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Abstract
Co-evolutionary algorithms have a wide range of applications, such as in hardware
design, evolution of strategies for board games, and patching software bugs. How-
ever, these algorithms are poorly understood and applications are often limited by
pathological behaviour, such as loss of gradient, relative over-generalisation, and
mediocre objective stasis. It is an open challenge to develop a theory that can predict
when co-evolutionary algorithms find solutions efficiently and reliable. This paper
provides a first step in developing runtime analysis for population-based competitive
co-evolutionary algorithms.We provide a mathematical framework for describing and
reasoning about the performance of co-evolutionary processes. To illustrate the frame-
work, we introduce a population-based co-evolutionary algorithm called PDCoEA,
and prove that it obtains a solution to a bilinear maximin optimisation problem in
expected polynomial time. Finally, we describe settings where PDCoEA needs expo-
nential time with overwhelmingly high probability to obtain a solution.

Keywords Co-evolutionary algorithms · Runtime analysis · Evolutionary
computation · Game theory

1 Introduction

Many real-world optimisation problems feature a strategic aspect, where the solution
quality depends on the actions of other—potentially adversarial—players. There is a
need for adversarial optimisation algorithms that operate under realistic assumptions.
Departing from a traditional game theoretic setting, we assume two classes of players,
choosing strategies from “strategy spaces” X and Y respectively. The objectives of
the players are to maximise their individual “payoffs” as given by payoff functions
f , g : X × Y → R.
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A fundamental algorithmic assumption is that there is insufficient computational
resources available to exhaustively explore the strategy spaces X and Y . In a typical
real world scenario, a strategy could consist of making n binary decisions. This leads
to exponentially large and discrete strategy spacesX = Y = {0, 1}n . Furthermore, we
can assume that the players do not have access to or the capability to understand the
payoff functions. However, it is reasonable to assume that players can make repeated
queries to the payoff function [13]. Together, these assumptions render many existing
approaches impractical, e.g., Lemke–Howson, best response dynamics, mathematical
programming, or gradient descent-ascent.

Co-evolutionary algorithms (CoEAs) (see [28] for a survey) could have a potential
in adversarial optimisation, partly because they make less strict assumptions than the
classicalmethods.Twopopulations are co-evolved (sayone inX , the other inY),where
individuals are selected for reproduction if they interact successfully with individuals
in the opposite population (e.g. as determined by the payoff functions f , g). The
hoped for outcome is that an artificial “arms race” emerges between the populations,
leading to increasingly sophisticated solutions. In fact, the literature describe several
successful applications, including design of sorting networks [16], software patching
[2], and problems arising in cyber security [26].

It is common to separate co-evolution into co-operative and competitive co-
evolution. Co-operative co-evolution is attractive when the problem domain allows
a natural division into sub-components. For example, the design of a robot can be
separated into its morphology and its control [27]. A cooperative co-evolutionary
algorithm works by evolving separate “species”, where each species is responsible
for optimising one sub-component of the overall solution. To evaluate the fitness of a
sub-component, it is combined with sub-components from the other species to form
a complete solution. Ideally, there will be a selective pressure for the species to coop-
erate, so that they together produce good overall designs [29].

The behaviour of CoEAs can be abstruse, where pathological population behaviour
such as loss of gradient, focusing on the wrong things, and relativism [30] prevent
effective applications. It has been a long-standing open problem to develop a the-
ory that can explain and predict the performance of co-evolutionary algorithms (see
e.g. Section 4.2.2 in [28]), notably runtime analysis. Runtime analysis of EAs [10]
has provided mathematically rigorous statements about the runtime distribution of
evolutionary algorithms, notably how the distribution depends on characteristics of
the fitness landscape and the parameter settings of the algorithm. Following from the
publication of the conference version of this paper, several other results on the run-
time of competitive co-evolutionary algorithms have appeared considering variants of
the Bilinear game introduced in Sect. 4. Hevia, Lehre and Lin analysed the runtime
of Randomised Local Search CoEA (RLS-PD) on Bilinear [12]. Hevia and Lehre
analysed the runtime of (1, λ) CoEA on a lattice variant of Bilinear [15].

The only rigorous runtime analysis of co-evolution the author is aware of focuses
on co-operative co-evolution. In a pioneer study, Jansen and Wiegand considered
the common assumption that co-operative co-evolution allows a speedup for sep-
arable problems [17]. They compared rigorously the runtime of the co-operative
co-evolutionary (1+1) Evolutionary Algorithm (CC (1+1) EA)with the classical (1+1)
EA. Both algorithms follow the same template: They keep the single best solution seen
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so far, and iteratively produce new candidate solution by “mutating” the best solution.
However, the algorithms use different mutation operators. The CC (1+1) EA restricts
mutation to the bit-positions within one out of k blocks in each iteration. The choice
of the current block alternates deterministically in each iteration, such that in k iter-
ations, every block has been active once. The main conclusion from their analysis
is that problem separability is not a sufficient criterion to determine whether the CC
(1+1) EAperforms better than the (1+1) EA. In particular, there are separable problems
where the (1+1) EA outperforms the CC (1+1) EA, and there are inseparable problems
where the converse holds. What the authors find is that CC (1+1) EA is advantageous
when the problem separability matches the partitioning in the algorithm, and there is
a benefit from increased mutation rates allowed by the CC (1+1) EA.

Much work remains to develop runtime analysis of co-evolution. Co-operative co-
evolution can be seen as a particular approach to traditional optimisation, where the
goal is tomaximise a given objective function. In contrast, competitive co-evolutionary
algorithms are employed for a wide range of solution concepts [14]. It is unclear to
what degree results about co-operative CoEAs can provide insights about competitive
CoEAs. Finally, the existing runtime analysis considers the CC (1+1) EA which does
not have a population. However, it is particularly important to study co-evolutionary
population dynamics to understand the pathologies of existing CoEAs.

This paper makes the following contributions: Sect. 2 introduces a generic mathe-
matical framework to describe a large class of co-evolutionary processes and defines a
notion of “runtime” in the context of generic co-evolutionary processes. We then
discuss how the population-dynamics of these processes can be described by a
stochastic process. Section3 presents an analytical tool (a co-evolutionary level-based
theorem) which can be used to derive upper bounds on the expected runtime of
co-evolutionary algorithms. Section4 specialises the problem setting to maximin-
optimisation, and introduces a theoretical benchmark problem Bilinear. Section5
introduces the algorithm PDCoEA which is a particular co-evolutionary process tai-
lored to maximin-optimisation.We then analyse the runtime of PDCoEA onBilinear
using the level-based theorem, showing that there are settings where the algorithm
obtains a solution in polynomial time. Since the publication of the conference version
of this paper, the PDCoEA has been applied to a cyber-security domain [21]. In Sect. 6,
we demonstrate that the PDCoEA possesses an “error threshold”, i.e., a mutation rate
above which the runtime is exponential for any problem. Finally, the appendix con-
tains some technical results which have been relocated from the main text to increase
readability.

1.1 Preliminaries

For any natural number n ∈ N, we define [n] := {1, 2, . . . , n} and [0..n] := {0} ∪
[n]. For a filtration (Ft )t∈N and a random variable X we use the shorthand notation
Et [X ] := E [X | Ft ]. A random variable X is said to stochastically dominate a
random variable Y , denoted X � Y , if and only if Pr (Y ≤ z) ≥ Pr (X ≤ z) for all
z ∈ R. The Hamming distance between two bitstrings x and y is denoted H(x, y).
For any bitstring z ∈ {0, 1}n , ‖z‖ := ∑n

i=1 zi , denotes the number of 1-bits in z.

123



Algorithmica

2 Co-evolutionary Algorithms

This section describes in mathematical terms a broad class of co-evolutionary pro-
cesses (Algorithm 1), along with a definition of their runtime for a given solution
concept. The definition takes inspiration from level-processes (see Algorithm 1 in [4])
used to describe non-elitist evolutionary algorithms.

Algorithm 1 Co-evolutionary Process
Require: Population size λ ∈ N and strategy spaces X and Y .
Require: Initial populations P0 ∈ X λ and Q0 ∈ Yλ.
1: for each generation number t ∈ N0 do
2: for each interaction number i ∈ [λ] do
3: Sample an interaction (x, y) ∼ D(Pt , Qt ).

4: Set Pt+1(i) := x and Qt+1(i) := y.
5: end for
6: end for

We assume that in each generation, the algorithm has two1 populations P ∈ X λ

and Q ∈ Yλ which we sometimes will refer to as the “predators” and the “prey”.
Note that these terms are adopted only to connect the algorithm with their biological
inspiration without imposing further conditions. In particular, we do not assume that
predators or prey have particular roles, such as one population taking an active role
and the other population taking a passive role. We posit that in each generation, the
populations interact λ times, where each interaction produces in a stochastic fashion
one new predator x ∈ X and one new prey y ∈ Y . The interaction is modelled as a
probability distributionD(P, Q) overX ×Y that depends on the current populations.
For a given instance of the framework, the operatorD encapsulates all aspects that take
place in producing new offspring, such as pairing of individuals, selection, mutation,
crossover, etc. (See Sect. 5 for a particular instance of D).

As is customary in the theory of evolutionary computation, the definition of the
algorithm does not state any termination criterion. The justification for this omission
is that the choice of termination criterion does not impact the definition of runtime we
will use.

Notice that the predator and the prey produced through one interaction are not
necessarily independent random variables. However, each of the λ interactions in one
generation are independent and identically distributed random variables.

We will restrict ourselves to solution concepts that can be characterised as finding
a given target subset S ⊆ X × Y . This captures for example maximin optimisation
or finding pure Nash equilibria. Within this context, the goal of Algorithm 1 is now
to obtain populations Pt and Qt such that their product intersects with the target set
S. We then define the runtime of an algorithm A as the number of interactions before
the target subset has been found.

Definition 1 (Runtime) For any instance A of Algorithm 1 and subset S ⊆ X × Y ,
define TA,S := min{tλ ∈ N | (Pt × Qt ) ∩ S �= ∅}.
1 The framework can be generalised to more populations.
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We follow the convention in analysis of population-based EAs that the granularity
of the runtime is in generations, i.e., multiples of λ. The definition overestimates the
number of interactions before a solution is found by at most λ − 1.

2.1 Tracking the Algorithm State

We will now discuss how the state of Algorithm 1 can be captured with a stochastic
process. To determine the trajectory of a co-evolutionary algorithm, it is insufficient,
naturally, to track only one of the populations, as the dynamics of the algorithm is
determined by the relationship between the two populations.

Given the definitionof runtime, itwill be natural to describe the state of the algorithm
via the Cartesian product Pt × Qt . In particular, for subsets A ⊂ X and B ⊂ Y , we
will study the drift of the stochastic process Zt := |(Pt × Qt ) ∩ (A × B)|.

Naturally, the predator x and the prey y sampled in line 3 of Algorithm 1 are
not necessarily independent random variables. However, a predator x sampled in
interaction i1 is probabilistically independent of any prey sampled in an interaction
i2 �= i1. In order to not have to explicitly take these dependencies into account later
in the paper, we now characterise properties of the distribution of Zt in Lemma 1.

Lemma 1 Given subsets A ⊂ X , B ⊂ Y , assume that for any δ > 0 and γ ∈ (0, 1),
the sample (x, y) ∼ D(Pt , Qt ) satisfies

Pr (x ∈ A) Pr (y ∈ B) ≥ (1 + δ)γ,

and Pt and Qt are adapted to a filtration (Ft )t∈N. Then the random variable Zt+1 :=
|(Pt+1 × Qt+1) ∩ (A × B)| satisfies

(1) E
[
Zt+1 | Ft

] ≥ λ(λ − 1)(1 + δ)γ .
(2) E

[
e−ηZt+1 | Ft

] ≤ e−ηλ(γ λ−1) for 0 < η ≤ (1 − (1 + δ)−1/2)/λ

(3) Pr (Zt+1 < λ(γ λ − 1) | Ft ) ≤ e
−δ1γ λ

(

1−
√

1+δ1
1+δ

)

for δ1 ∈ (0, δ).

Proof In generation t + 1, the algorithm samples independently and identically λ

pairs (Pt+1(i), Qt+1(i))i∈[λ] from distribution D(Pt , Qt ). For all i ∈ [λ], define
the random variables X ′

i := 1{Pt+1(i)∈A} and Y ′
i := 1{Qt+1(i)∈B}. Then since the

algorithm samples each pair (Pt+1(i), Qt+1(i)) independently, and by the assumption
of the lemma, there exists p, q ∈ (0, 1] such that X ′ := ∑λ

i=1 X
′
i ∼ Bin(λ, p), and

Y ′ := ∑λ
i=1 Y

′
i ∼ Bin(λ, q), where pq ≥ γ (1 + δ). By these definitions, it follows

that Zt+1 = X ′Y ′.
Note that X ′ and Y ′ are not necessarily independent random variables because

X ′
i and Y ′

i are not necessarily independent. However, by defining two independent
binomial random variables X ∼ Bin(λ, p), and Y ∼ Bin(λ, q), we readily have the

123



Algorithmica

stochastic dominance relation

Zt+1 = X ′Y ′ =
(

λ∑

i=1

X ′
i

)⎛

⎝
λ∑

j=1

Y ′
j

⎞

⎠ (1)

=
(

λ∑

i=1

Xi

)⎛

⎝
∑

j �=i

Y j

⎞

⎠ +
λ∑

i=1

X ′
i Y

′
i (2)

= XY −
λ∑

i=1

XiYi +
λ∑

i=1

X ′
i Y

′
i (3)

� XY −
λ∑

i=1

XiYi . (4)

The first statement of the lemma is now obtained by exploiting (4), Lemma 27 in
the appendix, and the independence between X and Y

Et
[
Zt+1

] ≥ E

[

XY −
λ∑

i=1

XiYi

]

= E [X ]E [Y ] −
λ∑

i=1

E [Xi ]E [Yi ]

= pλqλ − λpq = pqλ(λ − 1) ≥ (1 + δ)γ λ(λ − 1).

For the second statement, we apply Lemma 18 wrt X , Y , and the parameters σ :=√
1 + δ − 1 and z := γ . By the assumption on p and q, we have pq ≥ (1 + δ)γ =

(1 + σ)2z, furthermore the constraint on parameter η gives

η ≤ 1

λ

(

1 − 1√
1 + δ

)

=
√
1 + δ − 1

λ
√
1 + δ

= σ

(1 + σ)λ
.

The assumptions of Lemma 18 are satisfied, and we obtain from (4)

Et

[
e−ηZt+1

]
≤ E

[

exp

(

−ηXY + η

λ∑

i=1

XiYi

)]

< eηλ · E

[
e−ηXY

]
< eηλ · e−ηγ λ2 = e−ηλ(γ λ−1).

Given the second statement, the third statement will be proved by a standard
Chernoff-type argument. Define δ2 > 0 such that (1 + δ1)(1 + δ2) = 1 + δ. For

η := 1

λ

(

1 − 1√
1 + δ2

)

= 1

λ

(

1 −
√
1 + δ1

1 + δ

)
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and a := λ(γ λ − 1), it follows by Markov’s inequality

Pr t (Zt+1 ≤ a) = Pr t
(
e−ηZt+1 ≥ e−ηa

)
≤ eηa · Et

[
e−ηZt+1

]

≤ eηa · exp (−ηλ(γ (1 + δ1)λ − 1))

= eηa−ηa−ηγ λ2δ1 = e−ηγ λ2δ1

= exp

(

−δ1

(

1 −
√
1 + δ1

1 + δ

)

γ λ

)

,

where the last inequality applies statement 2. ��
The next lemma is a variant of Lemma 1, andwill be used to compute the probability

of producing individuals in “new” parts of the product space X × Y (see condition
(G1) of Theorem 3).

Lemma 2 For A ⊂ X and B ⊂ Y define

r := Pr ((Pt+1 × Qt+1) ∩ (A × B) �= ∅) .

If for (x, y) ∼ D(Pt , Qt ), it holds Pr (x ∈ A)Pr (y ∈ B) ≥ z, then

1

r
<

3

z(λ − 1)
+ 1.

Proof Define p := Pr (x ∈ A) , q := Pr (y ∈ B) and λ′ := λ − 1. Then by the
definition of r and Lemma 25

r ≥ Pr (∃k �= � : Pt+1(k) = u ∧ Qt+1(�) = v)

≥ (1 − (1 − p)λ)(1 − (1 − q)λ
′
) >

(
λ′ p

1 + λ′ p

)(
λ′q

1 + λ′q

)

≥ λ′2z
1 + λ′(p + q) + λ′2z

≥ λ′2z
1 + 2λ′ + λ′2z

.

Finally,

1

r
≤ 2

zλ′ + 1

zλ′2 + 1 <
3

zλ′ + 1 = 3

z(λ − 1)
+ 1.

��

3 A Level-Based Theorem for Co-evolutionary Processes

This section provides a generic tool (Theorem 3), a level-based theorem for co-
evolution, for deriving upper bounds on the expected runtime of Algorithm 1. Since
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this theorem can be seen as a generalisation of the original level-based theorem for
classical evolutionary algorithms introduced in [4], we will start by briefly discussing
the original theorem. Informally, it assumes a population-based process where the
next population Pt+1 ∈ X λ is obtained by sampling independently λ times from a
distribution D(Pt ) that depends on the current population Pt ∈ X λ. The theorem
provides an upper bound on the expected number of generations until the current pop-
ulation contains an individual in a target set A≥m ⊂ X , given that the following three
informally-described conditions hold. Condition (G1): If a fraction γ0 of the popula-
tion belongs to a “current level” (i.e., a subset) A≥ j ⊂ X , then the distributionD(Pt )
should assign a non-zero probability z j > 0 of sampling individuals in the “next level”
A≥ j+1. Condition (G2): If already a γ -fraction of the population belongs to the next
level A≥ j+1 for γ ∈ (0, γ0), then the distribution D(Pt ) should assign a probability
at least γ (1 + δ) to the next level. Condition (G3) is a requirement on the population
size λ. Together, conditions (G1) and (G2) ensure that the process “discovers” and
multiplies on next levels, thus evolving towards the target set. Due to its generality,
the classical level-based theorem and variations of it have found numerous applica-
tions, e.g., in runtime analysis of genetic algorithms [5], estimation of distribution
algorithms [22], evolutionary algorithms applied to uncertain optimisation [8], and
evolutionary algorithms in multi-modal optimisation [6, 7].

We now present the new theorem, a level-based theorem for co-evolution, which
is one of the main contributions of this paper. The theorem states four conditions
(G1), (G2a), (G2b), and (G3) which when satisfied imply an upper bound on the
runtime of the algorithm. To apply the theorem, it is necessary to provide a sequence
(A j × Bj ) j∈[m] of subsets of X × Y called levels, where A1 × B1 = X × Y, and
where Am × Bm is the target set. It is recommended that this sequence overlaps to
some degree with the trajectory of the algorithm. The “current level” j corresponds
to the latest level occupied by at least a γ0-fraction of the pairs in Pt × Qt . Condition
(G1) states that the probability of producing a pair in the next level is strictly positive.
Condition (G2a) states that the proportion of pairs in the next level should increase at
least by a multiplicative factor 1 + δ. The theorem applies for any positive parameter
δ, and does not assume that δ is a constant with respect to m. Condition (G2a) implies
that the fraction of pairs in the current level should not decrease below γ0. Finally,
Condition (G3) states a requirement in terms of the population size.

In order to make the “current level” of the populations well defined, we need to
ensure that for all populations P ∈ X λ and Q ∈ Yλ, there exists at least one level
j ∈ [m] such that |(P × Q) ∩ (A j × Bj )| ≥ γ0λ

2. This is ensured by defining the
initial level A1 × B1 := X × Y .

Notice that the notion of “level” here ismore general than in the classical level-based
theorem [4], in that they do not need to form a partition of the search space.

Theorem 3 Given subsets A j ⊆ X , B j ⊆ Y for j ∈ [m] where A1 := X and
B1 := Y , define T := min{tλ | (Pt × Qt ) ∩ (Am × Bm) �= ∅}, where for all t ∈ N,
Pt ∈ X λ and Qt ∈ Yλ are the populations of Algorithm 1 in generation t. If there exist
z1, . . . , zm−1, δ ∈ (0, 1], and γ0 ∈ (0, 1) such that for any populations P ∈ X λ and
Q ∈ Yλ with so-called “current level” j := max{i ∈ [m] | |(P × Q) ∩ (Ai × Bi )| ≥
γ0λ

2}
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(G1) if j ∈ [m − 1] and (x, y) ∼ D(P, Q) then

Pr
(
x ∈ A j+1

)
Pr
(
y ∈ Bj+1

) ≥ z j ,

(G2a) for all γ ∈ (0, γ0), if j ∈ [m − 2] and |(P × Q) ∩ (A j+1 × Bj+1)| ≥ γ λ2,
then for (x, y) ∼ D(P, Q),

Pr
(
x ∈ A j+1

)
Pr
(
y ∈ Bj+1

) ≥ (1 + δ)γ,

(G2b) if j ∈ [m − 1] and (x, y) ∼ D(P, Q), then

Pr
(
x ∈ A j

)
Pr
(
y ∈ Bj

) ≥ (1 + δ)γ0,

(G3) and the population sizeλ ∈ N satisfies for z∗ := mini∈[m−1] zi and any constant
υ > 0

λ ≥ 2

(
1

γ0δ2

)1+υ

ln

(
m

z∗

)

,

then for any constant c′′ > 1, and sufficiently large λ,

E [T ] ≤ c′′λ
δ

(

mλ2 + 16
m−1∑

i=1

1

zi

)

. (5)

The proof of Theorem 3 uses drift analysis, and follows closely the proof of the
original level-based theorem [4], however there are some notable differences, partic-
ularly in the assumptions about the underlying stochastic process and the choice of
the “level functions”. For ease of comparison, we have kept the proof identical to the
classical proof where possible. We first recall the notion of a level-function which is
used to glue together two distance functions in the drift analysis.

Definition 2 ([4]) For any λ,m ∈ N \ {0}, a function g : [0..λ2] × [m] → R is called
a level function if the following three conditions hold

1. ∀x ∈ [0..λ2],∀y ∈ [m − 1], g(x, y) ≥ g(x, y + 1),
2. ∀x ∈ ∪[0..λ2 − 1],∀y ∈ [m], g(x, y) ≥ g(x + 1, y), and
3. ∀y ∈ [m − 1], g(λ2, y) ≥ g(0, y + 1).

It follows directly from the definition that the set of level functions is closed under
addition. More precisely, for any pair of level functions g, h : [0..λ2] × [m] →
R, the function f (x, y) := g(x, y) + h(x, y) is also a level function. The proof
of Theorem 3 defines one process (Yt )t∈N ∈ [m] which informally corresponds to
the “current level” of the process in generation t , and a sequence of m processes
(X (1)

t )t∈N, . . . , (X (m)
t )t∈N, j ∈ [m], where informally X ( j)

t refers to the number of
individuals above level j in generation t . Thus, X (Yt )

t corresponds to the number of
individuals above the current level in generation t . A level-function g and the following
lemma will be used to define a global distance function used in the drift analysis.
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Lemma 4 ([4]) If Yt+1 ≥ Yt , then for any level function g

g
(
X (Yt+1+1)
t+1 ,Yt+1

)
≤ g

(
X (Yt+1)
t+1 ,Yt

)
.

Proof The statement is trivially true when Yt = Yt+1. On the other hand, if Yt+1 ≥
Yt + 1, then the conditions in Definition 2 imply

g
(
X (Yt+1+1)
t+1 ,Yt+1

)
≤ g (0,Yt+1) ≤ g (0,Yt + 1)

≤ g
(
λ2,Yt

)
≤ g

(
X (Yt+1)
t+1 ,Yt

)
.

��
We now proceed with the proof of the level-based theorem for co-evolutionary

processes.

Proof of Theorem 3 We apply Theorem 26 (the additive drift theorem) with respect

to the parameter a = 0 and the process Zt := g
(
X (Yt+1)
t ,Yt

)
, where g is a level-

function, and (Yt )t∈N and (X ( j)
t )t∈N for j ∈ [m] are stochastic processes, whichwill be

defined later. (Ft )t∈N is the filtration induced by the populations (Pt )t∈N and (Qt )t∈N.
We will assume w.l.o.g. that condition (G2a) is also satisfied for j = m − 1,

for the following reason. Given Algorithm 1 with a certain mapping D, consider
Algorithm 1 with a modified mappingD′(P, Q): If (P × Q) ∩ (Am × Bm) = ∅, then
D′(P, Q) = D(P, Q); otherwise D′(P, Q) assigns probability mass 1 to some pair
(x, y) of P × Q that is in Am , e.g., to the first one among such elements. Note that
D′ meets conditions (G1), (G2a), and (G2b). Moreover, (G2a) hold for j = m − 1.
For the sequence of populations P ′

0, P
′
1, . . . and Q′

0, Q
′
1, . . . of Algorithm 1 with

mapping D′, we can put T ′ := min{λt | (P ′
t × Q′

t ) ∩ (Am × Bm) �= ∅}. Executions
of the original algorithm and the modified one before generation T ′/λ are identical.
On generation T ′/λ both algorithms place elements of Am into the populations for
the first time. Thus, T ′ and T are equal in every realisation and their expectations are
equal.

For any level j ∈ [m] and time t ≥ 0, let the random variable X ( j)
t := |(Pt ×Qt )∩

(A j × Bj )| denote the number of pairs in level A j × Bj at time t . As mentioned above,
the current level Yt of the algorithm at time t is defined as

Yt := max
{
j ∈ [m] | X ( j)

t ≥ γ0λ
2
}

.

Note that (X ( j)
t )t∈N and (Yt )t∈N are adapted to the filtration (Ft )t∈N because they are

defined in terms of the populations (Pt )t∈N and (Qt )t∈N.
When Yt < m, there exists a unique γ ∈ [0, γ0) such that

X (Yt+1)
t = |(Pt × Qt ) ∩ (AYt+1 × BYt+1)| = γ λ2, and (6)

X (Yt )
t = |(Pt × Qt ) ∩ (AYt × BYt )| ≥ γ0λ

2. (7)

123



Algorithmica

Finally, we define the process (Zt )t∈N as Zt := 0 if Yt = m, and otherwise, if
Yt < m, we let

Zt := g
(
X (Yt+1)
t ,Yt

)
,

where for all k ∈ [λ2], and for all j ∈ [m − 1], g(k, j) := g1(k, j) + g2(k, j) and

g1(k, j) := η

1 + η
· ((m − j)λ2 − k)

g2(k, j) := ϕ ·
⎛

⎝e−ηk

q j
+

m−1∑

i= j+1

1

qi

⎞

⎠ ,

where η ∈ (3δ/(11λ), δ/(2λ)) and ϕ ∈ (0, 1) are parameters which will be specified
later, and for j ∈ [m − 1], q j := λz j/(4 + λz j ).

Both functions have partial derivatives ∂gi
∂k < 0 and ∂gi

∂ j < 0, hence they satisfy
properties 1 and 2 of Definition 2. They also satisfy property 3 because for all j ∈
[m − 1]

g1(λ
2, j) = η

1 + η
((m − j)λ2 − λ2) = g1(0, j + 1)

g2(λ
2, j) >

m−1∑

i= j+1

ϕ

qi
= g2(0, j + 1).

Therefore g1 and g2 are level functions, and thus also their linear combination g is a
level function.

Due to properties 1 and 2 of level functions (see Definition 2), it holds for all
k ∈ [0..λ2] and j ∈ [m − 1]

0 ≤ g(k, j) ≤ g(0, 1) = η(m − 1)λ2

1 + η
+ ϕ ·

(
1

q1
+

m−1∑

i=2

1

qi

)

(8)

<
ηmλ2

1 + η
+

m−1∑

i=1

ϕ

qi
(9)

<
ηmλ2

1 + η
+ ϕ

m−1∑

i=1

4 + λzi
λzi

(10)

using η > 0

< m

(

ηλ2 + 4ϕ

λz∗
+ ϕ

)

(11)
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using ϕ, z∗ ∈ (0, 1) and λ > 11η/(3δ)

<
m

z∗

(

2ηλ2 + 44η

3δ

)

(12)

assuming λ > 44/3 and using λ2 > λδ−2(1+υ) > 44/(3δ)

<
3ηλ2m

z∗
. (13)

Hence, we have 0 ≤ Zt < g(0, 1) < ∞ for all t ∈ N which implies that condition 2
of the drift theorem is satisfied.

The drift of the process at time t is Et
[
�t+1

]
, where

�t+1 := g
(
X (Yt+1)
t ,Yt

)
− g

(
X (Yt+1+1)
t+1 ,Yt+1

)
.

We bound the drift by the law of total probability as

Et
[
�t+1

] = (1 − Pr t (Yt+1 < Yt ))Et
[
�t+1 | Yt+1 ≥ Yt

]

+ Pr t (Yt+1 < Yt ) Et
[
�t+1 | Yt+1 < Yt

]
. (14)

The event Yt+1 < Yt holds if and only if X
(Yt )
t+1 < γ0λ

2, which by Lemma 1 statement 3
for γ := γ0+1/λ and a parameter δ1 ∈ (0, δ) to be chosen later, and conditions (G2b)
and (G3), is upper bounded by

Pr t (Yt+1 < Yt ) = Pr t
(
X (Yt )
t+1 < γ0λ

2
)

(15)

= Pr t
(
X (Yt )
t+1 < λ(γ λ − 1)

)
(16)

< exp

(

−δ1γ λ

(

1 −
√
1 + δ1

1 + δ

))

(17)

by Lemma 28 and γ < γ0

< exp

(

−δ1γ0λ

(
3δ − 4δ1

11

))

(18)

to minimise the expression, we choose δ1 := (3/8)δ

= exp

(

− 9

16
δ2γ0λ

)

. (19)
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Given the low probability of the event Yt+1 < Yt , it suffices to use the pessimistic
bound (13)

Et
[
�t+1 | Yt+1 < Yt

] ≥ −g(0, 1) (20)

If Yt+1 ≥ Yt , we can apply Lemma 4

Et
[
�t+1 | Yt+1 ≥ Yt

] ≥ Et

[
g
(
X (Yt+1)
t ,Yt

)
− g

(
X (Yt+1)
t+1 ,Yt

)
| Yt+1 ≥ Yt

]
.

If X (Yt+1)
t = 0, then X (Yt+1)

t ≤ X (Yt+1)
t+1 and

Et

[
g1

(
X (Yt+1)
t ,Yt

)
− g1

(
X (Yt+1)
t+1 ,Yt

)
| Yt+1 ≥ Yt

]
≥ 0,

because the function g1 satisfies property 2 in Definition 2. Furthermore, we have the
lower bound

Et

[
g2

(
X (Yt+1)
t ,Yt

)
− g2

(
X (Yt+1)
t+1 ,Yt

)
| Yt+1 ≥ Yt

]

> Pr t
(
X (Yt+1)
t+1 ≥ 1

)
(g2 (0,Yt ) − g2 (1,Yt )) ≥ ηϕ

1 + η
.

where the last inequality follows because

Pr t
(
X (Yt+1)
t+1 ≥ 1

)
= Pr t

(
(Pt+1 × Qt+1) ∩ (AYt+1 × BYt+1) �= ∅)

≥ qYt ,

due to condition (G1) and Lemma 2, and

g2 (0,Yt ) − g2 (1,Yt ) = (ϕ/qYt )(1 − e−η) ≥ ϕη

(1 + η)qYt

In the other case, where X (Yt+1)
t = γ λ2 ≥ 1, Lemma 1 and condition (G2a) imply

for ϕ := δ(1 − δ′) for an arbitrary constant δ′ ∈ (0, 1),

Et

[
g1

(
X (Yt+1)
t ,Yt

)
− g1

(
X (Yt+1)
t+1 ,Yt

)
| Yt+1 ≥ Yt

]

= η

1 + η
Et

[
X (Yt+1)
t+1 | Yt+1 ≥ Yt

]
− η

1 + η
X (Yt+1)
t

≥ η

1 + η
(λ(λ − 1)(1 + δ)γ − γ λ2) >

η

1 + η
δ(1 − δ′) = ηϕ

1 + η
, (21)
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where the last inequality is obtained by choosing the minimal value γ = 1/λ2. For
the function g2, we get

Et

[
g2

(
X (Yt+1)
t ,Yt

)
− g2

(
X (Yt+1)
t+1 ,Yt

)
| Yt+1 ≥ Yt

]
=

ϕ

qYt

(
e−ηX (Yt+1)

t − Et

[
e−ηX (Yt+1)

t+1

])
> 0,

where the last inequality is due to statement 2 of Lemma 1 for the parameter

η := 1

λ

(

1 − 1√
1 + δ

)

.

By Lemma 28 for δ1 = 0, this parameter satisfies

3δ

11λ
< η <

δ

2λ
<

1

λ
. (22)

Taking into account all cases, we have

Et
[
�t+1 | Yt+1 ≥ Yt

] ≥ ηϕ

1 + η
. (23)

We now have bounds for all the quantities in (14) with (19), (20), and (23). Before
bounding the overall driftEt

[
�t+1

]
, we remark that the requirement on the population

size imposed by condition (G3) implies that for any constants υ > 0 and C > 0, and
sufficiently large λ,

λ

16C ln λ
> λ

1
1+υ >

1

δ2γ0
,

which implies that

C ln λ <
λδ2γ0

16
. (24)

The overall drift is now bounded by

Et
[
�t+1

] = (1 − Pr t (Yt+1 < Yt ))Et
[
�t+1 | Yt+1 ≥ Yt

]
(25)

+ Pr t (Yt+1 < Yt ) Et
[
�t+1 | Yt+1 < Yt

]
(26)

≥ ηϕ

1 + η
− exp

(

− 9

16
δ2γ0λ

)(
3mηλ2

z∗
+ ηϕ

1 + η

)

(27)

= ηϕ

1 + η
− exp

(

− 9

16
δ2γ0λ + C ln λ

)(
3mηλ2−C

z∗
+ ηϕ

(1 + η)λC

)

(28)
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by (24)

>
ηϕ

1 + η
− exp

(

−1

2
δ2γ0λ

)(
3mηλ2−C

z∗
+ ηϕ

(1 + η)λC

)

(29)

by condition (G3)

>
ηϕ

1 + η
− (

z∗
m

)

(
3mηλ2−C

z∗
+ ηϕ

(1 + η) λC

)

(30)

choosing C = 3

= ηϕ

1 + η
− 3η

λ
− ηϕ

(1 + η)λ3m
(31)

by condition (G3),
√

λ > 1/δ

>
ηϕ

1 + η
− 3ηδ√

λ
− ηϕ

(1 + η)λ3m
(32)

finally, by noting that 1 + η < 1 + 1/λ from Eq. (22) and that ϕ = δ(1 − δ′) for a
constant δ′ ∈ (0, 1) mean that for any constant ρ ∈ (0, 1), for sufficiently large λ

>
ηϕ(1 − ρ)

1 + η
. (33)

We now verify condition 3 of Theorem 26, i.e., that T has finite expectation. Let
p∗ := min{(1 + δ)(1/λ2), z∗} > 0, and note by conditions (G1) and (G2a) that the
current level increases by at least one with probability Pr t (Yt+1 > Yt ) ≥ (p∗)γ0λ.
Due to the definition of the modified process D′, if Yt = m, then Yt+1 = m.
Hence, the probability of reaching Yt = m is lower bounded by the probability of
the event that the current level increases in all of at most m consecutive generations,
i.e., Pr t (Yt+m = m) ≥ (p∗)γ0λm > 0. It follows that E [T ] < ∞.

By Theorem 26, the upper bound on g(0, 1) in (10) and the lower bound on the
drift in Eq. (33) and the definition of T ,

E [T ] ≤ λ(1 + η)g(0, 1)

ηϕ(1 − ρ)

<
λ(1 + η)

ηϕ(1 − ρ)

(
ηmλ2

1 + η
+ ϕ

m−1∑

i=1

4 + λzi
λzi

)

<
λ

(1 − ρ)

(
mλ2

ϕ
+ 1 + η

η

m−1∑

i=1

(
4

λzi
+ 1

))
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using Eq. (22) and ϕ := δ(1 − δ′)

<
λ

(1 − ρ)

(
mλ2

δ(1 − δ′)
+
(
11λ

3δ
+ 1

) m−1∑

i=1

(
4

λzi
+ 1

))

noting that 1 < 1/δ ≤ λ/(3δ) for λ ≥ 3

<
λ

(1 − ρ)

(
mλ2

δ(1 − δ′)
+
(
4λ

δ

) m−1∑

i=1

(
4

λzi
+ 1

))

= λ

(1 − ρ)

(
mλ2

δ(1 − δ′)
+ 4λ(m − 1)

δ
+
(
16

δ

) m−1∑

i=1

1

zi

)

since δ′ is a constant with respect to λ, for large λ, this is upper bounded by

<
λ

(1 − ρ)δ

(
mλ2

(1 − δ′)2
+ 16

m−1∑

i=1

1

zi

)

for any constant c′′ > 1, we can choose the constants ρ and δ′ such that c′′ >

(1 − ρ)−1(1 − δ′)−2

<
c′′λ
δ

(

mλ2 + 16
m−1∑

i=1

1

zi

)

.

��

4 Maximin Optimisation of Bilinear Functions

4.1 Maximin Optimisation Problems

This section introducesmaximin-optimisation problemswhich is an important domain
for competitive co-evolutionary algorithms [1, 18, 23]. We will then describe a class
of maximin-optimisation problems called Bilinear.

It is a common scenario in real-world optimisation that the quality of candidate
solutions depend on the actions taken by some adversary. Formally, we can assume
that there exists a function

g : X × Y → R,

where g(x, y) represents the “quality” of solution x when the adversary takes action
y.

A cautious approach to such a scenario is to search for the candidate solution which
maximises the objective, assuming that the adversary takes the least favourable action
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for that solution. Formally, this corresponds to themaximin optimisation problem, i.e.,
to maximise the function

f (x) := min
y∈Y

g(x, y). (34)

It is desirable to design good algorithms for such problems because they have important
applications in economics, computer science, machine learning (GANs), and other
disciplines.

However,maximin-optimisationproblems are computationally challengingbecause
to accurately evaluate the function f (x), it is necessary to solve a minimisation prob-
lem. Rather than evaluating f directly, the common approach is to simultaneously
maximise g(x, y) with respect to x , while minimising g(x, y) with respect to y. For
example, if the gradient of g is available, it is popular to do gradient ascent-gradient
descent.

Following conventions in theory of evolutionary computation [11], we will assume
that an algorithm has oracle access to the function g. This means that the algorithm
can evaluate the function g(x, y) for any selected pair of arguments (x, y) ∈ X ×
Y , however it does not have access to any other information about g, including its
definition or the derivative. Furthermore, we will assume that X = Y = {0, 1}n ,
i.e., the set of bitstrings of length n. While other spaces could be considered, this
choice alignswellwith existing runtime analyses of evolutionary algorithms in discrete
domains [10, 31]. To develop a co-evolutionary algorithm for maximin-optimisation,
we will rely on the following dominance relation on the set of pairs X × Y .

Definition 3 Given a function g : X × Y → R and two pairs (x1, y1), (x2, y2) ∈
X × Y , we say that (x1, y1) dominates (x2, y2) wrt g, denoted (x1, y1) �g (x2, y2),
if and only if

g(x1, y2) ≥ g(x1, y1) ≥ g(x2, y1).

4.2 The BILINEAR Problem

In order to develop appropriate analytical tools to analyse the runtime of evolutionary
algorithms, it is necessary to start the analysis with simple and well-understood prob-
lems [31].We therefore define a simple class of a maximin-optimisation problems that
has a particular clear structure. The maximin function is defined for two parameters
α, β ∈ [0, 1] by

Bilinear(x, y) := ‖y‖(‖x‖ − βn) − αn‖x‖, (35)

where we recall that for any bitstring z ∈ {0, 1}n , ‖z‖ := ∑n
i=1 zi denotes the number

of 1-bits in z. The function is illustrated in Fig. 1 (left). Extended to the real domain,
it is clear that the function is concave-convex, because f (x) = g(x, y) is concave
(linear) for all y, and h(y) = g(x, y) is convex (linear) for all x . The gradient of the
function is ∇g = (‖y‖ − αn, ‖x‖ − βn). Clearly, we have ∇g = 0 when ‖x‖ = βn
and ‖y‖ = αn.
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Fig. 1 Left: Bilinear for α = 0.4 and β = 0.6. Right: Dominance relationships in Bilinear

Assuming that the prey (in Y) always responds with an optimal decision for every
x ∈ X , the predator is faced with the unimodal function f below which has maximum
when ‖x‖ = βn.

f (x) := min
y∈{0,1}n g(x, y) =

{
‖x‖(1 − αn) − βn if ‖x‖ ≤ βn

−αn‖x‖ if ‖x‖ > βn.

The special case where α = 0 and β = 1 gives f (x) = OneMax(x) − n, i.e., the
function f is essentially equivalent to OneMax, one of the most studied objective
functions in runtime analysis of evolutionary algorithms [10].

We now characterise the dominated solutions wrt Bilinear.

Lemma 5 Let g :=Bilinear. For all pairs (x1, y1), (x2, y2) ∈ X × Y , (x1, y1) �g

(x2, y2) if and only if

‖y2‖(‖x1‖ − βn) ≥ ‖y1‖(‖x1‖ − βn) ∧
‖x1‖(‖y1‖ − αn) ≥ ‖x2‖(‖y1‖ − αn).

Proof The proof follows from the definition of �g and g:

g(x1, y2) ≥ g(x1, y1)

⇐⇒ ‖x1‖‖y2‖ − αn‖x1‖ − βn‖y2‖ ≥ ‖x1‖‖y1‖ − αn‖x1‖ − βn‖y1‖
⇐⇒ ‖y2‖(‖x1‖ − βn) ≥ ‖y1‖(‖x1‖ − βn).

The second part follows analogously from g(x1, y1) ≥ g(x2, y1). ��
Figure 1 (right) illustrates Lemma 5, where the x-axis and y-axis correspond to the

number of 1-bits in the predator x , respectively the number of 1-bits in the prey y. The
figure contains four pairs, where the shaded area corresponds to the parts dominated
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by that pair: The pair (x1, y1) dominates (x2, y2), the pair (x2, y2) dominates (x3, y3),
the pair (x3, y3) dominates (x4, y4), and the pair (x4, y4) dominates (x1, y1). This
illustrates that the dominance-relation is intransitive. Lemma 6 states this and other
properties of �g .

Lemma 6 The relation�g is reflexive, antisymmetric, and intransitive for g = Bilin-
ear.

Proof Reflexivity follows directly from the definition. Assume that (x1, y1) �g

(x2, y2) and (x1, y1) �= (x2, y2). Then, either g(x1, y2) > g(x1, y2), or g(x1, y1) >

g(x2, y1), or both. Hence, (x2, y2) �g (x1, y1), which proves that the relation is
antisymmetric.

To prove intransitivity, it can be shown for any ε > 0, that p1 �g p2 �g p3 �g

p2 �g p1 where

p1 = (β + ε, α − 2ε) p2 = (β − 2ε, α − ε)

p3 = (β − ε, α + 2ε) p4 = (β + 2ε, α + ε).

��
We will frequently use the following simple lemma, which follows from the dom-

inance relation and the definition of Bilinear.

Lemma 7 For Bilinear, and any pairs of populations P ∈ X λ, Q ∈ Yλ, consider
two samples (x1, y1), (x2, y2) ∼ Unif(P × Q). Then the following conditional prob-
abilities hold.

Pr ((x1, y1) � (x2, y2) | y1 ≤ y2 ∧ x1 > βn ∧ x2 > βn) ≥ 1/2

Pr ((x1, y1) � (x2, y2) | y1 ≥ y2 ∧ x1 < βn ∧ x2 < βn) ≥ 1/2

Pr ((x1, y1) � (x2, y2) | x1 ≥ x2 ∧ y1 > αn ∧ y2 > αn) ≥ 1/2

Pr ((x1, y1) � (x2, y2) | x1 ≤ x2 ∧ y1 < αn ∧ y2 < αn) ≥ 1/2.

Proof All the statements can be proved analogously, so we only show the first state-
ment. If y1 ≤ y2 and x1 > βn, x2 > βn, then by Lemma 5, (x1, y1) � (x2, y2) if and
only if x1 ≤ x2.

Since x1 and x2 are independent samples from the same (conditional) distribution,
it follows that

1 ≥ Pr (x1 > x2) + Pr (x1 < x2) = 2 Pr (x1 > x2) (36)

Hence, we get Pr (x1 ≤ x2) = 1 − Pr (x1 > x2) ≥ 1 − 1/2 = 1/2. ��

5 A Co-evolutionary Algorithm for Maximin Optimisation

We now introduce a co-evolutionary algorithm for maximin optimisation (see Algo-
rithm 2).
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Fig. 2 Partitioning of search
space X × Y of Bilinear

The predator and prey populations of size λ each are initialised uniformly at random
in lines 1–3. Lines 6–17 describe how each pair of predator and prey are produced,
first by selecting a predator–prey pair from the population, then applying mutation.
In particular, the algorithm selects uniformly at random two predators x1, x2 and two
prey y1, y2 in lines 7–8. The first pair (x1, y1) is selected if it dominates the second
pair (x2, y2), otherwise the second pair is selected. The selected predator and prey are
mutated by standard bitwise mutation in lines 14–15, i.e., each bit flips independently
with probability χ/n (see Section C3.2.1 in [3]). The algorithm is a special case of
the co-evolutionary framework in Sect. 2, where line 3 in Algorithm 1 corresponds to
lines 6–17 in Algorithm 2.

Algorithm 2 Pairwise Dominance CoEA (PDCoEA)
Require: Min-max-objective function g : {0, 1}n × {0, 1}n → R.
Require: Population size λ ∈ N and mutation rate χ ∈ (0, n]
1: for i ∈ [λ] do
2: Sample P0(i) ∼ Unif({0, 1}n)

3: Sample Q0(i) ∼ Unif({0, 1}n)

4: end for
5: for t ∈ N until termination criterion met do
6: for i ∈ [λ] do
7: Sample (x1, y1) ∼ Unif(Pt × Qt )

8: Sample (x2, y2) ∼ Unif(Pt × Qt )

9: if (x1, y1) �g (x2, y2) then
10: (x, y) := (x1, y1)
11: else
12: (x, y) := (x2, y2)
13: end if
14: Obtain x ′ by flipping each bit in x with probability χ/n.
15: Obtain y′ by flipping each bit in y with probability χ/n.
16: Set Pt+1(i) := x ′ and Qt+1(i) := y′.
17: end for
18: end for

Next, we will analyse the runtime of PDCoEA on Bilinear using Theorem 3.
For an arbitrary ε ≥ 1/n (not necessarily constant), we will restrict the analysis to
the case where α − ε > 4/5, and β < ε. Our goal is to estimate the time until the
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algorithm reaches within an ε-factor of the maximin-optimal point (βn, αn). We note
that our analysis does not extend to the general case of arbitrary α and β, or ε = 0
(exact optimisation). This is a limitation of the analysis, and not of the algorithm. Our
own empirical investigations show that PDCoEA with appropriate parameters finds
the exact maximin-optimal point of Bilinear for any value of α and β.

In this setting, the behaviour of the algorithm can be described intuitively as follows.
The population dynamics will have two distinct phases. In Phase 1, most prey have
less than αn 1-bits, while most predators have more than βn 1-bits. During this phase,
predators and prey will decrease the number of 1-bits. In Phase 2, a sufficient number
of predators have less than βn 1-bits, and the number of 1-bits in the prey-population
will start to increase. The population will then reach the ε-approximation described
above.

From this intuition, we will now define a suitable sequence of levels. We will start
by dividing the spaceX×Y into different regions, as shown in Fig. 2. Again, the x-axis
corresponds to the number of 1-bits in the predator, while the y-axis corresponds to
the number of 1-bits in the prey.

For any k ∈ [0, (1 − β)n], we partition X into three sets

R0 := {x ∈ X | 0 ≤ ‖x‖ < βn} (37)

R1(k) := {x ∈ X | βn ≤ ‖x‖ < n − k} , and (38)

R2(k) := {x ∈ X | n − k ≤ ‖x‖ ≤ n} . (39)

Similarly, for any � ∈ [0, αn), we partition Y into three sets

S0 := {y ∈ Y | αn ≤ ‖y‖ ≤ n} (40)

S1(�) := {y ∈ Y | � ≤ ‖y‖ < αn} , and (41)

S2(�) := {y ∈ Y | 0 ≤ ‖y‖ < �} . (42)

For ease of notation, when the parameters k and � are clear from the context, we will
simply refer to these sets as R0, R1, R2, S0, S1, and S2. Given two populations P and
Q, and C ⊆ X × Y , define

p(C) := Pr
(x,y)∼Unif(P×Q)

((x, y) ∈ C)

psel(C) := Pr
(x,y)∼select(P×Q)

((x, y) ∈ C) .

In the context of subsets ofX ×Y , the set Ri refers to Ri ×Y , and Si refers toX × Si .
With the above definitions, we will introduce the following quantities which depend
on k and �:

p0 := p(R0) p(k) := p(R1(k)) q0 := p(S0) q(�) := p(S1(�))

During Phase 1, the typical behaviour is that only a small minority of the individuals
in the Q-population belong to region S0. In this phase, the algorithm “progresses” by
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decreasing the number of 1-bits in the P-population. In this phase, the number of
1-bits will decrease in the Q-population, however it will not be necessary to analyse
this in detail. To capture this, we define the levels for Phase 1 for j ∈ [0..(1− β)n] as
A(1)
j := R0 ∪ R1( j) and B(1)

j := S2((α − ε)n).

During Phase 2, the typical behaviour is that there is a sufficiently large number of
P-individuals in region R0, and the algorithm progresses by increasing the number
of 1-bits in the Q-population. The number of 1-bits in the P-population will decrease
or stay at 0. To capture this, we define the levels for Phase 2 for j ∈ [0, (α − ε)n]
A(2)
j := R0 and B(2)

j := S1( j).
The overall sequence of levels used for Theorem 3 becomes

(A(1)
0 × B(1)

0 ), . . . , (A(1)
(1−β)n, B

(1)
(1−β)n), (A

(2)
0 × B(2)

0 ), . . . , (A(2)
(α−ε)n, B

(2)
(α−ε)n),

The notion of “current level” from Theorem 3 together with the level-structure
can be exploited to infer properties about the populations, as the following lemma
demonstrates.

Lemma 8 If the current level is A(1)
j × B(1)

j , then p0 < γ0/(1 − q0).

Proof Assume by contradiction that p0(1 − q0) ≥ γ0. Note that by (42), it holds
S2(0) = ∅. Therefore, 1 − q(0) − q0 = 0 and q(0) = 1 − q0. By the definitions of
the levels in Phase 2 and (41),

∣
∣
∣(P × Q) ∩ (A(2)

0 × B(2)
0 )

∣
∣
∣ = |(P × Q) ∩ (R0 × S1(0))|
= p0q(0)λ2 = p0(1 − q0)λ

2 ≥ γ0λ
2,

implying that the current level must be level A(2)
0 × B(2)

0 or a higher level in Phase 2,
contradicting the assumption of the lemma. ��

5.1 Ensuring Condition (G2) During Phase 1

The purpose of this section is to provide the building blocks necessary to establish
conditions (G2a) and (G2b) during Phase 1. The progress of the population during
this phase will be jeopardised if there are too many Q-individuals in S0. We will
employ the negative drift theorem for populations [19] to prove that it is unlikely that
Q-individuals will drift via region S1 to region S0. This theorem applies to algorithms
that can be described on the form of Algorithm 3 which makes few assumptions about
the selection step. The Q-population in Algorithm 2 is a special case of Algorithm 3.

We now state the negative drift theorem for populations.

Theorem 9 ( [19]) Given Algorithm 3 on Y = {0, 1}n with population size λ ∈
poly(n), and transition matrix pmut corresponding to flipping each bit independently
with probability χ/n. Let a(n) and b(n) be positive integers s.t. b(n) ≤ n/χ and
d(n) := b(n) − a(n) = ω(ln n). For an x∗ ∈ {0, 1}n, let T (n) be the smallest t ≥ 0,
s.t. min j∈[λ] H(Pt ( j), x∗) ≤ a(n). Let St (i) := ∑λ

j=1[It ( j) = i]. If there are con-
stants α0 ≥ 1 and δ > 0 such that
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Algorithm 3 Population Selection-Variation Algorithm [19]
Require: Finite state space Y .
Require: Transition matrix pmut over Y .
Require: Population size λ ∈ N.
Require: Initial population Q0 ∈ Yλ.
1: for t = 0, 1, 2, . . . until the termination condition is met do
2: for i = 1 to λ do
3: Choose It (i) ∈ [λ], and set x := Qt (It (i)).
4: Sample x ′ ∼ pmut(x) and set Qt+1(i) := x ′.
5: end for
6: end for

(1) E
[
St (i) | a(n) < H(Pt (i), x∗) < b(n)

] ≤ α0 for all i ∈ [λ]
(2) ψ := ln(α0)/χ + δ < 1, and
(3) b(n)

n < min
{ 1
5 ,

1
2 − 1

2

√
ψ(2 − ψ)

}
,

then Pr
(
T (n) ≤ ecd(n)

) ≤ e−�(d(n)) for some constant c > 0.

To apply this theorem, the first step is to estimate the reproductive rate [19] of
Q-individuals in S0 ∪ S1.

Lemma 10 If there exist δ1, δ2 ∈ (0, 1) such that q+q0 ≤ 1−δ1, p0 <
√
2(1 − δ2)−1,

and p0q = 0, then psel(S0 ∪ S1)/p(S0 ∪ S1) < 1 − δ1δ2.

Proof The conditions of Lemma 24 are satisfied, hence

psel(S0 ∪ S1) = 1 − psel(S2)

≤ 1 − (1 + δ2(q0 + q))p(S2)

= 1 − (1 + δ2(q0 + q))(1 − q − q0)

= (q0 + q)(1 − (1 − q − q0)δ2)

≤ (q0 + q)(1 − δ1δ2)

= p(S0 ∪ S1)(1 − δ1δ2).

��
Lemma 11 If p0 = 0 and q0 + q ≤ 1/3, then no Q-individual in Q ∩ (S0 ∪ S1) has
reproductive rate higher than 1.

Proof Consider any individual z ∈ Q ∩ (S0 ∪ S1). The probability of selecting this
individual in a given iteration is less than

Pr (y1 = z ∧ y2 ∈ S0 ∪ S1) Pr ((x1, y1) � (x2, y2) | y1 = z ∧ y2 ∈ S0 ∪ S1)

+Pr (y2 = z ∧ y1 ∈ S0 ∪ S1)Pr
(
(x1, y1) � (x2, y2) | y2 = z ∧ y1 ∈ S0 ∪ S1

)

+Pr (y2 = z ∧ y1 ∈ S2) Pr
(
(x1, y1) � (x2, y2) | y2 = z ∧ y1 ∈ S2

)

≤ 2

λ
(q0 + q) + (1 − q − q0)/(2λ) = 1

2λ
(1 + 3(q + q0)) ≤ 1

λ
.

Hence, within one generation of λ iterations, the expected number of times this indi-
vidual is selected is at most 1. ��
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We now have the necessary ingredients to prove the required condition about the
number of Q-individuals in S0.

Lemma 12 Assume that λ ∈ poly(n), and for two constants α, ε ∈ (0, 1)with α−ε ≥
4/5, the mutation rate is χ ≤ 1/(1 − α + ε). Let T be as defined in Theorem 15. For
any τ ≤ ecn where c is a sufficiently small constant, define τ∗ := min{T /λ − 1, τ },
then

Pr

(
τ∗∨

t=0

(Qt ∩ S0) �= ∅
)

≤ τe−�(n) + τe−�(λ).

Proof Each individual in the initial population Q0 is sampled uniformly at random,
with n/2 ≤ (α − ε)n/(1 + 3/5) expected number of 1-bits. Hence, by a Chernoff
bound [24] and a union bound, the probability that the initial population Q0 intersects
with S0 ∪ S1 is no more than λe−�(n) = e−�(n).

We divide the remaining t − 1 generations into a random number of phases, where
each phase lasts until p0 > 0, and we assume that the phase begins with q0 = 0.

If a phase begins with p0 > 0, then the phase lasts one generation. Furthermore,
it must hold that q((α − ε)n) = 0, otherwise the product Pt × Qt contains a pair in
R0 × S1((α − ε)n), i.e., an ε-approximate solution has been found, which contradicts
that t < T /λ. If q((α − ε)n) = 0, then all Q-individuals belong to region S2. In
order to obtain any Q-individual in region S0, it is necessary that at least one of λ

individuals mutates at least εn 0-bits, an event which holds with probability at most
λ · ( n

εn

) (χ
n

)εn ≤ λe−�(n) = e−�(n).

If a phase begins with p0 = 0, then we will apply Theorem 9 to show that it is
unlikely that any Q-individual will reach S0 within ecn generations, or the phase ends.
We use the parameter x∗ := 1n , a(n) := (1− α)n, and b(n) := (1− α + ε)n < n/χ .
Hence, d(n) := b(n) − a(n) = εn = ω(ln(n)).

We first bound the reproductive rate of Q-individuals in S1. For any generation t ,
if q0 + q < (1 − δ2), then by Lemma 10, and a Chernoff bound, |Qt+1 ∩ S0 ∪ S1| ≤
(q0 + q)λ with probability 1− e−�(λ). By a union bound, this holds with probability
1− te−�(λ) within the next t generations. Hence, by Lemma 11, the reproductive rate
of any Q-individual within S0 ∪ S1 is at most α0 := 1, and condition 1 of Theorem 9
is satisfied. Furthermore, ψ := ln(α0)/χ + δ = δ′ < 1 for any δ′ ∈ (0, 1) and χ > 0,
hence condition 2 is satisfied. Finally, condition 3 is satisfied as long as δ′ is chosen
sufficiently small. It follows by Theorem 9 that the probability that a Q-individual in
S0 is produced within a phase of length at most τ < ecn is e−�(n).

The lemma now follows by taking a union bound over the at most τ phases. ��
We can now proceed to analyse Phase 1, assuming that q0 = 0. For a lower bound

and to simplify calculations, we pessimistically assume that the following event occurs
with probability 0

(x1, y1) ∈ (R1 × (S1 ∪ S2)) ∧ (x2, y2) ∈ (R2 × S0).

We will see that the main effort in applying Theorem 3 is to prove that conditions
(G2a) and (G2b) are satisfied. The following lemma will be useful in this regard
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for phase 1. Consistent with the assumptions of phase 1, the lemma assumes an upper
bound on the number of predators in region R0 and prey in region S0, and no predator–
prey pairs in region R0 × S1. Under these assumptions, the lemma implies that the
number of pairs in region (R0 ∪ R1) × S2 will increase.

Lemma 13 If there exist ρ,ψ ∈ (0, 1) such that

(1) p0 ≤ √
2(1 − ρ) − 1

(2) q0 ≤ √
2(1 − ρ) − 1

(3) p0q = 0

then if (p0 + p)(1 − q − q0) ≤ ψ , it holds that

ϕ := psel(R0 ∪ R1)

p(R0 ∪ R1)
· psel(S2)

p(S2)
≥ 1 + ρ(1 − √

ψ),

otherwise, if (p0 + p)(1 − q − q0) ≥ ψ , then psel(R0 ∪ R1)psel(S2) ≥ ψ.

Proof Given the assumptions, Lemma 23 and Lemma 24 imply

ϕ ≥ (1 + ρ(1 − p − p0))(1 + ρ(q + q0)) ≥ 1. (43)

For the first statement, we consider two cases:
Case 1: If p0 + p <

√
ψ , then by (43) and q0 + q ≥ 0, it follows ϕ ≥ (1+ ρ(1−√

ψ)) · 1.
Case 2: If p0 + p ≥ √

ψ , then by assumption (1 − q − q0) ≤ √
ψ . By (43) and

1 − p − p0 ≥ 0, it follows that ϕ ≥ 1 · (1 + ρ(1 − √
ψ)).

For the second statement, (43) implies

psel(R0 ∪ R1)psel(S2) = ϕ p(R0 ∪ R1)p(S2)

= ϕ(p0 + p)(1 − q − q0) ≥ 1 · ψ.

��

5.2 Ensuring Condition (G2) During Phase 2

We now proceed to analyse Phase 2.

Corollary 14 For any δ2 ∈ (0, 1), if q0 ∈ [0, δ2/1200), p0q < 1 − δ2, and p0 ∈
(1/3, 1], then for δ′

2 := min{δ2/20 − 8q0, 1/10 − 12q0,
δ2
300 (40 − δ2(17 − δ2))}, it

holds

psel(R0)

p(R0)

psel(S1)

p(S1)
> 1 + δ′

2. (44)

Proof We distinguish between two cases with respect to the value of p0.
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If p0 ∈ (1/3, 1 − δ2/10), then we apply Lemma 19. The conditions of Lemma 19
hold for the parameter δ1 := δ2/10, and the statement follows for

δ′
2 = δ′

1 = min{δ1/2 − 8q0, 1/10 − 12q0}
= min{δ2/20 − 8q0, 1/10 − 12q0}.

If p0 ∈ [1 − δ2/10, 1], then we apply Lemma 20 for ρ = δ2, which implies that
the statement holds for

δ′
2 = δ2

300
(40 − δ2(17 − δ2)). (45)

��

5.3 Main Result

We now obtain the main result: Algorithm 2 can efficiently locate an ε-approximate
solution to an instance of Bilinear.

Theorem 15 Assume that 2000 ln(n) ≤ λ ∈ poly(n) and χ = 1
2 ln

(
42

41(1+δ)

)
for any

constant δ ∈ (0, 1/41). Let α, β, ε ∈ (0, 1) be three constants where α − ε ≥ 4/5.
Define T := min{λt | (Pt × Qt ) ∩ (R0 × S1((α − ε))n)} where Pt and Qt are the
populations of Algorithm 2 applied to Bilinear α,β . Then for all r ∈ poly(n) and any
constant c′′ > 1, it holds

Pr

(

T >
2rc′′λ

δ

(

λ2n + 23n

χ
ln

(
1

β(1 − α + ε)

)))

≤ (1/r)(1 + o(1)).

Proof Note that 0 < χ < 1 < 1/(1 − α + ε).

The proof will refer to four parameters ρ, δ, δ3, γ0 ∈ (0, 1), which will be defined
later, but which we for now assume satisfy the following four constraints

1/3 < γ0 ≤ √
2(1 − ρ) − 1 < 1/2 (46)

1 + δ ≤ (1 + ρ(1 − √
γ0(1 + δ3)))e

−2χ (1 − o(1)) (47)

1 + δ ≤ (1 + δ3)e
−2χ (1 − o(1)) (48)

1 + δ ≤ (1 + 1/40)e−2χ (1 − o(1)). (49)

For some τ ∈ poly(n) to be defined later, let τ∗ := min{T /λ − 1, τ }. We will
condition on the event that q0 = 0 holds for the first τ∗ generations, and consider the
run a failure otherwise. By Lemma 12, the probability of such a failure is no more than
τe−�(λ) + τe−�(n) = e−�(λ) + e−�(n), assuming that the constraint λ ≥ c log(n)

holds for a sufficiently large constant c.
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We apply Theorem 3 with m = m1 + m2 levels, with m1 = (1 − β)n + 1 levels
during phase 1, and m2 = (α − ε)n + 1 levels during phase 2, where the levels

(
A(1)
0 × B(1)

0

)
, . . . ,

(
A(1)

(1−β)n, B
(1)
(1−β)n

)
,
(
A(2)
0 × B(2)

0

)
, . . . ,

(
A(2)

(α−ε)n, B
(2)
(α−ε)n

)
,

are as defined in Sect. 5. Hence, in overall the total number of levels is m ≤ 2(n + 1).
We nowprove conditions (G1), (G2a), and (G2b) separately for Phase 1 andPhase 2.
Phase 1: Assume that the current level belongs to phase 1 for any j ∈ [0, (1−β)n].

To prove that condition (G2a) holds,wewill now show that the conditions of Lemma13
are satisfied for the parameter ψ := γ0. By Lemma 8, we have p0 < γ0/(1 − q0) =
γ0 ≤ √

2(1 − ρ) − 1, hence condition 1 is satisfied. Condition 2 is satisfied by the
assumption on q0 = 0. By the definition of the level, (p0 + p)(1 − q − q0) <

γ0 = ψ . Finally, for condition 3, we pessimistically assume that p0q = 0, otherwise
the algorithm has already found an ε-approximate solution to the problem. All three
conditions of Lemma 13 are satisfied. To produce an individual in A(1)

j+1, it suffices

to select and individual in A(1)
j+1 and not mutate any of the bits, and analogously to

produce an individual in B(1)
j+1. In overall, for a sample (x, y) ∼ D(P, Q), this gives

Pr
(
x ∈ A(1)

j+1

)
Pr
(
y ∈ B(1)

j+1

)
(50)

≥ psel(A
(1)
j+1)psel(B

(1)
j+1)

(
1 − χ

n

)2n
(51)

≥ (1 + ρ(1 − √
γ0))p(A

(1)
j+1)p(B

(1)
j+1)e

−2χ (1 − o(1)) (52)

>
(
1 + ρ(1 − √

γ0(1 + δ3))
)
p(A(1)

j+1)p(B
(1)
j+1)e

−2χ (1 − o(1)) (53)

≥ γ (1 + δ), (54)

where the last inequality follows from assumption (47). Condition (G2a) of the level-
based theorem is therefore satisfied for Phase 1.

We now prove condition (G2b). Assume that γ0 ≤ psel(A
(1)
j )psel(B

(1)
j ). To produce

an individual in A(1)
j , it suffices to select an individual in A(1)

j and not mutate any of

the bits, and analogously for B(1)
j . For a sample (x, y) ∼ D(P, Q), we therefore have

Pr
(
x ∈ A(1)

j

)
Pr
(
y ∈ B(1)

j

)
≥ psel(A

(1)
j )psel(B

(1)
j )

(
1 − χ

n

)2n
. (55)

To lower bound the expression in (55), we apply Lemma 13 again, this time with
parameter ψ := γ0(1 + δ3). We distinguish between two cases.
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In the case where γ0 ≤ p(A(1)
j )p(B(1)

j ) ≤ γ0(1 + δ3), the first statement of
Lemma 13 gives

psel(A
(1)
j )psel(B

(1)
j )

(
1 − χ

n

)2n ≥ γ0(1 + ρ(1 − √
ψ)e−2χ (1 − o(1))

= γ0(1 + ρ(1 − √
γ0(1 + δ3))e

−2χ (1 − o(1))

≥ γ0(1 + δ),

where the last inequality follows from assumption (47). In the case where
p(A(1)

j )p(B(1)
j ) ≥ γ0(1 + δ3), the second statement of Lemma 13 gives

psel(A
(1)
j )psel(B

(1)
j )

(
1 − χ

n

)2n ≥ γ0(1 + δ3)e
−2χ (1 − o(1))

≥ γ0(1 + δ),

where the last inequality follows from assumption (48). In both cases, it follows that

Pr
(
x ∈ A(1)

j

)
Pr
(
y ∈ B(1)

j

)
≥ γ0(1 + δ),

which proves that Condition (G2b) is satisfied in phase 1.
We now consider condition (G1). Assume that p(A(1)

j × B(1)
j ) = (p0 + p)(1−q −

q0) ≥ γ0 and (x, y) ∼ D(P, Q). Then, a P-individual can be obtained in A(1)
j+1 by

selecting an individual in A(1)
j . By definition, the selected individual has in the worst

case n − j 1-bits, and it suffices to flip any of these bits and no other bits, an event
which occurs with probability at least

Pr
(
x ∈ A(1)

j+1

)
≥ psel(A

(1)
j )

(n − j)χ

n

(
1 − χ

n

)n−1

≥ psel(A
(1)
j ) · (n − j)χ

neχ
(1 − o(1)).

A Q-individual can be obtained in B(1)
j+1 by selecting an individual in B(1)

j+1 and not
mutate any bits. This event occurs with probability at least

Pr
(
y ∈ B(1)

j+1

)
≥ psel(B

(1)
j )

(
1 − χ

n

)n ≥ γ0(1 − o(1))

psel(A
(1)
j )eχ

Hence, for a sample (x, y) ∼ D(P, Q), we obtain by (55),

Pr
(
x ∈ A(1)

j+1

)
Pr
(
y ∈ B(1)

j+1

)
≥ (n − j)γ0χ

ne2χ
(1 − o(1)) =: z(1)j . (56)

hence condition (G1) is satisfied.

123



Algorithmica

Phase 2: The analysis is analogous for this phase. To prove (G2a), assume that the
current level belongs to phase 2 for any j ∈ [0, (α − ε)n]. By the definitions of the
levels in this phase and the assumptions of (G2a), we must have

p0q( j + 1) = γ < γ0 < 1/2, (57)

and p0q( j) ≥ γ0, thus p0 ≥ γ0 > 1/3 where the last inequality follows from our
choice of γ0. Together with the assumption q0 = 0, Corollary 14 gives for δ2 := 1/2
and

δ′
2 := min{δ2/20 − 8q0, 1/10 − 12q0,

δ2

300
(40 − δ2(17 − δ2))} = 1

40
.

we get the lower bound

Pr
(
x ∈ A(2)

j+1

)
Pr
(
y ∈ B(2)

j+1

)
≥ psel(A

(2)
j+1)psel(B

(2)
j+1)

(
1 − χ

n

)2n
(58)

≥ (1 + δ′
2)p(A

(1)
j+1)p(B

(1)
j+1)e

−2χ (1 − o(1)) (59)

≥ (1 + δ)γ, (60)

where the last inequality follows from assumption (49).
Condition (G2b) can be proved analogously to Phase 1. Again, we have

Pr
(
x ∈ A(2)

j

)
Pr
(
y ∈ B(2)

j

)
≥ psel(A

(2)
j )psel(B

(2)
j )

(
1 − χ

n

)2n
. (61)

In the casewhere psel(A
(2)
j )psel(B

(2)
j ) = p0( j)q < 1−δ2 for δ2 = 9/20, Corollary 14

for δ′
2 = min(1/90, δ2/40) = 1/90 gives as above

psel(A
(2)
j )psel(B

(2)
j )

(
1 − χ

n

)2n ≥ γ0(1 + δ′
2)e

−2χ (1 − o(1))

≥ γ0(1 + δ).

In the case where psel(A
(2)
j )psel(B

(2)
j ) = p0( j)q ≥ 1 − δ2, we get

psel(A
(2)
j )psel(B

(2)
j )

(
1 − χ

n

)2n ≥ (1 − δ2)e
−2χ (1 − o(1))

= (1/2)(1 + 1/10)e−2χ (1 − o(1))

> γ0(1 + δ′
2)e

−2χ (1 − o(1))

≥ γ0(1 + δ).

Therefore, condition (G2b) also holds in Phase 2.
To prove condition (G1), we proceed as for Phase 1 and observe that to produce an

individual in A(2)
j+1, it suffices to select a P-individual in A(2)

j and not mutate any of
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the bits. To produce an individual in B(2)
j+1, it suffices to select a Q-individual in B(2)

j
and flip one of the at least n − j number of 0-bits. Similarly to in (56), we obtain

Pr
(
x ∈ A(2)

j+1

)
Pr
(
y ∈ B(2)

j+1

)
≥ (n − j)γ0χ

ne2χ
(1 − o(1)) =: z(2)j .

hence condition (G1) will be satisfied during phase 2.

Condition (G3) is satisfied as long as λ ≥ 2
(

1
γ0ρ2

)1+υ

ln(m/z∗).
All the conditions are satisfied, and assuming that q0 = 0, it follows that the

expected time to reach an ε-approximation of Bilinear is for any constant c′′ > 1 no
more than

E [T ] ≤ c′′λ
δ

(

λ2m + 16
m−1∑

i=1

1

zi

)

(62)

≤ 2c′′λ
δ

(

λ2(n + 1) + 8
m1−1∑

i=1

1

z(1)i

+ 8
m2−1∑

i=1

1

z(2)i

)

(63)

≤ 2c′′λ
δ

(

λ2(n + 1) + 8e2χn(1 + o(1))

γ0χ

(
m1−1∑

i=1

1

n − i
+

m2−1∑

i=1

1

n − i

))

(64)

≤ 2c′′λ
δ

⎛

⎝λ2(n + 1) + 8e2χn(1 + o(1))

γ0χ

⎛

⎝2
n−1∑

i=1

1

i
−

βn∑

i=1

1

i
−

(1−α+ε)n∑

i=1

1

i

⎞

⎠

⎞

⎠

(65)

≤ 2c′′λ
δ

(

λ2(n + 1) + 8e2χn(1 + o(1))

γ0χ
ln

(
1

β(1 − α + ε)

))

. (66)

We now choose the parameters ρ, δ, δ3, γ0 ∈ (0, 1), where numerical maximisation
of δ subject to the constraints, give approximate solutions γ0 = 9/25, δ3 = 1/40,
ρ = 47/625, and choosing

δ :=
(

1 + 1

41

)

e−2χ − 1 ≤
(

1 + 1

40

)

e−2χ (1 − o(1)) − 1, (67)

thus assumption (49) is satisfied. Furthermore, numerical evaluation show that the
choices of δ3, ρ, and γ0 give

ρ(1 − √
γ0(1 + δ3)) >

29

1000
> δ3,

thus assumptions (48) and (47) follow from assumption (49). Finally, assumption (46)
is also satisfied because

1

3
< γ0 = 9

25
= √

2(1 − ρ) − 1 <
1

2
.
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Note that condition (G3) is satisfied since for a sufficiently small constant υ > 0,

λ ≥ 2000 ln(n)

≥ 2

(
1

γ0ρ2

)1+υ

ln(n2)(1 + o(1))

≥ 2

(
1

γ0ρ2

)1+υ

ln

(
2n2e2χ

γ0χ

)

≥ 2

(
1

γ0ρ2

)1+υ

ln(m/z∗)

Inserting these parameter choices into (66) gives

E [T ] ≤ 2c′′λ
δ

(

λ2n + 200e2χn

9χ
ln

(
1

β(1 − α + ε)

))

(1 + o(1))

= 2c′′λ
δ

(

λ2n + 42

41(1 + δ)

200n

9χ
ln

(
1

β(1 − α + ε)

))

(1 + o(1))

<
2c′′λ

δ

(

λ2n + 23n

χ
ln

(
1

β(1 − α + ε)

))

(1 + o(1)) := τ.

By Markov’s inequality, the probability that a solution has not been obtained in
rτ time is less than 1/r . Hence, in overall, taking into account all failure events, we
obtain

Pr (T > rτ) ≤ 1/r + e−�(n) + e−�(λ) ≤ (1/r)(1 + o(1)).

Since the statement holds for all choices of the constant c′′ > 1, it also holds for

τ ′ := 2c′′λ
δ

(

λ2n + 23n

χ
ln

(
1

β(1 − α + ε)

))

(i.e., τ without the extra factor 1 + o(1)), giving the final result

Pr
(
T > rτ ′) ≤ 1/r + e−�(n) + e−�(λ) ≤ (1/r)(1 + o(1)).

��

6 A Co-evolutionary Error Threshold

The previous section presented a scenario where Algorithm 2 obtains an approximate
solution efficiently. We now present a general scenario where the algorithm is ineffi-
cient. In particular, we show that there exists a critical mutation rate above which the
algorithm fails on any problem, as long as the problem does not have too many global
optima (Theorem 16). The critical mutation rate is called the “error threshold” of the

123



Algorithmica

algorithm [19, 25]. As far as the author is aware, this is the first time an error thresh-
old has been identified in co-evolution. The proof of Theorem 16 uses the so-called
negative drift theorem for populations (Theorem 9) [19].

Theorem 16 There exists a constant c > 0 such that the following holds. If A and
B are subsets of {0, 1}n with min{|A|, |B|} ≤ ecn, and Algorithm 2 is executed with
population size λ ∈ poly(n) and constant mutation rate χ > ln(2)/(1 − 2δ) for any

constant δ ∈ (0, 1/2), then there exists a constant c′ such that Pr
(
TA×B < ec

′n
)

=
e−�(n).

Proof Without loss of generality, assume that |B| ≤ |A|. For a lower bound on TA×B ,
it suffices to compute a lower bound on the time until the Q-population contains an
element in B.

For any y ∈ B, we will apply Theorem 9 to bound Ty := min{t | H(Qt , y) ≤
0}, i.e., the time until the Q population contains y. Define a(n) := 0 and b(n) :=
nmin{1/5, 1/2 − (1/2)

√
1 − δ2, 1/χ}. Since δ is a constant, it follows that d(n) =

b(n) − a(n) = ω(ln n). Furthermore, by definition, b(n) ≤ n/χ .
We now show that condition 1 of Theorem 9 holds for α0 := 2. For any individual

u ∈ Y , the probability that the individual is selected in lines 7–12 is at most 1 −
Pr (y1 �= u ∧ y2 �= u) = 1−(1−1/λ)2 = (1/λ)(2−1/λ).Thuswithin theλ iterations,
individual u is selected less than 2 times in expectation. This proves condition 1.

Condition 2 is satisfied because by the assumption on the mutation rate, ψ :=
ln(α0)/χ + δ ≤ 1 − δ < 1. Finally, condition 3 trivially holds because b(n) ≤ n/5
and 1/2 − √

ψ(2 − ψ)/2 ≤ 1/2 − √
1 − δ2/2 ≤ b(n)/n.

All conditions are satisfied, and Theorem 9 imply that for some constant c′,
Pr
(
Ty∗ < ec

′n
)

= e−�(n). Taking a union bound over all elements in B, we get

for sufficiently small c

Pr
(
TA×B < ec

′n
)

≤ Pr
(
TB×Y < ec

′n
)

≤
∑

y∈B
Pr
(
Ty < ec

′n
)

≤ ecn · e−�(n) = e−�(n).

��

7 Conclusion

Co-evolutionary algorithms have gained wide-spread interest, with a number of
exciting applications. However, their population dynamics tend to be significantly
more complex than in standard evolutionary algorithms. A number of pathological
behaviours are reported in the literature, preventing the potential of these algorithms.
There has been a long-standing goal to develop a rigorous theory for co-evolution
which can explain when they are efficient. A major obstacle for such a theory is to
reason about the complex interactions that occur between multiple populations.
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This paper provides the first step in developing runtime analysis for population-
based, competitive co-evolutionary algorithms. A generic mathematical framework
covering a wide range of CoEAs is presented, along with an analytical tool to derive
upper bounds on their expected runtimes. To illustrate the approach, we define a new
co-evolutionary algorithm PDCoEA and analyse its runtime on a bilinear maximin-
optimisation problem Bilinear. For some problem instances, the algorithm obtains a
solution within arbitrary constant approximation ratio to the optimum within polyno-
mial time O(rλ3n)with probability 1− (1/r)(1+o(1)) for all r ∈ poly(n), assuming
population size λ ∈ �(log n)∩ poly(n) and sufficiently small (but constant) mutation
rate. Additionally, we present a setting where PDCoEA is inefficient. In particular, if
the mutation rate is too high, the algorithm needs with overwhelmingly high proba-
bility exponential time to reach any fixed solution. This constitutes a co-evolutionary
“error threshold”.

Future work should consider broader classes of problems, as well as other co-
evolutionary algorithms.
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A Technical Results

Lemma 17 (Lemma 18 in [20]) If Z ∼ Bin(λ, r) with r ≥ α(1 + δ), then for any
κ ∈ (0, δ], E

[
e−κZ

] ≤ e−καλ.

Lemma 18 Consider any pair of independent binomial random variables X ∼
Bin(λ, p) and Y ∼ Bin(λ, q), where pq ≥ (1 + σ)2z, p, q, z ∈ (0, 1) and σ > 0.
Then E

[
e−ηXY

] ≤ e−ηzλ2 for all η where 0 < η ≤ σ
(1+σ)λ

.

Proof The proof applies Lemma 17 twice.
First, we apply Lemma 17 for the parameters Z := X , α := (z/q)(1 + σ) and

κ := ηY . The assumptions of the lemma then imply p ≥ z(1+σ)2

q = α(1 + σ) and

κ ≤ σY
(1+σ)λ

≤ σ , i.e., the conditions of Lemma 17 are satisfied. This then gives

E

[
e−ηXY | Y

]
= E

[
e−κX | Y

]
≤ e−καλ = exp

(

−ηz

q
(1 + σ)λY

)

. (68)

Secondly, we apply Lemma 17 for the parameters Z := Y , α := q/(1 + σ) and
κ := zη

q (1 + σ)λ. We have q = α(1 + σ), and by the assumption on η and the fact
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that 1 ≥ q ≥ z > 0, it follows that

κ ≤ σ

(1 + σ)λ

z

q
(1 + σ)λ ≤ σ.

The conditions of Lemma 17 are satisfied, giving

E

[

exp

(

−ηz

q
(1 + σ)λY

)]

= E

[
e−κY

]
≤ e−καλ (69)

= exp

(

− zη

q
(1 + σ)λ

q

1 + σ
λ

)

= e−ηzλ2 . (70)

By (68), (70), and the tower property of the expectation, it follows that

E

[
e−ηXY

]
= E

[
E

[
e−ηXY

]
| Y

]
< e−ηzλ2 .

��
Lemma 19 For any δ1 ∈ (0, 1), if 1/3 < p0 < 1 − δ1,

then for δ′
1 := min{δ1/2 − 8q0, 1/10 − 12q0}, it holds

ϕ := psel(R0)

p(R0)

psel(S1)

p(S1)
> 1 + δ′

1.

Proof By Lemma 21 and Lemma 22

ϕ >

(
3

2
(2 − p0)p0(1 − q) + q − 4q0

)

× 1

2
((1 − q0)(3 + q0) − p0(1 − q0(2 + q0)))

>
1

4
(3(2 − p0)p0(1 − q) + 2q − 8q0) × (3 − q0(2 + q0) − p0 + p0q0(2 + q0)

>
1

4
(3(2 − p0)p0 + q(2 − 3(2 − p0)p0) − 8q0) × (3 − p0 − 4q0)

Considering the variable q independently, we distinguish between two cases.
Case 1: 2 < 3(2 − p0)p0. In this case, the expression is minimised for q = 1,

giving

ϕ >
1

4
(2 − 8q0) (3 − p0 − 4q0)

>
1

4
(2 − 8q0) (2 + δ1 − 4q0)

>
1

4
(2(2 + δ1) − 8q0 − (2 + δ1)8q0)

> 1 + δ1/2 − 8q0.
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Case 2: 2 ≥ 3(2 − p0)p0. In this case, the expression is minimised for q = 0,
giving

ϕ >
1

4
(3(2 − p0)p0 − 8q0) (3 − p0 − 4q0)

>
3

4
(2 − p0)p0(3 − p0) − q0

4
(4 · 3(2 − p0)p0 + 8(3 − p0))

>
3

4
(2 − p0)p0(3 − p0) − 12q0

Note that the function f (x) := (2 − x)(3 − x)x has derivative f ′(x) < 0 for (5 −√
7)/2 < x < 1 and f ′(x) > 0 if 1/3 < x < (5 − √

7)/2. Hence, to determine the
minimum of the expression, it suffices to evaluate f at the extremal values x = 1/3
and x = 1, where f (1/3) = 40/27 and f (1) = 2. Hence, in case 2, we lower bound
ϕ by ϕ > 3

4 · 40
27 − 12q0 = 10

9 − 12q0. ��

Lemma 20 For any ρ ∈ (0, 1), if p0q < 1 − ρ, p0 ≥ 1 − ρ/10 and q0 < ρ/90 then

psel(R0)

p(R0)

psel(S1)

p(S1)
> 1 + ρ

300
(40 − ρ(17 − ρ)).

Proof Note first that the assumptions imply

3p0q0 < ρ/30. (71)

When p0 is sufficiently large, it suffices to only consider the cases where both x1 and
x2 are selected in R0. More precisely, conditional on the event x1 ∈ R0 ∧ x2 ∈ R0,
the probability of selecting an element in S1 is

psel(S1 | x1 ∈ R0 ∧ x2 ∈ R0) ≥ Pr (y1 ∈ S1 ∧ y2 ∈ S1)

+ Pr (y1 ∈ S1 ∧ y2 ∈ S2) /2

+ Pr (y1 ∈ S2 ∧ y2 ∈ S1)

= q2 + q(1 − q − q0)/2 + (1 − q − q0)q

= q

2
(3 − q − 3q0).

Hence, the unconditional probability of selecting a pair in S1 is

psel(S1) >
p20q

2
(3 − q − 3q0)

>
p0q

2
(3(1 − ρ/10) − (1 − ρ) − 3p0q0)
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using (71)

>
p0q

2
(2 + ρ − ρ(3/10) − ρ/30)

= p0q (1 + ρ/3) .

Using that p(S1) = q, and psel(R0) ≥ p20, we get

psel(R0)

p(R0)

psel(S1)

p(S1)
≥ p20

p0

psel(S1)

p(S1)

> (1 − ρ/10)2 (1 + ρ/3)

= 1 + ρ

300
(40 − ρ(17 − ρ)).

��
Lemma 21

ϕ := psel(R0)

p(R0)
≥ 1

2
((3 + q0)(1 − q0) − p0(1 − q0(2 + q0)))

Proof Using Lemma 7, we get

psel(R0) = Pr (x1 ∈ R0 ∧ x2 ∈ R0)+
+ Pr (x1 ∈ R0 ∧ x2 /∈ R0)

× Pr ((x1, y1) � (x2, y2) | x1 ∈ R0 ∧ x2 /∈ R0)

+ Pr (x1 /∈ R0 ∧ x2 ∈ R0)

× (1 − Pr ((x1, y1) � (x2, y2) | x1 /∈ R0 ∧ x2 ∈ R0))

≥ Pr (x1 ∈ R0 ∧ x2 ∈ R0) +
+ Pr ((x1, y1) ∈ R0 × S1 ∪ S2 ∧ (x1, y1) ∈ R1 ∪ R2 × S1 ∪ S2) /2

+ Pr (x1 /∈ R0 ∧ x2 ∈ R0) (1 − Pr (y1 ∈ S0 ∧ y2 ∈ S0))

≥ p20 + p0(1 − p0)(1 − q0)
2/2 + p0(1 − p0)(1 − q20 )

Recalling that p(R0) = p0, we get

ϕ ≥ p0 + (1 − p0)(1 − q0)
2/2 + (1 − p0)(1 − q20 )

= 1

2
((3 + q0)(1 − q0) − p0(1 − q0(2 + q0)))

��
Lemma 22

ϕ := psel(S1)

p(S1)
>

3

2
(2 − p0)p0(1 − q) + q − 4q0.
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Proof Using Lemma 7, we get

psel(S1) = Pr (y1 ∈ S1 ∧ y2 ∈ S1)+
+ Pr (y1 ∈ S1 ∧ y2 /∈ S1)

× Pr ((x1, y1) � (x2, y2) | y1 ∈ S1 ∧ y2 /∈ S1)

+ Pr (y1 /∈ S1 ∧ y2 ∈ S1)

× (1 − Pr ((x1, y1) � (x2, y2) | y1 /∈ S1 ∧ y2 ∈ S1))

≥ Pr (y1 ∈ S1 ∧ y2 ∈ S1) +
+ Pr ((x1, y1) ∈ R0 × S1 ∧ (x2, y2) ∈ R0 × S2) /2

+ Pr ((x1, y1) ∈ R0 × S1 ∧ (x2, y2) ∈ R1 ∪ R2 × S2)

+ Pr ((x1, y1) ∈ R1 × S1 ∧ (x2, y2) ∈ R1 × S0) /2

+ Pr ((x1, y1) ∈ R1 × S1 ∧ (x2, y2) ∈ R2 × S0)

+ Pr ((x1, y1) ∈ R2 × S1 ∧ (x2, y2) ∈ R2 × S0) /2

+ Pr (y2 ∈ S1)

× (1 − Pr (y1 ∈ S1)

− Pr ((x1, y1) ∈ R0 × S0 ∧ x2 ∈ R0)

− Pr ((x1, y1) ∈ R1 × S2 ∧ x2 ∈ R1 ∪ R2)

− Pr ((x1, y1) ∈ R2 × S2 ∧ x2 ∈ R2))

≥ q2 + qp0(1 − q − q0)(p0/2 + 1 − p0)+
+ qpq0(p/2 + 1 − p − p0) + q(1 − p − p0)

2q0/2

+ q(1 − q − p20q0

− (1 − q − q0)(p(1 − p0) + (1 − p − p0)
2)

Recalling that p(S1) = q and noting that (4 − p0)p0 < 4, it follows that

ϕ >
3

2
(2 − p0)p0(1 − q) + q

+ q0

(
3

2
− (4 − p0)p0

)

+ p(1 − q − q0)(1 − p − p0)

>
3

2
(2 − p0)p0(1 − q) + q − 4q0.

��
Lemma 23 If there exists ρ > 0 such that

(1) q0 ≤ √
2(1 − ρ) − 1

then

ϕ := psel(R0 ∪ R1)

p(R0 ∪ R1)
> 1 + ρ(1 − p − p0).
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Proof Using Lemma 7, we get

psel(R0 ∪ R1) = Pr (x1 ∈ R0 ∪ R1 ∧ x2 ∈ R0 ∪ R1) +
+ Pr (x1 ∈ R0 ∪ R1 ∧ x2 /∈ R0 ∪ R1)

× Pr ((x1, y1) � (x2, y2) | x1 ∈ R0 ∪ R1 ∧ x2 /∈ R0 ∪ R1)

+ Pr (x1 /∈ R0 ∪ R1 ∧ x2 ∈ R0 ∪ R1)

× (1 − Pr ((x1, y1) � (x2, y2) | x1 /∈ R0 ∪ R1 ∧ x2 ∈ R0 ∪ R1))

≥ Pr (x1 ∈ R0 ∪ R1 ∧ x2 ∈ R0 ∪ R1)+
+ Pr ((x1, y1) ∈ R0 ∪ R1 × S0 ∪ S1 ∧ (x2, y2) ∈ R2 × S0 ∪ S1) /2

+ Pr (x2 ∈ R0 ∪ R1)

× (1 − Pr (y2 ∈ S0 ∧ (x1, y1) ∈ R2 × S0) − Pr (x1 ∈ R0 ∪ R1))

≥ (p0 + p)2 + (p0 + p)(1 − q0)
2(1 − p − p0)/2+

+ (p0 + p)(1 − (p0 + p) − q20 (1 − p − p0))

Recalling that p(R0 ∪ R1) = p0 + p, and the assumption of the lemma, it follows that

ϕ ≥ 1 + (1 − p − p0)((1 − q0)
2/2 − q0)

= 1 + (1 − p − p0)(1/2 − q0(1 − q0/2))

≥ 1 + (1 − p − p0)(1/2 − (1 − 2ρ)/2)

= 1 + ρ(1 − p − p0).

��
Lemma 24 If there exist ρ > 0 such that

(1) p0q = 0.
(2) p0 <

√
2(1 − ρ) − 1

then

ϕ := psel(S2)

p(S2)
≥ 1 + ρ(q0 + q).

Proof Using Lemma 7, we get

psel(S2) = Pr (y1 ∈ S2 ∧ y2 ∈ S2)+
+ Pr (y1 ∈ S2 ∧ y2 /∈ S2)

× Pr ((x1, y1) � (x2, y2) | y1 ∈ S2 ∧ y2 /∈ S2)

+ Pr (y1 /∈ S2 ∧ y2 ∈ S2)

× (1 − Pr ((x1, y1) � (x2, y2) | y1 /∈ S2 ∧ y2 ∈ S2))

≥ Pr (y1 ∈ S2 ∧ y2 ∈ S2)+
+ Pr ((x1, y1) ∈ R1 ∪ R2 × S2 ∧ (x2, y2) ∈ R1 ∪ R2 × S0 ∪ S1) /2
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+ Pr (y2 ∈ S2)

× (1 − Pr ((x1, y1) ∈ R0 × S1)

− Pr ((x1, y1) ∈ R0 × S0 ∧ y2 ∈ S2) − Pr (y1 ∈ S2))

= (1 − q − q0)
2

+ (1 − q − q0)(1 − p0)
2(q0 + q)/2

+ (1 − q − q0)(1 − p0q − p20q0 − (1 − q − q0))

From p(S2) = 1 − q − q0 and the assumptions of the lemma,

ϕ ≥ 1 + (1 − p0)
2(q0 + q)/2 − p0q − p20q0

= 1 + (q0 + q)/2 − p0q0(1 + p0/2)

≥ 1 + (q0 + q)/2 − q0(1/2 − ρ)

≥ 1 + (q0 + q)ρ.

��
Lemma 25 ([8]) For n ∈ N and x ≥ 0, we have 1 − (1 − x)n ≥ 1 − e−xn ≥ xn

1+xn

Theorem 26 (Additive drift theorem [4]) Let (Zt )t∈N be a discrete-time stochastic
process in [0,∞)adapted to anyfiltration (Ft )t∈N.Define Ta := min{t ∈ N | Zt ≤ a}
for any a ≥ 0. For some ε > 0 and constant 0 < b < ∞, define the conditions

(1.1) E
[
Zt+1 − Zt + ε ; t < Ta | Ft

] ≤ 0 for all t ∈ N,
(1.2) E

[
Zt+1 − Zt + ε ; t < Ta | Ft

] ≥ 0 for all t ∈ N,
(2) Zt < b for all t ∈ N, and
(3) E [Ta] < ∞.

If (1.1), (2), and (3) hold, then E [Ta | F0] ≤ Z0/ε.
If 1.2), 2), and 3) hold, then E [Ta | F0] ≥ (Z0 − a)/ε.

Lemma 27 (Corollary 1.8.3 in [9]) If X � Y , then E [X ] ≥ E [Y ].

Lemma 28 For all δ ∈ (0, 1) and δ1 ∈ [0, δ)

3δ − 4δ1
11

< 1 −
√
1 + δ1

1 + δ
<

4δ − 3δ1
8

.

Proof By taking the first two terms of the Maclaurin series of
√
1 + x for any x ∈

(0, 1), we first obtain

√
1 + x > 1 + x

2
− x2

8
> 1 + 3x

8
, (72)

where the last inequality uses the assumption x ∈ (0, 1). Similarly, taking only the
first term in the Maclaurin series, we obtain

√
1 + x < 1 + x

2
(73)
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Hence, using δ ∈ (0, 1) we obtain

3δ − 4δ1
11

<
3δ − 4δ1
8 + 3δ

= 8 + 3δ − 8 − 4δ1
8 + 3δ

= 1 − 1 + δ1
2

1 + 3δ
8

< 1 −
√
1 + δ1√
1 + δ

.

where the last inequality applies (72) for x = δ and (73) for x = δ1.
Analogously, the lower bound (73) for x = δ, the upper bound (72) for x = δ1, and

the assumption δ ∈ (0, 1) give

1 −
√
1 + δ1√
1 + δ

< 1 − 1 + 3δ1
8

1 + δ
2

= 2 + δ

2 + δ
− 2 + 3δ1

4

2 + δ
= δ − 3δ1

4

2 + δ
<

4δ − 3δ1
8

.

��
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