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Abstract
In this paper, we prove the following assertion for an absorbing Markov decision
process (MDP) with the given initial distribution, which is also assumed to be
semi-continuous: the continuity of the projection mapping from the space of strate-
gic measures to the space of occupation measures, both endowed with their weak
topologies, is equivalent to the MDP model being uniformly absorbing. An example
demonstrates, among other interesting scenarios, that for an absorbing (but not uni-
formly absorbing) semi-continuous MDP with the given initial distribution, the space
of occupation measures can fail to be compact in the weak topology.

Keywords Markov decision processes · Absorbing model · Continuity · Projection
mapping

Mathematics Subject Classification 90C40 · 60J05

1 Introduction

In this paper, we consider a Markov decision process (MDP) with a Borel state space
X and a Borel action space A, both being endowed with their Borel σ -algebras. If
there is an isolated absorbing state say 0 in the state space, then the MDP model is
called absorbing for a given initial distribution P0 if under each strategy, the expected
hitting time to 0 is finite.
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In terms of occupation measures, understood as the total state-action frequencies
on (X \ {0}) × A, endowed with the product σ -algebra, an MDP is absorbing for the
given initial distribution if the occupation measure of each strategy is a finite measure.
Occupationmeasures are important for the study of optimal control problems ofMDPs
with total cost criteria because the performance measure of a strategy can be written as
an integral of the cost function with respect to the occupation measure of the strategy.
This turns the original MDP problem to a static optimization problem in the space
D of occupation measures. Since for absorbing MDP models, D contains only finite
measures, it is natural, as we do in this paper, to endow it with the weak topology,
which is metrizable.

The wonderful and insightful paper [11], with many new ideas, intended to develop
a rich theory for absorbing MDPs, in particular, for the occupation measures in such
MDP models. A key property was used there, which asserts that if the MDP model
is absorbing and semi-continuous, then the space of occupation measures is compact
with respect to the weak topology, see [11, Lemma 4.7]. Here anMDPmodel is called
semi-continuous if the action spaceA is compact, and the transition kernel p(dy|x, a)

is either set-wise continuous in a ∈ A for each x ∈ X, or it is continuous with respect
to the weak topology in (x, a) ∈ X × A.

In order to prove this result, Feinberg and Rothblum [11] exploited the following
fact: for semi-continuous MDP models, the space of strategic measures is compact
in the weak topology, as established in [19], and the projection mapping O , carrying
the strategic measure of a strategy to the occupation measure of the same strategy, is
continuous.

In the present paper, bymeans of an example, see Example 2 below, we demonstrate
that the aforementioned assertion in [11, Lemma 4.7] is inaccurate. This is due to the
fact that in general, the projection mapping O may be not continuous for absorbing
semi-continuous MDP models, see Theorem 1.

Our second contribution is as follows. We show that for an absorbing MDP model,
provided that it is semi-continuous, the projection mapping O is continuous if and
only if the MDP model is uniformly absorbing. The latter requires that, for the given
initial distribution, the expected hitting time to 0 converges uniformly with respect to
all strategies. In fact, the sufficiency part follows from the same reasoning as in the
proof of [11, Lemma 4.7], by avoiding theminor error therein. This characterization of
the continuity of the projection mapping O shows that the gap in [11] can be naturally
closed if one further requires the MDP model there to be uniformly absorbing.

To the best of our knowledge, this definition of uniformly absorbing MDPs for a
given initial distribution seems to appear firstly in [12]. In that paper, which focused on
non-atomic MDP models, its equivalence to the continuity of the projection mapping
O was not discussed.

A trivial example of uniformly absorbingMDPmodels is given by those discounted
MDP models with a nonnegative discount factor strictly smaller than 1.

If the initial distribution is concentrated on a single state, and the state space is
countable or finite, endowedwith the discrete topology, then theMDPmodel, assumed
to be semi-continuous, is uniformly absorbing if it possesses a uniform Lyapunov
function, see Definition 6 below. MDP models with a uniform Lyapunov function
were studied intensively in e.g., [1, 5, 14]. In particular, for such MDP models, for
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every initial state, theMDPmodel is uniformly absorbing, see Proposition 1. However,
if one considers a fixed initial distribution, then the existence of a uniform Lyapunov
function does not imply the model to be uniformly absorbing or even absorbing. This
is demonstrated in Example 1, and is sometimes overlooked. Similar models forMDPs
with Borel state and action spaces were considered in e.g., [15] and [13, Chapter 9],
which assumed that the total value of occupation measures is bounded or w-bounded
over all initial states and strategies, and focused on the optimality equation.

Let us mention that, apart from providing an absorbing semi-continuous MDP
model with the space of occupation measures being not compact, Example 2 inciden-
tally demonstrates several other scenarios of interest. E.g., it also demonstrates that an
absorbing MDP model for a fixed initial state may not possess a uniform Lyapunov
function, and that some known solvability conditions are important.

The rest of this paper is organized as follows.We describe theMDPmodel in Sect. 2,
and recall some known facts in Sect. 3. The main results are presented in Sect. 4. The
main example, i.e., Example 2, is formulated in Sect. 5, where we also discuss it in the
context of optimal control problems of MDPs. The proofs of all the statements (except
those known ones) are in Sect. 6. Finally, this paper is finished with a conclusion in
Sect. 7.

2 Model Description

Before describing the MDP model, let us fix some notation and conventions used
throughout this paper. If a space Y is discrete (with the discrete topology) and μ is a
measure on B(Y), then, for singletons, we use notation μ(y), not μ({y}). Integral of a
function c(·)with respect to a measure μ is written as

∫
Y c(y)dμ(y) or

∫
Y c(y)μ(dy).

In R = (−∞,∞), unless stated otherwise, the usual Euclidean topology is fixed.
δa(dx) is the Dirac measure concentrated at the point a, and I{·} is the indicator
function.

We fix the following primitives of an MDP model.

• X andA are the state and action spaces, both assumed to be nonempty topological
Borel spaces. Here a topological Borel space is a Borel subset of some complete
metrizable separable space. We endow X and A with their Borel σ -algebras B(X)

and B(A), respectively.
• The transition probability p(dy|x, a) is a (measurable) stochastic kernel on B(X)

given X × A.

Given the collection {X,A, p}, for each strategy (see Definition 1 below) and initial
distribution on X, one can construct a probability space, and define the controlled
(state) process {Xt }∞t=0 and controlling (action) process {At }∞t=1 thereon.Derman in his
classic book [6, p.4] termed the bivariate process {(Xt , At+1)}∞t=0 a Markov decision
process. This is why we refer to {X,A, p} as the MDP model. The aforementioned
construction is described next.

The space of trajectories (or say histories) is the following countable product

H := X × (A × X)∞.
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The generic notation for an element of H is ω = (x0, a1, x1, . . .) ∈ H. We endow H
with the product topology and the product σ -algebra, which is also the Borel σ -algebra
on it. All the randomvariables, like Xt and At+1, are justmeasurablemappings defined
on H:

Xt (ω) = xt , At+1(ω) = at+1, ∀ t ≥ 0.

Definition 1 A control strategy, or simply say a strategy, π = {πt }∞t=1 is a sequence
of stochastic kernels πt (da|x0, a1, x1, . . . , at−1, xt−1) on B(A) given Ht−1 := (X ×
A)t−1×X. A strategy π is calledMarkov, if for each t ≥ 1, there is a stochastic kernel
πM
t on B(A) givenX such that πt (da|x0, a1, x1, . . . , at−1, xt−1) = πM

t (da|xt−1). If,
for some stochastic kernel π s on B(A) given X, πt (da|x0, a1, x1, . . . , at−1, xt−1) =
π s(da|xt−1) for any t = 1, 2, . . . , then the strategy π = {πt }∞t=1 is called stationary,
and is identified with and denoted as π s . If a stationary strategy π s takes the form
π s(da|x) = δϕ(x)(da) for some measurable mapping ϕ fromX toA, where δϕ(x)(da)

denotes the Dirac measure concentrated on the singleton {ϕ(x)}, then the strategy π s

is called deterministic stationary, and is identified with and denoted by the underlying
measurable mapping ϕ.

The set of all strategies is denoted as �All, and the set of Markov strategies is denoted
as �Markov.

Given a strategy π = {πt }∞t=1, for a fixed state-action pair (z, b) ∈ X × A, we
define its shifted strategy (z,b)π = {(z,b)πt }∞t=1 by

(z,b)πt (da|y0, a1, . . . , at−1, yt−1) := πt+1(da|z, b, y0, a1, . . . , at−1, yt−1) (1)

for yi ∈ X with i ∈ {0, 1, . . . , t − 1} and ai ∈ A with i ∈ {1, 2, . . . , t − 1}.
Let the initial distribution P0 on (X,B(X)) be given. If a strategy π is also fixed,

then the strategic measure on (H,B(H)), constructed in the standard way using the
Ionescu-Tulcea Theorem, is denoted as Pπ

P0
. It is the unique probability measure on

(H,B(H)) such that

Pπ
P0(X0 ∈ dx) = P0(dx);

Pπ
P0(At+1 ∈ da|X0, A1, . . . , Xt ) = πt+1(da|X0, A1, . . . , Xt );

Pπ
P0(Xt+1 ∈ dx |X0, A1, . . . , Xt , At+1) = p(dx |Xt , At+1) ∀ t ≥ 0.

The corresponding mathematical expectation is denoted as Eπ
P0
. If the initial distri-

bution P0(dx) = δx0(dx) is degenerate, we use notations P
π
x0 and Eπ

x0 .
We denote by

P := {Pπ
P0 : π ∈ �All}

the space of all strategic measures with the given initial distribution P0.
An important class of MDP models is the absorbing model defined as follows.
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Definition 2 The MDP is called absorbing (at 0) for the given initial distribution P0 if
there is an isolated state, say 0 in X such that 0 is absorbing, i.e.,

p({0}|0, a) ≡ 1,

and

Eπ
P0 [T0] < ∞, ∀ π ∈ �All,

where

T0 := inf{t ≥ 0 : Xt = 0}

denotes the hitting time to the state 0 by the controlled process. As usual, inf ∅ := ∞.

Verbally, an MDP model is absorbing (at 0) for the initial distribution P0 if under each
strategy, the expected hitting time to the isolated absorbing state 0 is finite. The above
definition of an absorbing MDP model for the initial distribution P0 is the same as the
one given by Feinberg and Rothblum in [11, p.7]. Given that the state 0 is absorbing,
this definition also coincides with the one in [1, Definition 7.1]. In general, in [1,
Definition 7.1], for the model to be absorbing for P0, the state 0 was not required to
be absorbing itself, and it was required that Eπ

P0
[τ0] < ∞, ∀ π ∈ �All, where

τ0 := inf{t ≥ 1 : Xt = 0}

is the return time to state 0.
Thus, for an absorbingMDPmodel (at state 0) for the initial distribution P0, for each

strategy, the series
∑∞

t=0 E
π
P0

[I{T0 > t}] converges, because ∑∞
t=0 E

π
P0

[I{T0 > t}] =
Eπ
P0

[T0] < ∞. If we require the convergence of the above series to be uniform with

respect to all strategies π ∈ �All, then the resulting model will be called uniformly
absorbing, formulated in the next definition.

Definition 3 An absorbing (at 0) MDP model for the initial distribution P0 is called
uniformly absorbing for P0 if

lim
n→∞ sup

π∈�All
Eπ
P0

[ ∞∑

t=n

I{t < T0}
]

= 0.

This definition was given in [12, Definition 3.6]. Since the state 0 was required to be
absorbing in Definition 2, the requirement in Definition 3 is the same as

lim
n→∞ sup

π∈�All
Eπ
P0

[ ∞∑

t=n

I{Xt ∈ (X \ {0})}
]

= 0 (2)
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because

Eπ
P0

[ ∞∑

t=n

I{t < T0}
]

= Eπ
P0

[ ∞∑

t=n

I{Xt ∈ (X \ {0})}
]

, ∀ n ≥ 0.

This equality, when specialized to n = 0, allows us to formulate the definition of
absorbing MDP models in terms of the finiteness of the occupation measures, defined
as follows.

Definition 4 Consider an MDP model {X,A, p} with 0 ∈ X being an isolated absorb-
ing state, i.e., p({0}|0, a) ≡ 1.The occupationmeasureηπ

P0
of a strategyπ for the given

initial distribution P0 is the [0,∞]-valuedmeasure on ((X\{0})×A,B((X\{0})×A))

defined by the formula

ηπ
P0(


X × 
A) :=
∞∑

t=1

Pπ
P0(Xt−1 ∈ 
X, At ∈ 
A), ∀ 
X ∈ B(X \ {0}), 
A ∈ B(A).

If the initial distribution is concentrated on a singleton, say {x0}, then we write ηπ
x0 for

the occupation measure of a strategy π. Let

D := {ηπ
P0 : π ∈ �All}

be the space of all occupation measures for the initial distribution P0.
Now we see that an MDP model with an absorbing state 0 is absorbing (at 0) for

the initial distribution P0 if and only if

ηπ
P0((X \ {0}) × A) < ∞

for each π ∈ �All.

For brevity, we make the next definition.

Definition 5 An MDP model {X,A, p} is called semi-continuous (S) if the following
two conditions are satisfied:

(a) The action space A is a compact topological Borel space.
(b) For each x ∈ X, the function

∫
X u(y)p(dy|x, a) is continuous in a ∈ A for every

bounded measurable function u(·) on X.

An MDP model {X,A, p} is called semi-continuous (W) if the following two condi-
tions are satisfied:

(c) The action space A is a compact topological Borel space.
(d) The function

∫
X u(y)p(dy|x, a) is continuous in (x, a) ∈ X×A for every bounded

continuous function u(·) on X.

An MDPmodel {X,A, p} is called semi-continuous if it is either semi-continuous (S)
or semi-continuous (W).
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Conditions (a,b) in Definition 5 are respectively called Condition (S) (1,2) in [19,
Section 6], whereas conditions (c,d) in Definition 5 are respectively called Condition
(W) (1,2) in [19, Section 5]. If X is countable or finite, and is endowed with the
discrete topology, then semi-continuity (S) and semi-continuity (W) mean the same.
Admittedly, the term of “semi-continuous MDP models” has other meanings in the
literature. Nevertheless, in the present paper, its meaning is unambiguous.

3 Some Relevant Facts

In this section we present some facts aboutMDPmodels and optimal control problems
of MDPs.

3.1 Facts About MDPModel

3.1.1 MDP with a Uniform Lyapunov Function

An important class of semi-continuous MDP models with a countable or finite state
space that are uniformly absorbing (at 0) for a given initial state x0 is given by those
that admit a uniform Lyapunov function, defined as follows.

Definition 6 Consider a semi-continuous MDP model with a countable or finite state
space X (endowed with the discrete topology) with the isolated absorbing state 0. A
[1,∞)-valued function μ(·) on X is said to be a uniform Lyapunov function if the
following conditions are satisfied:

(a) 1 + ∑
y∈X\{0} p(y|x, a)μ(y) ≤ μ(x), ∀ x ∈ X, a ∈ A.

(b) For each x ∈ X, the mapping a ∈ A → ∑
y∈X\{0} p(y|x, a)μ(y) is continuous.

(c) For each x ∈ X and each deterministic stationary strategy ϕ, limt→∞ Eϕ
x [μ(Xt )

×I{τ0 > t}] = 0, where we recall that τ0 := min{t ≥ 1 : Xt = 0}.
The above definition of a uniform Lyapunov function was taken from [1, Definition
7.4], see also [5, Definition 4.2]. In both of these two references, this definition is
ascribed to [14].Many characterizations and consequences of a semi-continuousMDP
model with a uniform Lyapunov function can be found in [1, 5], among which is the
following one, whose proof can be found on p.107 of [1].

Proposition 1 Consider a semi-continuousMDPmodel with a countable or finite state
space X (endowed with the discrete topology) with the isolated absorbing state 0. If
there exists a uniform Lyapunov function μ(·), then the MDP model is uniformly
absorbing (at 0) for each initial state x0.

For a semi-continuousMDPmodelwith a countable or finite state spaceX (endowed
with the discrete topology) with the isolated absorbing state 0, if there exists a uniform
Lyapunov function μ(·), it can happen that for some initial distribution P0, the MDP
model is not absorbing (at 0) for P0. Sometimes, this is overlooked. We present an
example to illustrate this.
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Example 1 Consider an MDP model {X,A, p} with X = {0, 1, . . . }, endowed with
the discrete topology, andA being a singleton, so that wewill omit the argument a ∈ A
everywhere in this example, and p(0|x) = 1

2x = 1 − p(x |x) for all x ∈ {1, 2, . . . }
and p(0|0) = 1. There is only one strategy say π in this model. Then for each
x0 ∈ {1, 2, . . . },

Eπ
x0 [T0] = 2x0 .

hence, thisMDPmodel is absorbing, in fact uniformly absorbing (at 0) for every initial
state x0. It has a uniform Lyapunov function given by μ(0) = 1 and μ(x) = 2x for
x ≥ 1. Indeed, (a,b) in Definition 6 can be checked to be satisfied by μ(·), and for (c),
note for each x ≥ 1 that

Eπ
x [μ(Xn)I{τ0 > n}] = Eπ

x [2x I{Xn = x}] = 2xPπ
x (Xn = x) = 2x

(

1 − 1

2x

)n

→ 0

as n → ∞, and the convergence also takes place for x = 0. Now if we take the
initial distribution as the geometric distribution on {1, 2, . . . } with parameter 2

5 , then
EP0 [T0] = ∑∞

i=1
2
5 (

3
5 )

i−12i = ∞.

3.1.2 Projection Mapping and the Topologies onD andP

Consider an absorbing (at 0) MDP model for the initial distribution P0. Let the pro-
jection mapping O from P to D be defined for each P ∈ P by

O(P) :=
∞∑

n=0

∫

H
I{(xn, an+1) ∈ dx × da}P(dω)

on B((X \ {0}) × A). In particular,

O(Pπ
P0) = ηπ

P0 . (3)

The main results of this paper concern the continuity of the projection mapping O
from P to D. Therefore, we endow D and P with suitable topologies, described as
follows.

Consider an absorbing (at 0) MDP model for the initial distribution P0. Then D is
a subset of the spaceM((X \ {0}) ×A) of finite measures on ((X \ {0}) ×A,B((X \
{0})×A)). We endowM((X \ {0})×A) with the weak topology generated by the set
of bounded continuous functions defined on (X \ {0}) ×A, i.e., the coarsest topology
onM((X\{0})×A)with respect to which, for each bounded continuous function g(·)
on (X\{0})×A,

∫
(X×{0})×A g(x, a)η(dx×da) is continuous in η ∈ M((X\{0})×A).

Since X \ {0} and A are Borel spaces, according to Theorem 8.9.4 (i) of [3] and [4,
p.49], when endowed with the weak topology, M((X \ {0}) × A) is metrizable, and
its topological subspace D is metrizable, too. Indeed, a popular topology on D is this
weak topology, when D ⊆ M((X \ {0}) × A).
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Recall also that the so called ws-topology on M((X \ {0}) × A) is the coarsest
topology with respect to which, for each bounded Carathéodory function g(·) on
(X\{0})×A (meaning that g(x, ·) is continuous for each fixed x ∈ X\{0} and g(·, a)

is measurable for each fixed a ∈ A),
∫
(X\{0})×A g(x, a)η(dx × da) is continuous in

η ∈ M((X \ {0}) × A). Clearly, the weak topology is coarser than the ws-topology.
On the space P (for the fixed initial distribution P0), one can consider the so

called ws∞-topology of Schäl, introduced in [19], see p.359 therein. This is the
coarsest topology on P , with respect to which, for each integer 0 ≤ T < ∞
and each bounded measurable function f (hT ) = f (x0, a1, x1, . . . , aT , xT ) contin-
uous in (a1, a2, . . . , aT ) under arbitrarily fixed x0, x1, . . . , xT ∈ X, the mapping
P ∈ P → ∫

HT
f (hT )PT (dhT ) is continuous. HereH0 = X, andHT = (X×A)T ×X,

and PT denotes the marginal of P ∈ P on HT , T ≥ 0 being an integer.
The ws∞-topology works particularly well with semi-continuous (S)MDPmodels.

One of the main results in [19] is the following compactness result, whereas for semi-
continuous (W) MDP models, the weak topology on P is more convenient. What
actually happens is that for semi-continuous (S)MDPmodels, onP , thews∞-topology
is the same as the weak topology, see Proposition 3 below.

Proposition 2 Consider the MDP model {X,A, p} with some initial distribution P0.
If the MDP model is semi-continuous (S), then P endowed with the ws∞-topology is
compact, whereas if the MDP model is semi-continuous (W), then P endowed with
the weak topology is compact.

Proof See [19, Theorem 6.6] for the first assertion, and [19, Theorem 5.6] for the
second assertion. ��

Nowak further studied the ws∞-topology on P in [17], and proved the following
useful result.

Proposition 3 Suppose that theMDPmodel {X,A, p} is semi-continuous (S). Let some
initial distribution P0 be given. Then on P , the ws∞-topology coincides with the weak
topology. Consequently, the space P endowed with the ws∞-topology is metrizable,
and compact in the weak topology, in view of Proposition 2.

Proof This follows from [17, Theorem 1]. A simpler proof of [17, Theorem 1] was
given in [16]. �

In view of Propositions 2 and 3, we will always consider the weak topology on P
when we discuss semi-continuous MDP models, for which, P is always compact.

3.2 Facts About Optimal Control Problems

Now we add an additional element to the MDP model, which is the cost function c(·).
This is a measurable function from (X × A,B(X × A)) to [−∞,∞] in general.

Define for each strategy π and an initial distribution P0
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vπ (P0) := Eπ
P0

[ ∞∑

t=1

c(Xt−1, At )

]

:= Eπ
P0

[ ∞∑

t=1

c+(Xt−1, At )

]

− Eπ
P0

[ ∞∑

t=1

c−(Xt−1, At )

]

,

where c+(x, a) := max{c(x, a), 0}, c−(x, a) = max{−c(x, a), 0}, and we accept
that ∞ − ∞ := ∞. When P0(dx) = δx0(dx) for some x0 ∈ X, then we write vπ(x0)
instead of vπ (P0).

For future reference, let

v∗(x) := inf
π∈�All

vπ(x) (4)

A strategy π∗ is called optimal for P0 if it solves the following optimal control
problem:

Minimize over π ∈ �All: vπ(P0), (5)

i.e.,

vπ∗
(P0) = min

π∈�All
vπ (P0).

In the next statement, sufficient conditions for the existence of an optimal strategy
for P0 are given. See also [7] and the references therein.

Proposition 4 Suppose that theMDPmodel is semi-continuous (S), and c(·) is bounded
below and (−∞,∞]-valued on X × A such that c(x, a) is lower semicontinous in
a ∈ A for each x ∈ X. If for the given initial distribution P0,

Eπ
P0

[ ∞∑

t=1

c−(Xt−1, At )

]

< ∞ ∀ π ∈ �All, (6)

and

inf
N≥n

inf
π∈�All

N∑

t=n+1

Eπ
P0

[
c(Xt−1, At )

] → 0 as n → ∞, (7)

then there exists an optimal strategy for P0. The same assertion holds if the MDP
model is semi-continuous (W), and c(·) is a bounded below (−∞,∞]-valued lower
semicontinous function on X × A.

Proof The proof of the first assertion follows from [19, Theorems 2.2 and 6.6]. The
last assertion holds by [19, Theorems 2.2 and 5.6]. ��
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In [19], condition (7) is called (C), and condition (6) is referred to as “General
Assumption” (GA).

For an absorbing (at 0) MDP model for P0, we will take c(·) such that c(0, a) ≡ 0
at the absorbing isolated point 0. Then 0 will be referred to as the costless cemetery.
If Condition (GA) is satisfied, then the optimal control problem (5) can be rewritten
in terms of occupation measures in the following way:

Minimize over η ∈ D:
∫

X\{0}×A
c(y, a)η(dy × da),

This is one of the main reasons for studying D in the literature of MDPs.

4 Main Results

In the wonderful and insightful paper [11], a rich theory for absorbing MDP models
was developed. In that paper, the following assertion was claimed, see the proof of
[11, Lemma 4.7]:

• If the MDP model {X,A, p} is semi-continuous, and is absorbing (at 0) for the
given initial distribution P0,P is endowedwith theweak topology (see Proposition
3 and the paragraph below it), andD is endowed with the weak topology generated
by bounded continuous functions on (X \ {0}) × A, then the projection mapping
O defined in (3) is continuous.

If the above claimwas true, then by Propositions 2 and 3 as well as the factD = O(P),
it would then follow that D is compact, provided that the MDP model {X,A, p} is
semi-continuous, and is absorbing (at 0) for P0. This assertion was formulated as [11,
Lemma 4.7], and was used several times therein.

The first main result of this paper is that we show by means of an example that the
above claims regarding the continuity of O and the compactness of D are false.

Theorem 1 There is an MDP model {X,A, p} such that the following assertions hold
for a fixed initial distribution P0:

(a) The MDP model is semi-continuous. Consequently, the space of all strategic mea-
sures P for the initial distribution P0 is compact in the weak topology.

(b) The MDP model is absorbing (at 0) for P0.
(c) The MDP model is not uniformly absorbing (at 0) for P0.
(d) D is not compact with respect to the weak topology.
(e) The mapping O defined by (3) is not continuous between P and D, both of which

are endowed with their weak topologies.
(f) The MDP model does not possess a uniform Lyapunov function.

The proof of this theorem is given in Subsection 6.1.
Since the continuity of the projection mapping O defined by (3) from P (endowed

with the weak topology) toD (endowed with the weak topology) played an important
role in the reasoning in [11], and Theorem 1 shows that this is not guaranteed if the
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Fig. 1 Graphical representation of the MDP

MDPmodel is semi-continuous and absorbing (at 0) for P0, we next investigate when it
holds. Our secondmain result asserts that for a semi-continuousMDPmodel, provided
that it is absorbing for P0, the aforementioned continuity of the projection mapping O
holds if and only if the MDP model is uniformly absorbing for P0.

Theorem 2 Consider a semi-continuous MDP model with the fixed initial distribution
P0. Suppose that the MDP model is absorbing (at 0) for P0. Then the projection
mapping O defined by (3) from P (endowed with the weak topology) to D (endowed
with the weak topology) is continuous if and only if the MDP model is uniformly
absorbing (at 0) for P0.

The proof is given in Subsection 6.2.

5 Example

Theorem 1 will be proved by means of the following MDP model.

Example 2 The elements of the MDP model {X,A, p} are as follows.
• The state and action spaces are X := {0, 1, 2, . . .} and A := {1, 2}, which are
equipped with the discrete topology.

• 0 is the isolated state, which is absorbing: p(0|0, a) ≡ 0.
• For x = 1, 2, . . ., p(0|x, 1) = px = ( 1

2

)x
and p(x |x, 1) = 1 − px .

• For x = 1, 2, . . ., p(0|x, 2) = 1
2 and p(x + 1|x, 2) = 1

2 .• Other transition probabilities equal zero.

The transition diagram of the MDP model in Example 2 is given in Fig. 1.
The MDP model in Example 2 is explored in the proof of Theorem 1. Incidentally,

it can also be used to demonstrate that condition (7) is important for the solvability,
see the next proposition.

Proposition 5 Consider the MDP model in Example 2 with the initial distribution
P0(dx) = δ1(dx), and the optimal control problem (5) for the cost function c(·)
defined by c(x, a) ≡ −1 for all x ≥ 1, and c(0, a) ≡ 0. Then the following assertions
hold.
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(a) There is no optimal strategy for the given P0.
(b) Condition (7) is not satisfied, whereas all the other conditions in Proposition 4 are

satisfied.

The proof of this Proposition is given in Subsection 6.3.

6 Proof of the Statements

In this sectionwe provide the detailed proofs of Theorem1, Theorem2 and Proposition
5.

6.1 Proof of Theorem 1

Proof of Theorem 1 Throughout this proof we consider the MDP model in Example 2.
Unless stated otherwise, we fix the initial distribution P0 concentrated on the singleton
{1}, i.e.,

P0(1) = 1.

(a) This MDP is vacuously semi-continuous, and the space of all strategic measures
P = {Pπ

P0
, π ∈ �All} is compact in the weak topology by Propositions 2 and 3.

(b) Consider the function w∗(·) on X = {0, 1, . . . } defined by

w∗(x) := sup
π∈�All

Eπ
x [T0] = sup

π∈�All
Eπ
x

[ ∞∑

t=0

I{Xt ∈ {1, 2, . . . }}
]

(8)

x ∈ {0, 1, . . . }.

We shall show that w∗(x) < ∞ for each x ∈ {0, 1, . . . }. This would in particular,
imply that Eπ

1 [T0] < ∞ for all π ∈ �All, i.e., the MDP model is absorbing (at 0) for
the fixed P0 concentrated on {1}.

According to [2, Propositions 9.8 and 9.10], w∗(·) is the minimal nonnegative
solution to the Bellman equation

w∗(0) = 0;
w∗(x) = 1 + max

{

(1 − px )w
∗(x), 1

2
w∗(x + 1)

}

, x = 1, 2, . . . . (9)

We claim that w∗(0) = 0 and

w∗(x) ≤ 2 + 2x ∀ x ∈ {1, 2, . . . }. (10)

To see this, it suffices to note that the functionv(·)on {0, 1, . . . }givenbyv(x) := 2+2x

and v(0) = 0 solves the Bellman equation (9), and this is true because, v(0) = 0
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trivially satisfies the first equality in (9), whereas for x ∈ {1, 2, . . . },

1 + max

{[

1 −
(
1

2

)x]

[2 + 2x ]; 1

2
(2 + 2x+1)

}

= 1 + max

{

1 + 2x −
(
1

2

)x−1

; 1 + 2x
}

= 2 + 2x .

Therefore, w∗(0) = 0 and w∗(x) ≤ 2 + 2x for x ∈ {1, 2, . . . }. Thus, (b) is proved.
Incidentally, from the calculations similar to those in the proof of (c), we will see

actually that

w∗(x) = 2 + 2x ∀ x ∈ {1, 2, . . . }.

This equality will be used in the proof of a subsequent statement, and we formulate
it as Lemma 1 below, and will prove it there. Nevertheless, for the purpose here, the
validity of the inequality ≤ is sufficient.

(c) We have seen in part (b) that this MDP model is absorbing (at 0) for the given
initial distribution P0 concentrated on {1}. We now verify that it is not uniformly
absorbing (at 0) for P0.

To show this, consider the deterministic stationary strategies

ϕn(x) := 2 · I{x ≤ n} + I{x > n} ∀ n = 0, 1, 2, . . . . (11)

With slight abuse of notation, let us denote by

ηπ
P0(x) := ηπ

P0({x} × A)

the marginal on X \ {0} = {1, 2, . . . } of the occupation measure of the strategy π for
the initial distribution P0.

For each n ∈ {0, 1, . . . }, ηϕn

1 is given by

η
ϕn

1 (x) =

⎧
⎪⎨

⎪⎩

( 1
2

)x−1
, if x < n + 1;( 1

2

)n 1
pn+1

= 2, if x = n + 1;
0, if x > n + 1.

(12)

Indeed, under the deterministic stationary strategy ϕn any state x < n + 1 is reached

with probability
( 1
2

)x−1
, and given that it is reached, the controlled process spends

exactly one time unit on it; any state x > n + 1 is never reached. This justifies the
first and the third equalities in (12). For the state x = n + 1, note that

( 1
2

)n
is the

probability that Xn = n+1. (The complementary probability 1− ( 1
2

)n
is for Xn = 0;

the state n + 1 cannot appear at the steps t < n.) After that Xn+t = n + 1 is realized
with probability (1 − pn+1)

t , leading to
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η
ϕn

1 (n + 1) =
(
1

2

)n [
1 + (1 − pn+1) + (1 − pn+1)

2 − . . .
]

=
(
1

2

)n 1

pn+1
= 2. (13)

For each n ≥ 0,

sup
π∈�All

Eπ
1

[ ∞∑

t=n

I{Xt ∈ (X \ {0})}
]

≥ Eϕn

1

[ ∞∑

t=n

I{Xt = n + 1}
]

= η
ϕn

1 (n + 1) = 2, (14)

so that supπ∈�All Eπ
1

[∑∞
t=n I{Xt ∈ (X \ {0})}] does not converge to 0 as n → ∞. In

view of (2), it follows that this MDP model is not uniformly absorbing at 0 for the
given P0.

(d) Now we fix the weak topology on D, as described in Sect. 3. Accordingly,
in this proof, the notions of compactness and convergence of sequences in D are
understood with respect to it, and this will not be signified repeatedly. The target here
is to show that the spaceD is not compact. This is equivalent to showing thatD is not
sequentially compact, because the weak topology on D is metrizable, as mentioned
in Sect. 3. Consequently, it suffices to show that the set {ηϕn

1 , n = 0, 1, 2, . . .} of
occupation measures on B((X \ {0})×A) has no accumulation points inD, where the
deterministic stationary strategies ϕn are defined by (11) in the proof of (c).

Suppose for contradiction that ηϕni

1 → ηπ
1 ∈ D for some subsequence ni → ∞ as

i → ∞, and for some strategy π . For a fixed j = 1, 2, . . . take d j (x, a) := I{x = j}.
Then

lim
i→∞

∑

(x,a)∈(X\{0})×A

d j (x, a)η
ϕni

1 (x, a) =
(
1

2

) j−1

(15)

according to (12), because ni → ∞ as i → ∞.

Since d j (·) is bounded continuous on (X \ {0}) ×A, from η
ϕni

1 → ηπ
1 ∈ D we see

that

lim
i→∞

∑

(x,a)∈(X\{0})×A

d j (x, a)η
ϕni

1 (x, a) =
∑

(x,a)∈(X\{0})×A

d j (x, a)ηπ
1 (x, a), ∀ j ≥ 1.

(16)

Applying (15) and (16) to j = 1, we see that

∑

(x,a)∈(X\{0})×A

d1(x, a)ηπ
1 (x, a) =

(
1

2

)0

= 1.
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On the other hand, if π1(1|1) = ε ≥ 0 and π1(2|1) = 1− ε, then for j = 1, we have

∑

(x,a)∈(X\{0})×A

d1(x, a)ηπ
1 (x, a) ≥ Eπ

1 [I{X0 = 1} + I{X1 = 1}] = 1 + ε(1 − p1),

so that, it is necessary that ε = 0.
The similar calculation for j = 2, d2(x, a) = I{x = 2}, and π2(a|x0, a1, x1) with

x0 = 1, a1 = 2 and x1 = 2 leads to equality π2(2|1, 2, 2) = 1, and so on. Thus,
π has the same occupation measure as the deterministic stationary strategy given by
ϕ(x) ≡ 2, i.e., ηπ

1 = η
ϕ
1 .

However, for the bounded continuous function d(·) on (X \ {0}) × A given by
d(x, a) ≡ 1,

∑

(x,a)∈(X\{0})×A

d(x, a)η
ϕ
1 (x, a) = 1 + 1

2
+ 1

4
+ . . . = 2 (17)

whereas

∑

(x,a)∈(X\{0})×A

d(x, a)η
ϕni

1 (x, a) =
ni∑

x=1

(
1

2

)x−1

+ 2

= 4 − 1

2ni−1 → 4 as i → ∞. (18)

The previous two equalities yield the desired contradiction against the assumption
η

ϕni

1 → ηπ
1 , because d(·) is bounded and continuous on (X\ {0})×A. Thus, the space

D is not compact with respect to the weak topology, as required.
(e) As mentioned in Sect. 4, if the projection mapping O defined by (3) was contin-

uous from P endowed with the weak topology toD endowed with the weak topology,
thenD would have been compact, because P is compact by Proposition 2. SinceD is
not compact as shown in (d), O is not continuous.

Alternatively, we may deduce it more explicitly, as follows. Consider the strategies
ϕn and ϕ as in the proof of (d). Let us show that Pϕn

1 → Pϕ
1 as n → ∞ in the weak

topology. By Proposition 3, it is sufficient to show that Pϕn

1 → Pϕ
1 as n → ∞ in

the ws∞-topology. For a fixed 1 ≤ T < ∞, if n ≥ T , then only the sequences
hT−1 = (x0, a1, x1, . . . , xT−1) of the form

(1, 2, 0, 2, 0, 2, 0, 2, 0, . . . , 0)

(1, 2, 2, 2, 0, 2, 0, 2, 0, . . . , 0)

(1, 2, 2, 2, 3, 2, 0, 2, 0, . . . , 0)

(1, 2, 2, 2, 3, 2, 4, 2, 0, . . . , 0)

(1, 2, 2, 2, 3, 2, 4, 2, 5, . . . , 0)
...

(1, 2, 2, 2, 3, 2, 4, 2, 5, . . . , 0)
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(1, 2, 2, 2, 3, 2, 4, 2, 5, . . . , T )

can be realized with positive Pϕn

1 -probabilities 1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
32 , . . . ,

( 1
2

)T−1
,
( 1
2

)T−1
,

correspondingly. (Note, the last two probabilities coincide.) The same holds true for
Pϕ
1 . Consequently, for each T ≥ 1, Pn := Pϕn

1 and P := Pϕ
1 ,

lim
n→∞

∫

HT−1

f (hT−1)PnT−1(dhT−1) =
∫

HT−1

f (hT−1)PT−1(dhT−1)

for each bounded function f (·) on HT−1, which is trivially continuous. Therefore,
Pϕn

1 → Pϕ
1 as n → ∞ in the ws∞-topology, and thus in the weak topology.

However, in the proof of (d), we have seen that O(Pϕn

1 ) = η
ϕn

1 does not converge
to O(Pϕ

1 ) = η
ϕ
1 in the weak topology, see (17) and (18). This shows the claimed

discontinuity of the mapping O .
(f) Since this MDP model is not uniformly absorbing (at 0) for the initial state

x0 = 1, it follows fromProposition 1 that there cannot be uniformLyapunov functions.
In fact, conditions (a,b) in Definition 6 can be satisfied, but any function satisfying
them violates condition (c) in Definition 6. We demonstrate this fact explicitly as
follows. First, the function defined by μ(0) = 1 and μ(x) = 2+2x for x ≥ 1 satisfies
condition (a) in Definition 6 because 1 + ∑∞

y=1 μ(y)p(y|0, a) ≡ 1 = μ(0), and for
each x ≥ 1, it holds that

1 +
∞∑

y=1

μ(y)p(y|x, 1) = 1 + (1 − px )μ(x)

= 1 +
(

1 − 1

2x

)

(2 + 2x ) = 1 + 2 + 2x − 1

2x−1 − 1

= 2 + 2x − 1

2x−1 ≤ 2 + 2x = μ(x)

and

1 +
∞∑

y=1

μ(y)p(y|x, 2) = 1 + 1

2
μ(x + 1)

= 1 + 1 + 2x = 2 + 2x = μ(x).

Condition (b) in Definition 6 is trivially satisfied.
Next, let us show that, for each function μ(·) satisfying condition (a) in Definition

6, condition (c) therein is violated. Indeed, condition (a) in Definition 6 implies that

1 + max

{

(1 − px )μ(x); 1

2
μ(x + 1)

}

≤ μ(x), ∀ x > 0,
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leading to, for each x ≥ 1,

1 + (1 − px )μ(x) ≤ μ(x) �⇒ μ(x) ≥ 1

px
= 2x ;

μ(x) ≥ 1 + 1

2
μ(x + 1) ≥ 1 + 1

2
· 2x+1 = 1 + 2x .

Now, for the deterministic stationary strategy ϕ(x) ≡ 2, we have for each x ≥ 1 that

Eϕ
x [μ(Xt ) · I{T0 > t}] ≥

(
1

2

)t

[1 + 2x+t ] =
(
1

2

)t

+ 2x ,

where
( 1
2

)t = Pϕ
x (T0 > t) and, if T0 > t , then Xt = x + t with probability 1. Since

the above expression does not converge to 0 as t → ∞, we see that condition (c) in
Definition 6 is not satisfied by μ(·). ��

6.2 Proof of Theorem 2

Proof of Theorem 2. Suppose the MDP model is semi-continuous. First, we prove the
‘if’ part. This is done by mimicking the reasoning in the proof of [11, Lemma 4.7],
avoiding the minor inaccuracy therein. Suppose Pπ i

P0
→ Pπ̂

P0
as i → ∞ in the weak

topology, and fix an arbitrary ε > 0 and an arbitrary bounded continuous function
g(·) on X × A such that g(0, a) ≡ 0. Let

ḡ := sup
(x,a)∈(X\{0})×A

|g(x, a)|.

Let N ≥ 0 be such that, for all π ∈ �All,

ḡ sup
π∈�All

Eπ
P0

[ ∞∑

t=N

I{Xt ∈ (X \ {0})}
]

< ε/3.

Such an N ≥ 0 exists because the MDP model is assumed to be uniformly absorbing
(at 0) for P0 here. Then let K be such that, for all i ≥ K ,

∣
∣
∣
∣
∣
Eπ i

P0

[
N−1∑

t=1

g(Xt−1, At )

]

− Eπ̂
P0

[
N−1∑

t=1

g(Xt−1, At )

]∣
∣
∣
∣
∣
< ε/3.

Such a K exists because by assumption, Pπ i

P0
→ Pπ̂

P0
as i → ∞ in the weak topology.

Now, for all i ≥ K ,

∣
∣
∣
∣

∫

(X\{0})×A
g(x, a)ηπ i

P0 (dx × da) −
∫

(X\{0})×A
g(x, a)ηπ̂

P0(dx × da)

∣
∣
∣
∣
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=
∣
∣
∣
∣
∣
Eπ i

P0

[ ∞∑

t=1

g(Xt−1, At )

]

− Eπ̂
P0

[ ∞∑

t=1

g(Xt−1, At )

]∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
Eπ i

P0

[
N−1∑

t=1

g(Xt−1, At )

]

− Eπ̂
P0

[
N−1∑

t=1

g(Xt−1, At )

]∣
∣
∣
∣
∣

+Eπ i

P0

[ ∞∑

t=N

|g(Xt−1, At )|
]

+ Eπ̂
P0

[ ∞∑

t=N

|g(Xt−1, At )|
]

< ε,

implying that ηπ i = O(Pπ i

P0
) → ηπ̂ = O(Pπ̂

P0
) as i → ∞. Since the MDP model

is semi-continuous, P is metrizable by Proposition 3. It follows that the mapping O
defined by (3) is continuous.

Second,we prove the ‘only if’ part. Suppose theMDPmodel is semi-continuous and
absorbing (at 0) for P0, but not uniformly absorbing (at 0) for P0. Then there is ε > 0
such that, for each k ≥ 1, there is n > k such that supπ∈�All Eπ

P0

[∑∞
t=n I{Xt �= 0}] >

ε. Below, such ε > 0 is fixed.
Now

• there is n1 ≥ 1 such that there exists a strategy π1 satisfying the inequality

Eπ1

P0

[ ∞∑

t=n1

I{Xt �= 0}
]

> ε;

• there are n2 > n1 and π2 such that

Eπ2

P0

[ ∞∑

t=n2

I{Xt �= 0}
]

> ε;

• and so on.

In this manner, we obtain sequences {ni }∞i=1 and {π i }∞i=1 such that ni ↑ ∞ and, for
each i = 1, 2, . . .,

Eπ i

P0

[ ∞∑

t=ni

I{Xt �= 0}
]

> ε.

Since P is compact and metrizable in the ws∞-topology by Propositions 2 and 3,
there exists a subsequence {π i j }∞j=1 (with the corresponding subsequence {ni j }∞j=1,

lim j→∞ ni j = ∞) such that Pπ
i j

P0
→ Pπ̂

P0
in the weak topology for some strategy

π̂ . We will show that the sequence {ηπ
i j

P0
}∞j=1 does not converge to ηπ̂

P0
in the weak

topology.
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For the constant ε > 0 fixed above, we choose N > 0 such that

Eπ̂
P0

[ ∞∑

t=N

I{Xt−1 �= 0}
]

= Eπ̂
P0

[ ∞∑

t=N

I{t < T0}
]

< ε/3.

This can be done because the MDP is absorbing (at 0) for P0: Eπ̂
P0

[T0] =
∑∞

n=0 P
π̂
P0

(T0 > n) < ∞.
After that, choose K > 0 such that, if j > K , then

Eπ
i j

P0

[
N−1∑

t=1

I{Xt−1 �= 0}
]

− Eπ̂
P0

[
N−1∑

t=1

I{Xt−1 �= 0}
]

> −ε/3.

This can be done because Pπ
i j

P0
→ Pπ̂

P0
in the weak topology. Recall that 0 is an isolated

state so that I{x �= 0} is a bounded continuous function on X.

Now, for j > K , ni j > N , i.e., for all big values of j , we have

Eπ
i j

P0

[ ∞∑

t=N

I{Xt �= 0}
]

≥ Eπ
i j

P0

⎡

⎣
∞∑

t=ni j

I{Xt �= 0}
⎤

⎦ > ε

and the following relations for the bounded continuous function g(x, a) ≡ 1 on
(X \ {0}) × A:

∫

(X\{0})×A
g(x, a)ηπ

i j

P0 (dx × da) −
∫

(X\{0})×A
g(x, a)ηπ̂

P0(dx × da)

= Eπ
i j

P0

[
N−1∑

t=1

I{Xt−1 �= 0}
]

− Eπ̂
P0

[
N−1∑

t=1

I{Xt−1 �= 0}
]

+Eπ
i j

P0

[ ∞∑

t=N

I{Xt �= 0}
]

− Eπ̂
P0

[ ∞∑

t=N

I{Xt−1 �= 0}
]

> −ε

3
+ ε − ε

3
= ε/3.

Thus, the sequence {ηπ
i j

P0
}∞j=1 does not converge to ηπ̂

P0
in the weak topology, and the

mapping O defined by (3) is not continuous. ��

6.3 Proof of Proposition 5

In this subsection, we prove Proposition 5. Firstly, we present a lemma.

123



Applied Mathematics & Optimization            (2024) 89:58 Page 21 of 25    58 

Lemma 1 Consider theMDPmodel in Example 2, and the functionw∗(·) onX defined
in (8). Then

w∗(0) = 0;
w∗(x) = 2 + 2x ∀ x ∈ {1, 2, . . . }.

Proof The first equality holds vacuously. The rest verifies the second equality. For a
fixed x ≥ 1, consider the following deterministic stationary strategies

ϕn(y) := 2 · I{y ≤ x + n} + I{y > x + n}, n = 0, 1, . . . .

Then similar considerations to those for (12) result in, with slight abuse of notation,

ηϕn

x (y) =

⎧
⎪⎨

⎪⎩

( 1
2

)y−x
, if x ≤ y < x + n + 1;

( 1
2

)y−x 1
px+n+1

= 2x , if y = x + n + 1;
0, if y > x + n + 1, or y < x .

for the marginal on X \ {0} of the occupation measure of the strategy ϕn for the initial
state x . Now

Eϕn

x [T0] =
∞∑

y=1

ηϕn

x (y) =
x+n∑

y=x

(
1

2

)y−x

+ 2x = 1 − ( 1
2

)n+1

1
2

+ 2x = 2 + 2x − 1

2n
,

and hence,

w∗(x) = sup
π∈�All

Eπ
x [T0] ≥ sup

n≥0
Eϕn

x [T0] = sup
n≥0

{

2 + 2x − 1

2n

}

= 2 + 2x ,

where the first equality is by the definition of the function w∗(·), see (8).
On the other hand, it was shown in the proof of (b) of Theorem 1 for each x ≥ 1 that

w∗(x) ≤ 2 + 2x , see (10). Combining the previous two inequalities yields w∗(x) =
2 + 2x for all x ≥ 1. Thus, the statement is proved. ��

Now we are in position to prove Proposition 5.

Proof of Proposition 5. (a) Recall that

v∗(x) := inf
π∈�All

vπ(x)

for each x ∈ X. By definition of the functionw∗(·), see (8), v∗(x) = −w∗(x) for each
x ∈ X. Now, according to Lemma 1,

v∗(0) = 0,

v∗(x) = −2 − 2x , ∀ x ∈ {1, 2, . . . }. (19)
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Suppose for contradiction that π = {πn}∞n=1 is an optimal strategy for the initial
state 1. If π1(1|1) = ε and π1(2|1) = 1 − ε, then

vπ (1) = −1 + ε · 1
2

· v
(1,1)π (1) + (1 − ε) · 1

2
· v

(1,2)π (2).

where for j ∈ {1, 2} (1, j)π is the shifted strategy defined in (1). From (19), we then
see

vπ (1) ≥ −1 + ε · 1
2

· v∗(1) + (1 − ε) · 1
2

· v∗(2) = −4 + ε.

Hence, in order to obtain vπ (1) = v∗(1) = −4, it is necessary that ε = 0. The similar
calculation for π2(a|x0, a1, x1) with x0 = 1, a1 = 2 and x1 = 2 leads to the equality
π2(2|1, 2, 2) = 1, and so on. Thus,

vπ(1) = vϕ(1),

where ϕ is the deterministic stationary strategy given by ϕ(x) ≡ 2.
On the other hand,

vϕ(1) = −1 − 1

2
− 1

4
− . . . = −2 > −4 = v∗(1),

and thus vπ (1) > v∗(1), which is a desired contradiction against that π is optimal for
the initial state 1. Consequently, there are no optimal strategies to problem (5) for the
MDP model with the given initial state 1 and the given cost function c(·).

(b) The last assertion of this part is trivially true. In particular, by Lemma 1,

sup
π∈�All

{

Eπ
1

[ ∞∑

t=1

c−(Xt−1, At )

]}

= w∗(1) = 4 < ∞,

where the first equality is by (8). Thus, it follows from (a) and Proposition 4 that
condition (7) cannot be satisfied.

To show explicitly that Condition (7) is violated, consider again the deterministic
stationary strategies ϕn given by (11), i.e.,

ϕn(x) := 2 · I{x ≤ n} + I{x > n} ∀ n = 0, 1, 2, . . . .

Now

inf
N≥n

inf
π∈�All

N∑

t=n+1

Eπ
1

[
c(Xt−1, At )

] ≤ Eϕn

1

[
c(Xn, An+1)

]

=
(
1

2

)n [
−1 − (1 − pn+1) − (1 − pn+1)

2 − . . .
]
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= −
(
1

2

)n 1

pn+1
= −2,

where the inequality holds because c(·) ≤ 0, and the equalities hold by the similar
argument as in (13). �

Remark 1 A strategy π is called uniformly optimal if vπ(x) = v∗(x) for all
x ∈ X. Consider an MDP model with a cost function c(·) such that supπ∈�All

Eπ
x

[∑∞
n=0 c

−(Xn, An+1)
]

< ∞ and v∗(x) ∈ (−∞,∞) for all x ∈ X, where v∗(·)
is defined by (4). Then according to [20, Theorem 2.2], a deterministic stationary
strategy ϕ is uniformly optimal if and only if

v∗(x) = c(x, ϕ(x)) +
∫

X
v∗(y)p(dy|x, ϕ(x)); lim

n→∞ Eϕ
x

[
v∗(Xn)

] = 0. (20)

The two equalities in (20) are called the Dubins-Savage conditions.
Now, consider the optimal control problem (5) for the MDP model in Example 2

with the cost function c(x, a) ≡ −1 for x ∈ {1, 2, . . . } and c(0, a) ≡ 0. We have
seen from Proposition 5(a) that there is no uniformly optimal strategy. In particular,
ϕ(x) ≡ 2 is not uniformly optimal. Let us verify this fact again by checking theDubins-
Savage conditions. They are sufficient and necessary for the uniform optimality of ϕ

because c(·) is (−∞, 0]-valued and v∗(·) is finite-valued. Now, we observe that ϕ

actually satisfies the first equality in (20). Nevertheless, the second equality in (20) is
violated because

Eϕ
1 [v∗(Xn)] =

(
1

2

)n

[−2 − 2n+1] = −
(
1

2

)n−1

− 2 → −2 as n → ∞,

here
( 1
2

)n
is the probability that Xn = n + 1.

7 Conclusion

In conclusion,we showed that for a semi-continuous absorbingMDPwith afixed initial
distribution, the continuity of the projection mapping O from the space of strategic
measures P to the space of occupation measures D, both of which are endowed with
their weak topologies, is equivalent to the MDP model being uniformly absorbing.
This is confirmed by an example. Provided that the absorbing MDP model is semi-
continuous, the continuity of O is a sufficient condition for the compactness of D in
the weak topology. Whether it is also necessary is an interesting open problem for
future studies.

In connection to the last problem, we would like to comment on the very relevant
and interesting paper [8], which was brought to our attention during the review of
the present paper by one of the referees. Absorbing MDP models were studied in [8],
where the state space was allowed to be a general measurable space. Assuming that the
model is semi-continuous (S), it was shown in [8, Theorem 4.10] that the absorbing
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MDP model is uniformly absorbing if and only if the space of occupation measures
D is compact with respect to the ws-topology. Now let us specialize to a Borel state
space. Then this result, together with Theorem 2, shows that the ws-compactness ofD
is equivalent to the continuity of the mapping O from the space of strategic measures
P to the space of occupation measuresD, both of which are endowed with their weak
topologies. In general, the ws-topology onD is at least as strong as the weak topology
on D. If the ws-topology and the weak topology on D coincide, which is the case if
the state space is denumerable and endowed with the discrete topology, then, from the
above discussion, we see that for an absorbing semi-continuous (S) MDP model, the
continuity of O is indeed equivalent to the compactness ofD, which is endowed with
the weak topology.

Suppose thews-topology is equivalent to theweak topology onD, and the absorbing
MDPmodel is semi-continuous (S). Then the necessity part of Theorem2would follow
directly from [8, Theorem 4.10]: if the MDP model is not uniformly absorbing, then,
by [8, Theorem 4.10], D is not compact in the ws-topology, which is assumed to be
equivalent to the weak topology, and O cannot be continuous when D is endowed
with the weak topology.

Finally, we mention that if the MDP model is not absorbing, then D contains
measures that are not (totally) finite. In this case, a different topology was introduced
on D in e.g., [10, 18]. In that topology, the projection mapping O is continuous by
definition.
Added after the acceptance of this paper: After the paper was accepted, we learnt that
Dufour and Prieto-Rumeau [9] had picked up and solved the problem mentioned in
the conclusion of the present paper. More exactly, it was shown in [9, Theorem 3.1]
that if the MDP model is semi-continuous (or even satisfies a more general condition)
and absorbing at 0 for a given initial distribution P0, then the compactness ofD in the
weak topology is indeed equivalent to the MDP model being uniformly absorbing at
0 for the given initial distribution P0.
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