. D. et al., 2011b, MNRAS, 416, 2455
Bates S. D., 2011, PhD thesis, Univ. Manchester
Bates S. D. et al., 2012, MNRAS, 427, 1052
Bengio J., 2009, Foundations and Trends in Machine Learning, 2, p.1-127
Borne K. D., 2009, in Next Generation of DataMining, CRC Press, p.91-114
Bhattachatyya B., 2014, presentation at "Transient Key science

project meeting 2014", Manchester, UK, 9-10 September 2014.
http://www.jb.man.ac.uk/meetings/transients2014/pdfs/

Bhaswati.pdf (accessed January 6th, 2016)
Bhattachatyya B. et al., 2015, astro-ph/1509.07177

MNRAS 000, 1–20 (2015)

http://www3.mpifr-bonn.mpg .de/div/jhs/Program_files/EwanBarrCrete2014.pdf
http://www3.mpifr-bonn.mpg .de/div/jhs/Program_files/EwanBarrCrete2014.pdf
http://www.jb.man.ac .uk/meetings/transients2014/pdfs/Bhaswati.pdf
http://www.jb.man.ac .uk/meetings/transients2014/pdfs/Bhaswati.pdf


Fifty Years of Pulsar Candidate Selection 19

Biggs J. D., Lyne, A. G., 1992, MNRAS, 254, 257-263
Bishop C. M., 2006, Pattern Recognition and Machine Learning, Springer
Boyles J. et al., 2013, ApJ, 763, 2
Brown G., 2009, Twelfth Int. Conf. on A.I. & Statistics, p.49-56
Brown G., Pocock A., Zhao Z., Luján M., 2012, JMLR, 13
Burgay M. et al.,2006, MNRAS, 368, 283
Burgay M. et al., 2013, MNRAS, 429, 579
Burns W. R. and Clark B. G., 1969, A&A, 2, 280
Camilo F., Nice D. J., Taylor J. H., 1993, ApJ, 412, p.L37
Carilli C. L., Rawlings, S., 2004, Science with the Square Kilometre Array,

New Astronomy Reviews
Champion D. J., McLaughlin M. A., Lorimer D. R., 2005, MNRAS, 364,

1011
Chandola V., Banerjee A., and Kumar V., 2009, ACM Comp. Surv., 41, 3
Clifton T. R., Lyne A. G., 1986, Nature, 320, 43
Coenen T. et al., 2014, A&A, 570, A60
Cooper S., 2014, presentation at LOFAR Science 2014, Amsterdam,

The Netherlands, 7-11 April 2014. http://www.astron.nl/

lofarscience2014/Documents/Tuesday/Session%20III/

Cooper.pdf (accessed January 6th, 2016)
Cordes J. M., Kramer M., Lazio T. J. W., Stappers B. W., Backer D. C.,

Johnston S., 2004, New Astronomy Reviews, 4, 11-12, p.1413
Cordes J. M. et al., 2006, ApJ, 637, 446
Cortes C., Vapnik, V., 1995, ML, 20, 3, p.273
Crawford F. et al., 2006, ApJ, 652, 2, 1499
Damashek M., Taylor J. H., Hulse R. A., 1978, ApJ, 225, L31-L33
Damashek M., Backus P. R., Taylor J. H., Burkhardt R. K., 1982, ApJ, 253,

L57-L60
Damour T., Esposito-Farèse, G., 1998, Phys. Rev. D, 58, 4
Das Gupta S., 1960, Psychometrika, 25, 4
Davies J. G., Large M. I., Pickwick A. C., 1970, Nature, 227
Davies J. G., Lyne A. G., Seiradakis, J. H., 1977, MNRAS, 179, 635
Deich W. T. S., 1994, PhD thesis, California Institute of Technology.
Deneva J. S. et al., 2009, ApJ, 703, 2, 2259
Deneva J. S., Stovall K., McLaughlin M. A., Bates S. D., Freire P. C. C.,

Martinez J. G., Jenet F., Bagchi M., 2013, ApJ, 775, 1
Desvignes G., Cognard I., Champion D., Lazarus P., Lespagnol P., Smith

D. A., Theureau, G., 2012, IAU Symposium 291, astro-ph/1211.3936
Dewey R. J., Taylor J. H., Weisberg J. M., Stokes G. H., 1985, ApJ, 294, 1,

L25-L29
Duda R. O., Hart P. E., Stork D. G., 2000, Pattern Classification, 2nd Edition
Eatough R. P., 2009, PhD thesis, Univ. Manchester.
Eatough R. P., Molkenthin N., KramerM., Noutsos A., Keith M. J., Stappers

B. W., Lyne A. G., 2010, MNRAS, 407, 2443
Eatough R. P., Kramer M., Lyne A. G., Keith M. J., 2013, MNRAS, 431,

292
Edwards R. T., Bailes M., van Straten W., Britton M. C., 2001, MNRAS,

326, 358
Faulkner A. J. et al., 2004, MNRAS, 355, 147
Fayyad U., Irani K., 1993, IJCAI, p.1022-1029
Fisher R. A., 1921, Metron 1, 3-32
Flach P. A., 2003, Proc. 20th Int. Conf. on ML, p.194-201
Foster R. S., Cadwell B. J., Wolszczan A., Anderson S. B., 1995, ApJ, 454,

826
Gaber M. M., Zaslavsky A., Krishnaswamy S., 2005, ACM SIGMOD

Record, 34, 2, p.18-26
Gaber M. M., Zaslavsky A., Krishnaswamy S., 2007, Advances in Database

Systems, p.39-59
Gaber M. M., 2012, Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, 2, p.79-85
Guyon I., Elisseeff A., 2003, JMLR, 3, p.1157-1182
van Heerden E., Karastergiou A., Roberts S. J., Smirnov O., 2014, General

Assembly and Scientific Symposium (URSI GASS)
Haensel P., Potekhin A. Y., Yakovlev D. G., 2007, Astrophysics and Space

Science Library, 326
He H., Garcia E. A., 2009, IEEE Transactions on Knowledge and Data

Engineering, 21, 9, p.1263-1284

Haykin S., 1999, Neural Networks A Comprehensive Foundation, Prentice
Hall

Hellinger E., 1909, Journal für die reine und angewandte Mathematik
(Crelle’s Journal), 136, p.210-271

Hessels J. W. T., Ransom S. M., Stairs I. H., Kaspi V. M., Freire P. C. C.,
2007, ApJ, 670, 363

Hewish A., Bell S. J., Pilkington J. D. H., Scott P. F., Collins R. A., 1968,
Nature, 217, 5130

Hodge V. J., Austin J., 2004, AI Review, 22, 2
Hoeffding W., 1963, Journal of the American Statistical Association, 58,

301, p.13-30
Hogden J., Wiel, S. V., Bower, G. C., Michalak, S., Siemion, A., Werthimer,

D., 2012, astro-ph.IM/1201.1525
Hughes G., 1968, Information Theory, 14, 1, p.55-63
Hulse R. A. & Taylor J. H., 1974, ApJ, 191, L59
Hulten G., Spence L., Domingos P., 2001, Proc. of seventh ACM SIGKDD.
Jacoby B. A., Bailes M., Ord S. M., Edwards R. T., Kulkarni S. R., 2009,

ApJ, 699, 2, p.2009
Janssen G. H., Stappers B. W., Braun R., van Straten W., Edwards R. T.,

Rubio-Herrera E., van Leeuwen J., Weltevrede P., 2009, A& A, 498, 1,
p.223-231

Johnston S., Lyne A. G., Manchester R. N., Kniffen D. A., D’Amico N., Lim
J., Ashworth M., 1992, MNRAS, 255, 401

Karastergiou A. et al., 2015, astro-ph.IM/1506.03370
Keane E. F., Stappers, B. W., Kramer M., Lyne A. G., 2012, MNRAS, 425,

L71-L75
Keane E. F. et al., E., 2014, Proceedings of Science, PoS(AASKA14)040
Keane E. F., Petroff E., 2015, MNRAS, 447, 2852
Keith M. J, Eatough R. P., Lyne A. G., Kramer M., Possenti A., Camilo F.,

Manchester R. N., 2009, MNRAS, 395, 837
Keith M. J. et al., 2010, MNRAS, 409, 619
Knispel B. et al., 2013, ApJ, 774, 2
Kohavi R., John G. H., 1997, A.I., 97, 1-2, p.273-324
Kramer M., Backer D. C., Cordes J. M., Lazio T. J. W., Stappers B. W.,

Johnston S., 2004, New Astronomy Reviews, 48, 11-12, p.993-1002
Large M. I., Vaughan A. E., Wielebinski R., 1968, Nature, 220, 5169, p.753
Law C. J. et al., 2014, astro-ph/1412.7536
Lazarus P., 2012, The PALFA Survey, IAU Symposium 291,

http://www.pulsarastronomy.net/IAUS291/download/

Oral/IAUS291_LazarusP.pdf (accessed January 6th, 2016)
Lee K. J.,Guillemot L., Yue Y. L., Kramer M., Champion D. J., 2012,

MNRAS, 424, 2832
Lee K. J. et al., 2013, MNRAS, 433, 688
Levin L., 2012, PhD thesis, Swinburne University
LOFAR Pulsar Working Group, 2013, presentation at LOFAR Status

Meeting, Dwingeloo, The Netherlands, March 6th, 2013 http:

//www.lofar.org/wiki/lib/exe/fetch.php?media=public:

lsm_new:2013_03_06_hesself.pdf (accessed January 6th, 2016)
Lorimer D., Kramer, M., 2006, Cambridge Univ. Press
Lorimer D. et al., 2006, MNRAS, 372, 777
Lorimer D. R., Bailes M., McLaughlin M. A., Narkevic D. J., Crawford F.,

2007, Science, 318, p.777-780
Lorimer D. R., Camilo F., McLaughlin M. A., 2013, MNRAS, 434, 347
Lorimer D. R. et al., 2015, astro-ph.IM/1501.05516
Lyon R. J., Brooke J. M., Knowles J. D., Stappers B. W., 2013, SMC,

p.1506-1511
Lyon R. J., Brooke J. M., Knowles J. D., Stappers B. W., 2014, 22nd

International Conference on Pattern Recognition, p.1969-1974
Lyon R. J., 2015, PhD thesis, Univ. Manchester
MacKay D. J. C., 2002, Information Theory, Inference & Learning

Algorithms
Manchester R. N., Lyne A. G., Taylor J. H., Durdin J. M., Large M. I., Little

A. G., 1978, MNRAS, 185, 409
Manchester R. N., Lyne A. G., D’Amico N., Johnston S., Lim J., Kniffen

D. A., 1990a, Nature, 345, 598
Manchester R. N., Lyne A. G., Robinson C., D’Amico N., Bailes M., Lim

J., 1990b, Nature, 352, 219
Manchester R. N. et al., 1996, MNRAS, 279, 1235

MNRAS 000, 1–20 (2015)

http://www.astron .nl/lofarscience2014/Documents/Tuesday/Session%20III/Cooper.pdf
http://www.astron .nl/lofarscience2014/Documents/Tuesday/Session%20III/Cooper.pdf
http://www.astron .nl/lofarscience2014/Documents/Tuesday/Session%20III/Cooper.pdf
http://www.pulsarastronomy.net/IAUS291/download/Oral/IAUS291_LazarusP.pdf
http://www.pulsarastronomy.net/IAUS291/download/Oral/IAUS291_LazarusP.pdf
http://www.lofar.org/wiki/lib/exe/fetch .php?media=public:lsm_new:2013_03_06_hesself.pdf
http://www.lofar.org/wiki/lib/exe/fetch .php?media=public:lsm_new:2013_03_06_hesself.pdf
http://www.lofar.org/wiki/lib/exe/fetch .php?media=public:lsm_new:2013_03_06_hesself.pdf


20 R. J. Lyon et al.

Manchester R. N. et al., 2001, MNRAS, 328, 17
Manchester R. N., Hobbs G. B.,Teoh A., Hobbs M., 2005, Astron. J., 129, 4
Manchester R. N., Fan G., Lyne A. G., Kaspi V. M., Crawford F., 2006, ApJ,

649, 235
Markou M., Singh S., 2003, Signal Processing, 18, 12, p.2499-2521
Meehl P. E., 1954, Clinical versus statistical prediction: A theoretical

analysis and a review of the evidence
Mickaliger M. B. et al., 2012, ApJ, 759, 2
Mitchell T. M., 1997, Machine Learning, 1st Edition
Morello V., Barr E. D., Bailes M., Flynn C. M., Keane E. F., van Straten W.,

2014, MNRAS, 443, 1651
Navarro J., Anderson S. B., Freire P. C. C., 2003, ApJ, 594, 943
Ng C., 2012, IAU Symposium, S291, 8, p.53-56
Nice D. J., Taylor J. H., Fruchter A. S., 1993, ApJ, 402, L49-L52
Nice D. J., Fruchter A. S., Taylor J. H., 1995, ApJ, 449
Nikulin N. S. et al., 2001, Encyclopedia of Mathematics
Pearson K., 1895, R. Soc. Lond., 58, p.347-352
Petroff E. et al., 2015, MNRAS, 447, 246
P-Alfa Consortium, 2015, web resource, ALFA Pulsar Studies,

http://www.naic.edu/alfa/pulsar/ (accessed January 6th,
2016)

Quinlan J. R., 1993, C4.5: programs for machine learning, Morgan
Kaufmann

Ransom S. M. et al., 2011, ApJ Letters, 727, L16
Rosen R. et al., 2010, The Pulsar Search Collaboratory, Astronomy

Education Review, 9, 1
Rosen R. et al., 2013, ApJ, 768, 85
Rubio-Herrera E., Braun R.,Janssen G.,van Leeuwen J., Stappers B. W.,

2007, astro-ph/0701183
Sayer R. W., Nice D. J., Taylor J. H., 1997, ApJ, 474
Shannon C. E., Weaver W., 1949, The mathematical theory of

communication, Univ. of Illinois Press
Smits R., Kramer M., Stappers B., Lorimer D. R., Cordes J., Faulkner A.,

2009a, A&A, 493, 3, p.1161
Smits R., Lorimer D. R., Kramer M., Manchester R., Stappers B., Jin C. J.,

Nan R. D., Li D., 2009b, A&A, 505, 2, p.919-926
Spitler L. G. et al., 2014, ApJ, 790, 2
Stokes G. H., Taylor J. H., Weisberg J. M., Dewey R. J., 1985, Nature, 317,

p.787-788
Stokes G. H., Segelstein D. J. Taylor J. H., Dewey R. J., 1986, ApJ, 311,

p.694-700
Stovall K., Lorimer D. R., Lynch R. S., 2013, Class. Quantum Grav., 30, 22
Stovall K. et al., 2014, ApJ, 791
Swiggum J. K. et al., 2015, ApJ, 805, 156
Taylor, J. H. and Jura, M. and Huguenin, G. R., 1969, Nature, 223, 797
Thompson D. R., Majid W. A., Wagstaff K., Reed C., 2011, NASA

Conference on Intelligent Data Understanding
Thornton D. et al., 2013, Science, 341, p.53-56
Thornton D., 2013, PhD thesis, Univ. Manchester
Tukey J., 1949, Biometrics, 5, 2, p.99-114
Way M. J., Scargle J. D., Ali K. M., Srivastava A. N., 2012, Advances in

Machine Learning and Data Mining for Astronomy, 1st Edition
Widmer G., Kubat M., 1996, Machine Learning, 23, 1, p.69
Wilcoxon F., 1945, Biometrics Bulletin, 1, 6, p.80-83
Yang H. H. & Moody, J., 1999, NIPS, 12, p.687-693
Yang Q., Wu X., 2006, International Journal of Information Technology &

Decision Making, 5, 4, p.597-604
Zhu W. W. et al., 2014, ApJ, 781, 2

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–20 (2015)

http://www.naic.edu/alfa/pulsar/

	Introduction
	Candidate Generation
	Modelling Candidate Numbers

	Candidate Selection Methods
	Manual Selection
	Summary Interfaces
	Semi-automated Ranking Approaches
	Automated `Intelligent' Selection

	Discussion
	Critique of Manual Selection
	Critique of Automated Approaches
	Future Processing Challenges

	New Candidate Features
	Feature Evaluation

	Stream Classification
	Unsuitability of Existing Approaches
	Gaussian-Hellinger Very Fast Decision Tree
	Classification Performance

	Summary
	Acknowledgements

