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Abstract Solutions of a variational inequality problem defined by a closed and convex
set and a mapping are found by imposing conditions for the monotone convergence
with respect to a cone of the Picard iteration corresponding to the composition of the
projection onto the defining closed and convex set and the difference in the identity
mapping and the defining mapping. One of these conditions is the isotonicity of the
projection onto the defining closed and convex set. If the closed and convex set is a
cylinder and the cone is an extented Lorentz cone, then this condition can be dropped
because it is automatically satisfied. In this case, a large class of affine mappings and
cylinders which satisfy the conditions of monotone convergence above is presented.
The obtained results are further specialized for unbounded box-constrained variational
inequalities. In a particular case of a cylinder with a base being a cone, the variational
inequality is reduced to a generalized mixed complementarity problem which has been
already considered in Németh and Zhang (J Global Optim 62(3):443-457, 2015).
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1 Introduction

In this paper, we will study the solvability of variational inequalities on closed and
convex sets by using the isotonicity of the metric projection mapping onto these sets
with respect to the partial order defined by a cone. Apparently, this approach has not
been considered before.

Variational inequalities are models of various important problems in physics, engi-
neering, economics, and other sciences. The classical Nash equilibrium concept can
also be reformulated by using variational inequalities.

It is known (see Facchinei and Pang [1]) that a vector is a solution of a variational
inequality defined by a closed and convex set and a mapping iff it is a fixed point of
the composition of the projection onto the defining closed and convex set, and the
difference in the identity mapping and the given mapping. If we could guarantee the
isotonicity of the mappings in the latter composition with respect to the partial order
defined by a cone, then we could construct an increasing sequence with respect to the
partial order defined by the cone by using Picard’s iteration. If we could also guarantee
that this sequence is bounded from above with respect to the partial order defined by the
cone, then this sequence would be convergent to a solution of the variational inequality
(in fact, it would be convergent to a solution of the corresponding equivalent fixed point
problem). It turns out that there is a class of variational inequalities and a class of cones
that extend the Lorentz cone, for which this idea works very well. The only restriction
is that the variational inequality has to be defined on a cylinder. Such problems appear
in the practice. For example, the unbounded box-constrained variational inequalities
are of this form. Based on the above idea, a theorem for finding solutions of variational
inequalities on a cylinder will be presented, and an example will be given. Ideas similar
to the above are presented in [2—7] for complementarity and implicit complementarity
problems, but with a strong restriction on the cone defining the problem. The idea
of monotone convergence for complementarity problems defined by general cones is
considered first in Nemeth and Zhang [8]. The present paper extends the results of
that paper for variational inequalities.

Several other papers [9—19] dealt with conditions of convergence for iterations of
the above type by using similar conditions. However, neither of these works used the
ordering defined by a cone for showing the convergence of the corresponding iterative
scheme. Instead, they used as a tool the Banach fixed point theorem and assumed
Kachurovskii—-Minty—Browder-type monotonicity and global Lipschitz properties.

The structure of the paper is as follows: In the preliminaries, we introduce the ter-
minology and notations used throughout this paper. In Sect. 3, we recall the definition
and basic properties of the extended Lorentz cone, and describe all sets onto which the
projection is isotone with respect to this cone. In Sect. 4, we will find solutions of a
variational inequality by analyzing the monotone convergence with respect to a cone
of the Picard iteration corresponding to the equivalent fixed point problem. In Sect. 5,
we will specialize these results to variational inequalities defined on cylinders, by
using the extended Lorentz cone for the corresponding monotone convergence above.
In this case, we can drop the condition of Proposition 4.1 that the projection onto the
closed and convex set in the definition of the variational inequality is isotone with
respect to the extended Lorentz cone, because this condition is automatically satisfied,
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obtaining the more explicit result of Theorem 5.1. The latter result extends the results
of Nemeth and Zhang [8] for mixed complementarity problems. In Sect. 6, a large
class of affine mappings and cylinders which satisfy the conditions of Theorem 5.1 is
presented. In Sect. 7, we further specialize the results for unbounded box-constrained
variational inequalities.

2 Preliminaries

Denote by N the set of nonnegative integers. Let k, m, p, g € N\ {0} and R™ be the
m-dimensional real Euclidean vector space consisting of column vectors.

Identify the vectors of R™ by column vectors and consider the canonical inner
product defined on R” by R" x R™ 3 (x,y) > (x,y) := x Ty e R with induced
norm R” 5 x — ||x|| = /(x, x) e R.

The inner product in R? x RY = RP%4 is given by

((x,u), (y,v)) = (x,y) + (u, v).

For simplicity, a closed set L € R will be called a cone iff L N (—L) = {0} and
Ax+py € L,whenever A, u > Oand x, y € L, although in the subject literature often
the term closed, convex, and pointed cone is used. Let L € R™ be a cone. Denote by
< the relation defined by x <; vy <= y — x € L and call it the partial order
defined by L. The relation <[ is reflexive, transitive, antisymmetric, and compatible
with the linear structure of R” in the sense that x <; y implies thattx +z <y ty+z,
for any z € R™ and any ¢ > 0. Moreover, <y, is continuous at 0 in the sense that if
x" — x whenn — ocoand 0 <7 x" forany n € N, then 0 < x.

For any closed and convex set C, denote by P¢c : R™ — R™, the metric projection
mapping onto C, that is, the mapping defined by Pc(x) € C and

|lx — Pc(x)|l = min{||lx — y|| : y € C}, Vx € R™.

Since C is closed and convex, the projection mapping is well defined, and by its
definition, it follows that

Pyrc(x) =y+ Pc(x —y), Vx,y € R"™. ey
It is known that P¢ is nonexpansive (see Zarantonello [20]), that is,
1 Pc(x) — Pc)II < llx — yll, Vx,y € R™. 2
Let L € R™ be a cone. A mapping F' : R — R™ is called L-isotone iff x <p y
implies F(x) <p F(y).
The nonempty, closed, and convex set C € R is called L-isotone projection set
iff Pc is L-isotone.

The set £2 € R™ is called L-bounded from below (L-bounded from above) iff there
exists a vector y € R” such that y <; x (x <r y), for all x € £2. In this case, y is
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called a lower L-bound (upper L-bound) of 2. If y € §2, then y is called the L-least
element (L-greatest element) of §2.

Let Z € N be an unbounded set of nonnegative integers. The sequence {x"},c7 is
called L-increasing (L-decreasing) iff x"! <y x"2 (x"2 <p x"'), whenever n| < nj.

The sequence {x"},c7 is called L-bounded from below (L-bounded from above)
iff the set {x” : n € Z} is L-bounded from below (L-bounded from above).

A cone L is called regular iff any L-increasing sequence which is L-bounded from
above is convergent (or equivalently, any L-decreasing sequence which is L-bounded
from below is convergent). It is known (see McArthur [21]) that any cone in R is
regular.

The dual of a cone L € R™ is defined by

L*={xeR":{x,y) >0, Vy € L}.

A cone L is called subdual iff L € L* and self-dual iff L = L*.

A cone L C R™ is called polyhedral iff it is generated by a finite number of vectors

vl, ..., 0%, thatis,

L:cone{vl,...,vk} :={le+~~+kkvk:)q,...,kk20}.

The vectors vl, e, v are called the generators of L.

The affine hyperplane with normal u € R™ \ {0} and through a € R™ is the set
defined by
Hw,a) ={x eR": (x —a,u) =0}. 3)

An affine hyperplane H(u,a) determines two closed halfspaces H_(a,u) and
H4 (u, a) of R™, defined by

H_(u,a) ={x e R" : (x —a,u) <0},
and

Hi(u,a) ={x e R" : (x —a,u) > 0}.

3 Extended Lorentz Cones

Let p, g be positive integers. For a,b € R” denote a > b iff b SRi a, that is,
the components of a are at least as large as the corresponding components of b. If
the components of a are larger than the corresponding components of b, then denote
a > b. Denote by e the vector in R? with all components equal to one and by ¢’
the canonical unit vectors of R”. In Nemeth and Zhang [8], we defined the following
notion of an extended Lorentz cone:

L(p,q) ={(x,u) € RP xR? : x > |lulle} “
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and showed that the dual of L is
L(p.q)* ={(x,u) e RP x R? : (x,e) > |ull, x > 0}.

In the same paper, we showed the following:

The extended Lorentz cone L(p, g) defined by (4) is a (regular) cone.

— The cone L(p, g) is polyhedral (see Rockafellar [22]) iff g = 1.

The cone L(p, q) is subdual, and L(p, q) is self-dual iff p = 1, that is, when
L(p,q) = L(1, g) is the ¢ + 1-dimensional Lorentz cone.

— L(p, q) is a self-dual polyhedral cone iff p = g = 1.

In Theorem 2 of Nemeth and Zhang [8], we determined the L(p, g)-isotone pro-
jection sets. For convenience, we repeat this theorem here:

Theorem 3.1 1. Let K = R” x C, where C is an arbitrary nonempty, closed, and
convex set in R and L(p, q) be the extended Lorentz cone defined by (4). Then,
K is an L(p, q)-isotone projection set.

2. Letp =1,q > 1and K C RP x RY be a nonempty, closed, and convex set.
Then, K is an L(p, q)-isotone projection set iff K = R? x C, for some C C R?
nonempty, closed, and convex set.

3. Let p,q > 1, and

K =NgenH-(y". B S R? x R,

where y* = (a®, u®) is a unit vector. Then, K is an L(p, q)-isotone projection set
iff for each € one of the following conditions hold:
(a) The vector a® = 0.

(b) The vector u®* = 0, and there exists i # j such that af = V2/2,
a§ =—2/2 andaf{Z =0, forany k ¢ {i, j}.

4 Variational Inequalities

Let K € R™ be a closed and convex set and F' : R — R™ be a mapping. Then,
the variational inequality VI (K, F) defined by F and K is the problem of finding an
x € K such that forany y € K,

(y—x,F(x)) = 0.
It is known that x* is a solution of VI (F, K) if and only if it is a fixed point of the

mapping Px o (I — F), where [ is the identity mapping of R™ (see Facchinei and
Pang [1]). Consider the Picard iteration

"= Pr(x — F(x™M)). (5)
If F is continuous and {x"}, <y is convergent to x*, then it follows that x* is a fixed
point of the mapping Pk o (I — F) and hence a solution of VI (F, K). Therefore, it is

natural to seek convergence conditions for x". Let us first state the following simple
lemma:
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Lemma 4.1 Let K € R™ be a closed and convex set, F : R™ — R™ be a continuous
mapping, and L be a cone. Consider the sequence {x"},cn defined by (5). Suppose
that the mappings Px and I — F are L-isotone, x° <y x', and there exists a y € R™
such that x"* <p, y, for all n € N sufficiently large. Then, {x"},cN is convergent, and
its limit x* is a solution of VI (F, K).

Proof Since the mappings Px and I — F are L-isotone, the mapping
x +— Pg o (I — F) is also L-isotone. Then, by using (5) and a simple inductive
argument, it follows that {x"},cn is L-increasing. Since any cone in R™ is regular,
{x"},en is convergent, and hence, its limit x* is fixed point of Px o (I — F) and
therefore a solution of VI(F, K). O

Remark 4.1 Consider the assumptions of Lemma 4.1. If we further suppose that / — F
is nonexpansive, then Pg o (I — F) is also nonexpansive. Hence, the limit in Lemma
4.1 is robust in the sense that if the starting points x" and y° are close to each other,
then the corresponding limits x* and y* are also closed to each other.

Remark 4.2 The condition x° <; x! in Lemma 4.1 is satisfied when

x% € K N FY(=L). Indeed, if x € K N F~'(—~L), then —F(x°) € L and
xY € K. Thus, x° <L x0 — F(xo), and hence, by the isotonicity of Pk, we obtain
x0 = Pr(x%) =1 Pk(x° — F(x%) =x".

Proposition 4.1 Let K C R™ be a closed and convex set, F : R™" — R™ be a
continuous mapping, and L be a cone. Consider the sequence {x"}, cN defined by (5).
Suppose that the mappings Px and I — F are L-isotone and x° < x'. Denote by 1
the identity mapping. Let

Q={xeknx+L): Fx) e L}
Fr={xeknx®+L): Px(x — F(x)) <r x}.

Consider the following statements:

(i) 2 #2,

(it) I' # &,

(iii) The sequence {x"},cN is convergent, and its limit x* is a solution of VI (F, K).
Moreover, x* is the L-least element of I'.

Then, 2 C T and (i) => (i) => (iii).

Proof (i) = (ii): Let y € £2. Since Px is L-isotone, y — F(y) < y implies
Px(y — F(y)) <p Pg(y) = y, which shows that y € I'. Hence, £2 C I'. Thus,
(i) = (ii) is trivial now.

(i) == (iii):

Suppose that I # &. Since the mappings Pg and I — F' are L-isotone, the mapping
Pk o (I — F) is also L-isotone. Similarly to the proof of Lemma 4.1, it can be shown
that {x"},cn is L-increasing. Let y € I' be arbitrary but fixed. We have y — x? € L,
that is, x° <; y. Suppose that x” <; y. We show, by induction, that x* <; y for all
n > 0. Since the mapping Px o (I — F) is L-isotone, x"* <y y implies that

X" = Pp(x" — F(x")) <1 Px(y — F(y)) <L ).
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Thus, x" <y y forall n > 0. Then, Lemma 4.1 implies that {x"}, <N is convergent,
and its limit x* € K N (x 4 L) is a solution of VI (F, K). Since x* is a solution of
VI(F, K), we have that Pg (x* — F(x™)) = x™ and hence x* € I". Moreover, the
relation x” <y y in limit gives x* < y. Therefore, x* is the smallest element of I"
with respect to the partial order defined by L. O

5 Variational Inequalities on Cylinders

Let p, g be positive integers and m = p 4+ q. By a cylinder, we mean a set K =
R? x C € R? x R? = R™, where C is a nonempty, closed and convex subset of RY.
In this section, we will specialize the results of the previous section for variational
inequalities on cylinders.

Lemma 5.1 Let K = R?” x C, where C is an arbitrary nonempty, closed, and convex
setinR9. Let G : R? xR? — RP, H : R? x R? — RY and

F=(G H): R’ xRY - R x R,

Then, the variational inequality VI(F, K) is equivalent to the problem of finding a
vector (x,u) € RP x C such that

Gx,u)=0, (v—u, H(x,u)) >0, Vv € C. (6)

Proof The variational inequality VI(F,K) 1is equivalent to finding an
(x,u) € R? x C such that

(y—x,G(x,u)) +{v—u, Hx,u)) > 0, V(y,v) e R? x C. @)

Let (x, u) € R” x C be a solution of (7). If we choose v = u € C in (7), then we get
(y—x,G(x,u)) > 0forany y € RP. Hence, G(x,u) = 0 and (v —u, H(x,u)) > 0.
Conversely, if (x, u) € R” x C is a solution of (6), then it is easy to see that it is a
solution of (7). O

By using the notation of Lemma 5.1, the Picard iteration (5) can be rewritten as:

xn+1 — x" — G(x”, un)’

n+l _ n n o,n (8)
u = Pc(u" — H(x"™, u")).
Consider the partial order defined by the extended Lorentz cone (4). Then, we obtain
the following proposition.

Theorem 5.1 Let K = RP x C, where C is a nonempty, closed, and convex subset
of R1. Let G : RP x R? — RP, H : R? x R? — RY be continuous mappings,
F = (G,H): R xRI — RP x RY. Let (x°,u®) € R” x RY and consider the
sequence (x",u"),cy defined by (8). Let x,y € R” and u,v € RY. Suppose that
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x! = x% > |lu' — u®e (in particular, by Remark 4.2, this holds if u® € C and

—G(x2 u®) = |H(x, u%|le) and that y — x > ||lv — ul|e implies
y=—x—=Gy,v)+Gl,u) = llv—u—H(y,v)+ H(x, u)le.
Let
R={(x,u) eR? x C:x—x"> lu—ullle, G(x,u) > ||H(x,u)|e}
and

F'={x,u) eRP xC:x—x"> |lu—ue,
G(x,u) > |lu— Pc(u — H(x,u))lle}.

Consider the following statements:

(i) 2 #2,
(ii) I' # &,
(iii) The sequence {(x", u™)},eN is convergent, and its limit (x*, u™) is a solution of
VI(F, K). Moreover, (x*, u™) is the smallest element of I" with respect to the
partial order defined by the extended Lorentz cone L(p, q) defined by (4).

Then, 2 € T and (i) = (ii) => (iii).

Proof Let L(p, q) be the extended Lorentz cone defined by (4). First, observe that
KN (@2 u®+Lip, q) #2. By using the definition of the extended Lorentz cone,
it is easy to verify that

2=Kn(x"u"+Lip,g)NnF U L(p,q)
={ze KN u®) + L(p,9) : F(z) € L(p,q)}

and
I={ze KN u")+Lp.q) : Pk = F) <1(p.g) 2
Letx,y € R? andu, v € C. Since y — x > |[v — u|e implies
y—x—-GU,v)+Gx,u)>|lv—u—H(y,v)+ H(x,u)le,

it follows that I — F is L(p, g)-isotone. Hence, by Proposition 4.1 (with
m = p 4+ q), Thorem 3.1 and Lemma 5.1, it follows that 2 < I and
(i) = (ii) = (iii). O
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6 Affine Variational Inequalities on Cylinders

Throughout this section, we will use the notation of Proposition 4.1, and we will
suppose that int(L) is nonempty and Px is L-isotone, which is true for the extended
Lorentz cone L = L(p, q). We will present a large class of monotone solvable affine
variational inequalities for which (8) is monotone and convergent.

Lemma 6.1 If

1. The mapping I — F is L-isotone, x° € K and F(x°) € —L
and if there exists an x € R™ such that

2. We have the inclusions x € K, F(x) € L and x — MNelL,
then (5) (8) if L = L(p, q)) is convergent.

Proof By Remarks 4.1 and 4.2, Condition 1 of the lemma implies x° <; x!, and

Condition 2 of the lemma means that x € £2, that is, £2 is nonempty. Hence, the result
follows from Proposition 4.1. O

For any m x m matrix M and set A C R denote by int A the interior of A and by
||M]| the operator norm of M, i.e.,

M| = min{c > 0: |Mx|| < c|x| forall x € R™},

andlet MA := {Mx : x € A}

Lemma 6.2 Suppose that F is an affine mapping, that is, F(z) = Az + b, Vz € R",
where A is a constant m x m nonsingular matrix and b € R™ is a constant vector.
Letx° € A=Y (=b—L). If I — A)L € L and AL Nint(L) # @, then there exists an
x € R™ such that F(x) € L and x —x° € L and if K is a closed and convex set such
that x, x° € K, then O)(®)if L = L(p, q)) is convergent.

Proof Note that x € A=1(—b — L) means that F(x°) € —L and (I — A)L C L
is equivalent to I — F is L-isotone (as remarked by one of the reviewers, in case of
L = R}, thisimplies that A has the Z-property, that is, it has nonnegative off-diagonal
entries). Let

Ay € AL Nint(L).

Then, y € L and Ay € int(L). Hence, there exists a sufficiently large positive real
number A such that (1/1)(Ax?+b)+ Ay € L. Then, Ax +b € L, where x = x"+1y.
Hence, F(x) € L and x —x° € L. Choose K to be a closed and convex set such that K
contains x° and x (for example, in case of the box-constrained variational inequalities
of the next section, choose the box large enough to contain x° and x). Then, Conditions
1-2 of Lemma 6.1 are satisfied, and therefore, (5) ((8) if L = L(p, q)) is convergent.

O
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In conclusion, satisfying Conditions 1-2 of Lemma 6.1 reduces to finding nonsin-
gular matrices A such that (/ —A)L € L and ALNint(L) # @. Letus concentrate on
the latter problem for L = L(p, q), the extended Lorentz cone, when the conditions
of Proposition 4.1 become the conditions of Theorem 5.1.

Usually, /, denotes the identity matrix in R". However, in our case, the notation /
will always be unambiguous, and therefore, we omit the index r.

Proposition 6.1 Let o €]0, 1[ be a real constant, S be a p X p constant matrix with
all entries in the main diagonal from the interval lo, 1[ and the sum of the elements
in each of its row less than 1, T be a q x q matrix such that |T|| < «, and A be the
block diagonal matrix given by A = (16S197)~ Then, (I — A)L(p,q) € L(p,q)
and AL(p,q) Nint(L(p, q)) # 2.

Proof For any (x, u) € R? x RY, we have
Alx,u) = (I — S)x, I —T)u).

Hence, (x,u) € L(p, q) is equivalent to x > |julle, and A(x, u) € int(L(p, q)) is
equivalent to (I — S)x > ||(I — T)ul|e. From the restrictions imposed on S, it follows
that both inequalities will be satisfied if the components of x are equal and large enough.
Hence, (x, u) € int(L(p, q)) # < and therefore AL(p, q) Nint(L(p, q)) # . We

have I — A = (g%) and thus

(I —A)(x,u) = (Sx, Tu),

for any (x,u) € L(p, q) (i.e., x > |u]le which implies x > 0). Since S — «/ is a
positive matrix and x > 0, we get

Sx =ax = Tllx = [[Tlulle = ITule.
Therefore, (I — A)(x,u) = (Sx, Tu) € L(p, q), which shows that

(I —A)L(p,q) € L(p,q).
O

Remark 6.1 Going back to a general cone L with nonempty interior, in the literature
the matrices I — A for which (I — A)L C L are called L-positive and form the
cone P(L). It is known that P(L) has a nonempty interior as well (see Lemma 5 of
Schneider and Vidyasagar [23]). Hence, the inclusion (I — A)L(p, q) € L(p, q) also
holds for some open set in any neighborhood of the matrices of the type (1 65 ,BT)
constructed above. By continuity reasons, this open set can be chosen so that to satisfy
AL(p,q)Nint(L(p, q)) # < as well. We conclude that the set of affine mappings F

satisfying the condition of Theorem 5.1 is large.
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7 Unbounded Box-Constrained Variational Inequalities

Let p, ¢ be positive integers, m = p + q and K = [[;_,[a¢, b¢] be a box, where
ag, by € RU{—o00,00} and ay < by, for all £ € {1, ..., m}. The i-th entry of the
projection mapping is (see, for example, Facchinei and Pang [1]):

a;, if x; < a;,
(Pg (x))i = Plg; pj)(x;) = mid(a;, b;, x;) = {x;, ifa; < x; < b, 9
b;, if b; < x;.

Let B =[[/_[ai,bi] CR? and C = H(jzl[al,ﬂ, bp+ ], so we have
Pk (y,v) = (Pp(y), Pc(v)) (10)
and the Picard iteration (5) becomes
xl-”+1 = mid(q;, b;, (x" — F(x"));). (11

Let L(p, q) be the extended Lorentz cone in R? x R?. The next proposition shows
that the L (p, g)-isotonicity of a box is equivalent to the box being a cylinder. It can be
proved either directly, or by using Theorem 2 of Nemeth and Zhang [8]. The details
are left to the reader.

Proposition 7.1 Let L(p, q) be the extended Lorentz cone. Then, the projection map-
ping Px is L(p, q)-isotone iff K = R? x C where C = H?Zl[apﬂ', bpyjl

Hence, the results of Theorem 5.1 can be specialized to the set K given by Proposition
7.1, with the Picard iteration taking the form (11) and the function mid(a;, b;, -) given
by (9).

8 Conclusions

In this paper, we presented a Picard iteration for solving a variational inequality on
a cylinder via a fixed point formulation. The iteration is monotonically convergent to
the solution of the variational inequality with respect to the partial order defined by
an extended Lorentz cone. The monotone convergence is based on the isotonicity of
the projection onto a cylinder with respect to the partial order defined by the extended
Lorentz cone. We list the following open questions:

1. Given a cone, determine all closed and convex sets onto which the projection is
isotone with respect to the partial order defined by the cone.

2. Given a closed and convex set, determine all cones such that the projection onto
the closed and convex set is isotone with to respect the partial order defined by the
cone.

3. Determine the closed and convex sets for which there exists a cone, such that the
projection onto the closed and convex set is isotone with respect to the partial order
defined by the cone.
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Although the above questions are difficult to answer in general, any particular result
about them can be important for solving complementarity problems and/or variational
inequalities by using a monotone convergence. Moreover, any such result could be
important in statistics as well, where the isotonicity of the projection may occur in
various algorithms (see, for example, the algorithms considered in Guyader, Jegou,
Németh and Németh [24]). Some partial results related to Questions 1, 2, and 3 above
can be found in Németh and Németh [25,26] and in this paper, but there is still much
to be done.

The positive operators on the Lorentz cone have been completely classified in
Loewy and Schneider [27]. This classification suggests that the class of affine mappings
satisfying Theorem 5.1 is even much larger than the one presented in Sect. 6. However
the complete classification of the affine mappings which satisfy the conditions of
Theorem 5.1 is still an open question.
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