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Abstract
We consider the complexity of the Hamilton cycle decision problem when restricted to k-uniform
hypergraphs H of high minimum codegree δ(H). We show that for tight Hamilton cycles this
problem is NP-hard even when restricted to k-uniform hypergraphsH with δ(H) ≥ n

2−C, where n
is the order of H and C is a constant which depends only on k. This answers a question raised by
Karpiński, Ruciński and Szymańska. Additionally we give a polynomial-time algorithm which,
for a sufficiently small constant ε > 0, determines whether or not a 4-uniform hypergraph H on n
vertices with δ(H) ≥ n

2 − εn contains a Hamilton 2-cycle. This demonstrates that some looser
Hamilton cycles exhibit interestingly different behaviour compared to tight Hamilton cycles. A
key part of the proof is a precise characterisation of all 4-uniform hypergraphs H on n vertices
with δ(H) ≥ n

2 −εn which do not contain a Hamilton 2-cycle; this may be of independent interest.
As an additional corollary of this characterisation, we obtain an exact Dirac-type bound for the
existence of a Hamilton 2-cycle in a large 4-uniform hypergraph.

1998 ACM Subject Classification G.2.2 Graph Theory: Hypergraphs, Graph Algorithms

Keywords and phrases Hamilton cycles, hypergraphs, graph algorithms
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1 Introduction

The study of Hamilton cycles in graphs has been a topic of great significance in graph theory,
and continues to be well-studied. For example, the Hamilton cycle decision problem (given
a graph, determine whether it contains a Hamilton cycle) was one of Karp’s celebrated 21
NP-complete problems [9], whilst one very well-known classic result is Dirac’s theorem [4],
which states that any graph on n ≥ 3 vertices with minimum degree at least n

2 contains a
Hamilton cycle.

The problem of generalising these results to the hypergraph setting has been a highly-
active area of research over the past several years (see, for example, the recent surveys by
Kühn and Osthus [15], Rödl and Ruciński [16] and Zhao [21]). To describe these develop-
ments we require the following standard definitions. A k-uniform hypergraph, or k-graph H
consists of a set of vertices V (H) and a set of edges E(H), where each edge consists of k
vertices. So a 2-graph is a (simple) graph. We say that a k-graph C is an `-cycle if its
vertices can be cyclically ordered in such a way that each edge of C consists of k consecutive
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2 The Hamilton Cycle Problem in Hypergraphs

vertices, and so that each edge intersects the subsequent edge in ` vertices. This naturally
generalises the notion of a cycle in a graph, and is the most commonly-used definition of a
hypergraph cycle. However, various other definitions have also been considered, such as a
Berge cycle [1]. Note in particular that each edge of an `-cycle k-graph C has k− ` vertices
which were not contained in the previous edge, so the number of vertices of C must be
divisible by k − `. We say that a k-graph H on n vertices contains a Hamilton `-cycle if it
contains an n-vertex `-cycle as a subgraph; as before, this is only possible if k− ` divides n.
We refer to (k−1)-cycles as tight cycles, and in the same way refer to tight Hamilton cycles.
Given a k-graph H and a set S ⊆ V (H), the degree of S, denoted degH(S) (or deg(S)
when H is clear from the context), is the the number of edges of H which contain S as a
subset. The minimum codegree of H, denoted δ(H), is the minimum of deg(S) taken over all
sets of k−1 vertices of H, and the maximum codegree of H, denoted ∆(H), is the maximum
of deg(S) taken over all sets of k − 1 vertices of H. In the graph case the maximum and
minimum codegree are simply the maximum and minimum degree respectively.

An elementary reduction from the graph case demonstrates that for any k ≥ 3 and
1 ≤ ` ≤ k the Hamilton `-cycle decision problem (given a k-graph H, determine whether it
contains a Hamilton `-cycle) is also NP-complete. For this reason, many authors have asked
for conditions on H which render this problem tractable, or which guarantee the existence
of a Hamilton `-cycle in H. In particular, since a Hamilton cycle in H cannot exist if H has
an isolated vertex, it is natural to study minimum degree conditions on H.

1.1 Dirac-Type Results
The following theorem, whose various cases were proved by Rödl, Ruciński and Szemer-
édi [17, 18], Kühn and Osthus [14], Keevash, Kühn, Osthus and Mycroft [12], Hàn and
Schacht [6], and Kühn, Osthus and Mycroft [13], is an approximate hypergraph analogue of
Dirac’s theorem; for any k and ` it gives the asymptotically best-possible minimum codegree
condition which guarantees the existence of a Hamilton `-cycle in a k-graph.

I Theorem 1. ([6, 12, 13, 14, 17, 18]) For any k ≥ 3, 1 ≤ ` ≤ k − 1 and η > 0, there
exists n0 such that if n ≥ n0 is divisible by k − ` and H is a k-graph on n vertices with

δ(H) ≥


( 1

2 + η
)
n if k − ` divides k,(

1
d k

k−` e(k−`) + η

)
n otherwise,

then H contains a Hamilton `-cycle.

Simple constructions show that for any k and ` this minimum codegree condition is
best possible up to the ηn error term. More recently the exact threshold (for large n) has
been determined in some cases: for k = 3, ` = 2 by Rödl, Ruciński and Szemerédi [19], for
k = 3, ` = 1 by Czygrinow and Molla [2], and for k ≥ 3 and ` < k/2 by Han and Zhao [8]. As
part of our work on the question of tractability (described in more detail in the next section),
we successfully characterised all 4-graphs H with δ(H) ≥ n

2 − εn which do not contain a
Hamilton cycle. As a straightforward consequence of this, we add to the aforementioned
results the exact Dirac-type statement for the previously-open case k = 4, ` = 2.

I Theorem 2. There exists n0 such that if n ≥ n0 is even and H is a 4-graph on n vertices
with

δ(H) ≥
{

n
2 − 2 if n is divisible by 8,
n
2 − 1 otherwise,
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then H contains a Hamilton 2-cycle. Moreover, this condition is best-possible for any even
n ≥ n0.

1.2 Tractability of the Restricted Hamilton Cycle Decision Problem
We now turn to the primary focus of this paper: minimum degree conditions which render
the Hamilton cycle decision problem tractable. In the graph case, Dahlhaus, Hajnal and
Karpiński [3] showed that for any fixed ε > 0 this problem remains NP-complete when
restricted to graphs with minimum degree at least (1 − ε) n

2 . More recently, Karpiński,
Ruciński and Szymańska [10] showed that for any k ≥ 3 and any fixed ε > 0 the tight
Hamilton cycle decision problem remains NP-complete when restricted to k-graphs with
minimum codegree (1−ε) n

k . They noted that, combined with Theorem 1, this left a ‘hardness
gap’ of [ n

k ,
n
2 ] for which the hardness of the problem remained unknown. We answer this

question with the following theorem.

I Theorem 3. For any k ≥ 3 there exists C such that the tight Hamilton cycle decision
problem remains NP-complete when restricted to k-graphs H with δ(H) ≥ n

2 − C (where
n = |V (H)|).

Assuming that P 6= NP, Theorems 1 and 3 together imply that the minimum codegree
threshold at which the tight Hamilton cycle decision problem becomes tractable is asymp-
totically equal to the minimum codegree threshold for the existence of a tight Hamilton
cycle, mirroring the situation in the graph case. Interestingly, we can demonstrate that the
Hamilton 2-cycle problem exhibits significantly different behaviour; our next theorem shows
that there is a linear-size gap between the threshold at which the problem becomes tractable
and at which the existence of a cycle is guaranteed.

I Theorem 4. There exist a constant ε > 0 and an algorithm which, given a 4-graph H on
n vertices with δ(H) ≥ n

2 − εn, determines in time O(n25) whether H contains a Hamilton
2-cycle.

A slight adaptation of the argument of Karpiński, Ruciński and Szymańska [10] men-
tioned above shows that for any fixed ε > 0 the Hamilton 2-cycle problem remains NP-
complete when restricted to 4-graphs with minimum codegree at least (1− ε) n

4 .
A key result in our proof of Theorem 4, which may be of independent interest, is The-

orem 6, which (for sufficiently small ε and large n) precisely characterises all 4-graphs on n
vertices which satisfy δ(H) ≥ n

2 − εn but which do not contain a Hamilton 2-cycle. We
prove this result using recently developed techniques of extremal graph theory, in particular
the so-called ‘absorbing method’ of Rödl, Ruciński and Szemerédi [17]. Establishing this
characterisation is the principal difficulty in the proof of Theorem 4, as then the algorithm
for Theorem 4 simply checks whether this characterisation is satisfied. Likewise, Theorem 2
follows from Theorem 6 by a case analysis.

1.3 Discussion
In the light of Theorem 4, it would be very interesting to know which other values of k
and ` also have the property that there is a linear-size gap between the minimum codegree
threshold which renders the k-graph Hamilton `-cycle problem tractable and the minimum
codegree threshold under which the problem becomes trivial. Theorem 3 shows that this
is not the case when ` = k − 1, whilst a slight adaptation to the arguments of Karpiński,
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Ruciński and Szymańska [10] demonstrates that this is also not true if k−` does not divide k
(in which case the lower degree threshold of Theorem 1 applies); all other cases remain open.

We also note that Theorem 3 demonstrates an interesting difference between the perfect
matching problem and tight Hamilton cycle problem in k-graphs. Indeed, while the unres-
tricted versions of both problems are NP-complete, Keevash, Knox and Mycroft [11] and
Han [7] showed that the perfect matching problem can be solved in polynomial time in k-
graphs H with δ(H) ≥ n/k; complementing a previous result of Szymanska [20], who showed
that for any ε > 0 the problem remains NP-complete under the restriction δ(H) ≥ ( 1

k − ε)n.
So, assuming P 6= NP, for any 1

k ≤ α <
1
2 the two problems lie in distinct complexity classes

when restricted to k-graphs with minimum codegree δ(H) ≥ αn.
Finally, whilst the constant ε in Theorem 4 is quite small, we conjecture that Theorem 6

(the characterisation of 4-graphs H with δ(H) ≥ n
2 − εn and no Hamilton 2-cycle) is in fact

valid under the weaker condition that δ(H) > n
3 . If true, this would imply that Theorem 4

would also hold under this weaker codegree assumption.

1.4 Notation
Given a set V , we write

(
V
k

)
for the set of subsets of V of size k. Also, we write x� y (“x

is sufficiently smaller than y”) to mean that for any y > 0 there exists x0 > 0 such that
for any x ≤ x0 the subsequent statement holds. Similar statements with more variables are
defined accordingly.

2 Hamilton 2-Cycles

In this section we outline the proof of Theorem 4. The key to the proof is Theorem 6, which
precisely characterises all large 4-graphs H with δ(H) ≥ ( 1

2 − ε)n which do not contain a
Hamilton 2-cycle. This is presented in Section 2.1. Having established this characterisation,
it is fairly straightforward to exhibit a polynomial-time algorithm which tests whether a
4-graph has this property, as shown in Section 2.2. Instead, the difficult part of the proof is
to prove Theorem 6; we outline how this is done in Section 2.3. Finally, in Section 2.4 we
present the short deduction of Theorem 2 from Theorem 6.

2.1 A Characterisation of Dense 4-graphs with no Hamilton 2-Cycle.
For 4-graphs H, our characterisation considers partitions of V (H) into two parts A and B.
Whenever we refer to, for example, ‘a partition (A,B) of V (H)’, this should be interpreted
as meaning a partition of V (H) into two non-empty parts A and B. Given such a partition
of V (H), we say that an edge e ∈ E(H) is odd if |e ∩ A| is odd, and even if |e ∩ A| is even.
We write Heven for the subgraph of H consisting only of even edges of H, and similarly
write Hodd for the subgraph of H consisting only of odd edges of H. Also, we say that a
pair {x, y} of distinct vertices of H is a split pair if x ∈ A and y ∈ B or vice versa, and that
{x, y} is an equal pair if x, y ∈ A or x, y ∈ B.

We define an `-path in a k-graph analogously to an `-cycle: a k-graph is an `-path if
its vertices can be linearly ordered v1, . . . , vn such that every edge consists of k consecutive
vertices and successive edges intersect in precisely ` vertices. As for cycles we refer to (k−1)-
paths as tight paths. The length of an `-path is the number of edges. Given a 4-graph H,
we define the total 2-pathlength of H to be the maximum sum of lengths of vertex-disjoint
2-paths in H. For example, H having total 2-pathlength 3 could be achieved by 3 disjoint
edges (i.e. 2-paths of length 1) in H, or a 2-path of length 3 in H, or two vertex-disjoint
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2-paths in H, one of length 1 and one of length 2. Using these definitions we can now give
the central definition of our characterisation.

I Definition 5. Let H be a 4-graph on n vertices, where n is even. We say that a partition
(A,B) of V (H) is even-good if at least one of the following statements holds.

(i) |A| is even or |A| = |B|.
(ii) H contains odd edges e and e′ such that either e ∩ e′ = ∅ or e ∩ e′ is a split pair.
(iii) |A| = |B|+ 2 and H contains odd edges e and e′ with e ∩ e′ ∈

(
A
2
)
.

(iv) |B| = |A|+ 2 and H contains odd edges e and e′ with e ∩ e′ ∈
(

B
2
)
.

Now let m ∈ {0, 2, 4, 6} and d ∈ {0, 2} be such that m ≡ n mod 8 and d ≡ |A|−|B| mod 4.
Then we say that (A,B) is odd-good if at least one of the following statements holds.

(v) (m, d) ∈ {(0, 0), (4, 2)}.
(vi) (m, d) ∈ {(2, 2), (6, 0)} and H contains an even edge.
(vii) (m, d) ∈ {(4, 0), (0, 2)} and Heven has total 2-pathlength at least two.
(viii) (m, d) ∈ {(6, 2), (2, 0)} and either there is an edge e ∈ E(H) with |e ∩ A| = |e ∩ B| = 2

or Heven has total 2-pathlength at least three.

A key observation is that if (A,B) is a partition of V (H) which is not even-good, then
there exists a set X of at most four vertices of H such that every odd edge of H intersects X.
Indeed, if H contains an odd edge e, then we may take X = e, and otherwise we may take
X = ∅. Similarly, by choosing X to be the vertices of at most two disjoint even edges, or of
a 2-path of length two in Heven, we find that if (A,B) is a partition of V (H) which is not
odd-good, then there exists a set X of at most 8 vertices of H such that every even edge
of H intersects X.

We now give our characterisation of 4-graphs of high minimum codegree with no Hamilton
2-cycle. Recall for this that any 2-cycle 4-graph has an even number of vertices.

I Theorem 6. There exist ε, n0 > 0 such that the following statement holds for any even
n ≥ n0. Let H be a 4-graph on n vertices with δ(H) ≥ ( 1

2 −ε)n. Then H admits a Hamilton
2-cycle if and only if every partition (A,B) of V (H) is both even-good and odd-good.

2.2 The Algorithm.
Our polynomial-time algorithm for determining the existence of a Hamilton 2-cycle in a
4-graph of high codegree makes use of a special case of a result of Keevash, Knox and
Mycroft [11]. This result allows us to efficiently list all partitions (A,B) of V (H) with no
odd edges, or all partitions with no even edges.

I Lemma 7. ([11], special case of Lemma 2.2) Let H be a 4-graph on n vertices with
δ(H) > n

3 , and let x ∈ {even, odd}. Then there are at most 64 partitions (A,B) of V (H)
for which no edge of H has parity x with respect to (A,B). Moreover, there exists an
algorithm ListPartitions(H,x) with running time O(n5) which, given H and x, returns all
such partitions.

We now present an algorithm, Procedure GoodPartition(H,x), which determines whether
or not there exists an even-good/odd-good partition (A,B) for a 4-graphH. Note that, given
a 4-graph H and a partition (A,B) of V (H), the truth of the statements ‘(A,B) is odd-good’
and ‘(A,B) is even-good’ depend only on the values of n and |A| and whether or not Hodd or
Heven contain certain subgraphs with at most 12 vertices. It follows that the validity of these
statements (and therefore the condition of the ‘if’ statement in Procedure GoodPartition)
can be tested in time O(n12).
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Procedure GoodPartition(H,x)
Data: A 4-graph H with vertex set V and a parity x ∈ {even, odd}.
Result: Determines if there is a partition (A,B) of V which is not x-good.

for each set X ⊆ V (H) with |X| = 8 do
Let V ′ = V \X and H ′ = H[V ′].
Run Procedure ListPartitions(H ′, x) to obtain all partitions (A′, B′) of V ′ with no
edges not of parity x.
for each such partition (A′, B′) do

for each partition (A,B) of V with A′ ⊆ A and B′ ⊆ B do
if (A,B) is not x-good then

State ‘(A,B) is not x-good’, and terminate.
State ‘Every partition is x-good’, and terminate.

I Proposition 8. Let H be a 4-graph on n vertices with δ(H) > n
3 , where n is even, and

fix a parity x ∈ {even, odd}. Then Procedure GoodPartition(H,x) will correctly determine
whether there exists a partition (A,B) of V (H) which is not x-good, with running time
O(n25).

Proof. We first establish correctness of the algorithm; for this, fix H and x as in the
proposition statement. Clearly, if every partition (A,B) of V := V (H) is x-good, then
GoodPartition(H,x) will output this fact. So suppose that some partition (A,B) of V is
not x-good. As noted following Definition 5, we may then choose a set X of at most 8 ver-
tices of H which is intersected by every edge of H which does not have parity x. This means
that when GoodPartition(H,x) considers this set X, ListPartitions will return the partition
(A′, B′) where A′ = A \X and B′ = B \X, and at this point GoodPartition(H, even) will
return that (A,B) is not x-good, as required.

Finally we consider the running time of the algorithm. For this note that there are
(

n
8
)

choices for X in the outside ‘for loop’, and for each of these Procedure ListPartitions(H ′, x)
runs in time O(n5). The inside ‘for loops’ then range over sets of size at most 64 (by
Lemma 7) and 28 = 256 respectively. Finally, as noted above we may test whether a partition
(A,B) is x-good in time O(n12); together these bounds combine to give the claimed running
time. J

Proof of Theorem 4. Let n0 be sufficiently large and ε > 0 sufficiently small for Theorem 6
to apply. Given a 4-graph H on n vertices with δ(H) ≥ ( 1

2 − ε)n, we apply the follow-
ing algorithm. Firstly, if n is odd, then there can be no Hamilton 2-cycle in H, so we
output this fact and terminate. Secondly, if n < n0, then we use a brute-force approach,
testing each of the at most n0! orderings of V (H) in turn to determine whether it yields a
Hamilton 2-cycle in H. We then output the appropriate answer and terminate. Finally, if
n ≥ n0 is even, then we first run Procedure GoodPartition(H, even), and then run Proced-
ure GoodPartition(H, odd). If either of these procedures yields a partition (A,B) of V (H)
which is not even-good or which is not odd-good, then we return that there is no Hamilton
2-cycle in H, otherwise we return that there is such a cycle. Note that in the first two
cases this algorithm runs in constant time, whilst in the final case it runs in time O(n25)
by Proposition 8. Moreover Theorem 6 ensures that this algorithm will always output the
correct answer. J
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2.3 Proof of Theorem 6.
We begin by establishing the forward implication of Theorem 6, expressed in the following
proposition. In fact, the minimum codegree condition on H is not required for this direction.
I Proposition 9. If H is a 4-graph which contains a Hamilton 2-cycle, then every partition
(A,B) of V (H) is both even-good and odd-good.

Proof. Let n be the order of H, let C = (v1, v2, . . . , vn) be a Hamilton 2-cycle in H and let
(A,B) be a partition of V (H). Write Pi = {v2i−1, v2i} for each 1 ≤ i ≤ n

2 , so the edges of C
are ei := Pi ∪ Pi+1 for 1 ≤ i ≤ n

2 (with addition taken modulo n
2 ). The key observation is

that ei is even if Pi and Pi+1 are both split pairs or both equal pairs, and odd otherwise.
We first show that (A,B) is even-good. This holds by (ii) if H contains two disjoint

odd edges, so we may assume without loss of generality that all edges of H other than e1
and en/2 are even. It follows that the pairs P2, P3, . . . , Pn/2 are either all split pairs or all
equal pairs. In the former case, if P1 is a split pair then |A| = |B|, so (i) holds, whilst if
P1 ⊆ A then (iii) holds, and if P1 ⊆ B then (iv) holds. In the latter case, if P1 is an equal
pair then |A| is even, so (i) holds, whilst if P1 is a split pair then (ii) holds. So in all cases
we find that (A,B) is even-good.

To show that (A,B) is odd-good, suppose first that 4 does not divide n, and note that
by our key observation the number of even edges in C must then be odd. If C contains three
or more even edges or an edge with precisely two vertices in A, then (A,B) is odd-good by
(vi) and (viii), so we may assume without loss of generality that en/2 is the unique even
edge in C and that en/2 ⊆ A or en/2 ⊆ B. It follows that P1, P3, . . . , Pn/2 are equal pairs
and the remaining pairs are split, so |A| − |B| ≡ 2dn

4 e mod 4. We must therefore have
(m, d) ∈ {(2, 2), (6, 0)}, and (A,B) is odd-good by (vi). On the other hand, if 4 divides n,
then by our key observation the number of even edges in C is even. If this number is at
least two then (A,B) is odd-good by (v) and (vii). If instead every edge of C is odd, then
exactly n

4 of the pairs Pi are equal pairs, so |A| − |B| ≡ n
2 mod 4, and C is odd-good

by (v). J

To prove Theorem 6 it therefore suffices to prove the backwards implication. Our ap-
proach for this is motivated by the observation that if H is a 4-graph and (A,B) is a
partition of V (H) which is not odd-good, then H must have very few even edges. Likewise,
if (A,B) is not even-good, then H has very few odd edges. We therefore consider three cases
for H: two ‘near-extremal’ cases, in which V (H) admits a partition (A,B) with few even
edges or with few odd edges, and a ‘non-extremal’ case, in which there is no such partition.
In the ‘non-extremal case’ we proceed by the so-called ‘absorbing’ method, introduced by
Rödl, Ruciński and Szemerédi [19], in which we rely heavily on the fact that H is not ‘near-
extremal’. On the other hand, in the ‘near-extremal’ cases we have significant information
about the structure of H (specifically that there is a partition of V (H) with few even/odd
edges). Making essential use of this structural information, we proceed by ad hoc methods
to construct a Hamilton 2-cycle in H.

The following definition formalises our two notions of ‘near-extremal’.

I Definition 10. Let c1, c2 > 0 and let H be a 4-graph on n vertices.

(a) We say that H is c1-even-extremal if there exists a partition (A,B) of V (H) such that
( 1

2 − c1)n ≤ |A| ≤ ( 1
2 + c1)n and H contains at most c1

(
n
4
)
odd edges.

(b) We say that H is c2-odd-extremal, if there exists a partition (A,B) of V (H) such that
( 1

2 − c2)n ≤ |A| ≤ ( 1
2 + c2)n and H contains at most c2

(
n
4
)
even edges.
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2.3.1 Non-Extremal 4-Graphs
As described above, in the case when H is not near-extremal, we proceed by the ‘absorbing’
method of Rödl, Ruciński and Szemerédi [19]. To do this we establish three key lemmas.
The first of these is a ‘connecting lemma’, which shows that since H is not even-extremal,
we can find a constant-length 2-path connecting any two disjoint pairs of vertices. For this,
we say that the ends of a 2-path 4-graph (v1, . . . , vn) are the pairs {v1, v2} and {vn−1, vn}.

I Lemma 11 (Connecting lemma). Suppose that 1
n � ε � c and that H is a 4-graph on n

vertices with δ(H) ≥ ( 1
2 − ε)n which is not c-even-extremal. Then for every two disjoint

pairs {a1, a2}, {b1, b2} ∈
(

V
2
)

there is a 2-path of length at most 3 whose ends are {a1, a2}
and {b1, b2}.

Loosely speaking, our proof of Lemma 11 supposes that we have pairs {a1, a2} and
{b1, b2} for which no such 2-path exists. It follows that there is no pair {x, y} ∈

(
V (H)

2
)

for which {a1, a2, x, y} and {b1, b2, x, y} are both edges of H. Combined with the minimum
codegree condition of H this yields significant structural information on H, which we use to
deduce that H must be c-even-extremal and so prove the lemma.

The second key lemma is an ‘absorbing lemma’, which shows that since H is neither
even-extremal nor odd-extremal, we can find a short 2-path in H which can ‘absorb’ most
small collections of pairs of H.

I Lemma 12. (Absorbing lemma) Suppose that 1
n � ε� ρ� β � λ� c, µ. Let H be a 4-

graph on n vertices with δ(H) ≥ n
2 −εn which is neither c-even-extremal nor c-odd-extremal.

Then there is a 2-path P in H and a graph G on V (H) with the following properties.

(i) P has at most µn vertices.
(ii) Every vertex of V (H) \ V (P ) lies in at least (1− λ)n edges of G.

(iii) For any q ≤ ρn and any q disjoint edges e1, . . . , eq of G which do not intersect P there
is a 2-path P ∗ in H with the same ends as P such that V (P ∗) = V (P ) ∪

⋃q
j=1 ej.

Loosely speaking, to prove Lemma 12, we first show that provided H is not c-odd-
extremal, for almost every pair {x, y} ∈

(
V
2
)
there are many 2-paths Q of length 3 which

can ‘absorb’ {x, y}, in the sense that there is a 2-path Q∗ with vertex set V (Q)∪{x, y} and
with the same ends as Q. We take G to be the graph of such pairs. We then randomly
select a linear number of 2-paths of length 3 and use Lemma 11 to connect these 2-paths
into a single short 2-path P (this is where we require that H is not c-even-extremal). Next
we extend P to include the small number of vertices which lie in fewer than (1− λ)n edges
of G, so that (ii) holds. Finally, we show that given any set of edges e1, . . . , eq of G as in
(iii), we can match these edges to the randomly chosen paths Q, and absorb each edge into
the corresponding path to obtain P ∗.

Our final key lemma is a ‘path cover lemma’, which states that we can cover almost all
vertices of H by a constant number of vertex-disjoint 2-paths. In fact, we do not actually
need the requirement that H is not near-extremal, and can simply cite a result of Kühn,
Mycroft and Osthus [13].

I Lemma 13 (Path cover lemma [13]). Suppose that 1
n �

1
D � γ � η and that H is a 4-

graph on n vertices with δ(H) ≥ ( 1
4 +η)n. Then H contains a set of at most D vertex-disjoint

2-paths covering all but at most γn vertices of H.

For non-extremal 4-graphs H, combining these three lemmas proves the reverse implic-
ation of Theorem 6, which we express in the following lemma.
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I Lemma 14. Suppose that 1
n � ε� c and that n is even, and let H be a 4-graph of order n

with δ(H) ≥ ( 1
2 − ε)n. If H is neither c-odd-extremal nor c-even-extremal, then H contains

a Hamilton 2-cycle.

Proof sketch. Introduce constants with 1/n� 1/D, ε� γ � ρ� β � λ� c, µ� 1, and
apply Lemma 12 to obtain an absorbing 2-path P0 in H and a graph G on V (H) with the
stated properties. Let V := V (H) and U := V (P0), and now choose uniformly at random a
set R ⊆ V \U of size ρn. Next, apply Lemma 13 (with, say, η = 1/10) to obtain at most D
vertex-disjoint 2-paths P1, . . . , Pq in H[V \ (U ∪ R)] covering all but at most γn vertices.
By q applications of Lemma 11 we can find vertex-disjoint 2-paths Q0, Q1, . . . , Qq, each
of length at most 3, such that Q0 connects the end of P0 to the start of P1, Q1 connects
the end of P1 to the start of P2, and so forth, with Qq connecting the end of Pq to the
start of P0. Moreover, all vertices of Qi except those in the end of Pi or the start of Pi+1
should be taken from R. (The random choice of R ensures that the conditions of Lemma 11
are satisfied for each application.) This yields a 2-cycle C = P0Q0P1Q1P2 . . . PqQq in H

covering all vertices except the at most γn vertices not covered by P1, . . . , Pq and between
ρn− 3D and ρn unused vertices of R. So X := V \V (C) has size ρn− 3D ≤ |X| ≤ ρn+ γn.
Furthermore, |X| is even since n and |V (C)| are both even, and our random choice of R
ensures that every vertex x ∈ X has degG[X](x) ≥ |X|/2. So there is a perfect matching
e1, . . . , e|X|/2 in G[X]; since |X|/2 ≤ ρn we may ‘absorb’ X into P0 to obtain a 2-path P ∗.
Replacing P0 by P ∗ in C gives a Hamilton 2-cycle in H. J

2.3.2 Extremal 4-Graphs
Having dealt with the ‘non-extremal’ case, it remains to deal with the two ‘near-extremal’
cases by proving the following two lemmas via an extremal case.

I Lemma 15. Suppose that 1
n � ε, c � 1 and that n is even, and let H be a 4-graph of

order n with δ(H) ≥ ( 1
2 − ε)n. If H is c-even-extremal and every partition of V (H) into

two parts A and B is even-good, then H contains a Hamilton 2-cycle.

I Lemma 16. Suppose that 1
n � ε, c � 1 and that n is even, and let H be a 4-graph of

order n with δ(H) ≥ ( 1
2 − ε)n. If H is c-odd-extremal and every partition of V (H) into two

parts A and B is odd-good, then H contains a Hamilton 2-cycle.

Proof sketch. As is typical of this type of argument, each lemma is proved by a long and
detailed extremal case analysis, and so we limit ourselves here to a brief outline of the
argument for Lemma 15 (the outline for Lemma 16 is similar with ‘even’ and ‘odd’ reversed).
Let (A′, B′) be a partition of V (H) witnessing that H is c-even-extremal. We first observe
that the bound on δ(H) implies that H has density at least ( 1

2 −ε). Combined with the fact
that H has few odd edges, this implies that almost every set S ⊆ V (H) for which |A′ ∩S| is
even is an edge of H. However, it is possible that a small number of vertices may lie in very
few even edges, so we begin by ‘tidying up’ the partition: we move a few vertices of H from
one side to the other to ensure that, for instance, every vertex of H lies in many even edges.
Let (A,B) be the tidied partition. By assumption this partition (A,B) is even-good, and
this fact yields some structure in H with respect to this partition (precisely what structure
depends on the values of n and |A|). For example, we might obtain two disjoint odd edges
in H. We then form a short 2-path P from the given structure to satisfy the desired parity
conditions, and then (using even edges only) extend P to a Hamilton 2-cycle in H. J

Proof of Theorem 6. Fix a constant c small enough for Lemmas 15 and 16. Having done so,
choose ε sufficiently small for us to apply Lemma 14 with this choice of c, and n0 sufficiently
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large that we may apply Lemmas 14, 15 and 16 with these choices of c and ε and any even
n ≥ n0. Let H be a 4-graph on n vertices with δ(H) ≥ ( 1

2 − ε)n, and suppose that every
partition (A,B) of V (H) is both even-good and odd-good. If H is either c-even-extremal or
c-odd-extremal then H contains a Hamilton 2-cycle by Lemma 15 or 16 respectively. On the
other hand, if H is neither c-odd-extremal nor c-even-extremal then H contains a Hamilton
2-cycle by Lemma 14. This completes the proof of the backwards implication of Theorem 6;
the proof of the forwards implication was Proposition 9. J

2.4 Proof of Theorem 2
To conclude this section, we show how Theorem 2 can be deduced from Theorem 6. We
begin by justifying the claim that the degree bound of Theorem 2 is best-possible. To see
this, fix an even integer n ≥ 6, and construct a 4-graph H∗ as follows. Let A and B be
disjoint sets with |A ∪ B| = n such that |A| = n

2 − 1 if 8 divides n and |A| = n
2 otherwise.

Then the vertex set of H∗ is A ∪ B, and the edges of H∗ are all sets e ∈
(

A∪B
4
)
such that

|e ∩ A| is odd. Then it is easily checked that δ(H∗) = n
2 − 3 if 8 divides n and n

2 − 2
otherwise. Moreover, since H∗ has no even edges, our choice of size of A implies that the
partition (A,B) of V (H∗) is not odd-good. By Theorem 6 we conclude that there is no
Hamilton 2-cycle in H∗.

Proof of Theorem 2. Choose ε, n0 as in Theorem 6. Let n ≥ n0 be even and large enough
that n

2 − 2 ≥ ( 1
2 − ε)n, and let H be a 4-graph on n vertices which satisfies the minimum

codegree condition of Theorem 2. Also let (A,B) be a partition of V (H), and assume
without loss of generality that |A| ≤ n

2 . By Theorem 6 it suffices to prove that (A,B) is
even-good and odd-good. For this, note that if 8 divides n and |A| = n

2 then (A,B) is even-
good by (i) and odd-good by (v). So we may assume that if 8 divides n then |A| ≤ n

2 − 1
and δ(H) ≥ n

2 − 2, whilst otherwise we have |A| ≤ n
2 and δ(H) ≥ n

2 − 1. Either way, we
must have δ(H) ≥ |A| − 1. Also, for any distinct x, y, z ∈ V (H), let NB(x, y, z) denote the
set of vertices w ∈ B such that {x, y, z, w} ∈ E(H).

To see that (A,B) must be even-good, arbitrarily choose vertices x1, x2, y1, y2, z1, z2 ∈ A.
Then |NB(x1, y1, z1)|, |NB(x2, y2, z2)| ≥ δ(H) − (|A| − 3) ≥ 2, so we may choose distinct
w1, w2 ∈ B with w1 ∈ NB(x1, y1, z1) and w2 ∈ NB(x2, y2, z2). The sets {x1, y1, z1, w1} and
{x2, y2, z2, w2} are then disjoint odd edges of H, so (A,B) is even-good by (ii).

We next show that that (A,B) is also odd-good. For this, arbitrarily choose distinct
vertices a1, a2, . . . , a9, a

′
1, . . . , a

′
9 ∈ A and b1, . . . , b9 ∈ B. For any 1 ≤ i, j ≤ 9 we have

|NB(ai, a
′
i, bj)| ≥ δ(H) − (|A| − 2) ≥ 1, so there must be bi

j ∈ B such that {ai, a
′
i, bj , b

i
j} is

an (even) edge of H. If for each 1 ≤ j ≤ 9 the vertices bi
j for 1 ≤ i ≤ 9 are all distinct, then

there is no set X ⊆ V (H) with |X| ≤ 8 which intersects every even edge of H. However, as
observed immediately after Definition 5, such a set X must exist if (A,B) is not odd-good.
We may therefore assume that bi′

j = bi
j for some 1 ≤ i, i′, j ≤ 9 with i 6= i′. It follows that

{ai, a
′
i, bj , b

i
j} is an even edge of H with exactly two vertices in A, whilst (ai, a

′
i, bj , b

i
j , ai′ , a

′
i′)

is a 2-path of length 2 in Heven. So (A,B) is odd-good by (v), (vi), (vii) or (viii), according
to the value of n modulo 8. J

3 Tight Hamilton Cycles

Our aim in this section is to explain the principal ideas of the proof of Theorem 3, which
proceeds by a series of reductions. We begin with a full proof of the case k = 3, in which
case we proceed from a theorem of Garey, Johnson and Stockmeyer [5], who proved that the
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Hamilton cycle problem remains NP-complete when restricted to subcubic graphs (we say
that a graph G is subcubic if G has maximum degree ∆(G) ≤ 3). The following proposition
is an immediate corollary of that theorem.

I Proposition 17 ([5]). The problem of determining whether a subcubic graph admits a
Hamilton path is NP-complete.

The next lemma is the k = 3 case of Theorem 3, which holds with C = 9.

I Lemma 18. The 3-graph tight Hamilton cycle decision problem is NP-complete even when
restricted to 3-graphs H on m vertices with δ(H) ≥ m

2 − 9.

Proof. LetG be a subcubic graph on n vertices, and writeX := V (G). Assume for simplicity
that n is even (a very similar argument handles the case where n is odd). Fix disjoint sets A
and B with |A| = 3n

2 and |B| = 3n
2 + 1 such that X ⊆ A, and define a 3-graph H with

vertex set A ∪B whose edges are

(i) all sets e ∈
(

A∪B
3
)
with |A ∩ e| ≤ 1,

(ii) all sets e ∈
(

A∪B
3
)
with |A∩e| = 2 and A∩e ∈ E(G) (note in particular that this requires

that A ∩ e ⊆ X), and
(iii) all sets e ∈

(
A
3
)
for which no e′ ∈ E(G) satisfies e′ ⊆ e.

Observe first that H has m := 3n + 1 vertices and minimum codegree δ(H) ≥ m
2 − 9. To

see this, let x and y be distinct vertices of H. If either x ∈ B or y ∈ B then {x, y, z}
is an edge of H for any z ∈ B \ {x, y}, so degH({x, y}) ≥ |B| − 2 = 3n

2 − 1. Exactly
the same applies if x, y ∈ A and xy ∈ E(G). Finally, if x, y ∈ A and xy /∈ E(G), then
{x, y, z} is an edge of H for any z ∈ A \ {x, y} except for those z such that xz ∈ E(G) or
yz ∈ E(G). So degH({x, y}) ≥ |A| − 2− degG(x)− degG(y); since G is subcubic this gives
degH({x, y}) ≥ 3n

2 − 8 ≥ m
2 − 9, as claimed.

We claim that H contains a tight Hamilton cycle if and only if G contains a Hamilton
path. To see this, first suppose that G contains a Hamilton path (x1, · · · , xn). Enumerate
the vertices of A \X and B as a1, a2, . . . , an/2 and b1, b2, . . . , b3n/2+1 respectively. Then(

x1, x2, b1, x3, x4, b2, · · · , xn−1, xn, bn
2
, bn

2 +1, a1, bn
2 +2, bn

2 +3, a2, · · · , an
2
, b 3n

2
, b 3n

2 +1

)
is a tight Hamilton cycle in H.

Now suppose instead that H contains a tight Hamilton cycle C. Note that our construc-
tion of H ensures that there are no edges e, e′ ∈ E(H) with |e ∩ A| = 3, |e′ ∩ A| = 2 and
|e ∩ e′| = 2. Since every edge of C intersects the subsequent edge of C in precisely two
vertices, and B 6= ∅, it follows that C cannot contain any edge e with |e ∩A| = 3. So there
are at least n

2 vertices a ∈ X which are succeeded in C by a vertex of B. Now let A1 be the
set of vertices of X for which the subsequent vertex of A on C is in X and A2 be the set of
vertices of X for which the subsequent vertex of A on C is in A \X. Also let A3 := A \X,
so A is the disjoint union of A1, A2 and A3. By construction of H, any vertex of A\X must
be preceded in C by two vertices of B and succeeded in C by two vertices of B; it follows
that any vertex of A2 ∪A3 is succeeded in C by two vertices of B, and so we obtain

|B| ≥ ( n
2 − |A2|) + 2(|A2|+ |A3|) = n

2 + |A2|+ 2|A3| = 3n
2 + |A2|.

Since A\X is non-empty, we must have |A2| ≥ 1. Combined with the fact that |B| = 3n
2 +1

this implies that |A2| = 1, and all inequalities are in fact equalities. So precisely one
vertex of X is succeeded in C by two vertices of B, n

2 − 1 vertices of X are succeeded
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by one vertex of B, and the remaining n
2 vertices of X are succeeded by a vertex of A

(which must therefore be in X). This implies that C contains a tight Hamilton path of
the form (x1, x2, b1, x3, x4, b2, . . . , bn/2−1, xn−1, xn), where X = {x1, . . . , xn} and bi ∈ B for
1 ≤ i ≤ n

2 − 1. By our construction of H it follows that (x1, x2, . . . , xn) is a Hamilton path
in G.

Altogether, this shows that any instance of the Hamilton cycle problem for subcubic
graphs can be reduced to a single instance of the problem of finding a tight Hamilton
cycle in a 3-graph on m vertices with δ(H) ≥ m

2 − 9, where m = 3n + 1. Together with
Proposition 17, this proves the lemma. J

We conclude by outlining the steps we use to prove Theorem 3 in full generality, using
the following notation. For a function f(n), we write HC(k, f(n)) (respectively HP(k, f(n)))
to denote the k-graph tight Hamilton cycle (respectively Hamilton path) decision problem
restricted to k-graphs H on n vertices with minimum codegree δ(H) ≥ f(n). On the other
hand, for an integer D, we write HC(k,D) (respectively HP(k,D)) to denote the k-graph
tight Hamilton cycle (respectively Hamilton path) decision problem restricted to k-graphs H
with maximum codegree δ(H) ≤ D. So, for example, Proposition 17 states that HP(2, 3)
is NP-complete, whilst Lemma 18 states that HC(3, n

2 − 9) is NP-complete. We prove
Theorem 3 by exhibiting the following polynomial-time reductions.

(i) For any k ≥ 2 and D we give polynomial-time reductions from HC(k,D) to HP(k,D)
and from HP(k,D) and HC(k,D). These reductions are elementary and permit us the
convenience of treating the tight Hamilton cycle and tight Hamilton path problems in
graphs of low maximum codegree as being interchangeable.

(ii) For any k ≥ 2 we give polynomial-time reductions from HC(k,D) to HC(2k−1, 2D) and
from HC(k,D) to HC(2k,D). In each case, given a k-graph H on a vertex set V , we take
copies H1 and H2 of H with disjoint vertex sets V1 and V2. For the former reduction we
define a (2k−1)-graph H∗ on V1∪V2 whose edges are those (2k−1)-tuples which consist
of an edge e1 from H1 and the copies in H2 of k− 1 vertices of e1, or the same with the
roles of H1 and H2 reversed. Likewise, for the latter reduction we define a 2k-graph H∗
on V1 ∪ V2 whose edges are those 2k-tuples e1 ∪ e2 where e1 is an edge of H1, e2 is an
edge of H2, and e2 contains the copies of at least k − 1 vertices of e1. In either case it
is not too hard to show that H∗ contains a tight Hamilton cycle if and only if H does,
and that ∆(H∗) ≤ 2∆(H) in one case and ∆(H∗) ≤ ∆(H) in the other.

(iii) Finally, for any k ≥ 2 we present a polynomial-time reduction from HP(k,D) to HC(2k−
1, bn

2 c − k(D + 1)) and from HC(k,D) to HC(2k, n
2 − k(D + 1)). These are similar to

the reduction given in the proof of Lemma 18, except that G is now a k-graph with
∆(G) ≤ D, and H is a (2k− 1)-graph or 2k-graph (according to which reduction we are
presenting).

By induction on k, with Proposition 17 as the base case, the reductions of (i) and (ii)
combine to prove the following theorem, which can be seen as a generalisation to k-graphs
of the aforementioned theorem of Garey, Johnson and Stockmeyer.

I Theorem 19. For every k ≥ 2 there exists D such that HC(k,D) and HP(k,D) are
NP-complete.

Theorem 3 follows immediately from Theorem 19 and the reductions of (iii).
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