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Digital twin based reinforcement learning for extracting network structures and load
patterns in planning and operation of distribution systems
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Abstract

Low voltage distribution networks deliver power to the last mile of the network, but are often legacy assets from a time when low
carbon technologies, e.g., electrified heat, storage, and electric vehicles, were not envisaged. Furthermore, exploiting emerging
data from distribution networks to provide decision support for adapting planning and operational strategies with system transitions
presents a challenge. To overcome these challenges, this paper proposes a novel application of digital twins based reinforcement
learning to improve decision making by a distribution system operator, with key metrics of predictability, responsiveness, interop-
erability, and automation. The power system states, i.e., network configurations, technological combinations, and load patterns, are
captured via a convolutional neural network, chosen for its pattern recognition capability with high-dimensional inputs. The con-
volutional neural networks are iteratively trained through the fitted Q-iteration algorithm, as a batch mode reinforcement learning,
to adapt the planning and operational decisions with the dynamic system transitions. Case studies demonstrate the effectiveness of
the proposed model by reducing 50% of the investment cost when the system transitions towards the winter and maintaining the
power loss and loss of load within 5% compared to the benchmark optimisation. Doubled power consumption was observed in
winter under future energy scenarios due to the electrification of heat. The trained model can accurately adapt optimal decisions
according to the system changes while reducing the computational time of solving optimisation problems, for a range of scales of
distribution systems, demonstrating its potential for scalable deployment by a system operator.

Keywords: digital twin, distribution network, fitted Q-iteration, load pattern, network configuration, reinforcement learning.

1. Introduction in assisting the strategic planning, accurate prediction, and
smart control of distribution systems. Digital twins, a virtual
replica of a physical asset, integrate advanced metering, sim-
ulation, communication, optimisation, and control technolo-
gies [2]. Digital twins are vital for doing all of these things
at minimal risks, with the enhanced predictability, responsive-
ness, interoperability, and automation of distribution systems.
For predictability, digital twins are able to accurately predict
the state-temporal transitions of distribution systems and take
corresponding planning strategies prior to the actual installa-
tions, so as to minimise the investment cost and improve the
system performance, e.g., reducing power losses. For respon-
siveness, incorporating digital twins with physical monitoring
devices can assist the situational awareness and make active re-
sponses to operational signals through taking optimal control
decisions, to maintain the stability of distribution systems. For
interoperability, digital twins assist the DSO to collectively co-
ordinate stakeholders of distribution systems, in achieving the
overall system benefits. For automation, digital twins provide
a wide area control and network optimisation to ensure the
autonomous operation and self-healing of distribution systems
without human interventions.
As indicated by recent research [3—7] and industrial practices
Email addresses: weiqi. muateng. ox.ac.uk (Weigi Hua), [8—1.0], digital twins are requireq to acc.ur.ately represent the op-
bruce.stephen@strath. ac.uk (Bruce Stephen), erational consequences of planning decisions, based upon phys-
david.wallom@oerc.ox.ac.uk (David C.H. Wallom) ical models and actual data of an observed power system. You

Low-voltage distribution networks are the connection be-
tween transmission networks and various commercial, light in-
dustrial, and residential consumers, i.e., they are the edge of
power networks. With the target of net zero energy transi-
tion, these consumers increasingly become part of the network,
as they actively produce and store energy through the use of
distributed energy sources (e.g., solar panels and heat pumps)
and storage systems (e.g., batteries and hot water cylinders),
which unlocks demand side flexibility and facilitates the distri-
bution networks transitioning towards distribution systems [1].
Nonetheless, a number of challenges arise from the perspective
of the distribution system operator (DSO): (1) How to exploit
data from distribution systems to assist the decision making of
the DSO on planning and operation; (2) How to adapt decisions
on network structures and investments to cope with dynamic
transitions of system states, e.g., transition of load patterns; (3)
How to design a scalable model for planning distribution sys-
tems under heterogeneous energy patterns, dynamic network
structures, and multiple technological combinations.

To overcome the first challenge, the digitalisation of power
systems enables the large volumes of data to be exploited
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et al. [3] incorporated machine learning into a predictive dig-
ital twin to forecast uncertainties of renewable generation and
flexible consumption during the operational scheduling of inte-
grated thermal and electrical energy systems. Saad et al. [4]
developed an IoT-based digital twin interacting with the con-
trol system to prevent the injection of coordinated false data
and the denial of service attacks on interconnected microgrids.
Granacher et al. [5] proposed an interoperable digital twin to
assist the decision making on the design of energy systems
based on the preferences of decision makers. In [6], an en-
ergy management tool was designed based on digital twins to
provide the services of optimal control, scheduling, forecast-
ing, and coordination for multi-energy systems. Researchers
in [7] developed digital twins of cooling, heating, and power
systems for both real-time and life-cycle optimisation, in order
to improve energy saving and cold recovery. With respect to
industrial practices, Powerstar [8] has developed a digital twin
to evaluate the feasibility and cost-effectiveness of microgrids,
prior to committing investments in the actual installation and
implementation. GE Digital [9] has focused on developing the
digital twin software based on the operational data of network
infrastructures and generators for cost reductions. Siemens [10]
has designed an electrical digital twin enabling the power sys-
tem operators to optimise system performances and automati-
cally exchange data between the internal and external systems.
The commons, differences, advantages, and future opportuni-
ties of such works on the applications of digital twins in power
systems are compared in Table 1.

With respect to the second challenge, it is necessary for the
DSO to continuously maintain an accurate model, in order to
adapt dynamic transitions of system states. The reinforcement
learning (RL) fits for this purpose, since a control policy can be
learned from interactions with environments. The RL is only
driven by historical data without predefined parameters or for-
mulations. Developing approaches of RL for extracting features
of power network configurations [11, 12], load patterns [13],
and device investments [14] has been well documented in liter-
atures. In [11], a deep RL algorithm was developed for finding
optimal topology of distribution networks, in order to increase
the renewable integration and reduce the investment cost. Gao
et al. [12] proposed a data-driven batch-constrained RL algo-
rithm for the dynamic reconfiguration of distribution networks
through learning the control policy with historical operational
data. Reference [13] developed a Q-learning based RL for set-
point planning of air conditioning, through which the transi-
tions of load patterns were captured by deep neural networks.
In [14], a RL method was proposed based on the Monte Carlo
tree search for guiding the DSO to install active/reactive power
control devices with reduced planning and operational costs.

For the third challenge, machine learning and deep neural
networks are capable of extracting key features from high-
dimensional datasets consisting of various types of system
states (e.g., network structures, energy patterns, and techno-
logical combinations) and temporal transitions (e.g., from the
short-term operation to long-term planning), so as to enhance
the model scalability with improved computational efficiency.
Zhao [15] designed a machine learning selection approach to

guide an accurate regression learner-based model for predict-
ing dynamic battery ageing, in order to achieve a trade-off be-
tween short-term operational costs and long-term degradation
costs. In [16], a data driven machine learning model was pro-
posed to predict building energy demand and enhance flexi-
bility provision with improved computational efficiency. The
convolutional neural network (CNN) has the particular poten-
tial to generalise the representations of key features from high-
dimensional inputs. This is because multiple filers of convolu-
tional layers slide through the input to capture the state corre-
lations and temporal transitions. Claessens et al. [17] imple-
mented the CNN to extract hidden state-time features of res-
idential consumers and developed a RL algorithm to control
clusters of thermostatically controlled loads. Kamruzzaman
et al. [18] designed a CNN to solve the optimal power flow
for various scales of integrated power networks, so as to im-
prove the efficiency of the reliability evaluation. Analogously,
the CNN was developed in [19] to evaluate both the transient
stability and instability mode of power systems. In [20], a
multi-temporal-spatial-scale method was proposed to capture
the transitions and characteristics of load patterns through us-
ing the CNN.

Although extensive studies have been conducted to address
those three challenges, there are three major gaps as: (/) Ex-
isting research has focused on the application of digital twins
to exploit data from physical power systems in assisting de-
cision making, but incorporating both planning (e.g., technol-
ogy investment or network configuration prior to setting-up a
new distribution system) and operation (e.g., maintaining sys-
tem constraints in parallel with the real operation) of a distri-
bution system is missing. (2) For the research using RL to
adapt transitions of a distribution system, there is still a lack of a
model which includes the network structures, load patterns, and
technological combinations together. (3) Although the research
efforts have been dedicated to improving the model scalabil-
ity and computational efficiency, how to reflect the states and
characteristics of a distribution system for the CNN to extract
feature representations has not been well explored.

By filling the identified gaps in the existing research, this
paper offers the following key contributions:

o A framework of digital twins is designed in combination
with the RL to adapt decisions of the DSO with dynamic
transitions of system states, through which the RL con-
tinuously improves the model accuracy through exploiting
the data provided by digital twins.

e A CNN is tailored to extract feature representations from
the input information of network configurations, technol-
ogy installations, and load patterns under various scales of
distribution networks, and map these feature representa-
tions to the optimal policy of planning and operation for
distribution systems.

e The proposed model was implemented in the IEEE 33-bus,
18-bus, and 69-bus distribution networks to demonstrate
the scalability. The designed RL algorithm can accurately
make decisions which are close to those from solving the



Table 1 Comparison of research and industrial practices on the application of digital twins in power systems.

You et al. [3] Saad et al. [4] Granacher et al. [S]Dwyer et al. [6] Huang et al. [7] Powerstar [8] GE Digital [9] Siemens [10]
Function  Prediction Protection Design Scheduling and forecasting Scheduling Investment  Scheduling System performance
Mode Operation Operation Planning Operation Operation Planning Operation Operation
Context Integrated thermal and Interconnected Integrated Integrated energy Cooling, heating, Microgrids  Generators and Power system

electrical energy system microgrids
Advantage Cost saving

biorefinery systems

attacks preferences evaluation

Common

Preventing cyber Considering users’ Real-time parallel

and power system infrastructures
Energy saving and Prior to actual Cost
cold recovery installation  reduction

System optimisation
and automation

Application of digital twins to exploit data from physical power systems in assisting decision making

Opportunity Developing digital twins incorporating planning and operation of power distribution systems, both prior to setting-up a new system and in parallel with real operation

problems of minimising the investment cost, power loss,
loss of load, and renewable curtailment. A better adap-
tion with the system transition was also found compared
to solving the minimisation problems in each single stage.

The rest of this paper is organised as follows: Section 2 intro-
duces the overview framework for implementing the designed
digital twin based RL model. A Markov decision process is de-
tailed in Section 3 to discuss the states, actions, and costs when
the DSO makes sequential planning and operational decisions.
The algorithms of the RL are provided in Section 4. In Sec-
tion 5, the performances on learning, model outputs, and scal-
ability are evaluated by case studies. The research limitations,
challenges and prospects are discussed in Section 6. Section 7
concludes this paper and lists potential future works.

2. Framework

This section introduces the overall framework for imple-
menting the designed digital twin based RL model. The ob-
jective of this model is to adapt the planning and operational
decisions of the DSO with dynamic transitions of network con-
figurations, technology installations, and load patterns. This
objective is achieved by exploiting the data from physical dis-
tribution systems through using the RL to continuously improve
the model accuracy and scalability.

The overall framework for implementing the designed model
is presented in Fig. 1. First, the information of system states,
including the network configurations, technology installations,
and load patterns from the physical distribution systems is fed
into the digital twin. Second, under these states, the DSO can
test a set of planning actions and solve the optimal operational
control problems with the objectives of minimising the invest-
ment cost, power loss, renewable curtailment, and loss of load
to yield the control decisions. The values of four objective func-
tions are taken as the cost to judge how good those tested ac-
tions are. This process iteratively proceeds until finding the best
planning and operational decisions. Third, the fitted Q-iteration
(FQI), as a batch mode RL algorithm, is used to yield optimal
Q-function for the DSO through iteratively training neural net-
works using the states and actions as inputs. The optimal Q-
function is used to guide the DSO to perform the planning and
operational control decisions in physical distribution systems.

The designed digital twins provide the DSO with the follow-
ing five primary functions: (/) Collecting information of system
states from sensors and smart meters of a physical distribution
system; (2) Prior to setting-up a new distribution system, test-
ing any potential planning decisions for the DSO, in achieving

certain objectives; (3) In parallel with real operations, running
the power flow analysis and examining violations of system
constraints; (4) Systematically integrating data analytics and
RL algorithms for the network optimisation of DSO; (5) Au-
tomatically sending signals to control network configurations
(through circuit barkers and switchers) and operations (through
connecting/disconnecting loads, renewable energy sources, ca-
pacitor banks, static VAR compensators (SVCs), and storages).

3. Markov decision process

The decision making of the DSO on the planning and opera-
tion of a distribution system is modelled as a Markov decision
process. The Markov decision process is determined by its ac-
tion, state, and state transition function as

Si1 = £ (S, Ap) , Yk € K, ey

where Sy is the state of the Markov decision process at the stage
k, Ay is the action of the Markov decision process at the stage
k, f () is the state transition function describing the dynamics
from the state Sy to Sy, and K is the space of all stages.

Taking an action Ay under the state S; would result in a cost,
denoted as ¢ (S, Ax). The objective of the DSO is to find a
control policy which minimises the cumulative future costs over
|K| stages as

K]

= ) [P0 c Sk AW @)

k=1

where uy, is the cumulative future cost, y is the discount factor
which reflects the importance of the cost in the distant future
relative to that in the immediate future.

Until the stage k, the only observations of states and actions
are (S, ..., Sg) and (A, ..., Ay), respectively, whereas the future
states (Sk+1, ..., Six1) and actions (A1, ..., Ajk|) are uncertain.
The action value function, i.e., Q-function, can estimate these
uncertain variables by calculating the expectation of the cumu-
lative future costs uy with respect to (Sg+1, ..., Six|) and (Agy1,
vy A|7(|) as

qr (S, Ag) = E (S, Ap) 3

where ¢, (-) is the Q-function which quantifies the performance
of taking the action A, under the state Sy, following a given
policy function 7 (-). The policy function maps a given state to
the corresponding action as

Ay =m(Sp), Yk e K. )
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Fig. 1. Framework for implementing the designed digital twin based reinforcement learning model. The states of physical distribution systems are fed into the digital
twin, under which the distribution system operator can test planning actions and solve optimal operational control problems to yield a cost. The states, actions, and
optimal Q values are used to iteratively train neural networks through the fitted Q-iteration algorithm. The final optimal decisions are performed by the physical

distribution systems.

The optimal Q-function is the minimum Q-function obtained
by any policy as g* (Sg, Ax) = min, g, (S, Ax), which can be
obtained by the Bellman optimality equation [21] as

q" Sr, Ar) = E[c(Sk, Ap) + f/{ﬁn q" (Sks1, Ak+l)] )]
k+1

Therefore, the optimal action can be yielded by

Al =7 (Sp) = argming” (S, Ay) - (6)

3.1. State description

The state space consists of the information on (/) network
configuration, (2) technology installation, and (3) load pattern.
The advantages of considering these three elements together
are that they can more accurately reflect key characteristics of
a physical distribution system and cover essential decisions of
the DSO. However, the challenge is how to mathematically de-
scribe these elements and use them to reinforce the decision
making of the DSO. Our designed approach processes these
three elements in the form of matrices, which is detailed in the
following subsections.

3.1.1. Network configuration

First, how to use a matrix to describe the state of network
configurations is introduced. Let ¥ denote the set of feeders in
a distribution network, the state of the network configuration at
the stage k can be described by a (|N|x|¥ |)-dimensional matrix
S;. in which the element s, ; € S is a binary value indicating

whether the bus # is connected to the feeder f (if s, y=1), or not
@if s,,/=0). Fig. 2 presents an example of how the matrix S,f(
represents the configurations of a distribution network with the
state transitioning form the stage k — 1 to the stage k.

Stage k — 1 Stage k
—I—I—I—I— Feeder 1 —I—I— Feeder 1
1 2 3 4 1 2
5 6 5 6 3 4
—I—I— Feeder 3 —I—I— Feeder 3
7 8 7 8
st 23 st 23
k=1 1 [I]o]o k 1[I]0]o
2 0]0 2 0]0
311]0]0 3 110
., 4111010 o 410]1]0
Bus n 4 15110 Bus s 5110
6[0]L]0 6[0]1]0
710j0]1 710]0]1
810]0]1 810]0]1L
Feeder f Feeder f

Fig. 2. Schematic illustration of the network configurations transitioning from
the stage k — 1 to the stage k, represented by the matrices Si_l and Si, re-
spectively. Element 1 of the matrices indicates that the bus n (indicated by the
vertical dimension) is connected to the feeder f (indicated by the horizontal
dimension), and element O of the matrices indicates that the bus 7 is not con-
nected to the feeder f.

Next, once the network configuration at one stage is de-
termined, the resistance and reactance between neighbouring
buses need to be measured to calculate the incurred power
losses. Since the accurate geographical locations of buses are
unknown, our research assumes that the distance and resis-
tance between buses are uniformly distributed along the feeder



length. Hence, the length of the branch from the head of a
feeder to the bus n is described as

{nzi-n,VneNf, @)

VG|

where ¢, is the length of the branch from the head of a feeder
to the bus n, { is the total length of the feeder f, and Ny is the
set of buses connected to the feeder f. The resistance between
two neighbouring buses n — 1 and n can be described as

Yn-1n = ({n—l - é’n) . ru’ (8)

where 7,1, is the resistance of the branch from the bus n -1 to
the bus 7, and r" is the unit resistance of a feeder. Analogously,
the reactance between two neighbouring buses n — 1 and n can
be described as

Xn-1n = (gn—l - gn) . xu, (9)

where x,,_1 , is the reactance of the branch from the bus n — 1 to
the bus 7, and x" is the unit reactance of a feeder.

3.1.2. Technology installation

In this research, the technologies to be invested by the DSO
for installations in a distribution network include the SVC, ca-
pacitor bank, and energy storage systems. The SVC and capaci-
tor bank provide fast-acting reactive power to enhance the host-
ing capacity of distributed generation for ensuring the power
quality and stability of distribution systems. The energy stor-
age systems provide the flexibility for the generation, consump-
tion, and import from transmission networks through strategi-
cally charging and discharging the active power.

Let & denote the set of these technologies, the state of the
technology installation at the stage k can be described by a
(IN1x|€])-dimensional matrix S, in which the element s,,, € S}
is an integer indicating the number of the technology e con-
nected to the bus n. Fig. 3 presents an example of how the
matrix S; represents the technology installations of a distribu-
tion network with the state transitioning form the stage k — 1 to
the stage k.

3.1.3. Load pattern

The state of load patterns reflects the composition of hetero-
geneous consumers, e.g., businesses, households, and indus-
tries. First, the basic patterns of electricity consumption are
captured and clustered as the typical load patterns. Next, ac-
cording to the future energy scenarios of the National Grid ESO
[22], there will be increasing flexibility provision from the de-
mand side through the uptake of the roof-top solar panels, elec-
trified heat, electric vehicles, and smart control systems. These
components will be modelled and integrated into the identified
typical load patterns when distribution systems transition to-
wards future states.
o Cluster of load profile

To capture the recurring load profile patterns and more
specifically, the diversity of peak loads, this research develops a
statistical approach, i.e., the cluster-producing-merging (CPM),

Stage k — 1 Stage k

Feeder 1
1 2 3 4

s 2 SS C4

E. M

‘rl Feeder 2 —I_I— Feeder 2
6 5 6

eeder 3 Feeder 3
7 8 7 8

= 1 = Feeder 1

8

ge SVC CB ES se SVC CB ES
=10 ToTT ka0 JoTT
21010]0 210fjofjo
3l1fo]o 3pLjofjo
Bus n% g 8 8 Bus ng 8 g é
61]0J0]0 6[0Jo]o
710fl0]o0 710]07]0
8lLof1]0 8Lof2]o0

Technology e Technology e

SVC - Static VAR Compensator CB - Capacitor Bank ES - Energy Storage

Fig. 3. Schematic illustration of the technology installations transitioning from
the stage k — 1 to the stage , represented by the matrices S;_, and Sy, respec-
tively. Elements of the matrices indicate the total number of the technology e
(indicated by the horizontal dimension) connected to the bus 7 (indicated by the
vertical dimension).

to identify typical load patterns of consumers from the histori-
cal data of power consumption. The procedures of the CPM are
detailed as follows:

Step 1 (Data collection and normalisation): The real-time
metering data of power consumption from heterogeneous con-
sumers, is collected from digital twins as historical samples and
expressed in the per unit (p.u.) of the active power, considering
that certain load profiles would have the similar shape but dif-
ferent magnitudes.

Step 2 (Probability estimation): The non-parametric kernel
density estimation [23] is used to fit the probability density
function (pdf) from the historical samples of power consump-
tion at each time step. As a non-parametric approach, the kernel
density estimation can accurately reflect the distributions of his-
torical samples without the need of predefined parameters. The
fitted pdf can be described as

fdf (pltoad) - |(HT.K . Z fx

load load
[p - P
heH

—] (10)
K

where P4 (-) is the fitted pdf, p!°*? is the uncertain variable of
power consumption at the time step ¢, pﬁ‘d is the historical sam-
ple & of the uncertain variable p}""‘d, H is the set of historical
samples of the power consumption, « is the bandwidth smooth-
ing parameter, and f¥(-) is the kernel function. Each kernel
function is placed over a sample. Hence, the pdf is fitted by the
sum of |H| kernels.

Step 3 (Cluster producing): The Latin hypercube sampling
[24] is used to produce initial clusters with two key functions:
(1) When the size of historical data is limited, it can be used
for data augmentation to avoid overfitting; (2) It can capture the
potential variations of uncertain power consumption based on
the generated density function. Let M/ denote the set of clus-
ters. For the initially produced clusters, we have |Y|>|H|. To
produce |Y| clusters, the cumulative distribution function (cdf)
derived from the pdf is equally divided into |Y/| intervals. Each
cluster is randomly sampled from each of these intervals and



then calculated as the inverse function of the cdf as

. . -1 1 -1
P = [ (1) o] = [(M).a'+ y|7|] , (11)
ig?d is the cluster y of power consumption at the time
step ¢, f4(-) is the cdf, and o € [0, 1] is a random variable
being subject to the uniform distribution. For the set of initially
produced clusters, the occurrence probability of every cluster is
the same as PP (pg?;ld) =1/1Y|.

Step 4 (Cluster merging): To identify the high-probable clus-
ters, i.e., typical energy patterns, the similar clusters will be
merged and low-probable clusters will be dropped. The simi-
larity between any two clusters y; and y, are measured by the
Euclidean distance [25] as

where p

’ ad )2
1o1,y2) 1= (Pl - plst), (12)

where [ (-) is the function of the Euclidean distance between any
two clusters. Each cluster y has || — 1 Euclidean distance with
other clusters y’ (Vy' € Y,y’ # y). The minimum Euclidean
distance for each cluster is denoted as

[0ny)" = minl(y). (13)

If a cluster has a high similarity, i.e., the minimum Euclidean
distance, and low occurrence probability, this cluster will be
merged with its similar cluster by adding the occurrence proba-
bilities of these two clusters. Such a cluster is located by finding
the minimum product between the occurrence probability and
minimum Euclidean distance as

¥ = argmin[P(pi5) - 1y’ (14)

The probability of the cluster y* is added to the probability of
the cluster y' and then the cluster y* will be removed from the
set Y. This removing process iteratively proceeds until reach-
ing the desired number of clusters.

Step 5 (State representation): The state of the load pattern
at the stage k can be described by a (JN| X |Y|)-dimensional
matrix S}, in which the element s,, € S is a binary value
indicating whether the power profile of the bus n matches to the
load pattern of the cluster y (if s,,=1), or not (if s, ,=0). Every
bus in a distribution network will be assigned by one of clusters
of power profiles. Fig. 4 presents the relationship between the
clusters of load profiles p;f’;‘d,Vt € 7,y € Y and state matrix
of the load pattern SZ. As an example indicated in the figure,
the bus 4 matches to the cluster 2, i.e., s42 = 1 (dashed red box
on the right hand side), which means the daily power profile of
the bus 4 follows the cluster 2 (dashed red box on the left hand
side).

o Future energy scenarios

To investigate the impacts of the demand side flexibility on
the planning and operation of distribution systems. The roof-
top solar panels, air-source heat pumps, and electric vehicles
are integrated into certain clusters of load patterns as

load,net load

h h
P = sl s P e pt, (15)

load y
pz,;( S

- - —y=1(Bus 1) y=3 (Bus 6) y=5 (Bus 5)
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Fig. 4. Schematic illustration of the relationship between the clusters of load

profiles p]tf’y“d,\{t € T,y € Y and state matrix of the load pattern S}, and how

the matrix S]{ represents the load patterns of a distribution network. Element
1 of the matrix indicates that the power profile of the bus n (indicated by the
vertical dimension) matches to the load pattern of the cluster y (indicated by
the horizontal dimension), and element O of the matrix indicates that the power
profile of the bus n does not match to the load pattern of the cluster y.

where pii’f‘d‘“e‘ is the net demand at the time step 7 of the cluster

y with the integration of the roof-top solar panels, air-source
heat pumps, and electric vehicles, p" is the power output of the
roof-top solar panel at the time step ¢, p{" is the power charging
to the electric vehicle at the time step ¢, p?p is the electricity
used to run the air-source heat pump at the time step ¢, and ¢},
sy, and g?,p are binary values indicating if the roof-top solar
panel, air-source heat pump, or electric vehicle is installed (if
P'=1, ¢¢'=1, or ¢)"=1), or not (if ¢7"=0, ¢&'=0, or ¢*=0),
respectively.

In the future energy scenarios, a consumer would be
equipped with a smart control system to strategically switch
on/off the air-source heat pump, in order to maintain the indoor
temperature within the comfort range. The thermal inertia of a
consumer’s promises is modelled by the 1R1C thermal model

[26] as
1 —exp T,
v

v
—At -

l—exp( 'u)}-p?p-&s,
v

where 7, is the indoor temperature at the time step ¢, u is the
thermal transmittance of a consumer’s premise, v is the thermal
capacitance of a consumer’s promise, 7 is the temperature of
the ambient air at the time step ¢, 6 is the coefficient of perfor-
mance of the air-source heat pump, and ¢ is a binary variable
indicating whether the air-source heat pump is switched on (if
eg=1) or off (if £=0). To maintain the comfort of a consumer and
save energy consumption, the control function is automatically
performed according to

— 1’
&= 0.

—At -

7 =exp(
(16)

1
+—.
u

if r, < ™",

if 7, > 7min an



where ™" is the minimum boundary of the indoor temperature

to maintain a consumer’s comfort.

3.2. Action description

The action space consists of the information on (/) network
reconfiguration and (2) new technology investment.

First, the action of the network reconfiguration is described
by a matrix A,E in the same shape as the state matrix of the
network configuration Sf, in which the element a, s € Al is a
binary value indicating whether the bus n is connected to the
feeder f (if a, s=1), or not (if a, y=0). When an action of the
network reconfiguration is taken, the state of the network con-
figuration transitions to the next state as

S[., - AL 18)

Considering that each bus can only connect to and at least
connect to one feeder, the sum of elements in each row of the
matrix A,E should equal to 1 as

Dl = 1LYfeF. (19)

n

Second, the action of the new technology investment is de-
scribed by a matrix A} in the same shape as the state matrix of
the technology installation S}, in which the element a,,, € A7 is
a binary value indicating whether the technology e is connected
to the bus n (if a, ,=1), or not (if a, ,=0). When an action of the
new technology investment is taken, the state of the technology
installation transitions to the next state as

S, = AL +SE. (20)

It is noted that the state of load patterns are exogenous infor-
mation which is not influenced by the DSO’s actions.

3.3. Cost function

This subsection describes how the cost of RL drives the adap-
tation of planning and operational control decisions with tran-
sitions of a distribution system.

3.3.1. Operation

In the operational phase, the DSO aims to minimise the in-
vestment cost, power loss, renewable curtailment, and load cur-
tailment by determining the active/reactive power import, bus
voltage, active/reactive power flow, charging/discharging rate
of storage, and reactive power outputs of the SVC and capac-
itor bank, which leads to a multi-objective optimisation prob-
lem. The objective functions are detailed as follows.
e The investment cost can be defined as

- ZA;-c“W, 1)
neN
where '™ is the investment cost, ¢™ is the ||-dimensional col-
umn vector with the element ¢, € ¢™ to denote the cost coeffi-
cient of the technology e, and N is the index set of buses of a
distribution system.

e The total power loss of a distribution network can be defined

as
loss ._ =
p 058 = Z Umnt * Tmyns (22)
neN teT”
where plo“ is the total power loss of a distribution network, 1m nt

is the square of the current magnitude over the branch from the
bus m to the bus 7 at the time step ¢, r,,,, is the resistance of the
branch from the bus m to the bus n, and 7 is the index set of
time steps.

e The total amount of the solar power curtailment of a distribu-
tion network can be defined as

Api= > ApR, (23)
neN €T

where ApPY is the total amount of the solar power curtailment
of a distribution network, Apﬁ?’t is the amount of the solar power
curtailment in the bus # at the time step ¢.

e The total amount of the load curtailment of a distribution net-
work can be defined as

Apload = Z A Lo;ld’ (24)
neN 1T

where Ap'°a is the total amount of the load curtailment of a
distribution network, and Apload is the amount of the load cur-
tailment in the bus 7 at the time step ¢.

The formulations of objective functions in our research are
analogous to the work in [27], but the difference is that authors
in [27] took the power loss, renewable curtailment, and load
curtailment as constraints.

When a DSO solves the multi-objective optimisation prob-
lem, the following constraints [28] need to be considered:

e Power flow constraints: Eq. (25) describes the constraint of
the active power flow, and Eq. (26) describes the constraint of
the reactive power flow.

load,net load
pn r+pnz pn();1 " APE?;"'APn(? = Z Pnot — Z (Pmns
0€d(n) med(nt)
_im,n,t'rm,n) ,VI’LEN, IET,
(25)

am+ays +as— (@0t =n- A = D dnos— D, (@mns
0ed(n™) med(nt)
T xm,n) YneN, teT,
(26)
where p;{‘} and qi{’} are the active and reactive power imported
from transmission networks through transformers to the bus n
at the time step ¢, respectively, pg; is the active power dis-
charged (when positive)/charged (when negative) from/to the
energy storage system in the bus # at the time step ¢, pl‘”‘d el s
the net active power demand of loads connected to the bus n at
the time step ¢, ql"“d is the reactive power demand of loads con-
nected to the bus 7 at the time step ¢, g, is the reactive power
output of the SVC in the bus n at the time step 7, ¢S, is the reac-
tive power output of the capacitor bank in the bus n at the time



step t, i is the ratio of reactive power to active power of a load.
6 (n7) is the index set of all the outflowing buses from the bus
n, § (n*) is the index set of all the inflowing buses to the bus n,
DPnos and g, ., are the active and reactive power flows from the
bus 7 to the bus o at the time step ¢, p;, ., and gy, », are the active
and reactive power flows from the bus m to the bus # at the time
step ¢, and x,,,, is the reactance of the branch from the bus m to
the bus n. It is noted that p};" and g} are positive only if the bus
n is connected to a transformer; Otherwise, p,=¢,;=0.

e Bus voltage constraints: Eq. (27) is the voltage limit of a bus,
and Eq. (28) is the voltage difference between two buses.

(vnmi“)2 <Py <OV VneN,1eT, 27)

ﬁm,t - ﬁn,t =2 (pm,n,t Fmn t Qmang -xm,n) -

- 28
Lt [(rm,,,)2 + (xm,n)z] ,Vn,me N, te€T, (28)

min max

where vi"" and v)'** are the minimum and maximum voltage
limits of the bus n, and 7, is the square of the voltage magni-
tude in the bus n at the time step £. We have ¥,, = (v,,,,)z.

e Line current constraint:

0< lm nt < ( mé;x)z ’ (29)

where 2 is the maximum line current limit over the

branch from the bus m to the bus n. We have fm,n,, =
[(Pm,n,t)2 + (‘Zm,n,z)z] [V

e Power constraints: Eq. (30) is the constraint of the generation
curtailment, Eq. (31) is the constraint of the load curtailment,
Eq. (32) is the active power constraint of a transformer, and Eq.
(33) is the reactive power constraint of a transformer.

0<Apyy <pp.VneN,teT, 30)

0< Apload pload et NneN,teT, 31

ptr,min < Z p:‘; < ptr,max’ VYn € N,l € T, (32)
nes(tr)

trmm < Z qmsq“m‘“,\/neN,tG‘T, (33)
nes(tr)

where pfl:', is the power output of the solar panel connected to
the bus n at the time step 7, p™™" and p™™* are the mini-
mum and maximum active power limits of a transformer, re-
spectively, ¢™™" and ¢"“™* are the minimum and maximum
reactive power limits of a transformer, respectively, and 6 (tr) is
the index set of the buses connected to a transformer.

e Energy storage constraints: Eq. (34) is the constraint of the
charging/discharging rate of an energy storage system, Eq. (35)
is the dynamics of an energy storage system, and Eq. (36) is the
capacity constraint of an energy storage system.

0<|pe| < pS™ VneN,teT, (34)
ey =, ,1,1 ~ 0 po ALYne N, teT, (35)
0<epy <™ VneN.1eT, (36)

where p;™™* is the maximum charging/discharging rate of the

energy storage system connected to the bus n, €7, is the stored

energy of the energy storage system connected to the bus # at
the time step ¢, 9 is the charging/discharging efficiency, At is the
time interval, and e, ™ is the capacity of the energy storage
system connected to the bus n. At the initial step, the energy
storage system is assumed to be fully charged, i.e., e;’ =e;"""
e Reactive power output constraints: Eq. (37) is the constraint
of the reactive power output of the SVC, and Eq. (38) is the

constraint of the reactive power output of the capacitor bank.

SVC, min SvC SVC, max
dn " S dny <4y (37
cb,min cb cb,max
q < qnt < Qn ? (38)
where ¢5"“™" and ¢}'“™ are the minimum and maximum re-

cb,min

active power outputs of the SVC in the bus n, and g, and
¢=>™ are the minimum and maximum reactive power outputs

of the capacitor bank in the bus 7.

3.3.2. Planning
In the planning phase the DSO takes the actions of net-
work reconfiguration (A ) and technology installation (A7) un-

der the states of {Si,SZ,SZ}. The environment returns a cost
to judge how good the DSQO’s actions are. This cost is defined
as the sum of minimum values of the investment cost, power
loss, renewable curtailment, and load curtailment. To ensure
a trade-off of four objective functions, each objective value is
normalised through using the min-max normalisation, before
assigning equal weights. Therefore, the cost of RL can be ex-
pressed as

c(Si-S5. 81, AL AS)

) Cinv _ Cinv,min ploss _ ploss,min
==min (£ - ploss,max _ ploss,min (39)

Can,de — Can,mlﬂ

ApPY
ppv,max _ ppv,min

v,min load
- Ap

load,min
4
+ load,max load,min ||’
p =P

where £ is the weight of each objective function (£=0.25 in the
case of four objective functions with equal weights), ¢™min
and ¢™™ are the minimum and maximum values of the in-
vestment cost, respectively, which is obtained when AZ is zero
matrix and matrix of ones, respectively, p!®™n" and plossmax
are the minimum and maximum values of the total power loss
of a distribution network, respectively, which is obtained when

lmn, equals to 0 and (ma") , VYn,m € N,t € T, respectively,

m,n

pPYmin and pPYMX are the minimum and maximum values of
the total solar power curtailment of a distribution network, re-
spectively, which is obtained when Apn, equals to 0 and pf,,
Vn € N,t € T, respectively, and p'odmin and ploadmax are the
minimum and maximum values of the total load curtailment
of a distribution network, respectively, which is obtained when
Ap' equals to 0 and plo“d " Vn e N,t € T, respectively.

3.3.3. Adaption of planning and operational decisions
For a DSO, the planning decisions include the network re-
configuration (A ) and technology installation (A7), and the



operational control decisions include the active/reactive power
import (pi{”}/qin‘f}), bus voltage (¥,,), line current (7,”,,,,;), ac-
tive/reactive power flow (puo+/qnos and pumpi/Gmns), charg-
ing/discharging rate of storage (p;},), and reactive power out-
puts of the SVC (g;,7) and capacitor bank (qf,f’, .

The designed digital twin is able to adapt both the planning
and operational control decisions with transitions of a distribu-
tion system, through procedures as presented in Fig. 5. The
details of these procedures are explained as follows:

Step 1: When a distribution system transitions to a new state,
the actions (A£ and A7) are taken driven by minimising the cost
of the RL as Eq. (39).

Step 2: Once actions are taken, the network configurations
and technology installations would be fixed, based on which
the DSO makes control decisions (p'™, g™, ¥1, imnss Pross
An.ot> Pmnt> dmnits pf:t’ q:z‘,/rc’ CIZE’;) through SOlVil’lg the Optimi'
sation problem in Eq. (39), being subject to constraints of Egs.
(25) - (38).

Step 3: The sum of optimal values of four objective functions
are taken as the cost of the RL to judge how good the actions
are.

This procedures are iteratively proceeded through training
the RL model as detailed in the next section, until finding the
optimal solutions for both planning and operational control de-
cisions.

Step 1 H Pl Act 1 Step 2
Network Reconfiguration — e ACOE Active/Reactive Power Import
. N 1
. __New Technology Investment Bus Voltage
Reinforcement Line Current

,,,,,,,,,,,,,,,,,,,,,,,,,,,, Active/Reactive Power Flow

Charging/Discharging Rate of Storage E

Reactive Power Outputs of SVC

3 i
- + Optimal Operational |
Minimum Investment Cost =t I '
' P 1 Control Decisions
' Mimimum Power Loss

i Minimum Renewable Curtailment :
| P
Minimum Loss of Load 1

Fig. 5. Schematic illustration for procedures of adapting planning and opera-
tional control decisions with transitions of a distribution system.

Remark: For practical implementations, the time step corre-
sponds to the real-time operation of distribution systems. For
instance, for a half-hour time interval of the daily operation,
we have (At,|77]) = (0.5,48) and t=1,2,...,48. The stage corre-
sponds to the long-term transitions of distribution systems. For
instance, the composition of consumers’ load patterns changes
after 15 days, the stage interval Ak = (15%24) h.

4. Batch reinforcement learning

This section discusses the proposed data pre-processing algo-
rithm, upon which the FQI is developed to predict the optimal
Q-function with the states and actions as the inputs, through
iteratively training the CNNs. The off-policy RL algorithms,
e.g., Q-learning, FQI, and deep Q-network, have the potential
to make full use of historical data, compared to the on-policy
algorithms, e.g., SARSA. Given the action spaces of network
reconfiguration and new technology investment are not contin-
uous, the Q-learning, FQI, and deep Q-network are advanta-
geous compared to the deep deterministic policy gradient. The
FQI uses a batch of transitions to iteratively update the Q-value
estimates and uses neural networks to handle high-dimensional

input spaces, which improves from the traditional Q-learning.
Hence, this research uses the FQI as a batch RL approach.

4.1. Data pre-processing

Initial network parameters (i.e., weights and bias) are not
necessary before the data pre-processing step, since the step
of data pre-processing itself serves as an initialisation of net-
work parameters. The outputs of the data pre-processing
are batches of tuples which will be used in the initial step
of the FQI to train the initial network parameters. These
tuples include: (/) current states Si,SZ,SZ, (2) current ac-
tions Af,A¢, (3) next states Si,,,S¢, ,S;,,., and (4) cost
¢ (Si, S, S, Ai,Az). Let b denote the index of a batch and B
is the set of batches. Each batch contains |K| stages. Hence,
the data pre-processing would generate |B| X |K| tuples as
(S5 S0 S1 AL AL S 1 SE 1 SL o (S S5 ST AL AG)) L VK =
1,..,18| X |X|. The inputs of the data pre-processing are the
states of the network configuration and technology installation
at the initial stage, denoted as Sf) and Sg, respectively, and the
exogenous state of the load pattern over the entire |B| X | K]
stages, ST, ¥k = 1,....,|8| x |K|. For each iteration k, the proce-
dures of the pre-training are detailed as follows:

Step 1: Randomly generate the matrices of the actions of the
network reconfiguration, i.e., Ai, and technology investment,
i.e., A}, being subject to the constraint of Eq. (19).

Step 2: Calculate the next states of the network configuration,
i.e., S]f( 1> and technology installation, i.e., Sz Iy according to
Eq. (18) and Eq. (20), respectively.

Step 3: Calculate the cost, i.e., ¢ (S£ Sz, SZ, A]f(, AZ) by solv-
ing the multi-objective optimisation problem of Eq. (39), being
subject to the constraints of Eq. (25) - Eq. (38).

The algorithm of the data pre-processing is summarised in
Algorithm 1.

Algorithm 1 Algorithm of the data pre-processing
input: S{, S¢, S}
I: fork=1,..,|8| x|K| do
2:  randomly generate A,f( and A7, being subject to Eq. (19)
3:  calculate S/i+1 and S}, according to Eq. (18) and Eq.
(20), respectively
4:  calculate ¢ (Si, Se.SYL AL Az) by solving Eq. (39), being
subject to the constraints of Eq. (25) - Eq. (38).
5: end for

. lQf Y AT f
output: {S[.S¢,S7, AL AC.S{ . S¢ .

SY

et € (Sk St 8L AL AY))

4.2. Convolutional neural networks

The CNNs are used to predict the optimal Q-function with
the inputs of the states and actions as

g = "N (Si-S5. 81 AL A, (40)

where §* is the predicted optimal Q-function, and N (-) is the
regression function parametrised by tuning the CNNs.



ReLU

ReLU _ReLLU ReLU

@ O

o[o[ o TTi[o[o[ooo[io0] 0 [0
0[0[0 o]o[o]Lo[o[L[0[0] 0 1
olol 1 0 0 K I 61 51 N 1 ] 1
0[]0 O[i[o[0[0[0[T[0]0] 0
T[T[0[0 0 (0 K0 0 o B | ]
0[]0l 0 [0 [0 ojojz[ojolofoi[ofo [0 Lo
[0l 0 [0 [0 [ojojolilofo[o[o [Tk 0 L0 O O
0J0[ 1[0 1o ]oJojo[ololi[o[0[i] 0 [ L0
f e y f e
Sk Sk Sk: Ak Ak
Inputs Convolution 1 Pool 1

Flatten Fully-Connected Outputs

Pool 2

Convolution 2

Fig. 6. Architecture of the designed convolutional neural networks. The inputs are matrices of states and actions, and outputs are the predicted optimal Q-functions.
Each convolutional layer is followed by a pooling layer. The filter (red box) slides through the input matrices to extract feature representations as a feature map.
The global feature map is flatten as a vector and further processed by fully-connected layers.

The architecture of the proposed CNNs is presented in Fig.
6. The CNNs are capable of extracting feature representations
from high-dimensional inputs, i.e., the matrices of states and
actions. It is especially useful for capturing the spatial features
of these matrices, i.e., how the network configuration, technol-
ogy installation, and load pattern in one bus are related to its
surrounding buses within the filter size of the CNNs (see the
red box in Fig. 6). Each filter slides through the input matrices
to extract feature representations for generating a feature map
as

® = fU W e (8], 85.S) AL AS) + o, (41)
where @ is the feature map generated by a filter, fReLU (.) is the
activation function, e.g., rectified linear unit (ReLU), W is the
weight matrix of a filter, and o is the bias term.

Each convolutional layer is followed by a pooling layer to
reduce the spatial size of extracted features while keep key fea-
tures. The same padding is used to pad the input of each convo-
lutional layer and pooling layer with zeros around the border,
in order to keep the input size fitting the filter size. Multiple
feature maps generated by various filters are finally stacked as
a global feature map, before being flatten as a vector and further
processed by fully-connected layers.

4.3. Fitted Q-iteration

The aim of the FQI is to predict the optimal Q-
function through iteratively training neural networks with
the transition of states.  With the predicted optimal Q-
function, the actions for the network reconfiguration and
technology investment can be determined according to

Eq. (6). The inputs of the FQI are batches of tuples
(SL. 5581 AL AS LS5, S, o (SES5 S AL AS)) vk =

1, ..., 8| x |K| generated by Algorithm 1. The procedures of
the FQI are detailed as follows:

Step 1: At the initial stage, there is no trained neural net-
works to predict the optimal Q-function. Hence, the mini-
mum value of the optimal Q-function is assumed as 0. Ac-
cording to the Bellman optimality equation in Eq. (5),
q* (Sk,Ar) = c(Sk,Ar). Hence, train the initialised neu-
ral networks fNN with |B| x [K]| states and actions, i.e.,
S]i, Si, SZ,A;,A?,Vk = 1,..,|8| X |K|, as inputs, and |B| X |K]
costs, i.e., ¢ (Si St S, A,i, A;) ,Vk =1, ...,|8| x |K], as outputs.

Step 2: Take each batch b as an iteration. For each stage k

. . . . . . t e y
within the iteration b, given the next states, i.e., Sk+l s Sk+1, Sk+1’
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use the trained neural networks from the last iteration, i.e., f,il‘ll,
to predict the optimal Q-function, and find the minimum opti-
mal Q-function through heuristically searching the optimal ac-

tions for the next stage, i.e., Af, |, A?, , as
: Ak _ NN f e Yy f e
mn g = j,_; (Sk+1’ k+1’Sk+l’Ak+l’Ak+l)' (42)

Af

k+1?

e
Ak+l

According to Eq. (6), the corresponding optimal actions for
the stage k + 1 can be obtained as

Al,-Af, =arg min §’ (43)

f e
Ak+1 ’Ak+l

Step 3: Calculate the optimal Q-function of the stage k ac-
cording to the Bellman optimality equation in Eq. (5) as

q" (Si-S5. 81, AL A) = ¢ (SL. S5, S, AL AS )+ min g, (44)

k+1" k41

Step 4: Once the optimal Q-function for the entire
|K| stages are obtained, use |K| states and actions, i.e.,
S;. S5, S, AL AS, VK = 1,...,|K], as inputs, and |%| optimal Q-
functions, i.e., ¢* (Si, Se, Sz,A,i,Az) ,Vk = 1,...,|%], as outputs
to train the neural networks fr-.

The algorithm of the FQI is summarised in Algorithm 2.

Algorithm 2 Algorithm of the fitted Q-iteration

imput: (51,55, 5}, AL AS.SL .5, .S1.,.¢ (SL.85.81. AL A )
1: train ONN with Si, S:.S;, Ai, AS
¢ (S,i, Se.S)L AL Ai) as outputs
2. forb=1,..,|8 do
3 fork=1,..|K|do
4: use fbl‘?\lf to predict ¢* and find the minimum §* through

heuristically searchingA,i +1-A}, according to Eq. (42)

as inputs and

5: calculate g* (Si, St S{, A,fc, A;) according to Eq. (44)
6:  end for
7. train  fiN  with S},S¢,S),A],A¢ as inputs and

q (S,f{ St SZ, A,E, AZ) as outputs
8: end for
output: trained f~

The Flowchart of the batch RL and interactions of the data
pre-processing, neural network training, and FQI is illustrated
in Fig. 7.
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Fig. 7. Flowchart of the batch reinforcement learning and interactions of the data pre-processing, neural network training, and fitted Q-iteration.

5. Case studies

Case studies have been conducted to validate the perfor-
mances of the proposed model in terms of the learning accu-
racy, planning and operational strategies, and model scalability.

5.1. Simulation setup

The simulations were performed on a machine with In-
tel(R) Core(TM) i7-9700K CPU @ 3.00GHz and a NVIDIA
GeForce RTX 2080 GPU. The proposed model was written in
the Python, through which the neural networks were imple-
mented by Pytorch [29] and power flow analysis was imple-
mented by Pandapower [30]. The optimisation problems in
this study were solved by Gurobi Optimizer [31]. The simu-
lation was primarily implemented on the IEEE 33-bus distri-
bution network and compared to the IEEE 18-bus distribution
network and IEEE 69-bus distribution network to evaluate the
scalability.

The consumption data was sourced from 55 loads in the GB
low voltage distribution networks [32] in every half-hour over
one year. In each season of this year, 6 typical load patterns and
their occurrence probabilities were firstly generated through us-
ing the proposed CPM approach, in which 3 load patterns were
randomly selected to be integrated with the future energy sce-
narios. The PV data was sourced from [33] and electric vehicle
charging profiles were sourced from [34]. The fitted Q-iteration
was performed when the system transitions from one season to
another, i.e., batches |B| = 4. Other parameters used in the sim-
ulation are listed in Table 2.

The 6 typical load patterns were arbitrarily assigned to the
metering points representing the loads of the distribution net-
work by the proportion of occurrence probabilities. This arbi-
trary assignment was performed 500 times to create 500 states
of load patterns, i.e., |K| = 500. The action, next state, and
cost are calculated by the proposed data pre-processing algo-
rithm, forming 500 tuples. These 500 tuples are not sequential
and therefore were randomly split into 80% of the training set
and 20% of the testing set. Good hyper-parameters would im-
prove the learning accuracy and computational efficiency. The
z-score normalisation was used to normalise the batches as the
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inputs of the CNNs. The Adam Optimiser [35] was used to
train the CNNs for 50 epochs, with 1x1072 initial learning rate
and 1x107% weight decay of the L2 regularisation [36]. The
scheduler was used to adjust the learning rate, through which
the learning rate would be reduced by 1x1072 if there was no
improvement of the testing accuracy for continuous 5 epochs.
1x1072 dropout [37] was used to randomly drop units of the
CNNs in avoiding the issue of overfitting. The parameters of
the designed CNNs are shown in Table 3.

Table 2 Parameters used in the case studies.

Parameter  Value Parameter  Value Parameter  Value

plomin -500 kW prmax 500 kW g®mmin -500 kVar
grmax 500 kVar  ymin 0.95 pu ypax 1.05 pu

i 0.400 kA proma 300 kW e, 1000 kWh
gayemin -500 kVar  gjrem> 500 kVar gEomin 0 kVar

gehmax 500 kVar @ 95% o 0.7 Q/km

XU 0.7Q/km pu 409.09 WK v 1.75%10° J/kgK
pr 10 kW 0 4 min 18°C

Table 3 Parameters of the designed convolutional neural networks for the IEEE
33-bus distribution system.

Layer Input size Output size Filter number Filter size Stride Padding
Convolutional 1~ 33,18,1  33,18,32 32 5%5 1 2
Pooling 1 33,1832 16,9,32 1 2x2 2 0
Convolution 2 169,32 169,64 64 3x3 1 1
Pooling 2 169,64 84,64 1 2x2 2 0
Flatten 8,4,64 2048 - - - -
Fully-connected 1 2048 1024 - - - -
Fully-connected 2 1024 512 - - - -
Fully-connected 3 512 256 - - - -
Output 256 1 - - - -

5.2. Evaluation of learning accuracy

The learning losses are measured by the mean squared error
(MSE) [38] as

MSE : _|7<I Z

keK

(St S;. S AL AS) - 47 (S1. S5, ST, AL AS)]-

(45)



To evaluate the accuracy and convergence on the training and
testing, the designed CNNs are compared with the deep neural
networks (DNNs), long short-term memory (LSTM) of recur-
rent neural networks [39], and transformer networks [40] with
the differences as:

e DNNs: Two convolutional layers of our designed CNNs are
replaced by two 1024-node hidden layers.

e LSTM: Two convolutional layers of our designed CNNs
are replaced by two 1024-node hidden layers of LSTM. The
LSTM imports each row of the input matrix at each time step
and returns a 1024 vector as a global memory after processing
the entire matrix, i.e., 33 time steps.

o Transformer Networks: The convolutional layers of our
designed CNNs are replaced by the transformer architecture
(with a two-layer encoder only) with the setting of a 1024 feed-
forward dimension, 6 attention heads and positional encoding.

Other settings and parameters are remained the same as our
designed CNNs. If the scheduler reduces the learning rate be-
low 1x107° and no improvement of the accuracy is observed
for continuous 5 epochs, the learning process is defined as the
convergence. The losses of training and testing for 4 iterations
of the FQI are shown in Fig. 8. The computational time for the
CNNs, DNNs, LSTM, and transformer networks are 12,246 s,
10,036 s, 38,752 s, and 55,840 s respectively. It can be seen
that both the training and testing of four neural networks con-
verge within 50 epochs. The CNNs, LSTM, and transformer
networks yield better training and testing performances com-
pared to the DNNs. This is because the CNNs are able to
extract spatial features from high-dimensional input matrices;
The LSTM of recurrent neural networks are able to store key
features into the hidden memory when processing each row of
input matrices; The transformer networks are able to pay equal
attention to all the elements of input matrices and understand re-
lationships of these elements through using the attention mech-
anism. Nonetheless, the CNNs save 68.40% of computational
time compared to the LSTM and 78.07% of computational time
compared to the transformer networks. This is because stor-
ing memories and processing the high-dimensional matrices by
each row cause additional computational burdens for LSTM,
and the computational complexity of the transformer networks
quadratically increases with the sequence length of inputs.

5.3. Evaluation of model performances

First, the fitting results of the kernel density estimation is
presented in Fig. 9. The time steps 8, 16, 24, 32, 40, and 48
in winter are sampled to illustrate the fitting performance. The
results show a well fitted density function for every time step
with 8.82 x 1077 of the average MSE. Based on the fitted den-
sity function, typical load patterns in the summer and winter are
sampled as shown in Fig. 10 and Fig. 11, respectively. The red
lines are typical clusters and the grey lines are original power
profiles belonging to each cluster (sampled five of them for each
cluster for illustrating clarity). It can be seen from the figures
that there are some high consumptions in certain time of the
winter and their power demands are almost doubled compared
to those in the summer. This is caused by the electrification
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Fig. 8. Evaluation of the training and testing accuracy for our designed convolu-
tional neural networks (CNNs), deep neural networks (DNNs), long short-term
memory (LSTM) of recurrent neural networks, and transformer networks. The
x axes indicate the learning epoch, and y axes indicate the loss of the mean
squared error (MSE).

of heat, i.e., the integration of air-source heat pumps in future
energy scenarios.

Second, to evaluate the performances of our proposed model
in terms of (/) investment cost, (2) power loss, (3) loss of
load, and (4) renewable curtailment, the following four cases
are compared:

e Case 1 (Benchmark optimisation): Instead of predict-
ing the optimal Q-function using the CNNs as in our pro-
posed model, the benchmark optimisation finds the optimal
Q-function through solving the optimisation problem, which
yields a theoretical benchmark to evaluate how far the predicted
optimal decisions of our proposed model are from the theoreti-
cal optimal ones.

e Case 2 (Single-stage optimisation): Instead of iteratively
adapting the CNNs with the dynamic state transitions as in the
FQI, the single-stage optimisation is a model-based solution
which solves the optimisation problems in Eq. (39) for every
stage independently.

e Case 3 (Proposed model): Our proposed model iteratively
trains the CNNs through the FQI algorithm. Optimal actions
can be yielded from the predicted optimal Q-function.

e Case 4 (Monte Carlo tree search): As the approach devel-
oped in our previous research [14], the Monte Carlo tree search
based RL is used to find optimal actions by simulating many
possible trajectories and choosing the best one.
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Fig. 9. Fitting results of the kernel density estimation. The time steps 8, 16,
24, 32, 40, and 48 in winter are sampled to illustrate the fitting performance.
The x axes indicate the range of power distribution, and the y axes indicate the
probability density function.
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Fig. 10. Typical load patterns in summer. The red lines are typical clusters and
the grey lines are original power profiles belonging to each cluster (sampled
five of them for each cluster for illustrating clarity). The x axes indicate the
time steps, and the y axes indicate the power demand.

o Case 5 (Deep deterministic policy gradient [41]): The deep
deterministic policy gradient is also used as a comparison, in
which the critic and critic target networks have the same struc-
ture as our designed CNNs, and the actor and actor target net-
works consist of 2 hidden layers with the node numbers of 400
and 300. The discount factor is set as 0.99, and the soft update
coefficient is set as 0.001.

The comparison of our proposed model, single-stage optimi-
sation, Monte Carlo tree search, and deep deterministic policy
gradient against the benchmark optimisation in terms of the in-
vestment cost, power loss, loss of load, and renewable curtail-
ment is presented in Fig. 12. It can be seen that through itera-
tively training the neural networks with the system transitions,
the results of our proposed model in the four criteria are closest
to the theoretical optimal results yielded by the benchmark opti-
misation (lower percentage levels compared to the single-stage
optimisation, Monte Carlo tree search, and deep deterministic
policy gradient). The investment costs of our proposed model
are reduced by approximately 50% when the system transitions
towards winter, compared to the single-stage optimisation (in-

13

Cluster 1 Cluster 2 Cluster 3

12

0.8
0.6
0.4
0.2

Cluster 5 Cluster 6

Power (kW)

Cluster 4

12

0.8
0.6
0.4

0.2 o
i

12 24 36
Time (0.5 h)

36 481 481 12 24 36 48

Fig. 11. Typical load patterns in winter. The red lines are typical clusters and
the grey lines are original power profiles belonging to each cluster (sampled
five of them for each cluster for illustrating clarity). The x axes indicate the
time steps, and the y axes indicate the power demand.

creased by approximately 3 times). This is because the pro-
posed model considers the cumulative costs covering multiple
stages, and adapt the model with the dynamic system transi-
tions. In addition, the power loss and loss of load of our pro-
posed model, Monte Carlo tree search, and deep deterministic
policy gradient can be maintained to a negligible level (within
5% compared to the benchmark optimisation) through optimal
operational control and planning on the network structure and
technology installation. For the renewable curtailment, the RL
algorithms pay more attention to the security of supply, so as to
maintain higher levels for the state of charge of storages. Af-
ter the storages are fully charged, the rest renewable generation
is curtailed. By contrast, the single-stage optimisation has to
curtail loads on the occasion when the storage discharge and
renewable generation are unable to meet the demand. The per-
centage of the loss of load in the single-stage optimisation is
also higher than that of the renewable curtailment in the RL al-
gorithms. On the context of adapting seasonal transition, our
proposed model is less sensitive to the variance in the estimates
of the Q-values, and therefore yields better performances than
the Monte Carlo tree search. Compared to the deep determinis-
tic policy gradient, the FQI is more suitable for discrete actions
and simple for implementations through a straightforward iter-
ative process of training CNNs.

Third, to illustrate how our proposed model assists the DSO
to adapt optimal planning decisions with the system transitions,
responding to the transition of load pattern from summer (see
Fig. 10) to winter (see Fig. 11), the transitions of network
configuration and technology installation are shown in Fig. 13.
Facing the transition of the load patterns, the DSO determines
the reconfiguration of the distribution network and invests in
new technologies to balance the active and reactive power in the
distribution network, with the targets of minimising the invest-
ment cost, power loss, loss of load, and renewable curtailment.
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5.4. Evaluation of scalability

To evaluate the scalability of our proposed model, the IEEE
18-bus distribution system, IEEE 33-bus distribution system,
and IEEE 69-bus distribution system were used to test the com-
putational time in comparison with the benchmark optimisa-
tion. The parameters of CNNs for the IEEE 18-bus distribution
system and IEEE 69-bus distribution system are shown in Table
4. The filter number, filter size, stride, padding, and parameters
of the fully-connected and output layers are the same as listed
in Table 3. The comparison of computational time between the
proposed model and benchmark optimisation is shown in Ta-
ble 5. The computational time for our proposed model includes
the time used for the data pre-processing, iteratively training the
CNNs using the FQI, and predicting the optimal Q-functions by
trained CNNs. The computational time for the benchmark opti-
misation includes the time used for the data pre-processing and
iteratively solving the optimisation problem to obtain the opti-
mal Q-function. Since the data pre-processing used in both the
proposed model and benchmark optimisation is identical, the
only difference of computational time is caused by the differ-
ence between training CNNs and solving the optimisation prob-
lem. Once the CNNs are well trained, the optimal decisions can
be produced in microseconds. As indicated in the table, com-
pared to the benchmark optimisation, our proposed model can
reduce the computational time through using the trained CNN’s
to process the high-dimensional inputs of states and actions and
predict optimal Q-functions. It is in particular when the scale of
the distribution system increases, the computational time of our
proposed model remains almost unchanged whereas the com-
putational time of the benchmark optimisation dramatically in-
creases. Therefore, our proposed model saves 68.18%, 82.89%,
and 90.81% of computational time from the benchmark optimi-
sation under the IEEE 18-bus, 33-bus, and 69-bus distribution
networks, respectively.
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Table 4 Parameters of the designed convolutional neural networks for the IEEE
18-bus distribution system and IEEE 69-bus distribution system.

IEEE 18-bus distribution system  IEEE 69-bus distribution system

Layer

Input size  Output size Input size  Output size
Convolutional 1 18,20,1 18,20,32 69,28,1 69,28,32
Pooling 1 18,20,32 9,10,32 69,28,32 34,14,32
Convolution 2 9,10,32 9,10,64 34,14,32 34,14,64
Pooling 2 9,10,64 4,5,64 34,14,64 17,7,64
Flatten 4,5,64 1280 17,7,64 7616

Table 5 Evaluation of the scalability on computational time under various IEEE
distribution networks.

Computational time (s) Proposed model  Benchmark optimisation

IEEE 18-bus distribution network 12,218 38,402
1IEEE 33-bus distribution network 12,246 71,578
IEEE 69-bus distribution network 13,007 141,585

6. Research advantages, challenges, and prospects

This study digitalises physical distribution networks in sup-
porting the planning and operational decision making of the
DSO. For the predicability, on one hand, the proposed data pre-
processing approach evaluates every potential scenario of plan-
ning and operation prior to the actual installation of a distribu-
tion system. On the other hand, considering future energy sce-
narios on the roof-top solar panels, air-source heat pumps, and
electric vehicles helps envisage the potential impacts of tran-
sitions of local energy systems. For the responsiveness, once
the distribution system transitions to a new state, the optimal
control decisions can be taken and the operational constraints
can be maintained in a real-time manner. For the interoperabil-
ity, the designed digital twins are able to align the interests of
stakeholders to system benefits, i.e., reducing the loss of load
for consumers, avoiding renewable curtailment for distributed
generators, and minimising the investment cost and power loss
for the DSO. For the automation, digital twins optimise every
single element of a distribution system, e.g., power flow and
voltage, and directly perform those control actions.

Nonetheless, dating back to nationalised and municipal
power systems, legacy assets of less monitored low voltage dis-
tribution networks still pose a challenge to this study. Over-
coming this challenge requires (/) collection and access of to-
pographic, demographic, social-economic, and technical infor-
mation of the last mile of distribution networks, and (2) sophis-
ticated model to automatically synthesise approximations of the
last mile of distribution networks.

As future prospects, first, research community and industrial
practise need to develop novel explainable artificial intelligence
and user friendly interface, so that the model outputs can be un-
derstood by both engineers and data scientists. Second, plan-
ning and policy experts need to validate the model against en-
visaged system transitions, in order to make informed decisions
based on the model outputs. Third, given the massive and ac-
tive engagement of consumers holds the key to the provision
of last mile information, proper incentive strategy needs to be
developed to facilitate such engagement.
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total number of installed technologies.

7. Conclusions

Transitioning to low carbon power networks carries consid-
erable technical risks. To mitigate resulting operational and fi-
nancial consequences, in future, DSOs will need tools to sup-
port decision making based on realistic representations of their
infrastructures. This paper proposes a digital twin based RL
model to exploit data from distribution systems in supporting
the decision making of the DSOs. The digital twin imports the
states of network configurations, technology investments, and
load patterns from physical distribution systems. These high-
dimensional states are captured through iteratively training the
CNNs using the FQI algorithm. Key findings of this study can
be summarised as follows:

e Case studies demonstrate that the designed CNNs yield
better learning accuracy compared to the DNNs, LSTM,
and transformer networks when extracting key features
from high-dimensional inputs. The CNNs save 68.40%
and 78.07% of computational time from the LSTM and
transformer networks, respectively. Electrification of heat
and transportation causes doubled consumption in winter
compared to summer.

The proposed model can reduce 50% of the investment
cost when the system transitions towards winter.

The power loss and loss of load are managed within 5%
compared to the benchmark optimisation.

Our proposed model is scalable to various distribution net-
works in terms of the computational efficiency, by saving
68.18%, 82.89%, and 90.81% of computational time from
the benchmark optimisation under the IEEE 18-bus, 33-
bus, and 69-bus distribution networks, respectively.

From the perspective of industrial practices, the designed
digital twins provide a transferable, scalable, and computational
efficient model, for meeting the requirements of DSOs on ex-
ploiting physical data to assist their decision making.
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