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What are the novel findings of this work?
This systematic review revealed a lack of external vali-
dation of published prediction models for pre-eclampsia
(PE), apart from the triple-test Fetal Medicine Foundation
(FMF) model that had been validated externally in
numerous high- and middle-income settings. The FMF
model demonstrated outstanding discrimination and
calibration in preterm PE prediction. Apart from the FMF
model, the majority of existing models had poor-to-good
discrimination and poor calibration performance on
external validation.

What are the clinical implications of this work?
The triple-test FMF model is effective in predicting
preterm PE. Future work may need to assess its feasibility
and cost-effectiveness, as it requires some tests that may
be cost-prohibitive in some settings. It would be ideal
for low-income settings to have a comprehensive PE
screening tool that is widely applicable and cost-effective,
utilizing standardized prognostic factors and harmonized
data sources.

ABSTRACT

Objective This systematic review and meta-analysis
aimed to evaluate the performance of existing exter-
nally validated prediction models for pre-eclampsia
(PE) (specifically, any-onset, early-onset, late-onset and
preterm PE).

Methods A systematic search was conducted in five
databases (MEDLINE, EMBASE, Emcare, CINAHL and
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Maternity & Infant Care Database) and using Google
Scholar/reference search to identify studies based on
the Population, Index prediction model, Comparator,
Outcome, Timing and Setting (PICOTS) approach until
20 May 2023. We extracted data using the CHARMS
checklist and appraised the risk of bias using the
PROBAST tool. A meta-analysis of discrimination
and calibration performance was conducted when
appropriate.

Results Twenty-three studies reported 52 externally
validated prediction models for PE (one preterm, 20
any-onset, 17 early-onset and 14 late-onset PE models).
No model had the same set of predictors. Fifteen any-onset
PE models were validated externally once, two were
validated twice and three were validated three times, while
the Fetal Medicine Foundation (FMF) competing-risks
model for preterm PE prediction was validated widely in
16 different settings. The most common predictors were
maternal characteristics (prepregnancy body mass index,
prior PE, family history of PE, chronic medical conditions
and ethnicity) and biomarkers (uterine artery pulsatility
index and pregnancy-associated plasma protein-A). The
FMF model for preterm PE (triple test plus maternal
factors) had the best performance, with a pooled area
under the receiver-operating-characteristics curve (AUC)
of 0.90 (95% prediction interval (PI), 0.76–0.96), and
was well calibrated. The other models generally had
poor-to-good discrimination performance (median AUC,
0.66 (range, 0.53–0.77)) and were overfitted on external
validation. Apart from the FMF model, only two models
that were validated multiple times for any-onset PE
prediction, which were based on maternal characteristics
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only, produced reasonable pooled AUCs of 0.71 (95% PI,
0.66–0.76) and 0.73 (95% PI, 0.55–0.86).

Conclusions Existing externally validated prediction
models for any-, early- and late-onset PE have limited
discrimination and calibration performance, and include
inconsistent input variables. The triple-test FMF model
had outstanding discrimination performance in predicting
preterm PE in numerous settings, but the inclusion
of specialized biomarkers may limit feasibility and
implementation outside of high-resource settings. © 2023
The Authors. Ultrasound in Obstetrics & Gynecology
published by John Wiley & Sons Ltd on behalf of
International Society of Ultrasound in Obstetrics and
Gynecology.

INTRODUCTION

Globally, pre-eclampsia (PE) affects 2–8% of pregnan-
cies1, with reported rates of 3% in the Americas, 5.3%
in the European region, 1% in the Eastern Mediter-
ranean region, 5.6% in the African region2 and 3.3%
in Australia3,4. PE causes more than 500 000 fetal and
neonatal deaths, and 70 000 maternal deaths every year
worldwide5. It is also associated with adverse neonatal6

and maternal7,8 outcome. Thus, early identification is
required for close antenatal monitoring and prevention
strategies to reduce the risk of adverse maternal and peri-
natal outcome. Aspirin prophylaxis for high-risk women,
ideally before 16 weeks’ gestation, can reduce the rates
of PE by 18%, preterm birth by up to 20% and adverse
birth outcome by up to 21%9,10.

In the clinical setting, healthcare providers often
attempt to predict whether a specific health event will
occur in the future to their patient (prognostic setting)11.
Risk prediction is rarely based on a single predictor and
health professionals naturally integrate several signs,
symptoms and biomarkers to predict a future health
condition12. Development and validation of a primary
prediction model to predict the individual risk of a future
event, using a combination of multiple prognostic patient
characteristics (demographic, clinical and biomarker
prognostic factors), is an increasingly used approach13.
However, the performance of a primary prediction
model is often reported based on the data that were
used to create the model (internal validation). Before
any prediction model can be considered for clinical
implementation, it requires geographic and/or temporal
external validation to determine whether it will allow
accurate prediction based on data from a different
population that were not used to create the model13,14.

Externally validated models that have good discrimina-
tion performance and are well calibrated for PE prediction
would be of high value for clinical decision making and
would help guide individualized risk stratification. This
systematic review and meta-analysis aimed to evaluate
the predictive performance of existing prediction models
for PE that had been externally validated across different
settings and populations.

METHODS

Review question and search strategy

This systematic review examined externally validated pre-
diction models for PE. The review protocol was registered
in the International Prospective Register of Systematic
Reviews (PROSPERO) (CRD42022330147). We used
the Population, Index prediction model, Comparator,
Outcome, Timing and Setting (PICOTS) approach for
prediction studies to formulate inclusion and exclusion
criteria15: P (pregnant women), I (externally validated
index prediction models), C (not applicable), O (PE), T
(prediction of PE during pregnancy) and S (individualized
risk stratification for clinical set-up).

A systematic literature search was conducted in Ovid
(MEDLINE, EMBASE, Emcare and Maternity & Infant
Care Database (MIDIRS)) and CINAHL databases
without any restriction in terms of the publication year.
The last search was performed and updated on 20 May
2023. In addition, a Google Scholar gray literature search
was conducted as per Enticott et al.16. Furthermore,
we explored the reference list of all included studies
and a recent narrative review17. The search strategies
were developed following search filters for prognostic
and diagnostic studies18 and by consulting librarians at
Monash University, Melbourne, VIC, Australia. Medical
Subject Heading (MeSH) and free-text terms were used
to identify potential studies (Appendix S1). Boolean
operators (AND, OR and NOT) and truncation were
used to combine the search strategies.

Eligibility of prediction models

Externally validated models for any-onset, early-onset,
late-onset and preterm PE were included. Studies that
conducted external validation of prediction models
for PE using cohort/follow-up, nested case–control,
case–control or randomized controlled trial design
were included in this review. Prediction model studies
conducted for hypertensive disorders of pregnancy and
gestational hypertension alone were excluded from this
review unless they also reported a separate model for PE.

Screening of prediction model search results

The Covidence platform was used to screen the search
results19. Two reviewers (S.A.T. and T.T.T.V.) assessed
independently the title and abstract of the articles after
the removal of duplicates, which was followed by full-text
screening. Discrepancies between the two reviewers were
resolved through discussion.

Assessment of methodological quality of included
studies

Risk of bias was assessed using the Prediction model
Risk Of Bias ASsessment Tool (PROBAST)20 by two
reviewers (S.A.T. and T.T.T.V.). The tool has four

© 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2024; 63: 592–604.
on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
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key domains (participants, predictors, outcome and
analysis) structured in 20 signaling questions to facilitate
risk-of-bias assessment. Each domain was rated as having
high, low or unclear risk of bias.

Data extraction

Data for included articles were extracted using the
CHecklist for critical Appraisal and data extraction in
systematic Reviews of clinical prediction Modelling Stud-
ies (CHARMS)21. Authors, publication year, source of
data, predicted outcome(s), candidate prognostic factors,
sample size, model development, model discrimination
performance, calibration measures and results, including
final multivariable models, were extracted. Two reviewers
(S.A.T. and T.T.T.V.) independently extracted the data.
Discrepancies were resolved through discussion between
the two reviewers and with another reviewer (J.E.) if
necessary.

In this review, a set of model coefficients tested using a
predefined set of input variables was considered a model.
The below example demonstrates this more clearly. The
same set of coefficients validated externally in different
sets of input data that were defined differently was counted
as two models: (i) maternal data recorded at 34 weeks’
gestation or earlier (early onset) and (ii) maternal data
recorded after 34 weeks (late onset).

Data analysis

The descriptive synthesis of all externally validated pre-
diction models is reported in tables and graphs. Dis-
crimination and calibration performance of the exter-
nally validated prediction model was descriptively com-
pared and described. Performance of the external val-
idations of different models is visualized in forest
plots so that the reader can compare the performance.
An area under the receiver-operating-characteristics
curve (AUC) ≤ 0.5 suggested no discrimination ability,
0.5 < AUC < 0.7 was considered indicative of poor dis-
crimination, 0.7 ≤ AUC < 0.8 indicated good discrimina-
tion, 0.8 ≤ AUC < 0.9 indicated excellent discrimination
and AUC ≥ 0.9 was considered indicative of outstand-
ing discrimination performance22. Prediction slope and
prediction intercept were extracted, as both need to be
reported to judge the overall calibration23. A model is
well-calibrated24 when the Hosmer–Lemeshow P-value
is not significant and/or the calibration slope value
approaches 1. Furthermore, the model discrimination
performance was explored descriptively, according to (i)
whether maternal demographic and clinical characteris-
tics vs maternal demographic and clinical characteristics
plus biomarkers were included and (ii) the number of
prognostic factors < 5 vs ≥ 5 (median value) included.

Meta-analyses were performed only in studies validat-
ing the same prediction model as recommended in the
current guidance13. We used metamisc, Meta-Analysis of
Diagnosis and Prognosis Research Studies R package25,
to derive the AUC summary estimate with 95% CI and

95% prediction interval (PI). We estimated the summary
discriminative performance using a random-effects model
with restricted maximum likelihood method of estima-
tion. The extracted AUC with the corresponding CI,
sample size and events of each study were used to estimate
the 95% CI summary estimate and PI of AUC. PIs were
calculated only when the number of studies was ≥ 3, due
to the required n − 2 degrees of freedom.

RESULTS

Externally validated prediction model selection

The details of the article selection procedure are presented
in the Preferred Reporting Items for Systematic reviews
and Meta-Analyses (PRISMA) flowchart (Figure 1). A
total of 9381 records were retrieved from five databases.
A total of 2343 duplicate records were removed, leaving
7038 records that underwent title and abstract screening.
This resulted in 255 articles that were retrieved for
full-text review. After screening the full text, 23 studies
reporting external validation of 52 models were included.
The majority of these studies (16/23) focused on external
validation of the Fetal Medicine Foundation (FMF)
competing-risks prediction model for preterm PE, which
applies data from the first trimester (11–14 weeks) of
pregnancy. The remaining 7/23 studies reported external
validation of 51 models, including 20 any-onset models
(Table 1), 17 early-onset models (Table S1) and 14
late-onset models (Table S2).

Characteristics of included studies and data used
in external validation

The research groups that produced the seven publications
that externally validated any-, early- and late-onset
models26–32 were from UK27,30, Italy31, France26, USA32

and The Netherlands28,29. All seven studies were at low
risk of bias in terms of methodological quality (Table S3).
The external validation datasets had sample sizes ranging
from 1145 to 59 892 for any-onset PE. External valida-
tion datasets were from two single-center studies (France
and UK), four multicenter (The Netherlands, Italy and
USA) studies and one individual participant data (IPD)
meta-analysis with data from multiple sources (IPD from
11 UK cohort studies with 217 415 pregnant women)
(Table 1). All prediction models were validated in unse-
lected (high or low risk for PE) pregnant women. Model
regression coefficients were reported for almost all of the
included models (16/20, 17/17 and 13/14 for any-, early-
and late-onset PE models, respectively). The details of the
primary prediction models are described in Table S4.

Characteristics of included models

Any-onset PE models

As shown in Table 1, 20 any-onset PE prediction mod-
els were validated externally33–51 and reported in five

© 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2024; 63: 592–604.
on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
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publications27–31. Three any-onset PE models33,34,45 were
validated externally three times in different cohorts27–30,
two models42,46 were validated externally twice in
different cohorts29,30 and the rest were validated in one
cohort only (Table 1). Among the original studies report-
ing prediction models used in the external validations,
nine33,34,37,41,43,44,47–49 were from the UK, five39,40,42,45,46

were from the USA, two36,38 were from Canada, two50,51

were from multiple countries (New Zealand, Australia,
UK and Ireland (the Screening for Pregnancy Endpoints
(SCOPE) study)) and one35 was from Iran. Most (90%
(18/20)) of the primary any-onset PE prediction studies
were conducted using a prospective-cohort/follow-up
design. Among the included any-onset PE prediction
models, the minimum number of prognostic factors
included was two (one model) and the maximum number
of prognostic factors included was 10 (one model).

Early-onset PE models

Seventeen34,41–43,46,52–63 early-onset PE prediction mod-
els were validated externally in four publications26,27,30,32.
The model by Scazzocchio et al.59 was validated externally

four times in four different cohorts26,27,30,32, four mod-
els46,60–62 were validated twice in different cohorts27,30,32

and the remaining models were validated externally only
once (Table S1). Among the included early-onset PE
prediction models, the minimum number of prognostic
factors included was two (two models) and the maxi-
mum number of prognostic factors included was 11 (one
model).

Late-onset PE models

Fourteen34,43,46,52–57,59–63 late-onset PE prediction mod-
els were validated externally and reported in four pub-
lications26,27,30,32. The model by Scazzocchio et al.59

was validated externally four times in four different
cohorts26,27,30,32. The models by Parra-Cordero et al.60

and Poon et al.61 were validated externally twice in three
different cohorts27,30,32, while the remaining models were
validated externally only once (Table S2). Among the
late-onset PE prediction models, the minimum number of
prognostic factors included was three (four models) and
the maximum number of prognostic factors included was
seven (one model).

Reports assessed for eligibility
(n= 255)

Records screened
(n= 7038)

Reports sought for retrieval
(n= 255) 

Records identified (n= 9381):
MEDLINE (n= 3678) 
EMBASE (n= 2771)
MIDIRS (n= 788) 
CINAHL (n= 1193) 
Emcare (n= 946) 
Google Scholar/manual
   search of references (n= 5)*  

Duplicates removed (n= 2343) 

Reports excluded (n= 232): 
•

•

•

•

•

•

•

Not external validation
   study (n= 214)

• Not PE prediction model (n= 9) 
• Duplicate (n= 3)
• Study not in English (n= 3)
• Unclear outcome (n= 1)
• Outcome not reported (n= 2)

Studies included in review (n= 23):
• Studies externally validating 20 any-onset,

  17 early-onset and 14 late-onset PE
  prediction models (n= 7) 

• Studies evaluating FMF preterm PE
 prediction model (n= 16) 

Id
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Records excluded (n= 6783)

Reports not retrieved (n= 0)

Figure 1 PRISMA flowchart summarizing inclusion of studies in systematic review. *Reference list of recent publications72,78 and Google
Scholar citation searches for the original Fetal Medicine Foundation (FMF) model. MIDIRS, Maternity & Infant Care Database;
PE, pre-eclampsia.
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FMF competing-risks model for preterm PE

Table 2 summarizes the characteristics of studies that
validated the FMF preterm-PE prediction model. The
FMF competing-risks model64 was developed originally
in 2012 and was later updated to include biochemical
markers of serum pregnancy-associated plasma protein-A
(PAPP-A) and placental growth factor (PlGF)65. The
FMF competing-risks model focuses on preterm PE in
the first trimester of pregnancy. The performance of
the FMF competing-risks model has been evaluated in
16 studies66–81, conducted in European countries (UK,
Denmark, Belgium, Spain and The Netherlands), Asian
countries (India, China and Japan), Brazil and Australia.
In the preterm-PE group, the median maternal age ranged
from 28 to 40 years. The sample sizes for the included
studies ranged from 362 to 61 174. The incidence of
term PE was generally higher than that of preterm PE,
except for in studies conducted by Lobo et al.81 and
Hu et al.76 (Table 2). We did not find a high risk of
methodological bias in the included studies (Table S3).
The FMF preterm-PE prediction model includes the fol-
lowing predictors: maternal characteristics (age, height,
weight, racial origin, method of conception, cigarette
smoking, history of chronic hypertension and diabetes
mellitus, history of systemic lupus erythematosus or

antiphospholipid syndrome, nulliparity, parous without
previous history of PE, parous with previous history of
PE, family history of PE and interpregnancy interval),
biophysical measurements (mean arterial pressure (MAP)
and mean uterine artery pulsatility index (UtA-PI))
and biochemical measurements (serum PlGF and serum
PAPP-A). The performance of the FMF preterm-PE
prediction competing-risks model in external validation
studies is summarized in Table S5.

Distribution of prognostic factors

A variety of prognostic factors were included in the any-,
early- and late-onset models (Figure 2). The prognostic
factors used in the external validation of any-, early-
and late-onset PE prediction models included maternal
demographic and clinical characteristics, biochemical
markers and ultrasound markers. None of the included
prediction models used the same type and number
of prognostic factors across different studies. Overall,
maternal demographic and clinical characteristics were
the most frequently used prognostic factors. UtA-PI and
PAPP-A were the most used biomarkers for external
validation of original models across studies. Prepregnancy
body mass index (BMI) (some studies reported using
the first-trimester BMI taken as prepregnancy BMI),

Table 1 Characteristics of 28 studies performing external validation of models from 20 any-onset pre-eclampsia prediction studies

External validation

Derivation study Study Country
Study
design

Sample/events
(events per predictor)

Goetzinger (2010)45 Snell (2020)30 UK IPD 8811/343 (69)
Lamain-de Ruiter (2019)29 The Netherlands Multicenter 3736/87 (17)
Allen (2017)27 UK Single-center 2186/52 (10)

Poon (2008)33 Snell (2020)30 UK IPD 3257/102 (25)
Lamain-de Ruiter (2019)29 The Netherlands Multicenter 3736/87 (15)
Allen (2017)27 UK Single-center 2180/52 (13)

Plasencia (2007)34 Snell (2020)30 UK IPD 3257/102 (20)
Lamain-de Ruiter (2019)29 The Netherlands Multicenter 3736/87 (17)
Meertens (2019)28 The Netherlands Multicenter 2614/76 (15)

Baschat (2014)46 Snell (2020)30 UK IPD 5257/287 (32)
Lamain-de Ruiter (2019)29 The Netherlands Multicenter 3736/87 (17)

Odibo (2011)42 Snell (2020)30 UK IPD 59 892/1774 (443)
Lamain-de Ruiter (2019)29 The Netherlands Multicenter 3736/87 (21)

Sovio and Smith (2019)44 Brunelli (2020)31 Italy Multicenter 7619/73 (8)
Wright (2015)41 Snell (2020)30 UK IPD 1916/76 (8)
Odibo (2011)42 Snell (2020)30 UK IPD 1145/28 (7)
Yu (2005)43 Snell (2020)30 UK IPD 4212/273 (45)
Giguère (2015)38 Lamain-de Ruiter (2019)29 The Netherlands Multicenter 3736/87 (43)
Goetzinger (2014)39 Lamain-de Ruiter (2019)29 The Netherlands Multicenter 3736/87 (17)
Myatt (2013)40 Lamain-de Ruiter (2019)29 The Netherlands Multicenter 3736/87 (29)
Macdonald-Wallis (2015)49 Meertens (2019)28 The Netherlands Multicenter 2614/76 (10)
Kenny (2014)51 Meertens (2019)28 The Netherlands Multicenter 2614/76 (25)
Direkvand-Moghadam (2013)35 Meertens (2019)28 The Netherlands Multicenter 2614/76 (19)
North (2011)50 Meertens (2019)28 The Netherlands Multicenter 2614/76 (8)
Seed (2011)47 Meertens (2019)28 The Netherlands Multicenter 2614/76 (15)
Syngelaki (2011)48 Meertens (2019)28 The Netherlands Multicenter 2614/76 (8)
Audibert (2010)36 Meertens (2019)28 The Netherlands Multicenter 2614/76 (38)
Poon (2008)37 Meertens (2019)28 The Netherlands Multicenter 2614/76 (13)

Only first author is given for each study. Data are given as n. Total number of included papers will not be equal to sum of articles presented
in main text and tables, as some models were validated externally more than once. IPD, individual patient data.

© 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2024; 63: 592–604.
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ethnicity, history of chronic hypertension, history of PE,
family history of PE, UtA-PI and PAPP-A were the most
frequently used prognostic factors in external validation
of original models (Figure 2).

Model discrimination and calibration

Any-onset models

For the any-onset PE models, each of the 28 external
validations produced an AUC (Figure 3). Only 7/20 mod-
els had good (AUC > 0.70) discrimination performance
on external validation and all seven models performed
poorer than reported in the primary prediction-model
studies. Eleven externally validated prediction models for
any-onset PE used only maternal clinical characteristics
as prognostic factors, while nine models used maternal
clinical characteristics and biomarkers. Among the 11
prediction models that used only maternal clinical char-
acteristics, five33,34,37,48,49 models had good (AUC > 0.7)
discrimination performance and were well calibrated on
external validation. Only two42,46 prediction models that
used maternal clinical characteristics and biomarkers as
prognostic factors had good discrimination performance
(Figure 3). Thirteen any-onset PE externally validated
prediction models used fewer than five (median value)
prognostic factors, while the rest of the models used
five or more prognostic factors. Among models includ-
ing five or more prognostic factors, only four had good
discrimination performance (Figure S1). Overall, only five
models33,34,42,48,49 had good discrimination and were well
calibrated, whereas the rest of the models were likely over-
fitted, as shown by the poorer external validation results
(Table S6).

Three any-onset PE prediction models were validated
externally three times33,34,45 and two were validated

externally twice42,46 in different studies27–30. Among the
externally validated models that underwent validation
more than once, no significant difference in model perfor-
mance was found. The model developed by Poon et al.33

was validated externally in three different studies27,29,30,
appeared well calibrated and had good discrimination
performance (AUC, 0.71) in two studies27,29. The sum-
mary AUC was 0.71 (95% PI, 0.66–0.76). The model by
Plasencia et al.34 was validated externally in three different
studies28–30, two of which reported good discrimination,
but variable calibration. The summary AUC was 0.73
(95% PI, 0.55–0.86). In addition, the model using mater-
nal characteristics and biomarkers by Goetzinger et al.45

was validated externally in three different studies27,29,30,
which reported poor discrimination performance, with
point estimates of AUC ranging from 0.55 to 0.66. The
summary AUC also indicated poor discrimination (AUC,
0.60 (95% PI, 0.048–0.98)) (Figure 3).

Early- and late-onset PE models

Five early-onset PE prediction models46,59–62 were val-
idated externally more than once in different studies.
The prediction model developed by Scazzocchio et al.59

was validated externally four times in different stud-
ies26,27,30,32. The AUC value ranged from 0.74 to 0.94 on
external validation in four different studies, but the model
was not well calibrated. A prediction model from the
study by Parra-Cordero et al.60 was validated externally
twice in different studies and showed good discrimina-
tion performance on external validation, but was not well
calibrated in the USA cohort32. Two prediction mod-
els61,62 validated externally by the same study27 had good
model discrimination performance, but were not well cal-
ibrated on external validation. Overall, 10 early-onset PE

Table 2 Characteristics of studies performing external validation of Fetal Medicine Foundation (FMF) models for preterm pre-eclampsia
(PE) prediction

PE status

Validation study Country Center Sample Maternal age (years) Any-onset Preterm Term

Cuenca-Gómez (2023)67 Spain Multicenter 10 110 34.2 (31.7–38.6) 230 72 158
Riishede (2023)74 Denmark Multicenter 8156 30.8 (28.1–33.9) 303 55 248
Rolnik (2022)75 Australia Multicenter 29 618 33.3 ± 4.3 455 132 323
Hu (2021)76 China Multicenter 10 899 31.3 (28.1–33.6) 312 195 117
Goto (2021)77 Japan Single 913 40 (34–47) 26 11 15
Prasad (2021)78 India Single 1863 31.40 ± 3.63 59 25 34
Zwertbroek (2021)79 The Netherlands Single 362 28 (25–32) 22 10 12
Rezende (2021)66* Brazil Single 1695 — 164 41 105
Chaemsaithong (2019)80 Multicountry† Multicenter 10 935 34.76 (30.29–37.47) 224 73 151
Lobo (2019)81 Brazil Single 617 30 (25–35) 34 18 16
Rezende (2019)68* Brazil Single 1531 30 (24–35) 120 26 94
Guizani (2018)69 Belgium Single 3239 31.7 (21.0–43.8) 80 36 44
Tan (2018)70 Multicountry‡ Multicenter 61 174 32.1 (27.5–36.0) 1770 493 1277
Tan (2018)71 UK Multicenter 16 451 31.5 (27.4–35.1) 439 135 304
O’Gorman (2017)72 Multicountry‡ Multicenter 8775 30.6 (26.0–34.7) 239 59 180
O’Gorman (2016)73 UK Multicenter 35 948 31.5 (27.0–35.6) 1058 292 766

Only first author is given for each study. Data are given as n, median (interquartile range) or mean ± SD. *Externally validated using only
maternal factors, mean arterial pressure and uterine artery pulsatility index. †Hong Kong SAR, China, Japan, Thailand, Taiwan, India and
Singapore. ‡UK, Spain, Belgium, Italy and Greece.
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prediction models had good discrimination performance,
among which only three41,60,62 were well calibrated on
external validation (Table S7).

Among the 14 late-onset PE prediction models, only
five had good discrimination performance (Table S8).
Three late-onset PE prediction models59–61 were validated
externally more than once in different cohorts26,27,30,32;
none of them had consistently good discrimination and
calibration performance.

FMF competing-risks model prediction performance

Fourteen validation studies were included in
meta-analyses, as two of the 16 did not fulfill criteria
for meta-analysis. Four meta-analyses were performed
for four different models, combining (i) maternal factors,

triple test (MAP, UtA-PI, PlGF) and PAPP-A; (ii) maternal
factors and triple test; (iii) maternal factors only; and
(iv) maternal factors and MAP. The summary AUC in
12 studies67,69–76,78,79,81 was 0.90 (95% PI, 0.77–0.96),
using maternal factors, triple test and PAPP-A. The
lowest AUC was 0.71 (95% CI, 0.51–0.90), reported
by Zwertbroek et al.79, and the greatest AUC was
0.96 (95% CI, 0.95–0.98), reported by Prasad et al.78

(Figure 4a). The summary AUC for models with maternal
factors and triple test67,70,72,73,76,77,80 was 0.90 (95% PI,
0.76–0.96), with AUCs ranging from 0.83 (95% CI,
0.79–0.88)76 to 0.95 (95% CI, 0.86–0.98)77 (Figure 4b).
Validation studies of the FMF competing-risks model
using maternal factors only demonstrated a summary
AUC of 0.77 (95% PI, 0.71–0.82), with AUCs ranging
from 0.71 (95% CI, 0.65–0.77)67 to 0.80 (95% CI,
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Figure 2 Distribution of prognostic factors across external validation model studies in models for any-onset pre-eclampsia (PE) (a),
early-onset PE (b) and late-onset PE (c). BMI, body mass index; CHD, chronic heart disease; DBP, diastolic blood pressure;
GDM, gestational diabetes mellitus; hCG, human chorionic gonadotropin; MAP, mean arterial pressure; PAPP-A, pregnancy-associated
plasma protein-A; PlGF, placental growth factor; SBP, systolic blood pressure; UtA-PI, uterine artery pulsatility index.
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0.77–0.82)73 (Figure 4c). Validation studies including
MAP with maternal factors had a summary AUC
of 0.84 (95% PI, 0.82–0.85), with AUCs ranging
from 0.80 (95% CI, 0.76–0.85)67 to 0.91 (95% CI,
0.77–0.97)77 (Figure 4d). The summary performance of
the FMF competing-risks model for term PE prediction
was 0.79 (95% PI, 0.69–0.87) (Figure S2). Only six
studies67,71,73–75,80 reported model calibration, with cali-
bration slopes ranging from 0.95 to 1.05, indicating good
calibration performance. The available prediction slopes
and prediction intercepts are summarized in Table S5.

The summary discrimination performance was com-
pared among the same externally validated models based
on the predictor variables used. Five studies67,70,72,73,76

evaluated the performance of the FMF competing-risks
model based on maternal factors, triple test and PAPP-A
vs maternal factors plus triple test. The summary AUC
was 0.90 (95% PI, 0.76–0.97) for models including
maternal factors, triple test and PAPP-A compared with
0.91 (95% PI, 0.73–0.97) for models including mater-
nal factors and triple test (Figure S3a). Similarly, six
studies67,69,70,72,73,76 evaluated the performance of the
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FMF model based on maternal factors alone vs mater-
nal factors plus MAP. The summary AUC of models
that included only maternal factors was 0.77 (95% PI,
0.68–0.84), while models that included maternal factors
plus MAP had an AUC of 0.84 (95% PI, 0.82–0.85)
(Figure S3b).

DISCUSSION

PE is a predictable and preventable condition. Risk pre-
diction models exist, but external validations of a risk
prediction model and impact assessment studies should be
completed before clinical implementation82. This system-
atic review found the triple-test FMF model demonstrates
outstanding discrimination and calibration in preterm PE
prediction, and is clearly the preferred model at present,
having been validated externally in numerous settings.
Other prediction models for PE have undergone more
limited external validation. Apart from the FMF model,
the majority of existing models had poor-to-good dis-
crimination and poor calibration performance on external
validation. Except for two studies35,60, all other models

were developed and validated externally in high-income
settings. Overall, a wide variation of prognostic factors
was used, with none having the same set of predic-
tors. Interestingly, any-onset models incorporating only
maternal characteristics performed similarly or slightly
better than models incorporating additional biomark-
ers, with potential implications for low-resource and
non-specialized settings.

The FMF model underwent 16 external validations,
conducted in high- and middle-income countries. The
FMF models were validated with comparable popula-
tion age distribution, outcome definition and prognostic
factors. Sixteen external validations may seem exces-
sive; however, it demonstrates generalizability in new
settings and clinicians and health administrations will
be reassured regarding the model performance within
similar populations and settings83. Only five (25%)
any-onset PE models had undergone multiple exter-
nal validations. These findings highlight the need for
multiple external validations to determine if a model
provides clinical utility and is generalizable84–86, which
may become more feasible as routine electronic health
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Figure 4 Forest plots showing area under receiver-operating-characteristics curve (AUC) of Fetal Medicine Foundation model for preterm
pre-eclampsia prediction, including: (a) maternal factors plus triple test (mean arterial pressure, uterine artery pulsatility index and placental
growth factor) plus pregnancy-associated plasma protein-A; (b) maternal factors plus triple test; (c) maternal factors only; and (d) maternal
factors plus mean arterial pressure. Only first author is given for each study. Values in parentheses are 95% CI, unless indicated otherwise.
PI, prediction interval.
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data become available. The prediction performance of the
FMF model was evaluated extensively in different coun-
tries66–81; however, limited information is available from
low-resource countries, which highlights more validation
needs.

Maternal demographic and clinical characteristics were
the most frequently used prognostic factors, whereas
UtA-PI and PAPP-A were frequent biomarkers in any-,
early- and late-onset PE prediction. The FMF model64

was originally developed in 2012 and later updated
to include serum PlGF and PAPP-A biomarkers65.
The summary FMF prediction showed outstanding
prediction performance, while the addition of PAPP-A
did not improve prediction performance. The summary
discrimination performance with maternal factors alone
was good, and the performance improved further with the
addition of MAP (Figure 4). Even though incorporating
specialized tests, such as UtA-PI and serum biomarkers,
can improve prediction performance, these tests may
not be available in low-resource settings and all public
antenatal care clinics87.

Examining performance of models that include only
maternal factors vs models with additional biomarkers
is useful whenever possible, as it can determine whether
there are any benefits from having women undergo spe-
cialized tests during pregnancy. In this review, examining
any-onset PE models landed itself to this examination.
Externally validated any-onset model performance was
assessed based on the type of prognostic factors included.
Among the 11 any-onset models validated using maternal
clinical characteristics only, five had good discrimination
performance and were well calibrated. Nine models that
also included biomarkers were validated, and most had
poor discrimination performance (Figure 3). Overall,
models that included maternal clinical characteristics
only had similar or slightly better prediction performance
than models with biomarkers in any-onset PE predic-
tion. These are important findings, and future models
incorporating biomarkers should routinely report model
performance compared with a version of that model
incorporating maternal characteristics only. If this is
confirmed, this finding is beneficial because (i) it may
encourage less expensive models, as biomarker extraction
and identification can be expensive, (ii) prognostic factors
should be readily available and less invasive, (iii) uptake
of a decision tool might occur more readily, as healthcare
settings are familiar with other clinically implemented
prediction tools that are parsimonious and utilize easily
available predictors88–92 and (iv) these could be easily
implemented in low-resource and non-specialized settings
after model performance is optimized and clinical utility is
established.

Given that maternal clinical characteristics are reported
as highly important risk factors for PE93,94, it was not
unexpected that any-onset PE models including only
maternal characteristics performed just as well, and per-
haps slightly better, than models incorporating biomark-
ers. The risk of developing PE has been reported to
increase 8-fold in women with prior PE, 7-fold in women

with prepregnancy/early-gestational-age BMI > 30 kg/m2,
5-fold in women with chronic hypertension and 3-fold
in women with pregestational diabetes93. Women with
a first-degree relative with PE have a 3-fold increased
risk of developing PE93,94. Therefore, existing literature
supports that maternal clinical characteristics are highly
important factors for PE, which are easily available and
less invasive.

To support the pipeline towards producing clinically
useful prediction tools, there is a need to comprehensively
validate feasible and cost-effective models for PE that
would be applied in all clinical settings. A recent
cost-effectiveness analysis in Germany comparing the
FMF model vs standard screening showed that cost per
case averted incurred an additional cost of €1400 per
100 women screened95. Other studies revealed that the
FMF model is cost-effective compared with standard
care96,97. The FMF model has been validated externally
in numerous settings and appears to be relatively
cost-effective; therefore, it is recommended that other
models (with and without biomarkers) also follow this
process.

Limitations of this systematic review relate to the lim-
itations of the original models and include heterogeneity
in prognostic predictors used in current model develop-
ment. A lack of models in ethnically diverse and low-
and middle-income settings is also a weakness. A further
limitation is the unstable model performance of any-onset
PE prediction on external validation.

In conclusion, this systematic review revealed that
many existing externally validated models had limited
discrimination and calibration performance in any-,
early- and late-onset PE prediction. The triple-test
FMF preterm PE model demonstrated outstanding
discrimination and was well calibrated; however, the
inclusion of specialized biomarkers may limit feasibility
and implementation, especially in low-resource settings.
The validated any-onset PE models with only maternal
demographic and clinical characteristics had similar, or
slightly better, discrimination performance compared to
models with additional biomarkers; although this may
change in the future as new biomarkers emerge. Most
external validation studies were conducted in high-income
countries, highlighting the need for future work in
low-resource settings, utilizing standardized prognostic
factors and harmonized data sources.
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SUPPORTING INFORMATION ON THE INTERNET

The following supporting information may be found in the online version of this article:

Appendix S1 Search strategy

Figure S1 Forest plot showing area under receiver-operating-characteristics curve reported from external
validations of any-onset pre-eclampsia prediction models, according to whether number of prognostic factors
included was < or ≥ 5. Only first author is given for each study.
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Figure S2 Forest plot showing area under receiver-operating-characteristics curve of Fetal Medicine
Foundation model for term pre-eclampsia prediction. Only first author is given for each study.

Figure S3 Forest plots showing area under receiver-operating-characteristics curve of Fetal Medicine
Foundation model for preterm pre-eclampsia prediction, including: (a) maternal factors plus triple test plus
pregnancy-associated plasma protein-A vs maternal factors plus triple test; and (b) maternal factors only vs
maternal factors plus mean arterial pressure. Only first author is given for each study.

Table S1 Characteristics of externally validated early-onset pre-eclampsia prognostic models

Table S2 Characteristics of externally validated late-onset pre-eclampsia prognostic models

Table S3 Risk of bias and applicability of included studies

Table S4 Details of externally validated any-onset, early-onset and late-onset pre-eclampsia prognostic models

Table S5 Performance/accuracy of Fetal Medicine Foundation preterm pre-eclampsia competing-risks models
in external validation studies

Tables S6, S7 and S8 Model discrimination and calibration of any-onset (Table S6), early-onset (Table S7) and
late-onset (Table S8) pre-eclampsia prognostic models on external validation
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