UNIVERSITY BIRMINGHAM University of Birmingham Research at Birmingham

Peripheral causes of cognitive motor dissociation in patients with vegetative or minimally conscious state - Reply

Fernandez-Espejo, Davinia; Owen, Adrian M

DOI: 10.1001/jamaneurol.2016.0143

License: None: All rights reserved

Document Version Peer reviewed version

Citation for published version (Harvard): Fernandez-Espejo, D & Owen, AM 2016, 'Peripheral causes of cognitive motor dissociation in patients with vegetative or minimally conscious state - Reply', *JAMA Neurology*, vol. 73, no. 5, pp. 608-609. https://doi.org/10.1001/jamaneurol.2016.0143

Link to publication on Research at Birmingham portal

Publisher Rights Statement: Published version available at: http://dx.doi.org10.1001/jamaneurol.2016.0143

Validated Feb 2016

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

1	Peripheral causes of cognitive motor dissociation in patients with vegetative or
2	minimally conscious state – Reply
3	
4	Davinia Fernández-Espejo, PhD ^{1*} , Adrian M. Owen, PhD ²
5	
6	¹ School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK;
7	² The Brain and Mind Institute, The University of Western Ontario, London, Ontario, N6A
8	5B7, Canada;
9	
10	
11	*Correspondence:
12	Davinia Fernández-Espejo, School of Psychology, University of Birmingham, Birmingham,
13	B15 2TT, UK; D.Fernandez-Espejo@bham.ac.uk
14	
15	Word count: 303
16	
17	We thank Latronico and colleagues for their comments regarding our article ¹ . They proposed
18	that peripheral nervous system and muscle pathology ² may have contributed to the lack of
19	behavioural responses exhibited by our patient. As mentioned in our Discussion section, Shea
20	and Bayne ³ had previously argued a similar peripheral explanation for the absence of overt
21	motor behaviour in patients with preserved covert motor behaviour ⁴ . In vegetative and
22	minimally conscious patients, peripheral damage is most commonly related to motor axonal
23	neuropathy ⁵ , which, as Latronico and colleagues point out, is a major cause of <i>paralysis</i> ² .
24	While we did not specifically test for electrophysiological signs of peripheral pathology, our
25	patient showed no evidence of paralysis. In fact, he exhibited frequent spontaneous

26	mo	vements of the limbs (more frequently upper limbs), head, and torso, as well as very		
27	con	sistent withdrawal to painful stimulation (see information about clinical assessments in		
28	the	original supplementary information). In contrast, he was incapable of producing		
29	vol	untarily motor responses to command. Therefore, the main deficit he exhibited, which our		
30	stuc	dy aimed to explain, was not an absence of skeletal movement, but a lack of voluntary		
31	con	<i>trol</i> of his motor responses, and thus the underlying mechanism is necessarily central 6 .		
32	Bas	ed on this, we disagree with Latronico and colleagues' suggestion for a role of peripheral		
33	patl	nology in explaining our patient's lack of overt command following capabilities.		
34	Nev	vertheless, as we mentioned in our Discussion, our patient exhibited other symptoms in		
35	addition to the lack of command following (e.g. lack of visual pursuit, or vocalizations) for			
36	which our results may not offer a complete explanation. In this context, we agree that the			
37	evaluation of the peripheral nervous system and muscles, in combination with neuroimaging			
38	and clinical assessments, may contribute to a more comprehensive understanding of the full			
39	clinical profile exhibited by each individual patient.			
40				
41				
42				
43	References			
44				
45	1.	Fernandez-Espejo D, Rossit S, Owen AM. A Thalamocortical Mechanism for the		
46		Absence of Overt Motor Behavior in Covertly Aware Patients. JAMA Neurol. October		
47		2015:1-9. doi:10.1001/jamaneurol.2015.2614.		
48	2.	Latronico N, Bolton CF. Critical illness polyneuropathy and myopathy: a major cause of		
49		muscle weakness and paralysis. The Lancet Neurology. 2011;10(10):931-941.		
50		doi:10.1016/S1474-4422(11)70178-8.		

51	3.	Shea N, Bayne T. The Vegetative State and the Science of Consciousness. Br J Philos
52		Sci. 2010;61(3):459-484. doi:10.1093/bjps/axp046.
53	4.	Fernandez-Espejo D, Owen AM. Detecting awareness after severe brain injury. Nature

54 *Reviews Neuroscience*. October 2013. doi:10.1038/nrn3608.

- 55 5. Bagnato S, Boccagni C, Sant'angelo A, Prestandrea C, Romano MC, Galardi G.
- 56 Neuromuscular involvement in vegetative and minimally conscious states following

57 acute brain injury. J Peripher Nerv Syst. 2011;16(4):315-321. doi:10.1111/j.1529-

58 8027.2011.00363.x.

- 59 6. Bracht T, Schnell S, Federspiel A, et al. Altered cortico-basal ganglia motor pathways
- 60 reflect reduced volitional motor activity in schizophrenia. *Schizophrenia Research*.
- 61 2013;143(2-3):269-276. doi:10.1016/j.schres.2012.12.004.

62