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The study of functional diversity (FD) provides ways to understand phenomena as com-
plex as community assembly or the dynamics of biodiversity change under multiple 
pressures. Different frameworks are used to quantify FD, either based on dissimilarity 
matrices (e.g. Rao entropy, functional dendrograms) or multidimensional spaces (e.g. 
convex hulls, kernel-density hypervolumes), each with their own strengths and limits. 
Frameworks based on dissimilarity matrices either do not enable the measurement of all 
components of FD (i.e. richness, divergence, and regularity), or result in the distortion 
of the functional space. Frameworks based on multidimensional spaces do not allow for 
comparisons with phylogenetic diversity (PD) measures and can be sensitive to outliers.
We propose the use of neighbor-joining trees (NJ) to represent and quantify FD in a 
way that combines the strengths of current frameworks without many of their weak-
nesses. Importantly, our approach is uniquely suited for studies that compare FD with 
PD, as both share the use of trees (NJ or others) and the same mathematical principles.
We test the ability of this novel framework to represent the initial functional distances 
between species with minimal functional space distortion and sensitivity to outliers. 
The results using NJ are compared with conventional functional dendrograms, convex 
hulls, and kernel-density hypervolumes using both simulated and empirical datasets.
Using NJ, we demonstrate that it is possible to combine much of the flexibility provided 
by multidimensional spaces with the simplicity of tree-based representations. Moreover, 
the method is directly comparable with taxonomic diversity (TD) and PD measures, and 
enables quantification of the richness, divergence and regularity of the functional space.
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Introduction

With the advent of new ways of thinking about biodiversity 
(McGill  et  al. 2006) and novel sources of data (Jarić  et  al. 
2020, Tosa  et  al. 2021, Tobias  et  al. 2022), we are experi-
encing a shift from measuring biodiversity based on species 
identities only (taxonomic diversity, TD), to taking into 
account either the evolutionary relationships among spe-
cies (phylogenetic diversity, PD) or similarities in functional 
traits (functional diversity, FD) (Pavoine and Bonsall 2011). 
An integrative approach to quantifying biodiversity enables 
not only the comparison of its multiple facets (Pollock et al. 
2020), but provides new tools to understand phenomena as 
complex as community assembly and the dynamics of biodi-
versity change under multiple pressures (McGill et al. 2006).

Both PD and FD can be measured within (alpha diver-
sity) and between (beta diversity) samples, sites, or time steps 
(Whittaker 1960). Diversity can also be measured in terms of 
richness, divergence and regularity (Pavoine and Bonsall 2011, 
Tucker et al. 2017, Mammola et al. 2021). For PD, these facets 
are usually quantified using dissimilarity matrices, calculated 
either directly from the raw dissimilarity (e.g. Rao entropy, 
Botta-Dukát 2005, Hill numbers, Chao et al. 2014) or from 
phylogenetic trees (Tucker et al. 2017). For FD, multidimen-
sional approaches reflecting the niche concept by Hutchinson 
(1957) are often used, with multiple advantages (Blonder 
2016, Carvalho and Cardoso 2020, Mammola and Cardoso 
2020, Mammola et al. 2021) over tree-based metrics (Petchey 
and Gaston 2002, 2006). For example, functional trees are 
usually built using hierarchical clustering methods such as 
the unweighted pair group method using arithmetic averages 
(UPGMA; Michener and Sokal 1957, Cardoso  et  al. 2014) 
or single-linkage trees (equivalent to minimum spanning trees; 
Villéger et al. 2008), and it has been shown that, in compari-
son, hyperdimensional approaches better maintain the original 
distances between species, which eliminates or at least mini-
mises the distortion of the functional space (Maire et al. 2015).

Trees and hyperdimensional representations however 
require the use of different methods with non-comparable 
mathematical properties (Mammola  et  al. 2021). As such, 
when comparing phylogenetic and functional diversity, it is 
impossible to know if any differences observed in index val-
ues between samples (e.g. richness) are due to inherent dif-
ferences of the studied systems or due to the use of different 
algorithms. Using dissimilarity matrices or trees is the only 
option to compare PD and FD. As many studies use phy-
logenetic trees, and many regularity and beta diversity par-
titioning metrics are exclusively calculated using functional 
tree representations, the use of trees is often preferred for PD/
FD comparisons (Cardoso et al. 2014).

Phylogenetic tree reconstruction has seen major advances 
in recent decades due to the development of ever more 

efficient algorithms for the representation of evolutionary 
relationships (Nguyen et al. 2015, Minh et al. 2020). Once 
among the most used, the neighbor-joining (NJ) method 
reconstructs (phylogenetic) trees from evolutionary distance 
data (Saitou and Nei 1987). The algorithm for constructing 
NJ trees connects the terminals based on their overall simi-
larity, and continues to be widely used as it is known to be 
both efficient and computationally fast. It has a much bet-
ter performance for reconstructing distance-based trees than 
UPGMA (Saitou and Nei 1987). Even if other methods can 
outperform it under different evolutionary scenarios (Rannala 
and Yang 1996), NJ trees are still widely used for preliminary 
similarity clustering at the species level. As an example, the 
Taxon ID tree tool in BOLD (Ratnasingham and Hebert 
2007) employs NJ under the Kimura two-parameter (K2P; 
Kimura 1980) distance metric. At the species level, NJ per-
forms best when the mutational rate heterogeneity among 
the terminals is low, and typically resolves a well-sampled 
input distance matrix consistently (Atteson 1997). The tree 
topology is also correct if each entry in the distance matrix 
differs from the true distance by less than half of the shortest 
branch length in the tree (Mihaescu et al. 2009). As both NJ 
and UPGMA lack an optimality criterion defining the best 
tree, an analysis returns only one optimal topology.

All diversity measures calculated using phylogenetic trees 
can also be calculated using functional trees built with the 
neighbor-joining algorithm with no changes required, this 
way allowing comparison of, for example, phylogenetic trees 
constructed using Bayesian methods with NJ trees built for 
functional diversity. The construction of functional trees 
is based on pairwise trait dissimilarities between species, a 
roughly analogous approach to using genetic dissimilarities to 
build phylogenetic trees. The comparison between phyloge-
netic and functional diversity can be made as the algorithms 
used to calculate them are the same, even if the trees were 
built using different methods and have different meaning.

In this work, we propose and test NJ trees as a way to 
quantify functional richness, divergence and regularity with-
out the functional space distortion typical of functional 
dendrograms built using hierarchical clustering. We provide 
functions for all methods in the R package 'BAT' (www.r-
project.org, Cardoso et al. 2015).

Material and methods

Building NJ trees requires a distance matrix and in the con-
struction of phylogenetic trees the principle of parsimony is 
used. The algorithm builds a non-ultrametric tree, in a way 
that the branching patterns and branch lengths are opti-
mised to minimise the amount of change needed to connect 
all species along the tree (Saitou and Nei 1987). Hence, the 
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total length of the tree, equivalent to a measure of phyloge-
netic richness, is also minimised (Fig. 1). Here we propose 
to use the same principle to build functional trees depict-
ing distances between species (function BAT::tree.build). For 
taxonomic diversity, a star-like tree could be used, with all 
pairwise distances being equal to one, this way guaranteeing 
comparability for TD, PD and FD.

In the context of FD, the same algorithm is used but 
replacing phylogenetic distance with the functional distance 
between the species. Similar to the concept of hierarchical 
clustering or minimum spanning trees (which are in effect 
equivalent to hierarchical clustering with single linkage; 
Gower and Ross 1969), NJ trees are much more flexible 
due to two characteristics. First, they do not explicitly build 
ultrametric trees as in UPGMA and related methods. Second, 
while in traditional methods species are directly assigned to 
nodes, NJ trees use intermediate nodes which are not directly 
assigned to species. Such flexibility results in cophenetic dis-
tances much closer to the initial distances, decreasing the 
known limitations of hierarchical clustering that distorts this 
relation (Maire et al. 2015).

When calculating FD, the distances between species can be 
Euclidean if all traits are continuous, and traits should gener-
ally be standardised (e.g. z-score) to ensure the weight of each is 
similar (BAT::standard). As categorical or ordinal traits are com-
monly available, Gower’s distance is often used (Pavoine et al. 
2009, BAT::gower), and it is possible to weight traits if some are 
considered more important with regard to how species interact 
with their environment, including other species. As traits are 
often correlated, one might want to first perform a principal 
coordinates analysis (PCoA) or similar technique and use the 
resulting orthogonal axes as the new traits.

For all PD/FD analyses one should always use the same 
phylogenetic or functional tree depicting the relationships 

between all species, to guarantee the comparability of results. 
Phylogenetic or functional richness is the sum of lengths of 
edges connecting all species in a community (Faith 1992, 
Petchey and Gaston 2002, 2006, BAT::alpha). For the com-
munities in Fig. 1, functional richness would be Community 
1 = Community 2 = 7. Species-level measures can be calcu-
lated in different ways. Originality of a species is measured 
as its average distance to all other species in a community 
(Pavoine  et  al. 2005, BAT::originality). In the example, for 
Community 1 the originality would be A = 4, B = 3.5 and 
C = 6.5. Uniqueness of a species is measured as its distance 
to the single closest species in the community (Mouillot et al. 
2013, BAT::uniqueness). In Community 1 it would be A = 1, 
B = 1, and C = 6. The contribution of a species to richness 
or alpha diversity is the length of branches unique to it, plus 
the proportional length of shared branches connecting it to 
the root of the tree (Isaac et al. 2007, BAT::contribution). As 
NJ trees are unrooted, they can either be rooted using an 
outgroup or in the midpoint (Podani et al. 2000). Using an 
outgroup can be justified in certain cases, for example if one 
species is known to represent the ancestral state from which 
all others have evolved a set of traits. In most cases however 
midpoint rooting is a better option. In this alternative the two 
species with the highest pairwise distance are selected, and 
the root is placed halfway between them (Podani et al. 2000). 
In Community 1, contribution would be A = 1, B = 0, and 
C = 6. This option for rooting is however mostly arbitrary, 
and alternatives could be explored in the future.

The second dimension of phylogenetic or functional 
alpha diversity is divergence (Mammola et al. 2021). It can 
be calculated as the average dissimilarity between any two 
species or individuals randomly chosen in a community 
(BAT::dispersion). If abundance data are used, dispersion is 
the quadratic entropy of Rao (1982), otherwise it is the phy-
logenetic dispersion measure of Webb  et  al. (2002), often 
referred to in the phylogenetic diversity literature as mean 
pairwise distance (MPD). In the example of Fig. 1, if all 
species abundances are 1, dispersion would be Community 
1 = Community 2 = 4.667, i.e. the average value of all three 
pairwise distances (A:B = 1, B:C = 6, A:C = 7). One might 
also calculate dispersion using the average distance to the 
closest species, usually termed mean nearest taxon distance 
(MNTD).

The third dimension of phylogenetic or functional alpha 
diversity is regularity (Mammola  et  al. 2021). It represents 
the evenness in the abundances and distances between con-
nected species in a community (BAT::evenness). It can be cal-
culated, among other approaches, using the index of Camargo 
(1993), which we refer to for an explanation of the index. In 
the example of Fig. 1, if all species abundances are 1, evenness 
would be Community 1 = Community 2 = 0.754.

Finally, beta diversity represents the dissimilarity between 
two communities (BAT::beta; measured using either 
Jaccard or Sørensen dissimilarity) and can be partitioned 
into the two processes contributing to it, replacement and 
loss or gain of species leading to differences in richness 
(Carvalho  et  al. 2012), evolutionary history, or functional 

Figure 1. Top-left: NJ tree representing evolutionary or functional 
distances (edges, in black) connecting four hypothetical species A to 
D (nodes, in blue) with the root set in species B. A:B = 1; 
A:C = A:D = 7; B:C = B:D = 6; C:D = 4. Top-centre and top-right: 
the same tree for two communities with species A, B and C, and A, 
B and D respectively. In the middle we represent the calculation of 
different metrics for community 1. At the bottom, different metrics 
for species A within community 1 (main text).

 16000587, 0, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/ecog.07156 by U

niversity O
f B

irm
ingham

 E
resources A

nd Serials T
eam

, W
iley O

nline L
ibrary on [30/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Page 4 of 11

traits (Cardoso et al. 2014). In the example, comparing com-
munities 1 and 2, βtotal = βrepl = 0.444, and βrich = 0.

Comparing frameworks using simulated scenarios

We simulated trees using a birth-death model, with both 
birth (speciation) and death (extinction) parameters drawn 
from a uniform distribution (0, 1) while keeping the death 
parameter lower than the birth parameter. For each lineage 
simulated in the birth-death process, we also simultaneously 
simulated a trait value as a function of branch length. The 
traits were simulated using either: 1) a Brownian motion pro-
cess (BM; whereby the trait value at time t + 1 is independent 
of its value at time t, resulting in an increase in trait vari-
ance through time); or 2) an Ornstein–Uhlenbeck process 
(OU; whereby the trait value at time t + 1 is independent of 
its value at time t but constrained by an overall parameter, 
alpha, that effectively reduces the increase in trait variance 
through time). For each tree simulation, we chose the trait 
process randomly between both processes described above. 
We ran the birth-death and trait simulations until reaching 
100 co-occurring species. For each simulation, we then dis-
carded the extinct species resulting in trees with 100 tips with 
1 trait value each. We ran the birth-death and trait simula-
tions using the R package 'treats' (Guillerme 2023).

For each of the two evolutionary processes, we simulated 
1, 2, 4, or 8 orthogonal (i.e. uncorrelated) traits, 10 runs per 
trait number combination, totalling 40 runs per process. For 
each of these 40 runs the simulation created a functional tree 
for 100 extant species. For each run, we then sampled 10 
communities with an increasing number of species (10, 20, 
…, 100 species), reaching a final sample size of 800 (2 pro-
cesses * 4 sets of number of traits * 10 runs * 10 communities).

For each community, we first estimated the correlation 
between functional richness, divergence, and regularity cal-
culated with NJ trees, checking whether the three metrics 
were able to capture distinct facets of FD (which is achieved 
when correlation is low; Mouchet et al. 2010). Next, we used 
the 'BAT' R package to estimate and compare functional 
richness (functions alpha, hull.alpha and kernel.alpha), diver-
gence (functions dispersion and kernel.dispersion), and regu-
larity (functions evenness and kernel.evenness) with NJ trees, 
UPGMA trees, convex hulls, and kernel-density n-dimen-
sional hypervolumes using the algorithms described above 
for NJ and UPGMA trees and those described in Carvalho 
and Cardoso (2020) and Mammola and Cardoso (2020) for 
hypervolumes. Convex hulls were only used to estimate rich-
ness, as divergence and regularity are not possible to calculate 
with such a representation (Mammola et al. 2021). We used 
Spearman’s correlation coefficient to assess the correlation 
among the estimates of functional richness, divergence, and 
regularity obtained by the different frameworks.

Functional space quality and sensitivity to outliers

When building a functional space, a crucial aspect is to assess 
its quality, i.e. the extent to which the functional space is an 

accurate representation of the initial trait values. In order to 
achieve this goal, for each pair of species i and j, we compared 
the initial dissimilarity distance (dij) with the distance in the 
functional space (hij) obtained by NJ, UPGMA and PCoA 
(multidimensional space) methods. For the NJ and UPGMA 
trees, hij corresponded to the cophenetic distance between 
species i and j. For the PCoA, we calculated the Euclidean 
distance between the coordinates of species i and j in the 
space defined by the PCoA axes. We then calculated the qual-
ity of the representation of the functional spaces using the 
same three frameworks (NJ, UPGMA and PCoA) using the 
functions BAT::tree.quality and BAT::hyper.quality (the latter 
being used for any representation using hyperspaces, i.e. con-
vex hulls or kernel-density hypervolumes). Both these func-
tions calculate the inverse of mean squared deviation between 
initial and cophenetic distances (Maire et al. 2015) after stan-
dardisation of all values between 0 and 1 for simplicity of 
interpretation and comparability of trees and multidimen-
sional spaces.

The quality of the functional spaces was evaluated in 10 
simulations for each combination of number of species per 
community (from 10 to 100 species), number of traits per 
species (one, two, four and eight) and evolutionary processes 
used to generate the traits (BM and OU). For PCoA we did 
not assess the quality for single traits. It is worth noting that 
the maximum number of PCoA axes that can be extracted 
from a matrix of N continuous traits is N. Hence, the quality 
of the functional space is 1 when using N axes. Therefore, we 
only used the simulated datasets with eight traits to assess the 
quality of the functional spaces built by PCoA.

We used linear mixed models to estimate the effect of the 
different methods (fixed effects) on the quality of the functional 
space. The number of species per community, the number of 
traits per species and the evolutionary process used to gener-
ate the traits were introduced in the models as random effects. 
Because the quality of the functional space ranges between 0 
and 1, with true 1s but no true 0s included in the response, we 
transformed all 1s by subtracting 0.0001 and then ran the mod-
els using a beta distribution with a logit link function. Mixed 
models were performed using the 'glmmTMB' (Mollie et al. 
2024) package, and model validation was performed by check-
ing heterocedasticity, posterior predictive checking, and nor-
mality of random effects and residuals using the 'performance' 
(Lüdecke et al. 2021) package in R.

Finally, the sensitivity to outliers was also compared by 
deleting the species with higher uniqueness in each commu-
nity and calculating the percentage of change in the values of 
richness before and after deletion. For the multidimensional 
space, we calculated differences in richness for kernel-density 
hypervolumes.

Comparing frameworks using empirical data

The study of avian functional diversity has recently gained 
momentum due to the release of the AVONET database, 
which provides a complete set of data for eight continuous 
morphological traits for all the world’s extant bird species 
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(Tobias et al. 2022). Dozens of papers have been published 
using this data source in just a few years (Weeks et al. 2022), 
including several focusing on islands (Matthews et al. 2022, 
Soares et al. 2022). An often-mentioned issue when studying 
the functional diversity of birds is the so-called ‘kiwi prob-
lem’. In short, kiwis (Apterygidae: Apteryx spp.) differ sub-
stantially from other birds regarding their morphology (e.g. 
for wing length, in AVONET, the kiwis have arbitrary values 
that are roughly 267 times smaller than the species with the 
next smallest wing length) and thus all five species are always 
(extreme) outliers in functional diversity analyses. As such, 
there can be large differences in (functional) richness depend-
ing on whether they are included when building the func-
tional space or not (Matthews et al. 2022, see also Fig. 1 in 
Pigot et al. 2020). These differences reflect the sensitivity to 
outliers of multidimensional representations such as convex 
hulls and kernel-density hypervolumes and researchers often 
opt not to include these species (Stewart et al. 2023).

To test the sensitivity to outliers of UPGMA, NJ, con-
vex hulls and kernel-density n-dimensional hypervolumes, 
we took the five kiwi species and then randomly selected 
100 bird species from the global species pool, making sure 
to include one representative from each order. For these 105 
species, we sourced data on eight continuous traits (total beak 
length from the tip to the skull, beak length to the nares, beak 
width and depth at the nares, wing length, secondary length, 
tail length, and tarsus length) from AVONET (Tobias et al. 
2022). Traits were log-transformed and scaled to mean = 0, 
SD = 1. We then undertook a PCoA and took the first five 
axes that summed to 99% explained variance to avoid the 
use of correlated variables. We used these five axes to build 
the convex hulls, kernel hypervolumes and UPGMA and NJ 
trees; for the latter, Euclidean distances between species were 
first calculated. Functional richness was calculated with the 
BAT::alpha, BAT::hull.alpha and BAT::kernel.alpha functions. 
We then re-calculated functional richness after removing the 
kiwis from the community and quantified the percent loss. 
In addition, we quantified the tree and hyperspace qualities 
as above.

Results

In regard to the simulations, the correlation between richness, 
divergence and regularity was low for all trait combinations, 
except for richness versus regularity which attained values 
around 0.7 or above (Fig. 2). Richness and regularity were 
also sensitive to the number of species (r > 0.6 for all trait 
combinations), as expected, at least for richness. We found 
a very high convergence among the estimations based on NJ 
and UPGMA trees, irrespective of the number of traits and 
the facets of FD (Fig. 2). Correlations were lower between NJ 
and hypervolumes, especially for the divergence and regular-
ity components, but also for the richness component in high 
dimensions (eight traits).

The quality of the simulated functional spaces obtained 
by the NJ method was superior to those constructed by 

UPGMA, for all the combinations of number of species per 
community (from 10 to 100 species), number of traits per 
species (one, two, four and eight), and evolutionary processes 
used to generate the traits (BM and OU) (Supporting infor-
mation). It is worth mentioning that the quality of the func-
tional spaces constructed with NJ for communities with only 
one trait is always 1. Likewise, the quality of the functional 
space for indices using raw distances, such as Rao’s entropy is, 
by definition, always 1. Results of the mixed model analysis 
confirmed that NJ performance, in terms of functional space 
quality, was significantly better than UPGMA (Table 1).

The quality of the functional spaces built using the NJ 
method was similar to that obtained with four dimensions 
(half the maximum number of axes) using PCoA (Table 2). 
The performance of NJ was higher than multidimensional 
spaces with two or three dimensions, but lower than multidi-
mensional spaces with more than four dimensions (Table 2). 
One should note that the results for multidimensional spaces 
can be applied to both convex hulls and kernel-density hyper-
volumes, as quality is measured on the space itself, which is 
common to both approaches. A degree of caution is required 
when interpreting the mixed model results. Specifically, the 
variance estimates associated with the evolutionary processes 
(variable with 2 levels) and the number of traits (variable with 
4 levels) should be regarded cautiously, due to the small num-
ber of levels involved. Nevertheless, it must be emphasised 
that the main purpose of fitting the model was to compare 
the performance of methods in terms of functional space 
quality and not the effects of evolutionary processes and the 
number of traits per se.

Regarding the sensitivity to outliers, NJ and UPGMA were 
found to be similar for all simulations regardless of the num-
ber of traits (Supporting information). Other indices such 
as Rao’s entropy also use dissimilarity matrices and hence 
their performance is similar to any kind of tree. In contrast, 
hypervolumes were more sensitive, with higher differences 
between initial and final richness values after excluding the 
most unique species in each community for most scenarios.

In regard to the empirical test focused on the ‘kiwi prob-
lem’, the quality of the functional space for birds using NJ 
was 0.994, compared with 0.953 for UPGMA and 0.996 for 
two PCoA axes (> 0.999 for three or more axes). The exclu-
sion of kiwis from the community, i.e. decreasing ~ 5% of 
the species richness, led to a decrease in functional richness 
of 10 and 14% for UPGMA and NJ respectively. In con-
trast, functional richness as measured using convex hulls was 
reduced by 73% and using kernel density hypervolumes by 
42% (Fig. 3).

Discussion

The study of functional diversity is a burgeoning research 
area in ecology and evolution, with numerous method-
ological developments during the last couple of decades 
(Mammola et al. 2021, De Bello et al. 2021, Palacio et al. 
2022). In contrast to the study of taxonomic or phylogenetic 
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diversity, where the methodological approaches to quantify 
diversity are relatively established, there is still much discus-
sion around how to best represent and measure FD across 
its dimensions, namely richness, divergence and regularity. 
Raw data, different tree representations, or representations 
based on multidimensional spaces, all have their strengths 
and weaknesses (Mammola et al. 2021). Here we propose a 
novel approach to measuring FD using trees constructed with 
the NJ algorithm that combines many of the advantages of 
these different approaches, while mitigating the limitations.

We stress that the same approach can be applied to 
trees constructed with any algorithm, from hierarchical 

clustering to maximum parsimony or maximum likelihood, 
thus enabling straightforward comparisons of FD with PD.

Statistical properties

Our results indicate that the NJ method is more accurate 
than UPGMA (and similar methods such as minimum span-
ning trees) in representing the functional space occupied by 
a given community, i.e. the quality of the trait space. It is on 
par with multidimensional representations with up to four 
dimensions in simulated scenarios that cover a large variety 
of real-world situations. Given the ‘curse of dimensionality’ 

Figure 2. Pairwise Spearman’s correlations among estimations of functional richness, divergence, and regularity based on neighbor-joining 
(NJ) trees (A), and among estimations of functional richness (B), divergence (C), and regularity (D) with NJ trees, unweighted pair group 
method using arithmetic averages (UPGMA) trees, and kernel-density n-dimensional hypervolumes. Only Brownian motion process simu-
lations are shown for simplicity, Ornstein-Uhlenbeck simulations show similar patterns. For each panel plot, density plots on the diagonal 
display the distribution of values. Bivariate scatter plots are displayed below the diagonal and the correlation values above the diagonal. For 
tree representations, we used the framework as described in Fig. 1. For hypervolumes, we used the algorithms described in Carvalho and 
Cardoso (2020) and Mammola and Cardoso (2020). Results for convex hulls are not presented as divergence and regularity are not possible 
to calculate (Mammola et al. 2021).
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(Bellman 1957) of the hyperspace – the mathematical and 
computational difficulty of dealing with many dimen-
sions simultaneously, and the implicit negative relationship 
between the number of dimensions and the volume of the 
hyperspace – a decrease in correlation between NJ trees 
and hypervolumes with increasing number of dimensions 
is expected. In general, NJ will be as accurate as hypervol-
umes in many situations and will present only small differ-
ences otherwise. To be fair, we are not arguing that NJ trees 
necessarily represent better quality functional spaces than 
multidimensional representations (at least those with four or 
more axes). Rather, our assertion is that, in many cases, it 
is desirable to calculate FD using trees (e.g. to enable easier 
comparison with PD, discussed below), and we have shown 
here that the NJ method produces higher quality trees than 
the commonly used UPGMA method.

Multidimensional representations are known to have 
difficulties dealing with outliers, with substantially unique 
observations having disproportionate effects on the quantifi-
cation of FD. In the empirical example illustrating the ‘kiwi 
problem’ (Fig. 3), excluding the kiwis from the hypervolume 
construction does not just result in the loss of the space they 
occupy, but the space representing the remaining 100 species 
also ‘shrinks’, as the average distance between species decreases 
(using consistent bandwidth values when constructing the 
hypervolumes may mitigate this issue, at least for Gaussian 
kernel density hypervolumes). For the very commonly used 
convex hulls, the loss is even more severe, as it includes all the 
intervening functional space (i.e. the space between the kiwis 
and all other birds where the convex hull extends out) that 
is in fact not occupied by any existing bird species. NJ trees 
can circumvent the ‘kiwi problem’ by generating a represen-
tation that is less sensitive to the large functional differences 
between kiwis and the remaining birds, but that is of higher 
quality than UPGMA trees.

Comparing different facets of diversity

As with UPGMA and other tree methods, taxonomic diver-
sity can be represented as a star-like NJ tree, and in fact the 
construction of a NJ tree starts with a starlike tree. This 
means that TD and FD are comparable using the same meth-
ods, although for TD they are usually simplified for speed 
and ease of use.

Crucially, we demonstrate that hyperspatial representa-
tions are not comparable with tree representations that are 
often used for quantifying PD. As seen in Fig. 2, even for the 
same data, tree and hypervolume values of richness, diver-
gence or regularity have little to no correlation. This implies 
that, if one uses phylogenetic trees to measure PD and hyper-
volumes to measure FD, any differences in patterns will be 
due to both differences in community composition and the 
mathematical properties of the indices, with no possibility 
to disentangle these two effects. We should note that trees 
used for quantifying PD can be built using numerous meth-
ods, including NJ, Bayesian or any other that results in a tree 
(ultrametric or not, dated or undated). Even if the interpreta-
tion of the trees is necessarily different, the mathematics used 
to calculate richness, divergence or regularity will be similar 
and hence comparability is warranted.

Advantages of neighbor-joining trees

As with other tree representations, NJ works directly with 
distances between species. The choice of distance is thus criti-
cal, although Gower’s distance is often preferred as it accom-
modates different types of variables, such as continuous, 
ordinal, binary and categorical traits (Pavoine  et  al. 2009). 
When only continuous variables are used, as in our empirical 
example, Euclidean distances are generally preferred. In any 
case, this decision is almost always simpler to make than the 
ones involved in the use of multidimensional methods, which 
include the number of axes to use, which method to use for 

Table 1. Summary of a mixed model for the quality of functional 
space, where we included method [neighbor-joining (NJ) and 
unweighted pair group method using arithmetic averages (UPGMA)] 
as a fixed parameter predictor (fixed) and allowed the intercept to 
vary (random) across number of traits per species within blocks of 
number of species per community, and across evolutionary pro-
cesses. Significant estimates are in bold.

Effect Predictor Estimate Std. error Statistic

Fixed
(Intercept) 3.687 0.413 8.933
UPGMA −2.393 0.043 −55.257

Random
Evolutionary 

processes
sd(Intercept) 0.523

Number of 
traits: 
Number of 
species

sd(Intercept) 0

Number of 
traits

sd(Intercept) 0.357

Table 2. Summary of the mixed model for the quality of functional 
space, where we included method [neighbor-joining tree and from 
two to eight dimensions corresponding to the axes provided by a 
principal coordinates analysis (PCoA)] as a fixed parameter predic-
tor (fixed) and allowed the intercept to vary (random) across the 
number of species per community and evolutionary processes. 
Significant estimates in bold.

Effect Predictor Estimate SE Statistic

Fixed
(Intercept) 3.467 0.235 14.739
PCoA-2 axes −1.495 0.042 −35.941
PCoA-3 axes −0.618 0.046 −13.436
PCoA-4 axes 0.163 0.053 3.067
PCoA-5 axes 0.918 0.063 14.652
PCoA-6 axes 1.607 0.072 22.298
PCoA-7 axes 1.607 0.072 22.298
PCoA-8 axes 2.729 0.082 33.253

Random
Number of species sd(Intercept) 0.121
Evolutionary 

process
sd(Intercept) 0.324
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Page 8 of 11

estimating the kernel density, and the many parameters that 
can influence the results in substantial ways when building 
more complex representations.

The use of certain distance measures, such as Gower’s 
distance, allow for missing trait values, with no need for 
imputation. In addition, some of the methods for building 
NJ trees allow for missing distances between pairs of spe-
cies (Criscuolo and Gascuel 2008). The flexibility offered 

by the two methods, i.e. calculating the Gower’s distances 
and building NJ trees, will help circumvent the issues related 
to the many gaps that most trait databases have, particu-
larly for taxa less well studied than birds (Pekar et al. 2021, 
Shirey et al. 2022).

The construction of NJ trees is extremely fast, orders of 
magnitude faster than hypervolumes, which can be an advan-
tage for large datasets or simulations or null models requiring 

Figure 3. NJ functional tree with the edge leading to the five kiwi species highlighted by the silhouette, and the multidimensional space of 
studied birds with (grey) and without (blue) kiwis included. Five axes were selected for analyses, adding to 99% of explained variance. Note 
that, when excluding the kiwis, it is not just the space they occupy that is lost, but the space representing the remaining 100 species also 
‘shrinks’, as the average distance between species decreases. For convex hulls the difference is even higher, as all the empty intervening space 
is also lost. Kiwi silhouette by Ferran Sayol.
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many repeated calculations. In addition, it is possible to at least 
visually estimate to a close approximation many of the met-
rics derived from tree-like representations (e.g. richness), a task 
that is much harder for multidimensional representations. This 
helps avoid errors in data input and/or coding, as many major 
errors will be obvious through inspection of the tree plot.

Caveats

The main caveat of using NJ is the lack of apparent con-
nection between trees and the intuitive representation of 
the Hutchinsonian niche concept (Mammola  et  al. 2021). 
It is indeed quite intuitive to imagine the functional space 
occupied by a group of species as a multidimensional con-
cept depicting its many functional dimensions. Conversely, 
the connections between species in a tree are not natural in 
the sense that they do not represent real connections in the 
community, only the closest path between them in the tree.

A second caveat is a potential lower flexibility than proba-
bilistic hypervolumes to consider the abundances of species 
in the different metrics. The trait space is largely homoge-
neous in the way it is occupied, although abundances could 
theoretically be represented by the density of connections in 
parts of the tree. In addition, if intraspecific data are avail-
able, one can build trees using individuals instead of species, 
by-passing this issue. Intraspecific trait data are increasingly 
seen as being crucial to understanding how organisms inter-
act (Tautenhahn  et  al. 2019, He  et  al. 2021, Wong and 
Carmona 2021, Palacio et al. 2024). Given that intraspecific 
trait data are not always available at the community level, 
one workaround is to simulate intraspecific variability from 
compound measures such as the standard deviation of a given 
trait, which could approximate the kernel-density approach 
using trees.

Conclusions

We propose a novel approach to representing functional 
space and calculating FD that enables the quantification of 
its different dimensions in ways that combine the strengths 
of previously proposed FD frameworks. Extensive research 
on the properties of phylogenetic trees has been undertaken, 
and, using the NJ framework presented here, these advances 
can be used in the future to study different properties of 
ecological systems using functional trees (Ning et al. 2020). 
The mathematics underpinning NJ are already extensively 
developed, and thus the use of NJ trees opens up the pos-
sibility of testing new hypotheses for FD in the same way as 
has been done for PD. By combining ease and speed of use, 
low distortion of functional space, low sensitivity to outliers, 
and comparability with PD measures, the use of NJ seems a 
promising approach. More broadly, there are other methods 
available for building trees that are not considered here, but 
that could also provide new and advantageous ways to repre-
sent functional diversity (Wheeler 2022). As such, we would 
argue that further exploration and testing of alternatives to 

the commonly used functional tree construction approaches 
(e.g. UPGMA) will likely prove rewarding in the study of 
functional diversity going forward.
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