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Abstract: We revisit the 3d GLSM computation of the equivariant quantum K-theory
ring of the complex Grassmannian from the perspective of line defects. The 3d GLSM
onto X = Gr(Nc, nf ) is a circle compactification of the 3d N = 2 supersymmetric gauge
theory with gauge group U(Nc)k,k+lNc and nf fundamental chiral multiplets, for any choice
of the Chern-Simons levels (k, l) in the ‘geometric window’. For k = Nc −

nf

2 and l = −1,
the twisted chiral ring generated by the half-BPS lines wrapping the circle has been
previously identified with the quantum K-theory ring QKT (X). We identify new half-BPS
line defects in the UV gauge theory, dubbed Grothendieck lines, which flow to the structure
sheaves of the (equivariant) Schubert varieties of X. They are defined by coupling N = 2
supersymmetric gauged quantum mechanics of quiver type to the 3d GLSM. We explicitly
show that the 1d Witten index of the defect worldline reproduces the Chern characters
for the Schubert classes, which are written in terms of double Grothendieck polynomials.
This gives us a physical realisation of the Schubert-class basis for QKT (X). We then use 3d
A-model techniques to explicitly compute QKT (X) as well as other K-theoretic enumerative
invariants such as the topological metric. We also consider the 2d/0d limit of our 3d/1d
construction, which gives us local defects in the 2d GLSM, the Schubert defects, that realise
equivariant quantum cohomology classes.
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1 Introduction

Two-dimensional N = (2, 2) supersymmetric gauge theories often give us useful UV comple-
tions of non-linear σ-models (NLSMs) onto a target space X, where X is a Kähler manifold.
Such 2d gauge theories are known as gauged linear σ-models (GLSM) [1]. The target
space X is realised as a classical Higgs branch — that is, as a Geometric Invariant Theory
(GIT) quotient, X = V//G, where the vector space V ∼= Cn is spanned by VEVs of chiral
multiplets, and G is the gauge group. When G is abelian, X is famously a toric manifold.1
In this paper, we consider one of the simplest non-abelian GLSMs, namely the one with a
gauge group G = U(Nc) coupled to nf fundamental chiral multiplets. The target space is
then the complex Grassmannian of Nc-planes in Cnf :

X = CNcnf //U(Nc) ∼= Gr(Nc, nf ) . (1.1)

Famously, the twisted chiral ring of this 2d N = (2, 2) gauge theory, R2d, is isomorphic to
the NLSM twisted chiral ring, which is itself identified with the small (equivariant) quantum
cohomology ring of X [5]:

R2d ∼= QH•
T (X) . (1.2)

The GLSM naturally encodes the SL(nf ,C)-equivariant deformation of X, which corre-
sponds to turning on the twisted mass parameters mα (α = 1, · · · , nf ) for the SU(nf )
flavour symmetry. The twisted chiral ring can be deduced most directly from the knowledge
of the effective twisted superpotential W(σ,m) on the 2d Coulomb branch. Moreover, we
have a Frobenius algebra structure on R2d. The Frobenius metric, also called the topological
metric, is given by the two-point function of twisted chiral ring operators in the topological
A-model on the sphere:

η(ωµ, ων) ≡ ⟨ωµ ων⟩P1 , (1.3)

where ωµ form a K-basis of R2d, and we have the topological A-twist on P1 ∼= S2. Note
that, in general, we are working over the field of equivariant parameters, which is K ≡
Q[m1, · · · ,mnf

, q2d] for this 2d field theory (here q2d denotes the 2d ‘quantum parameter’).
In this work, we are interested in the 3d N = 2 uplift of this 2d GLSM, building on

a number of previous works in recent years [6–11]. To define the 3d theory, we must also
specify the Chern-Simons (CS) levels k and l for the 3d gauge group:

U(Nc)k,k+lNc ≡
SU(Nc)k ×U(1)Nc(k+lNc)

ZNc

. (1.4)

Following standard semi-classical methods [12], we recently analysed the vacuum structure
of this theory as a function of Nc, nf and k, l, which uncovered a rich structure of infrared
vacua [13]. When the 3d Fayet-Iliopoulos (FI) parameter ξ is positive, there always exists a
maximal Higgs branch (1.1), but there are also many more topological and hybrid vacua in
general. In this paper, we will focus on the geometric window in the parameters (k, l), at
fixed Nc, nf , such that the only vacua at ξ > 0 are on the Higgs branch X. In this case, it

1More generally, it could be a toric variety or even a toric stack — see e.g. [2–4].

– 1 –
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makes sense to look for a purely geometric interpretation of our 3d GLSM. We consider the
3d N = 2 theory on Σ× S1 and study the theory as an effective 2d N = (2, 2) theory on Σ
with a topological A-twist [14] — this is also called the 3d A-model [15, 16]. The twisted
chiral operators of this effective theory are half-BPS line operators, L , wrapped on the S1

factor, and they again form a ring, R3d, with the topological metric:

η(Lµ,Lν) ≡ ⟨Lµ Lν⟩P1×S1 . (1.5)

It is expected that every such line L flows to a element of the (equivariant) quantum
K-theory of X. For instance, it has been proposed that the standard Wilson lines flow to
locally free sheaves (that is, vector bundles) on X [9, 10]. In this work, our main focus
will be on constructing new half-BPS operators in the UV gauge theory that flow to more
general coherent sheaves with support on Schubert varieties inside X. We call these lines
the Grothendieck lines, for reasons that will become clear momentarily.

Quantum K-theory ring from GLSM. Interestingly, the requirement of being inside
the geometric window still allows for many different values of the CS levels k, l. For the
specific choice:

k = Nc −
nf
2 , l = −1 , (1.6)

it is known that the twisted chiral ring is to be identified with the ‘standard’ (equivariant)
quantum K-theory [17–19] of the Grassmannian [7, 8]:

R3d ∼= QKT (X) . (1.7)

This quantum K-theory ring of X was first computed explicitly in [6]. From the physics
perspective, the twisted chiral ring R3d is naturally realised as the algebra of Wilson
lines [20]. In the present paper, we realise R3d in terms of defect lines instead, and we show
that these Grothendieck lines correspond to the structure sheaves of Schubert varieties of
X, Oλ (where the partition λ indexes the Schubert varieties), which allows us to directly
compare our physics computations to the mathematical results of Buch and Mihalcea [6].
Of course, we find perfect agreement. We also compute the twisted chiral ring for other
values of k, l in the geometric window, but we leave a full mathematical interpretation of
these results for future work — it is expected that these 3d GLSMs are related to quantum
K-theory with ‘level structure’ [21, 22], but a more precise understanding remains lacking.

The 3d A-model is best formulated in terms of an effective theory on the 2d Coulomb
branch, in which case the ring structure is encoded in the effective twisted superpotential
W(x, y) [14, 23]. In that context, we can write everything in terms of the single-valued gauge
parameters xa, a = 1, · · · , Nc, and of the flavour parameters yα. These are interpreted as the
exponentiated Chern roots of the tautological bundle S over X and the SU(nf )-equivariant
parameters (with yα = 1 in the non-equivariant limit), respectively. Any (equivariant)
coherent sheaf E on X enters the 3d A-model through its (equivariant) Chern character
ch(E), which is a polynomial in the xa’s (and rational in the yα’s, in our conventions). In
particular, the Chern character of the (equivariant) sheaves Oλ is given by the double
Grothendieck polynomials [24, 25]:

chT (Oλ) = Gλ(x, y) . (1.8)

– 2 –
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As an application of the Gröbner-bases methods reviewed in [13], we will write down
the ring QKT (X) directly in terms of formal variables Oλ that represent the Schubert
classes. All obvervables are naturally valued in K ≡ Z(y1, · · · , ynf

, q), with q the 3d
‘quantum parameter’.

Grothendieck lines as 1d SQM. We will define the Grothendieck lines in the UV 3d
N = 2 gauge theory in terms of an N = 2 supersymmetric quantum mechanics (SQM)
written as a 1d quiver gauge theory coupled to the 3d gauge fields. In particular, the 1d
Witten index of the SQM gives us precisely the Chern character of the coherent sheaf to
which the defect flows in the infrared. Using the localisation formula for the Witten index of
a gauged SQM [26], we demonstrate that the Witten indices of the Grothendieck lines give
us precisely the Grothendieck polynomials (1.8). This provides a new physical realisation
of the Grothendieck polynomials as supersymmetric path integrals of 1d N = 2 quivers.

It is interesting to note that the (double) Grothendieck polynomials can also be
realised as wavefunctions in certain integrable systems [27–29]. The two perspectives are
conjecturally related by the Bethe/gauge correspondence [14, 23]. See e.g. [30] for a similar
construction of point defects in the 2d N = (2, 2) GLSM for T ∗Pnf−1 which correspond to
the Bethe wavefunctions in the XXX spin chain.

JK residues and enumerative invariants. We will also revisit the computation of K-
theoretic enumerative invariants using the 3d A-model on P1×S1 as well as the localisation
formula for the twisted index [31] (see also [32–34]) with insertion of Grothendieck lines,〈

OλOµ · · ·
〉
P1×S1

. (1.9)

All such observables can be computed either from the 3d A-model perspective or from
a sum over Jeffrey-Kirwan (JK) residues, and we explore both perspectives. We show
that, for (k, l) in the geometric window, the JK residue formula only obtains contribution
from poles associated with Higgs branch vacua. In particular, for q = 0, this gives a
simple integral representation of the K-theoretic Littlewood-Richardson coefficients. We
also compute the topological metric (1.5) explicitly. These results are straightforward
application of well-established supersymmetric localisation results, which also have a more
rigorous mathematical counterpart [19, 35].2

Finally, we explore the 2d limit of the 3d GLSM, which corresponds to the ordinary
GLSM for the Grassmannian. The latter computes the equivariant quantum cohomology
QH•

T (X). In that limit, the Grothendieck lines become defect point operators that represent
equivariant cohomology classes. They are realised in the A-twisted GLSM as double
Schubert polynomials, which we reconstruct from the N = 2 supersymmetric matrix models
describing the point defects.

This paper is organised as follows. In section 2, we review aspects of the 3d A-model
for the 3d N = 2 U(Nc)k,k+lNc gauge theory coupled to nf fundamental chiral multiplets.

2More precisely, the results of [19] should correspond to supersymmetric localisation of the 3d gauge
theory on C× S1 with the Ω-background on C. It would be interesting to rigorously establish the residue
formulas we discuss section 4 from a mathematical perspective.

– 3 –
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We recall the JK residue formula for the P1 × S1 correlation functions and show how these
expressions simplify in the geometric window. In section 3, we explicitly construct the
Grothendieck lines as 1d supersymmetric quivers, and we demonstrate that these lines
flow to the structure sheaves of the Schubert subvarieties of X = Gr(Nc, nf ). In section 4,
we revisit the computation of QKT (X) from the GLSM perspective. In section 5, we
briefly discuss the 2d limit of our results. Various supplementary materials are provided
in appendix.

2 The 3d A-model onto the Grassmannian

Let us consider the 3d N = 2 SQCD[Nc, k, l, nf , 0] theory. That is, we have the gauge
group U(Nc)k,k+lNc coupled to nf fundamental chiral multiplets, with k+ nf

2 ∈ Z due to the
parity anomaly. Let us study this theory on Σ× S1, with the topological A-twist along the
Riemann surface Σ. We are interested in the half-BPS line defects that preserve the A-twist
supercharges, and which must then wrap the S1. Such lines appear as twisted chiral local
operators from the perspective of the effective 2d N = (2, 2) supersymmetric theory on Σ.
This effective 2d theory is sometimes called the 3d A-model [15]. In the case at hand, it
consists of an effective field theory on the classical 2d Coulomb branch (CB). We thus have
Nc abelian 2d vector multiplets Va (a = 1, · · · , Nc) for a maximal torus ∏Nc

a=1 U(1)a of the
U(Nc) gauge group, which interact through a one-loop-exact twisted superpotential W(u).

Owing to their 3d origin, the 2d CB scalars, denoted by ua, are dimensionless and only
defined up to the gauge equivalences ua ∼ ua + 1. Similar comments hold for background
vector multiplets for 3d flavour symmetries, which give us twisted masses να. It is convenient
to use the single-valued variables:

xa ≡ e2πiua , yα ≡ e2πiνα , q ≡ e2πiτ . (2.1)

The SU(nf ) flavour fugacities yi satisfy the constraint ∏nf

α=1 yα = 1, and q denotes the
exponentiated FI parameter — here τ ≡ ϑ

2π + iβξ, with β the radius of S1 and ξ the real
FI parameter for the U(Nc) gauge group. Then, the effective twisted superpotential for
SQCD[Nc, k, l, nf , 0] reads:

W = 1
(2πi)2

nf∑
α=1

Nc∑
a=1

Li2(xay−1
α ) + τ

Nc∑
a=1

ua

+
k + nf

2
2

Nc∑
a=1

ua(ua + 1) + l

2

( Nc∑
a=1

ua

)2

+
Nc∑
a=1

ua

 .

(2.2)

The so-called Bethe equations,
Πa(x, y, q) = 1 , (2.3)

determine the 2d vacua of the 3d A-model, also known as the Bethe vacua. The quantity
Πa is the gauge flux operator:

Πa(x, y, q) ≡ e2πi∂uaW = q(− detx)l(−xa)k+
nf
2

nf∏
α=1

1
1− xay−1

α
. (2.4)

– 4 –
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Here, we also introduced the notation detx ≡ ∏Nc
a=1 xa. A Bethe vacuum, which we denote

by x̂ ≡ (x̂a), is defined as a solution to the Bethe equations that is acted on freely by the
U(Nc) Weyl group:

SBE =
{
x̂
∣∣∣ Πa(x̂, y, q) = 1 , ∀a and x̂a ̸= x̂b , ∀a ̸= b

}/
SNc . (2.5)

Such solutions come in Weyl orbits of Nc! solutions, obtained by permutation of the CB
variables xa, and we count the Bethe vacua up to such permutations. The number of Bethe
vacua is equal to the Witten index of the 3d N = 2 gauge theory. The latter was computed
explicitly in [36] for all values of Nc, k, l and nf .

2.1 Correlation functions of half-BPS lines and Frobenius algebra

We wish to compute the correlation functions of half-BPS lines, Lµ. We will sometimes
denote by L any given product of such lines located at distinct points on Σ:

L =
∏
s

Lµs(ps) . (2.6)

Due to the topological A-twist, correlation functions do not depend on the positions ps ∈ Σ,
hence we will often omit these labels in the following. Parallel lines form a ring, R3d, which
is defined physically as the twisted chiral ring obtained by fusion along Σ, with the product:

LµLν = NµνλLλ , Nµνλ ∈ K ≡ Z(y, q) . (2.7)

Here, {Lµ} forms a K-basis of R3d, and the sum over repeated indices is understood. The
structure coefficients are encoded by certain 3-point functions. Moreover, the ring R3d

is endowed with a Frobenius algebra structure because the A-model is a 2d TQFT on
Σ — see [8] for an explicit discussion in the present case. The non-degenerate Frobenius
metric η, also known as the topological metric, is simply the two point function on the
Riemann sphere:

ηµν ≡ η(Lµ,Lν) =
〈
Lµ(p1)Lν(p2)

〉
P1×S1

. (2.8)

Let us denote by ηµν the inverse metric. Then, the structure constants are obtained from
the genus-0 three-point functions according to:

Nµνλ = ηλδNµνδ , Nµνδ =
〈
Lµ(p1)Lν(p2)Lδ(p3)

〉
P1×S1

. (2.9)

Here, the ‘expectation value’ ⟨· · · ⟩Σ×S1 denotes the unnormalised path integral of the 3d
N = 2 supersymmetric field theory on Σ × S1 with the A-twist along Σ and with the
periodic spin structure on S1. Note that these observables are valued in the field K = Z(y, q)
of rational functions with integer coefficients of the 3d flavour parameters yα and q. The
integrality property is related to the fact that we are considering a 3d N = 2 theory on
Σ× S1, hence the observables could also be computed, in principle, as traces over Hilbert
spaces of certain effective supersymmetric quantum mechanics on S1 — see e.g. [37–39].

Let us now review two distinct ways by which we will explicitly compute these
observables:

– 5 –
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The Bethe-vacua formula. From the perspective of the infrared Coulomb-branch theory
on Σ, one can compute any correlator on the sphere as a sum over the Bethe vacua [14]:〈

L
〉
P1×S1

=
∑

x̂∈SBE

H(x̂, y)−1 L (x̂, y, q) . (2.10)

Here, H is known as the handle-gluing operator. As an explicit rational function in the
gauge parameters, it reads:

H(x, y, q) = det (H) e2πiΩ , (2.11)

with H the Hessian matrix:

Hab(x, y) = ∂W
∂ua∂ub

= δab

(
k + nf

2 +
nf∑
α=1

xay
−1
α

1− xay−1
α

)
+ l , (2.12)

and Ω the effective dilaton potential, which is given by:

e2πiΩ =
nf∏
α=1

Nc∏
a=1

(1− xay−1
α )−r+1 ∏

a,b
a ̸=b

(1− xax−1
b )−1 (detx)KRG . (2.13)

Note the dependence on the R-charge r ∈ Z for the chiral multiplets and on the gauge-R bare
CS level KGR — we will shortly set r = 0 and KGR = 0. In writing down (2.2) and (2.13),
we set all bare flavour and R-symmetry CS levels to zero, KFF = KFR = KRR = 0,
following the conventions of [13]. In (2.10), the product of lines, L , is represented by a
polynomial L (x, y, q). These line operators will be the studied in more detail in section 3.

In principle, the sum over Bethe vacua (2.10) can be performed explicitly using com-
putational algebraic geometry methods, as we explained in [13]. In practice, this method
relies on Gröbner basis algorithms that quickly become computationally prohibitive as
we increase nf and Nc. Such methods can nonetheless be used to efficiently compute the
quantum K-theory ring of the Grassmannian for small-enough values of Nc and nf , as we
will discuss in section 4.

The JK residue formula. The other method to compute correlation functions on the
sphere is through supersymmetric localisation in the UV theory, which leads to a JK residue
formula [31] (see also [33, 34]):〈

L
〉
P1×S1

= 1
Nc!

∑
m∈ZNc

∑
x∗∈M̃m

sing

JK-Res
x=x∗

[Q(x∗), ηξ] Im[L ](x, y, q) . (2.14)

This formula involves a sum over all U(Nc) magnetic fluxes m = (ma) ∈ ZNc through P1,
and a sum over JK residues in each flux sector. The JK residues are taken with respect to
the Nc-form:

Im[L ](x, y, q) = (−2πi)NcZm(x, y, q)L (x, y, q) dx1
x1
∧ · · · ∧ dxNc

xNc

, (2.15)

– 6 –
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which has codimension-Nc singularities (including at infinity) denoted by M̃sing. For each
magnetic flux m ∈ ZNc , the factor Zm is given in terms of the effective dilaton potential
and gauge flux operators as:

Zm(x, y, q) = e−2πiΩ
Nc∏
a=1

Πa(x, y, q)ma . (2.16)

To each singularity x∗ ∈ M̃sing, one assigns a charge vector Q(x∗) which determines whether
or not the singularity contributes non-trivially to the JK residue, given a choice of the
auxiliary parameter ηξ. In appendix A, we further study this JK residue formula for the
SQCD[Nc, k, l, nf , 0] theory. In particular, we show that, for a certain choice of ηξ, the sum
over singularities x∗ is closely related to the sum over 3d vacua that we recently studied
in [36].

2.2 The geometric window and the Grassmannian 3d GLSMs

For positive FI parameters and vanishing masses, ξ > 0 and να = 0, the SQCD[Nc, k, l, nf , 0]
theory has a pure Higgs branch given by the Grassmannian manifold:

MHiggs = Gr(Nc, nf ) . (2.17)

For generic values of k and l, the theory also has a number of additional topological and
hybrid vacua [36], which precludes a purely geometric interpretation of the infrared physics.
At fixed Nc and nf with nf ≥ Nc, we will say that the U(Nc) gauge theory is in the
geometric window if and only if its Witten index is equal to the Euler characteristic of
the Grassmannian:

IW [Nc, k, l, nf , 0] = χ(Gr(Nc, nf )) =
(
nf
Nc

)
, (2.18)

with IW [Nc, k, l, nf , 0] the index computed in [36]. The geometric window intersects the
subset of theories with l = 0 at |k| ≤ nf

2 . For l ≠ 0, we find a larger but finite number of
theories in the geometric window.3 Let ngw(Nc, nf ) denote the number of such theories
with l < 0. Then, the number of distinct theories in the geometric window is:

N tot
gw (Nc, nf ) = 2ngw(Nc, nf ) + nf + 1 . (2.19)

Using the known formula for the Witten index [36], we can compute ngw by brute force, as
shown in table 1. For Nc = 2 and Nc = 3 (and nf > Nc), we find the patterns:

ngw(2, nf ) = nf (nf + 1)
2 + 1 + δnf ,3 ,

ngw(3, nf ) =


n2

f

4 + 2 + 3δnf ,4 if nf is even,
n2

f

4 + 7
4 + δnf ,5 if nf is odd.

(2.20)

We did not find any clear pattern in general, however. It may be useful to further distinguish
3We exclude the case Nc = 1 from this discussion, since l is a redundant parameter in that case. A

completely explicit (though unwieldy) formula for IW [Nc, k, l, nf , 0] is given in [36]. We do not have any
more elegant description of the geometric window at the moment.
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Nc\nf 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
2 8 11 16 22 29 37 46 56 67 79 92 106 121 137 154 172 191 211 232 254 277 301 326 352 379
3 - 9 9 11 14 18 22 27 32 38 44 51 58 66 74 83 92 102 112 123 134 146 158 171 184
4 - - 12 10 11 12 15 18 21 25 29 33 38 43 48 54 60 66 73 80 87 95 103 111 120
5 - - - 17 12 12 13 14 16 19 22 25 28 32 36 40 44 49 54 59 64 70 76 82 88
6 - - - - 23 15 13 14 15 16 18 20 23 26 29 32 35 39 43 47 51 55 60 65 70
7 - - - - - 30 19 16 15 16 17 18 20 22 24 27 30 33 36 39 42 46 50 54 58
8 - - - - - - 38 23 19 17 17 18 19 20 22 24 26 28 31 34 37 40 43 46 49
9 - - - - - - - 47 28 22 20 19 19 20 21 22 24 26 28 30 32 35 38 41 44
10 - - - - - - - - 57 33 26 23 21 21 21 22 23 24 26 28 30 32 34 36 39
11 - - - - - - - - - 68 39 30 26 24 23 23 23 24 25 26 28 30 32 34 36
12 - - - - - - - - - - 80 45 34 29 27 25 25 25 25 26 27 28 30 32 34

Table 1. Some values of ngw(Nc, nf ), the number of theories in the geometric window with l < 0.

between theories in the geometric window which are maximally chiral (|k| < nf

2 ), marginally
chiral (|k| = nf

2 ), or minimally chiral (|k| > nf

2 ). We denote the number of such theories
with l < 0 by n+

gw, n0
gw and n−gw, respectively, with ngw = n+

gw + n0
gw + n−gw. The three

types of theories are distinguished by their infrared dual description [13, 40, 41]. In the
maximally chiral case, we have the duality [13]:

U(Nc)k, k+lNc , nf ←→ U(nf −Nc)−k,−k+l(nf−Nc) , nf , (2.21)

in which case the Higgs branch vacua are easily matched as:

Gr(Nc, nf ) ∼= Gr(nf −Nc, nf ) . (2.22)

One can also check, in examples, that we have n+
gw(Nc, nf ) = n+

gw(nf − Nc, nf ), as one
would expect from the duality (2.21). The dualities for the marginally and maximally chiral
theories are more complicated, with the dual gauge group being U(|k|+ nf

2 −Nc)×U(1);
in that case, in the classification of [36], the Higgs branch (2.17) appears in the dual gauge
theory as a hybrid Higgs-topological vacua such that the would-be TQFT factor has a
single state. In this work, we shall focus on the ‘electric’ SQCD description; it would
certainly be interesting to understand better the duality map on defect lines (beyond the
well-understood l = 0 case [34]).

Grassmannian 3d N = 2 GLSMs. For the massless SQCD[Nc, k, l, nf , 0] theory with
(k, l) in the geometric window, by definition, we have a unique Higgs branch of vacua (2.17)
when ξ > 0. Turning on the SU(nf ) mass parameters, yα ̸= 1, along the maximal torus
T ⊂ U(nf ), one achieves a T -equivariant deformation of the geometry, and the Higgs branch
collapses to χ(Gr(Nc, nf )) massive vacua.

Picking any (k, l) in the geometric window, we then obtain a 3d GLSM which corresponds
to the 3d gauge theory on Σ×S1. Following the 3d renormalisation group flow, it is expected
that the gauge theory with ξ ≫ 0 flows to an infrared 3d NLSM onto X ≡ Gr(Nc, nf ):

3d NLSM : Σ× S1 −→ X . (2.23)

We will not attempt to precisely define the NLSM infrared phase of our theory, however.
Instead, more conservatively, we shall define and study the 3d GLSM as an ordinary 2d
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GLSM for the effective 2d field theory on Σ at scales µ ≪ 1
β , with β the radius of S1.

The 3d origin of this construction remains apparent in the 2d gauge-theory description
through the non-trivial periodicities of the CB scalars ua and through the explicit form of
the effective twisted superpotential and effective dilaton potential (2.2) and (2.13). Most
importantly, the twisted chiral operators are now line defects, as emphasised above. In the
next section, we study these lines operators in detail. We will come back to the study of
the 3d GLSM observables in section 4.

2.3 P1 × S1 correlation functions in the geometric window

In the geometric window, the JK residue formula (2.14) for the genus-0 correlators simplifies
significantly. Then, as we explain in appendix A, the only contributing singularities are
“Higgs branch” singularities (where chiral multiplets go massless on the 3d Coulomb branch).
Let us write the correlators as a sum over topological sectors, as:

〈
L
〉
P1×S1

(q, y) =
∞∑
d=0

qd Id[L ](y) , (2.24)

where d = |m| ≡∑Nc
a=1 m is the magnetic flux for the overall U(1) ⊂ U(Nc). It corresponds

to the degree of the holomorphic map ϕ : Σ → X in the infrared NLSM realisation. At
each degree, we have the residue formula:

Id[L ](y)≡
∑
ma≥0
|m|=d

∑
1≤α1<···<αNc≤nf

Res
{xa=yαa}

(−1)|m|(K+l)+Nc∆(x)L (x,y)∏Nc
a=1x

ra
a
∏nf

α=1

(
1−xay−1

α

)1+ma
. (2.25)

Note that we have set the R-charge r = 0, which is the natural choice from the GLSM point
of view. We also defined the integers:

ra ≡ Nc +KGR − l|m| −Kma , a = 1, · · · , Nc , (2.26)

at fixed m, and the Vandermonde determinant:

∆(x) ≡
∏

1≤a ̸=b≤Nc

(xa − xb) . (2.27)

The expression (2.25) is given by a finite sum over all the magnetic fluxes ma ≥ 0 at fixed
degree d = |m|. Then, in each flux sector m = {ma}, we sum over all the “Higgs-branch”
residues at:

(x1, · · · , xNc) = (yα1 , · · · , yαNc
) , 1 ≤ α1 < · · · < αNc ≤ nf . (2.28)

We use the SNc gauge symmetry to order the singularities as indicated, thus cancelling out
the Nc! factor in (2.14).4

4We also used the fact that singularities with xa = xb = yα for som a ̸= b have vanishing residue due to
the Vandermonde determinant in the numerator.
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The non-equivariant limit. The residue formula (2.25) is valid for generic values of the
equivariant parameters yα. The JK residue formula (2.14) holds more generally, however.
In particular, let us consider the non-equivariant limit, setting yi = 1. Then, we have:

Id[L ] ≡
∑
ma≥0
|m|=d

Res
{xa=1}

(−1)m(K+l)+Nc∆(x)L (x)
Nc!

∏Nc
a=1 x

ra
a (1− xa)nf (1+ma) , (2.29)

with a single residue at the codimension-Nc singularly xa = 1, in each flux sector. (Note
the factor of 1/Nc! compared to (2.25).)

U(1) example. As a simple example, consider the GLSM onto Pnf−1, which is the U(1)k
theory with nf charge-1 chiral multiplets (K ≡ k + nf

2 ), with the constraint 0 ≤ K ≤ nf
so that we are in the geometric window. We also choose KRG = 0. Focussing on the
non-equivariant limit, the formula (2.25) gives us:

Im[L ] = (−1)mK+1

2πi

∮
dx

x1−Km

L (x)
(1− x)nf (m+1)

= (−1)nf (m+1)+mK+1

(nf (m + 1)− 1)!

[
dnf (m+1)−1

dxnf (m+1)−1
L (x)
x1−Km

] ∣∣∣∣∣
x=1

,

(2.30)

for the non-negative integer m = d. In particular, we find that the partition function on the
sphere is given by:

ZP1×S1 = ⟨1⟩P1×S1 =

1 if 0 < K ≤ nf ,
1

1−q if K = 0 .
. (2.31)

Indeed, we easily see that Im[1] = 1 if m = 0 or if K = 0 (for any m ≥ 0), while Im[1] = 0
when 0 < K ≤ nf and m > 0 because Km− 1 < nf (m + 1) and Km− 1 ≥ 0 in that case.

3 Wilson lines and Grothendieck lines

The 3d uplift of the standard 2d GLSM modifies the target-space interpretation of the
twisted chiral operators. While the 2d local operators ω ∈ R2d represent cohomology classes
on the target space X, the 3d line operators wrapping the S1 should be interpreted as
coherent sheaves on X:

L ∈ R3d , RG : L −→ EL ∈ coh(X) . (3.1)

It is expected that the RG flow maps any half-BPS defect line L defined in the UV 3d
N = 2 gauge theory to a coherent sheaf EL on the target space X. More precisely, as we
will discuss further below, the physical observables only depend on the Grothendieck group
of the abelian category coh(X) — that is, on the K-theory of X:

L → [EL ] ∈ K(X) . (3.2)
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A proper, first-principle understanding of this map would require a better understanding of
the 3d NLSM phase itself. We will not try to tackle this problem here. Instead, we will
take a pedestrian view of K-theory based on representing sheaves by their Chern character:

ch : K(X)→ H•(X) : [EL ] 7→ ch(EL ) . (3.3)

This is particularly suited to the 3d A-model description, as we will review momentarily.
From this perspective, it will become clear that the physical observables defined in section 2.1
can only depend on the K-theory class of the line L , because they only depend on the
Chern characters.

A chief motivation to study this 3d GLSM into the Grassmannian is to give a physics
derivation of the quantum K-theory ring of X = Gr(Nc, nf ) [6, 42]. In the recent literature,
this was achieved by studying Wilson lines in the UV gauge theory [7, 8, 20, 43]. Under
the map (3.1), Wilson lines map to locally free sheaves (i.e. to complex vector bundles)
on X. In this section, we construct a new class of UV line defects, dubbed Grothendieck
lines, which flow to sheaves with compact support on subvarieties of X. The Grothendieck
lines are instances of vortex loops, as studied e.g. in [44–47]. They give us a much more
natural basis to describe the quantum K-theory ring of X, in direct parallel with standard
mathematical results [6].

3.1 The Coulomb-branch perspective

In the 3d A-model description [15, 16], we deal with the effective field theory on the 2d
N = (2, 2) Coulomb branch parameterised by the dimensionless quantities:

ua = iβσa − a0,a , a0,a ≡
1

2π

∫
S1
Aa , a = 1, · · · , Nc , (3.4)

where σa and Aa denote the real scalar and 1-form gauge field, respectively, in the 3d
N = 2 U(1)a vector multiplet. The single-valued parameters xa are best interpreted as the
holonomies of the half-BPS Wilson loops of unit charge for these abelian vector multiplets:

xa = e2πiua = exp
(
−i
∫
S1

(Aa − iσadψ)
)
. (3.5)

The abelianised theory retains the Weyl group SNc as a residual gauge symmetry that acts
by permutation on the xa variables.

Given the Grassmannian X = Gr(Nc, nf ), we have the rank-Nc tautological vector
bundle (also called the universal subbundle), S, whose fiber at a point p ∈ X is the linear
subspace CNc ⊂ Cnf that this point represents:

CNc → S → X . (3.6)

In the 2d GLSM, the scalars σa can be identified with the curvature of S [5]. By the same
token, we can identify 2πiua with the Chern roots of S, so that:

ch(S) =
Nc∑
a=1

xa . (3.7)
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More generally, the Chern character of any vector bundle (or coherent sheaf) on X can
be written as a symmetric polynomial in the xa’s. Given any UV lines L , the A-model
computation of their correlation functions only depends on the symmetric polynomials that
give us the Chern classes of the coherent sheaves EL :

L (x) ≡ ch(EL ) ∈ K(X) , (3.8)

schematically. While we have set yi = 1 in this discussion, turning on the flavour fugacities
simply corresponds to a T -equivariant deformation, as already mentioned, so that we have:

L (x, y) ∈ KT (X) , (3.9)

with L (x, y) representing the equivariant Chern character of some T -equivariant coherent
sheaf. In the rest of this section, we identify the UV lines that flow to some important
classes of coherent sheaves on the Grassmannian.

3.2 Wilson lines and vector bundles

Given any representation R of U(Nc), we have the half-BPS Wilson line:

WR = TrR
(
Pe−i

∫
S1 (A−iσdψ)

)
, (3.10)

whose classical VEV gives us the Chern character:

WR(x) ≡ ch(EWR
) = TrR(x) . (3.11)

In particular, the fundamental Wilson line, W , flows to the tautological line bundle:

EW ∼= S , W (x) =
Nc∑
a=1

xa . (3.12)

Recall that an irreducible representation of U(Nc) is specified by a partition ρ = [ρ1, · · · , ρNc ]
or, equivalently, by a Young tableau with ρa boxes in the a-th row. The Wilson loop in
the representation Rρ determined by ρ is then represented in the 3d A-model by the
Schur polynomial:

Wρ(x) = ch(EWρ) = sρ(x) . (3.13)

In fact, one can directly argue that Wρ flows to the vector bundle EWρ of rank dim(Rρ)
obtained from tensor products of S by using the Schur functor. The basic reason is that the
local operators that can end on Wilson lines, which corresponds to sections of EWρ , are local
operators transforming in the gauge-representation Rρ that are built out of chiral-multiplet
operators such as ϕ itself, which maps onto the full target space. To restrict the support
of the would-be coherent sheaf EL in the infrared to a subvariety of X, we need to use a
different construction of the line L , as we now explain.

3.3 Grothendieck lines and Schubert classes

We will now construct half-BPS lines that flow to coherent sheaves that are not necessarily
locally free. In particular, we would like to construct lines that flow to the Schubert classes —
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the structure sheaves of Schubert varieties –, denoted by Oλ, which form a more convenient
basis for the K-theory ring of X. Any coherent sheaf has a free resolution:

· · · →WR2 →WR1 → L → 0 , (3.14)

written here, schematically, in terms of line operators in the UV gauge theory, with the
locally-free sheaves constructed from Wilson lines (the representations Ri that appear
in (3.14) are not necessarily reducible). At the level of the Chern characters, we then have:

L (x, y) =
∑
i

(−1)i+1WRi(x, y) . (3.15)

In principle, to compute any set of observables, we could work out the relevant polynomials
L (x, y) from the knowledge of the free resolutions (3.14) — this was done e.g. in [9], in
some examples. For instance, we have:

0→ detS → O → O → 0 , (3.16)

where O is the codimension-one Schubert variety, to be introduced momentarily. Instead
of going down that route, we would prefer to directly define the defect line L in the UV.
This allows us to compute the polynomials L (x, y) directly from the physics.

3.3.1 Schubert cells and Schubert subvarieties

Before discussing the physical construction, let us briefly review some important geometric
facts about the Grassmannian — we refer to [48, 49] for further background.

There is a natural action of GL(nf ,C) on the Grassmannian X ≡ Gr(Nc, nf ). Indeed,
any Nc-plane in Cnf can be represented by the Nc × nf matrix:

ϕ = (ϕaα) , a = 1, · · · , Nc , α = 1, · · · , nf , (3.17)

modulo the action of the complexified gauge group GL(Nc,C) from the left, and with
the symmetry GL(nf ,C) acting from the right. We can use the gauge freedom to pick
a representative:

ϕ =


1 0 · · · 0 ⋆ · · · ⋆
0 1 · · · 0 ⋆ · · · ⋆
... . . . . . .
0 0 · · · 1 ⋆ · · · ⋆

 =
(
INc ⋆Nc×(nf−Nc)

)
. (3.18)

Here and in the following, Ik denotes a k × k identity matrix and ⋆n×m denotes any
n × m matrix with undetermined entries (similarly, 0n×m will denote a matrix with
vanishing entries).

The homology of X is generated by the Schubert varieties Xλ ⊆ X, which are the
closure of the Schubert cells, Cλ. The Schubert cells correspond to fixed loci under the
maximal torus T ⊂ GL(nf ,C). Each Schubert cell can be indexed by a choice of Nc integers:

I = {α1, · · · , αNc} , such that: 1 ≤ α1 < α2 < · · · < αNc ≤ nf . (3.19)
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w ∈ S4 λ ϕ dim(Xλ)

{1, 2, 3, 4} [0, 0]
(

1 0 ∗ ∗
0 1 ∗ ∗

)
4

{1, 3, 2, 4} [1, 0]
(

1 ∗ 0 ∗
0 0 1 ∗

)
3

{2, 3, 1, 4} [1, 1]
(

0 1 0 ∗
0 0 1 ∗

)
2

{1, 4, 2, 3} [2, 0]
(

1 ∗ ∗ 0
0 0 0 1

)
2

{2, 4, 1, 3} [2, 1]
(

0 1 ∗ 0
0 0 0 1

)
1

{3, 4, 1, 2} [2, 2]
(

0 0 1 0
0 0 0 1

)
0

(a) Schubert cells of Gr(2, 4).

X

X

OO

X

==

X

bb

X

==
``

X

OO

(b) Hasse diagram of Schubert varieties.

Figure 1. Left: Schubert cells for Gr(2, 4), indexed by permutations or partitions, with the matrix
ϕλ shown explicitly. Right: the Hasse diagram of inclusion of Schubert varieties inside Gr(2, 4),
where the arrow X → Y denotes inclusion of X inside Y .

Such a set defines a Grassmannian permutation in Snf
,

w = (I J) = (α1 · · ·αNc γ1 · · · γnf−Nc) , with γ1 < γ2 < · · · < γnf−Nc (3.20)

where the ordered set J is the complement of I inside {1, · · · , nf}. Equivalently, and
more conveniently for our purpose, we shall index Cλ by the corresponding partition
λ = [λ1, · · · , λNc ] with λa ≤ nf −Nc, which is related to the Grassmannian permutation
w by:

λ = [αNc −Nc , · · · , α1 − 1] . (3.21)

This also corresponds to the Young tableaux that can fit inside a Nc × (nf −Nc) rectangle.
The Schubert cell Cλ can be represented by a Nc × nf matrix ϕλ in which the αn − 1 first
entries of the n-th row vanish, the αn-th entry is equal to one, and the entries above this
latter entry also vanish. For I = (1, 2, · · · , Nc), we have the trivial partition, λ = [0, · · · , 0],
and the Schubert cell is the full Grassmannian, with ϕλ given by (3.18). The codimension
of the corresponding Schubert variety is given by the length of the partition, |λ| ≡∑Nc

a=1 λa,
hence the dimension is:

dim(Xλ) = Nc(nf −Nc)− |λ| . (3.22)

Finally, the Schubert variety Xλ is also given by the disjoint union of all the ‘smaller’
Schubert cells:

Xλ ≡ Cλ =
⊔
ν⊇λ
Cν , (3.23)
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where it is understood that we consider all partitions ν whose Young tableau contains the
Young tableau of λ. As an example, the Schubert cells and Schubert varieties inside Gr(2, 4)
are shown in figure 1.

The cohomology of the Grassmannian is freely generated (as a vector space) by the
cocycles [Xλ] Poincaré dual to the Schubert varieties:

H•(X,Z) ∼= Z
〈
[Xλ]

〉
. (3.24)

In particular, the Kähler class of X in H1,1(X) ∼= H2(X,C) is proportional to [X[1,0,··· ,0]].
The classical cohomology ring,

[Xλ] ∪ [Xµ] =
∑
ν

cλµ
ν [Xν ] , (3.25)

can be worked out using Schubert calculus (or, equivalently, from the representation
theory of the symmetric group Snf

). The structure coefficients cλµν ∈ Z are known as the
Littlewood-Richardson (LR) coefficients. Finally, we denote by Oλ the structure sheave of
Xλ. The classical K-theoretic product takes the form:

[Oλ] · [Oµ] =
∑
ν

Cλµ
ν [Oν ] . (3.26)

Here, the integers Cλµν are the K-theoretic LR coefficients. These coefficients can only be
non-vanishing if:

|ν| ≥ |λ|+ |µ| , (3.27)

with the equality being saturated in the cohomological case (in which case Cλµν = cλµ
ν).5

By a slight abuse of notation, we will often denote the K-theory class [Oλ] by Oλ.

3.3.2 Line defects and 1d N = 2 supersymmetric gauge theories

We would like to construct the line defects of the 3d N = 2 gauge theory on Σ× S1 in the
UV which flow to the Schubert classes Oλ in the IR description. These UV defects, denoted
by Lλ, wrap the S1 and are localised at a point p ∈ Σ. In the GLSM description, we have
the maps:

Φ : Σ→ X , (3.28)

given by the nf fundamental chiral-multiplet scalars of the UV gauge theory. In particular,
we have Φ = ϕ for the constant maps, with ϕ given by (3.18) up to gauge transformations.
We then need to construct a defect Lλ such that its insertion at the point p restricts the
constant maps onto Xλ ⊂ X. We schematically write this as:

LλΦ(p) : p→ Xλ . (3.29)

In practical terms, this means that, in the presence of the defect, ϕ should be restricted to
take value in the Schubert cell Cλ, namely ϕ = ϕλ as defined in subsection 3.3.1.

This can be achieved very naturally using a standard construction for defects in
supersymmetric gauge theories — see e.g. [46, 50–52]. We simply couple the 3d N = 2

5This is true in the non-equivariant case. In the equivariant case, the selection rules are weaker.
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Nc

nf

rn· · ·rl· · ·r1

ϕ

φn+1
nφnn−1φl+1

l
φll−1φ2

1

M1

Ml
Mn

Figure 2. 1d N = 2 linear quiver coupled to 3d N = 2 Gr(Nc, nf ) GLSM. The 1d quiver is
inscribed inside the dashed blue rectangle. The horizontal solid arrows denote bifundamental 1d
N = 2 chiral multiplets, and the dashed red arrows denote the Ml 1d N = 2 fermi multiplets
coupled to each U(rl) gauge group.

gauge theory to a 1d N = 2 gauge theory — a gauged supersymmetric quantum mechanics
(SQM) — with U(Nc) flavour symmetry that lives on the line and couples to the 3d
gauge fields.

Defining the 1d defect. The gauged SQM we choose to consider is a 1d N = 2 linear
quiver with 1d gauge group:

G1d =
n∏
l=1

U(rl) , (3.30)

with n ≤ nf , as shown in figure 2. Here, each node represents a 1d gauge group U(rl). Let
us recall that the 1d vector multiplet consists of the 1d fields:

V(l)
N=2 = (σ(l), v

(l)
t , λ

(l), λ
(l)
, D(l)) , l = 1, · · · , n , (3.31)

where σ(l) is a real scalar field, v(l)
t is the gauge connection, λ(l), λ

(l) are gauginos, and D(l)

is an auxiliary field. The fields (3.31) transform in the adjoint representation of U(rl).
Matter fields of 1d N = 2 gauge theories are organised into chiral multiplets and fermi

multiplets — see e.g. [26] for a detailed account.6 As shown in figure 2, our 1d quiver has
bifundamental chiral multiplets connecting the gauge nodes:

φl+1
l : U(rl)→ U(rl+1) , l = 1, · · · , n , (3.32)

meaning that φl+1
l transforms in the fundamental representation of U(rl) and in the

antifundamental representation of U(rl+1). The corresponding scalar fields are naturally
represented by rl× rl+1 matrices. From now on, it is understood that r0 ≡ 0 and rn+1 ≡ Nc.
We will also assume that:

0 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ Nc . (3.33)

We also couple Ml fermi multiplets to the gauge group U(rl). The fermi multiplet,
denoted by Λ(l)

α(l) , transforms in the fundamental of U(rl) and is charged under some subgroup
6These are the straightforward dimensional reduction of the familiar 2d N = (0, 2) supermultiplets [1].
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U(1) ⊂ U(1)nf ⊂ U(nf ) of the 3d flavour symmetry. For each l, the coupling of the Ml

fermi multiplets to the U(nf ) flavour group is determined by an indexing set:

Il = {α(l)
1 , · · · , α(l)

Ml
} ⊂ {1 , 2 , · · · , nf − 1} . (3.34)

We will further assume that Ml ≥ rl+1 − rl for all l,7 and Il ∩ Il′ = ∅ if l ̸= l′. The
fermi multiplet also couple directly to the 3d chiral multiplet ϕ due to the presence of the
following 1d N = 2 superpotential (also known as J-terms):

LJ =
∫
dθJ

(l)
α(l)(φ;ϕ)Λ(l)

α(l) , J
(l)
α(l)(φ;ϕ)≡φl+1

l ·φ
l+2
l+1 · · ·φ

n
n−1 ·φn+1

n ·ϕ(l)
α(l) , (3.35)

where · denotes matrix multiplication. This is the most natural superpotential consistent
with 1d and 3d gauge invariance. Note that the 1d N = 2 quiver gauge theory breaks the
U(nf ) flavour symmetry explicitly. This is necessary in order to construct defects that flow
to the Schubert varieties. Any choice of Schubert cell similarly breaks GL(nf ,C)-covariance.

The line defect defined by this 1d-3d coupled system will be denoted by:

L

[
r

M

]
, with

[
r

M

]
≡
[
r1 r2 · · · rn
M1 M2 · · · Mn

]
. (3.36)

Here, r denotes the ranks of the 1d gauge groups along the quiver, and M gives us the
distribution of fermi multiplets at each quiver node. Without loss of generality, we pick the
indexing sets Il in (3.34) as follows:

Il =

1 +
n∑

k=l+1
Mk, 2 +

n∑
k=l+1

Mk, · · · , Ml +
n∑

l=k+1
Mk

 , l = 1, · · · , n . (3.37)

That is, we start with In = {1, · · · ,Mn} ⊂ {α}
nf

α=1 and we keep coupling the fermi multiplets
to the next available U(1)α ⊂ T factors as we go towards the left tail of the quiver in figure 2.
Let us also mention that, to fully specify the 1d quiver (3.36), we also need to specify 1d
bare Chern-Simons levels κl — i.e. 1d Wilson lines — for each U(rl) factor. Here, we set
the 1d CS levels to κl = 0 in the “U(1)− 1

2
quantisation convention”, as we will explain

below. We will briefly discuss the effect of turning on κl ̸= 0 at the end of this section.

The 1d vacuum equations. By assumption, the CS levels of the 3d gauge theory are
chosen to be in the geometric window. Then, for positive 3d FI parameter, ξ > 0, the
theory flows to the Higgs branch MH

∼= X, and the matrix ϕ for the 3d chiral multiplets
describe the Grassmannian as in (3.18), up to gauge transformation. After coupling this
3d theory to the 1d defect (3.36), further constraints need to be imposed at p ∈ Σ, which
corresponds to imposing the 1d vacuum equations. We expect that this further constrains
the map ϕ at the point p to describe a subvariety of the full 3d Higgs branch:

V
[

r
M

]
⊆ Gr(Nc, nf ) . (3.38)

7It turns out that this condition and (3.33) are necessary in order to preserve supersymmetry in the
infrared. This can be understood through studying the Witten index of these theories, as we will briefly
mention below. We leave a more thorough study of these 1d N = 2 gauge theories for future work.
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Indeed, due to the superpotential terms (3.35), we have to impose the J-term equations:

J
(l)
α(l)(φ) ≡ φl+1

l · φl+2
l+1 · · · φ

n+1
n · ϕ(l)

α(l) = 0 , l = 1, · · · , n , α(l) ∈ Il . (3.39)

Here, for convenience of notation, we decomposed the Nc × nf matrix ϕ into the follow-
ing blocks:

ϕ =
(

ϕ(n) ϕ(n−1) · · · ϕ(1) ϕ(0)
)

, (3.40)

where ϕ(l) is an Nc ×Ml matrix consisting of the Ml Nc-vectors ϕ(l)
α(l) , for α(l) ∈ Il, with:

M0 ≡ nf −
n∑
l=1

Ml . (3.41)

We also need to impose the 1d D-term equations. Since we are interested in the geometric
phase of the 1d theory, let us set to zero the scalars of the 1d gauge vector multiplets,
σ(l) = 0. At each 1d gauge node U(rl), we then have the constraint:

φl+1
l · φl+1 †

l − φl †l−1 · φ
l
l−1 = ζl Irl

, l = 1, · · · , n , (3.42)

with the understanding that r0 ≡ 0. Here, ζl is the 1d FI parameter associated with
U(1) ⊂ U(rl), and Irl

is the identity matrix on Crl .

Solving for ϕ(n). Let us first consider the J-equation (3.39) for l = n. We have:(
φn+1
n

)in
· ϕ(n)

α(n) = 0 , α(n) = 1, · · · ,Mn , in = 1, · · · , rn , (3.43)

which give us rn equations for each ϕ
(n)
α(n) ∈ CNc , α(n) = 1, · · · ,Mn. We can then choose

the Nc ×Mn matrix ϕ(n) to be:

ϕ(n) =


INc−rn ⋆Nc−rn, Mn−(Nc−rn)

0rn, Nc−rn 0rn, Mn−(Nc−rn)

 , (3.44)

with ⋆ denoting the undetermined elements. Here we used the U(Nc) gauge freedom to fix
the first Nc − rn vectors, while the fact that the bottom part of (3.44) is vanishing is due
to (3.43) together with a convenient choice of φn+1

n that is allowed thanks to the 1d gauge
freedom. The number of undetermined entries in (3.44) is equal to:

Fn ≡ (Mn − (Nc − rn)) (Nc − rn) . (3.45)

Plugging back the expression (3.44) in (3.43), we see that the first (Nc − rn) entries of
each row of the matrix φNc

n must vanish. In addition, we can use the gauge actions on φNc
n

to diagonalise the non-trivial block, so that we have:

φNc
n =

(
0rn, Nc−rn C(n)

)
, (3.46)

for C(n) a diagonal matrix, C(n) = diag(c(n)
1 , c(n)

2 , · · · , c(n)
rn ) for c(n)

in
∈ C∗. Note that we

assumed that we are on the 1d Higgs branch — namely, that the vacuum expectation
value (3.46) Higgses U(rn) entirely. This is enforced by the D-term equations, given an
appropriate choice of 1d FI parameters, as we will discuss momentarily.
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Solving for ϕ(n−1). Before looking at the next node of the 1d quiver, for l = n− 1, let
us first consider the D-term equations (3.42) associated with U(rn), which reads:

φn+1
n · φNc †

n − φn †
n−1 · φ

n
n−1 = ζn Irn . (3.47)

This, along with (3.46), implies that the rn columns of the matrix φnn−1 are orthogonal.
Since these columns are vectors in Crn−1 (and given the assumption rn ≥ rn−1), we have
rn − rn−1 linearly dependent columns. This constrains the matrix φnn−1 to be of the form:

φnn−1 =
(

0rn−1, rn−rn−1 C(n−1)
)
, (3.48)

where C(n−1) can be gauge-fixed to be a diagonal matrix.
We then consider the J-equations (3.39) associated with the fermi multiplets in the

fundamental of U(rn−1). It reads:

φnn−1 · φNc
n · ϕ

(n−1)
α(n−1) = 0 , α(n−1) = 1, · · · ,Mn−1 . (3.49)

The explicit expressions (3.46) and (3.48) imply that, for each α(n−1), there are rn−1 linear
relations amongst the Nc components the vector ϕ(n−1)

α(n−1) . One can further use the leftover
3d gauge symmetry to choose rn − rn−1 vector consistent with the equations. We then find
the explicit expression:

ϕ(n−1) =



0Nc−rn, rn−rn−1 ⋆Nc−rn, Mn−1−(rn−rn−1)

Irn−rn−1 ⋆rn−rn−1, Mn−1−(rn−rn−1)

0rn−1, rn−rn−1 0rn−1, Mn−1−(rn−rn−1) .


. (3.50)

The number of free entries is given by:

Fn−1 ≡ (Mn−1 − (rn − rn−1)) (Nc − rn−1) . (3.51)

Solving for ϕ(l). We can follow the same procedure repeatedly for l = n− 1, n− 2, · · · , 1.
After fixing the matrix φl+1

l using the associated 1d U(rl) and U(rl+1) gauge symmetries,
equations (3.39) become rl equations in Nc variables fixing the lower rl ×Ml part of the
block to be trivial. Furthermore, using the leftover 3d gauge symmetry, we can fix rl+1 − rl
vectors of ϕ(l). This then leads us to the explicit solution:

ϕ(l) =



0Nc−rl+1, rl+1−rl
⋆Nc−rl+1, Ml−(rl+1−rl)

Irl+1−rl
⋆rl+1−rl, Ml−(rl+1−rl)

0rl, rl+1−rl
0rl, Ml−(rl+1−rl)


, (3.52)
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with the following numbers of undetermined entries:

Fl ≡ (Ml − (rl+1 − rl)) (Nc − rl) , l = 1, · · · , n− 2 . (3.53)

After gauge fixing, the matrix φl+1
l takes the form:

φl+1
l =

(
0rl, rl+1−rl

C(l)
)
, (3.54)

with the diagonal matrix C(l) = diag(c(l)
1 , c(l)

2 , · · · , c(l)
rl ), for c(l)

il
∈ C∗.

Solving for ϕ(0). For the last block in (3.40), denoted by ϕ(0), we do not have any
constraints coming from the 1d vacuum structure equations. In general, however, we can
still fix r1 vector using the 3d gauge freedom, so that we have:

ϕ(0) =


0Nc−r1, r1 ⋆Nc−r1, M0−r1

Ir1 ⋆r1, M0−r1

 . (3.55)

Note that the number of undetermined component is given by F0 ≡ Nc (M0 − r1), where
M0 is defined in (3.41).

Final result for ϕ. Putting the above results together, we find that the line defect (3.36)
constrains the matrix ϕ to take the form:

ϕ =



INc−rn ⋆ 0 ⋆ · · · 0 ⋆ · · · 0 ⋆ 0 ⋆
0 0 Irn−rn−1 ⋆ · · · 0 ⋆ · · · 0 ⋆ 0 ⋆
0 0 0 0 · · · 0 ⋆ · · · 0 ⋆ 0 ⋆
... ... ... ... . . . ... ... . . . ... ... ... ...
0 0 0 0 · · · Irl+1−rl

⋆ · · · 0 ⋆ 0 ⋆
0 0 0 0 · · · 0 0 · · · 0 ⋆ 0 ⋆
... ... ... ... · · · ... ... · · · ... ... ... ...
0 0 0 0 · · · 0 0 · · · Ir2−r1 ⋆ 0 ⋆
0 0 0 0 · · · 0 0 · · · 0 0 Ir1 ⋆



. (3.56)

This parameterizes the subspace (3.38) of X = Gr(Nc, nf ) of dimension:

dimC V
[

r
M

]
=

n∑
l=0

Fl =
n∑
l=0

(Ml − (rl+1 − rl)) (Nc − rl) . (3.57)

In fact, we see that the matrix (3.56) describes a Schubert cell:

Cλ = V
[

r
M

]
, (3.58)

with the partition (3.21) given by:

λ =
[
M̃1 + r1 −Nc︸ ︷︷ ︸

r1

, · · · , M̃l + rl −Nc︸ ︷︷ ︸
rl−rl−1

, · · · , M̃n + rn −Nc︸ ︷︷ ︸
rn−rn−1

, 0︸︷︷︸
Nc−rn

]
, (3.59)

– 20 –



J
H
E
P
1
2
(
2
0
2
3
)
0
8
2

Nc

nf

n· · ·21

ϕ

φn+1
nφnn−1φ3

2φ2
1

M1

M2 Mn

Figure 3. Generic Grothendieck defect Lλ with n ≤ Nc. The numbers of fermi multiplets, Ml, are
given in terms of the partition λ as explained in the main text.

where a︸︷︷︸
b

means that the integer a repeats b times, and we defined the quantities:

M̃l ≡
n∑
k=l

Mk , (3.60)

for ease of notation. One can check that (3.57) indeed equals (3.22).

3.3.3 Grothendieck lines and Schubert classes

Given a choice of Schubert variety Xλ ⊆ X, we can construct a line defect (3.36) that
flows to Xλ in the infrared, simply by fixing the parameters rl and Ml in terms of λ as
in (3.59). Whenever several possible solutions for (r,M) exist, the corresponding 1d quivers
are related by dualities, as we will briefly discuss below. We then claim that the UV line
defect flows to the structure sheaf of Xλ, Oλ, by giving us the so-called Schubert class [Oλ]
in K-theory. We write this as:

Lλ ≡ L

[
r

M

]
∼= Oλ . (3.61)

These line defects thus give us the Grothendieck lines. We will verify this claim by explicit
computation of the 1d Witten index.

The generic Grothendieck lines. It is convenient to define a ‘generic’ Grothendieck
line that corresponds to the partition:

λ = [λ1, · · · , λn, 0, · · · , 0︸ ︷︷ ︸
Nc−n

] , λ1 ≤ nf −Nc , (3.62)

with generic non-zero λa. Then, the relation (3.59) gives us:

rl = l , l = 1, · · · , n ,
Ml = λl − λl+1 + 1 , l = 1, · · · , n− 1 ,
Mn = λn − n+Nc .

(3.63)

This Grothendieck line defect is a ‘complete flag’ quiver, as displayed in figure 3. As an
example, all the 1d quivers giving us the Grothendieck lines Lλ for Gr(2, 4) are shown in
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2

4

ϕ =
(

1 0 ⋆ ⋆
0 1 ⋆ ⋆

)

2

4

ϕ =
(

1 ⋆ 0 ⋆
0 0 1 ⋆

)1
φ2

1

(12)

2

4

ϕ =
(

0 1 0 ⋆
0 0 1 ⋆

)21
φ3

2φ2
1

(2)

(1)
2

4

ϕ =
(

1 ⋆ ⋆ 0
0 0 0 1

)1
φ2

1

(123)

2

4

ϕ =
(

0 1 ⋆ 0
0 0 0 1

)21
φ3

2φ2
1

(23)

(1)

2

4

ϕ =
(

0 0 1 0
0 0 0 1

)21
φ3

2φ2
1

(3)

(12)

Figure 4. Generic Grothendieck defects Lλ for Gr(2, 4). The index set Il = (α(l)) for the fermi
multiplets coupling to U(rl) is displayed next to each red dashed arrow. Note that the 1d quivers
for λ = [1, 1] and for λ = [2, 2] can be simplified by simply removing the U(1) node, as explained in
the main text.

figure 4. One can write down similar Hasse diagrams for any Grassmannian variety — the
example of Gr(3, 5) is worked out in appendix C, see figure 5.

Duality moves. In general, the generic Grothendieck line is not the most efficient
presentation of the defect line Lλ. Indeed, it is clear from (3.59) that the most ‘efficient’
1d quiver has n nodes where n is the number of distinct non-zero values for λa. The quiver
simplification can be realised in terms of the following duality move. Whenever we have a
node such that:

rl = rl+1 −Ml , (3.64)
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we can remove the node, reconnect the U(rl−1) and U(rl+1) with a chiral multiplet arrow,
and shift Ml−1 to Ml−1 +Ml. Pictorially, we have:

rl+1

Ml+1

rl

Ml

rl−1

Ml−1

φl+1
l

φll−1 ⇒ rl+1

Ml+1

rl−1

Ml−1+Ml

φl+1
l−1

(3.65)

This is a special example of a Seiberg-like duality for 1d N = 2 gauge theories, applied at
the U(rl) node8 — here, the dual gauge group is trivial (it “condenses”), leaving us with the
new chiral and fermi-multiplet “mesons” that are shown in (3.65). Note that the duality
move (3.65) also holds for l = 1 if r1 = r2 −M1, with the net effect being simply to remove
the leftmost node of the quiver.

Chern character and 1d Witten index. Given the above discussion, we expect that
any Grothendieck line Lλ, defined as the above 1d N = 2 quiver coupled to the 3d U(Nc)
gauge fields, flows to a coherent sheave with support on Xλ ⊂ X. We further claimed
in (3.61) that Lλ exactly gives us the structure sheaves Oλ. To verify this claim at the
level of the 3d A-model, we need to understand how the insertion of the line affects the
low-energy 2d Coulomb branch description. This can be worked out simply by considering
the path integral over the 1d fields along the S1, which computes the Witten index of the
1d N = 2 quiver. We denote this 1d index by Lλ again, by abuse of notation:

Lλ(x, y) ≡ I1d
W

[
r

M

]
(x, y) . (3.66)

Note that it depends on the 3d gauge and flavour parameters, xa and yα. In the NLSM
interpretation, this 1d path integral should give us the Chern character of the coherent
sheaf that the line defect flows to. Indeed, we will now check that:

Lλ(x, y) = chT (Oλ) . (3.67)

The equivariant Chern character of Oλ is known to be given in terms of the double
Grothendieck polynomial associated with the partition λ [24, 25, 54]:

chT (Oλ) = Gλ(x, y) . (3.68)

The latter can be written in the following explicit form [55]:9

Gλ(x, y) =
det1≤a,b≤Nc

(
xb−1
a

∏λb+Nc−b
α=1

(
1− xay−1

α

))∏
1≤a<b≤Nc

(xa − xb)
. (3.69)

8These dualities are generalisations of the Gadde-Gukov-Putrov 2d N = (0, 2) trialities [53]. They will
be discussed more thoroughly in future work.

9We use conventions compatible with our physical realisation. The variables x and b of [55] correspond
to 1 − x and 1 − y−1, respectively, in our variables (and after setting their parameter β to β = −1).
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In the non-equivariant limit, y → 1, one obtains the ordinary Grothendieck polynomials:

Gλ(x) =
det1≤a,b≤Nc

(
xNc−b
a (1− xa)λNc−b+1−n+Nc

)
∏

1≤a<b≤Nc
(xa − xb)

, (3.70)

for the partition λ = [λ1, · · · , λn, 0, · · · , 0]. For λ = [1, 0, · · · , 0], for instance, we have:

G (x, y) = 1− detx = ch(O ) , (3.71)

in agreement with (3.16).

Example. The double Grothendieck polynomials associated to the Schubert subvarieties
of Gr(2, 4) read:

G (x, y) = 1− x1x2
y1y2

,

G (x, y) = 1− x1 + x2
y1

+ x2x1
y2

1
,

G (x, y) = 1− x1x2
y1y2

− x1x2
y1y3

− x1x2
y2y3

+ x2
1x2 + x1x

2
2

y1y2y3
,

G (x, y) = 1− x1
y1
− x2
y1
− x1x2
y2y3

+ x1x2
y2

1
+ x1x

2
2

y1y2y3
+ x2

1x2
y1y2y3

− x2
1x

2
2

y2
1y2y3

,

G (x, y) = 1− x1
y1
− x1
y2
− x2
y1
− x2
y2

+ x2
1

y1y2
+ 2x1x2

y1y2
+ x1x2

y2
1

+ x1x2
y2

2
+ x2

2
y1y2

− x1x
2
2

y1y2
2
− x2

1x2
y2

1y2
− x2

1x2
y1y2

2
+ x2

1x
2
2

y2
1y

2
2
− x1x

2
2

y2
1y2

.

(3.72)

In the non-equivariant limit, we get the corresponding Grothendieck polynomials:

G (x) = 1− x1x2 ,

G (x) = (1− x1)(1− x2) ,

G (x) = 1 + x1x2 (x1 + x2 − 3) ,
G (x) = (1− x1) (1− x2) (1− x1x2) ,

G (x) = (1− x1)2(1− x2)2 .

(3.73)

Computing the 1d partition function. The Witten index of any 1d N = 2 gauge
theory can be written in terms of the JK residue on the 1d complexified Coulomb branch [26],
which is parameterised by complex variables z ∈ C∗. The 1d Witten index (3.66) is then
written as a nested contour integral over these 1d gauge variables:10

Lλ(x, y) =
∮

JK

 n∏
l=1

1
rl!

rl∏
il=1

−dz(l)
il

2πiz(l)
il

∏
1≤il ̸=jl≤rl

1−
z

(l)
il

z
(l)
jl

Z1d
matter(z, x, y) , (3.74)

10Here, in quantising the theory, we appropriately cancelled the 1d parity anomaly with a natural choice
of 1d CS levels — see section 3.3.4 below for more details.
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where,

Z1d
matter(z, x, y) ≡

n−1∏
l=1

rl∏
il=1

∏
α(l)∈Il

(
1−

z
(l)
il

y
α(l)

)
∏rl+1
jl+1=1

(
1−

z
(l)
il

z
(l+1)
jl+1

) rn∏
in=1

∏
α(n)∈In

(
1− z

(n)
in

y
α(n)

)
∏Nc
a=1

(
1− z

(n)
in
xa

) . (3.75)

The measure factor in (3.74) arises from 1d W-bosons for each gauge node along the
quiver, and the matter multiplets contribute to (3.75), with the numerator and denominator
contributions arising from one-loop determinants of the 1d chiral and fermi multiplets,
respectively. Note that the coupling to the 3d parameters xa only arises as the contribution
from the Nc fundamental chiral multiplets φn+1

n of the U(rn) node.
The JK residue in (3.74) is determined by the choice of 1d FI parameters. In order to

solve the D-term equations on the 1d “Higgs branch” as above, we choose the ζl parameters
along the 1d quiver to be all positive. Then, the integration contour corresponds to
iteratively picking the poles from the chiral multiplets from the denominator of (3.75), and
then performing the U(rl) integrations in increasing order, from l = 1 to l = n.

Explicit computations. For definiteness, let us compute the JK residue (3.74) with the
‘generic’ choice of linear quiver (3.63). To isolate the relevant poles, we can rewrite the
index as:

Lλ(x, y) = (−1)n(Nc,n)(detx)n
∮ n∏

l=1

[
dlz(l)∆(l)(z)
l!(2πi)l det z(l)

]
Z̃1d

matter(z, x, y) , (3.76)

where the Vandermonde determinant ∆(l)(z) is given by:

∆(l)(z) ≡
∏

1≤il ̸=jl≤l

(
z

(l)
il
− z(l)

jl

)
. (3.77)

Here we used the obvious shorthand notations detx ≡ ∏Nc
a=1 xa and det z(l) ≡

∏l
il=1 z

(l)
il

,
and we introduced a sign factor n(Nc, n) ≡ n(Nc + 1) +∑n−1

l=1 l
2. The matter contributions

to (3.76) reads:

Z̃1d
matter(z,x,y)≡

n−1∏
l=1

l∏
il=1

∏
α(l)∈Il

(
1−

z
(l)
il

y
α(l)

)
∏l+1
jl+1=1

(
z

(l)
il
−z(l+1)

jl+1

) n∏
in=1

∏
α(n)∈In

(
1− z

(n)
in

y
α(n)

)
∏Nc
a=1

(
z

(n)
in
−xa

) . (3.78)

- Abelian 1d quiver. As a warm-up exercice, let us consider the case when the Nc-
partition λ consists of a single row, λ = [λ1, 0, · · · , 0]. Then, the linear quiver consist
of a single U(1) node, and (3.76) gives us:

L[λ1,0,··· ,0](x, y) = (−1)n(Nc,1)detx
∮

dz

2πiz

∏λ1−1+Nc
α=1

(
1− zy−1

α

)∏Nc
a=1(z − xa)

= (−1)Nc+1detx
Nc∑
a=1

∏λ1−1+Nc
α=1

(
1− xay−1

α

)
xa
∏
b ̸=a(xa − xb)

,

(3.79)
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where we picked the poles z = xa with a = 1, · · · , Nc. A little algebra shows that
this expression reproduces the double Grothendieck polynomial (3.69) associated with
this partition.

- The general case. Performing the contour integrals of (3.76) recursively, one ends up
with the following explicit formula:

Lλ(x, y) = (−1)n(Nc,n)(detx)n
∑
J

n∏
l=1

∆(Jl)(x)
∏
il∈Jl

∏
α(l)∈Il

(
1− xily−1

α(l)

)
xil
∏
jl+1∈Jl+1
jl+1 ̸=il

(
xil − xjl+1

) ,
(3.80)

with the index sets J defined as:

J = {J1, J2, · · · , Jn} , (3.81)

such that:
J1 ⊂ J2 ⊂ · · · ⊂ Jn ⊆ {1, · · · , Nc} , |Jl| = l . (3.82)

Here, we introduced the Vandermonde-like factors:

∆(Jl)(x) ≡
∏

il,jl∈Jl
il ̸=jl

(xil − xjl) , l = 1, · · · , n . (3.83)

The expression (3.80) can be further massaged to:

Lλ(x, y) = (−1)n(Nc,n)∑
J

n∏
l=1


 ∏
jl∈J̃l

xjl

 ∏
il∈Jl

∏
α(l)∈Il

(
1− xily−1

α(l)

)
∏
jl+1∈Jl+1∖Jl

(
xil − xjl+1

)
 , (3.84)

where J̃l ≡ {1, 2, · · · , Nc}∖ Jl. This expression is actually the cofactor expansion of
the following determinant:

Lλ(x, y) =
det1≤a,b≤Nc

(
xNc−b
a

∏Nc
l=Nc−b+1

∏
α(l)∈Il

(
1− xay−1

α(l)

))
∏

1≤a<b≤Nc
(xa − xb)

= Gλ(x, y) ,

(3.85)
with the index sets Il defined exactly as in (3.37) for l = 1, · · · , n, with Il = ∅ for l > n.
It is then easy to see that this is exactly the same expression as in (3.69), by redefining
b→ Nc − b+ 1. Hence, we have shown that the Witten index of our Grothendieck
defect lines precisely reproduces the double Grothendieck polynomial (3.69).

3.3.4 Effect of the 1d CS levels

Similarly to how 3d N = 2 GLSMs are only fully determined once we specify all the
Chern-Simons levels, the 1d N = 2 defects discussed above also allow for the presence of one-
dimensional Chern-Simons levels, κl, associated to the U(1) ⊂ U(rl) factors. Equivalently,
this corresponds to adding an abelian Wilson line with charge κl. Note that these CS levels
must be integer-quantised:

κl ∈ Z . (3.86)
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We call these the bare CS levels. There are also “effective” 1d CS levels that we chose
so that all 1d fermions are in the “U(1)− 1

2
quantisation”, in order to cancel the 1d parity

anomaly — see e.g. [13, 16] for a detailed review in the 3d context; we pick the same
conventions in 1d.

Thus, the general line defect of figure 3 should be refined to include this additional data:

L
(κ)
λ

 1 2 . . . n− 1 n

M1 M2 . . . Mn−1 Mn

κ1 κ2 . . . κn−1 κn

 . (3.87)

The addition of these 1d Wilson lines does not affect the structure of the Schubert variety
that L

(κ=0)
λ maps into, hence we expect that there exists a distinct non-locally free sheaf

with support on Xλ that (3.87) maps into. On the other hand, at the level of the 1d
partition function, the inclusion of a Wilson line in the representation (det)κl of U(rl)
amounts to adding the factor (− det z(l))κl to the integrand of the expression (3.74) for the
Witten index.

Following the same procedure as we did for the case with κl = 0, we find that (3.84) is
generalised to:

L
(κ)
λ (x,y) = (−1)n(Nc,n,κ)∑

J

n∏
l=1

 ∏
jl∈J l

xjl

 ∏
il∈Jl

xκl
il

∏
α(l)∈Il

(
1−xily−1

α(l)

)
∏
jl+1∈Jl+1∖Jl

(
xil−xjl+1

)
 , (3.88)

where n(Nc, n, κ) = n(Nc, n) +∑n
l=1 κl, and with the index sets J as defined in (3.81). The

expression (3.88) can be written more compactly as:

L
(κ)
λ (x, y) =

(−1)
∑n

l=1 κl det1≤a,b≤Nc

(
x
Nc−b+

∑Nc
c=Nc−b+1 κc

a
∏Nc
l=Nc−b+1

∏
α(l)∈Il

(
1− xay−1

α(l)

))
∏

1≤a<b≤Nc
(xa − xb)

,

(3.89)
where it is understood that κl = 0 if l > n. This obviously reduces to (3.69) if κl = 0 for
every l.

Example: twisting the structure sheaf on Pnf−1. As a simple example, consider the
Pnf−1 GLSM, corresponding to Nc = 1. In this case we have nf Schubert varieties indexed
by one-row partitions λ = [λ] of length at most nf − 1. Therefore, the Grothendieck line
defects are realised by 1d quivers with a single node at most. Following the discussion
above, we find that the characteristic polynomial (3.89) associated with the Schubert variety
Xλ ⊂ Pnf−1 is given by:

L κ
λ (x, y) = (−x)κ

λ∏
α=1

(1− xy−1
α ) , λ = 0, · · · , nf − 1 , (3.90)

where κ ∈ Z is the 1d CS level that we can attach to the 1d U(1) gauge group in the line
defect. The interpretation of this defect is that it flows to the structure sheaf on Xλ twisted
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by the locally-free sheaf O(−κ), namely:

L κ
λ
∼= Oλ(−κ) , (3.91)

up to a shift functor. It would be interesting to explicitly construct the coherent sheaves
corresponding to (3.87) for any κl when Nc > 1. We leave this as a challenge for the
interested reader.

4 The quantum K-theory of Gr(Nc, nf), revisited

In this section, we revisit the GLSM computation of the standard quantum K-theory of
the Grassmannian. As first discussed in [7, 8], QK(Gr(Nc, nf )) is naturally realised by the
U(Nc) gauge theory discussed in section 2 for a specific choice of the CS levels, namely:11

k = Nc −
nf
2 , l = −1 , KRG = 0 . (4.1)

We also set r = 0 for the R-charge of the chiral multiplets. It is indeed known that the
algebra of Wilson loops of this specific 3d N = 2 gauge theory is isomorphic to the quantum
K-theory ring of Gr(Nc, nf ) [7, 8]. Here, we simply wish to insist on the simple fact that
we are free to choose any convenient basis for the chiral ring R3d of this 3d N = 2 gauge
theory compactified on a circle. In particular, we saw in the previous section that the
Grothendieck lines Lλ

∼= Oλ can be naturally defined as line defects, giving us a physically
and mathematically natural basis in terms of Schubert classes. At the level of the 3d
A-model, we should simply represent the Schubert classes by the corresponding (double)
Grothendieck polynomials, as in (3.68).

4.1 QK ring from the Bethe ideal

The simplest way to compute the 3d chiral ring, and hence the quantum K-theory ring of
X, is to compute the so-called Bethe ideal [13]. Schematically, we have:

R3d = K[x1, · · · , xNc ]SNc

(∂W) , (4.2)

where (∂W) denotes the algebraic ideal generated by the Bethe equations (2.3). This is
slightly imprecise for Nc > 1, because we need to properly account for the non-abelian
sector. This can be done by a standard symmetrisation trick [13, 60]. Let us write the
Bethe equations as polynomial equations in the gauge variables x = {xa}:

Pa(x) = 0 , P ∈ K[x] , a = 1, · · · , Nc . (4.3)

We define the symmetrised polynomials:

P̂ab = Pa − Pb
xa − xb

∈ K[x] , a > b , (4.4)

11These levels are the ones we would obtain if we start by considering the 3d N = 4 U(Nc) gauge theory
with nf fundamental hypermultiplets, which desribes the total space of the cotangent bundle over Gr(Nc, nf ),
and if we then turn on a real mass term that triggers an RG flow which ‘integrates out’ the non-compact
fibers. Note also that choosing KRG ̸= 0 is simply equivalent to inserting the K-theory class corresponding to
the line bundle (det S)−KRG — this follows from the way this CS levels appears in (2.13). The K-theoretic
viewpoint on the 3d N = 4 case has been studied in a varieties of works, see e.g. [56–59].
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and the Bethe ideal I(x)
BE = (P, P̂ ) generated by the polynomials Pa and P̂ab. The next step

is to change variables to take care of the residual gauge symmetry SNc on the Coulomb
branch. At this stage, let us introduce the formal variables Oλ, which are to be identified
with the (double) Grothendieck polynomials Gλ(x) (for all allowed partitions λ), as well as
an additional variable w, and the corresponding polynomials:12

Ĝλ(x,Oλ) ≡ Gλ(x)−Oλ , Ŵ (x,w) = w detx− 1 . (4.5)

This gives us a new Bethe ideal of a larger polynomial ring:

I(x,w,O)
BE = (P, P̂ , Ĝ, Ŵ ) ⊂ K[x,w,O] . (4.6)

Since the Grothendieck polynomials are symmetric polynomials in xa and the Bethe ideal
I(x)

BE is SNc-invariant, we can reduce this larger Bethe ideal to an ideal in terms of the formal
variables Oλ only, using the relations Ĝλ = 0:

I(O)
BE = I(x,w,O)

BE
∣∣
reduce ⊂ K[O] . (4.7)

This ideal, which we shall dub the Grothendieck ideal, can be computed very efficiently
using Gröbner basis methods, as explained at length in [13]. In this way, we arrive at a
completely gauge-invariant description of the twisted chiral ring (4.2), thus giving us an
explicit presentation of the (equivariant) quantum K-theory ring directly in terms of the
variables Oλ:

R3d ∼= QKT (X) ∼=
K[O]
I(O)

BE
. (4.8)

The computation of the Grothendieck ideal is completely equivalent to deriving the quantum
product structure in terms of the Schubert classes:

Oµ Oν = NµνλOλ , Nµνλ ∈ K . (4.9)

Obviously, we could also present the ring R3d in terms of any complete set of symmetric
polynomials we might be interested in, simply by changing the equations (4.5).

4.1.1 Example of Pnf−1

Let us start with the trivial example of the 3d N = 2 U(1)−nf
2

gauge theory with nf chiral
multiplets of charge 1. In this case, the 3d twisted chiral ring has the simple description:

R3d ∼=
C[x](∏nf

α=1(1− xy−1
α − q)

) , (4.10)

since we do not need to worry about the effect of the non-abelian gauge symmetry. This
ring is generated by a single variable, x, which corresponds to the tautological line bundle
O(1) — the is the Wilson line of unit charge in the gauge theory. The Schubert classes Oλ,

12The constraint Ŵ = 0 ensures that non-physical solutions of the Bethe equations such that xa = 0 (for
any gauge index a) are disallowed.
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on the other hand, are indexed by a one-dimensional partition, λ = 1, · · · , nf − 1, and are
represented by the double Grothendieck polynomials:

Oλ =
λ∏

α=1
(1− xy−1

α ) . (4.11)

Treating Oλ as a formal variable, the identification (4.11) is imposed by the relation Ĝλ = 0
in the quotient ring. Indeed, we are interested in writing the ring (4.10) as:

R3d ∼=
K[O1, · · · ,Onf−1]

I(O)
BE

. (4.12)

Of course, this is a redundant parameterisation, since one generator would suffice. For
instance, we could write the QK ring entirely in terms of the variable:

O1 = 1− xy−1
1 ↔ x = y1(1−O1) , (4.13)

with the understanding that (4.11) gives us an expression for Oλ in terms products of
O1. The presentation (4.12) is most useful if we are interested in working out the product
structure, however. We give a few examples below. Let us also note that, in the non-
equivariant limit, the QK ring is simply:

Oλ Oλ′ = q⌊λ+λ′⌋Oλ+λ′ modnf
, (4.14)

for 0 ≤ λ, λ′ < nf . This follows from the fact that the Bethe equation is simply (1−x)nf = q

when yα = 1.

Equivariant QK ring of P1. For nf = 2, the only non-trivial product is:

O1 O1 =
(

1− y2
y1

)
O1 + y2

y1
q , (4.15)

which reduces to O2
1 = q in the non-equivariant limit.

Equivariant QK ring of P2. For nf = 3, we find:

O1 O1 =
(

1− y2
y1

)
O1 + y2

y1
O2 ,

O1 O2 =
(

1− y3
y1

)
O2 + y3

y1
q ,

O2 O2 =
(

1− y3
y1

)(
1− y3

y2

)
O2 + y3

y2
qO1 +

(
1− y3

y2

)
y3
y1
q .

(4.16)

This is in perfect agreement with the results of [6] for the equivariant QK product.

4.1.2 Example of Gr(2, 4)

The quantum K-theory of the simplest non-trivial Grassmannian, Gr(2, 4), is obtained from
the U(2)0,−2 gauge theory with nf = 4 fundamentals. The Bethe equations that gives us
the QK ring are:

P1 ≡ x2

4∏
α=1

(1− x1y
−1
α ) + qx1 = 0 , P2 ≡ x1

4∏
α=1

(1− x2y
−1
α ) + qx2 = 0 . (4.17)
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In this case, the minimal set of generators of the twisted chiral ring contains two non-trivial
elements. For instance, we can write the ring in terms of the Wilson loops:

W = x1 + x2 , W = x1x2 , (4.18)

and work out the algebra of Wilson loops from there, as in [9]. Here, instead, we directly
compute the Grothendieck ideal, which gives us the products displayed in table 2. Recall
that (y1, · · · , y4) are parameters for the SU(4) flavour symmetry; indeed, the structure
constants Nµνλ ∈ K are invariant under the overall rescaling (yα)→ (λyα), which is a gauge
transformation. In the non-equivariant limit, this reduces to:

O O = O +O −O , O O = qO ,

O O = O , O O = O ,

O O = O , O O = qO ,

O O = O + q − qO , O O = qO ,

O O = qO , O O = qO + qO − qO .

O O = O , O O = qO ,

O O = q , O O = q2 ,

O O = qO ,

(4.19)

in perfect agreement with [6].13

4.2 Correlations functions and enumerative invariants

In the rest of this section, we further comment on the computation of the two- and three-
point functions in this case. We can compute them by two disting methods, as explained in
section 2.1.

Sum over Bethe vacua and companion-matrix method. In principle, we can
evaluate the correlation function of any set of lines by performing the sum over Bethe vacua
in (2.10). Hence, focusing on the insertion of Grothendieck lines Lλ

∼= Oλ, we have:〈
OµOν · · ·

〉
P1×S1

=
∑

x̂∈SBE

H(x̂, y)−1 Gµ(x̂, y)Gν(x̂, y) · · · , (4.20)

with Gµ the Grothendieck polynomials, and the handle-gluing operator:

H(x, y) = det
1≤a,b≤Nc

(
δab

(
Nc +

nf∑
α=1

xay
−1
α

1− xay−1
α

)
− 1

) nf∏
α=1

(1− xayα)
∏
a,b
a ̸=b

(1− xax−1
b )−1 .

(4.21)
The sum (4.20) can be performed using the companion matrix method [13]. This amounts
to writing each factor Q(x) in the summand of (4.20) as a large square matrix MQ of

13Our computations in the equivariant case also agree perfectly with the results of [6]. We thank Leonardo
Mihalcea for sharing some of their computations with us.
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O O =
(

1− y3
y2

)
O + y3

y2
O + y3

y2
O − y3

y2
O ,

O O =
(

1− y3
y1

)
O + y3

y1
O ,

O O =
(

1− y4
y2

)
O + y4

y2
O ,

O O = q
y4
y1
−q y4

y1
O +

(
1− y4

y1

)
O + y4

y1
O ,

O O = q
y3y4
y1y2
O +

(
1− y3y4

y1y2

)
O ,

O O =
(

1− y2
y1

)(
1− y3

y1

)
O +

(
1− y2

y1

)
y3
y1
O + y2

y1
O ,

O O = q
y4
y1

+
(

1− y4
y1

)
O ,

O O = q

(
1− y2

y1

)
y4
y1

+q y2y4
y2

1
O +

(
1− y2

y1
− y4
y1

+ y2y4
y2

2

)
O +

(
y2
y1
− y4
y1

)
O ,

O O = q

(
1− y3

y1

)
y4
y1
O +q y3

y1
O +

(
1− y3

y1
− y4
y1

+ y3y4
y2

1

)
O ,

O O =
(

1− y4
y3

)(
1− y4

y2

)
O +

(
1− y4

y3

)
y4
y2
O + y4

y3
O ,

O O = q

(
1− y4

y3

)
y4
y1

+q y2
4

y1y3
O +

(
1− y4

y3
− y4
y1

+ y2
4

y1y3

)
O +

(
1− y4

y1

)
y4
y3
O ,

O O = q

(
1− y4

y2

)
y4
y1
O +q y4

y2
O +

(
1− y4

y2
− y4
y1

+ y2
4

y1y2

)
O ,

O O = q

(
1− y2

y1

)(
1− y4

y3

)
y4
y1

+q
(
y2
y1
− y4
y1

+ y4
y3
− y2y4
y1y3

)
O +q y4

y1
O +q y4

y1
O

+
[(

1− y2
y1

)(
1− y4

y1

)(
1− y4

y3

)
−q y4

y1

]
O +

(
1− y4

y1

)(
y2
y1
− y4
y1

+ y4
y3
− y2y4
y1y3

)
O ,

O O = q

(
1− y3

y1

)(
1− y4

y2

)
y4
y1
O +q

(
1− y3

y1

)
y4
y2
O +q

(
y3
y1
− y3y4
y1y2

)
O +q y3y4

y1y2
O

+
(

1− y4
y2

+ y2
4

y1y2
− y3
y1
− y4
y1

+ y3y4
y1y2

− y3y
2
4

y2
1y2

+ y3y4
y2

1

)
O ,

O O = q2 y3y4
y1y2

+q
(

1− y3
y1

)(
1− y3

y2

)(
1− y4

y2

)
y4
y1
O

+q
(

1− y3
y1

)(
1− y3

y2

)
y4
y2
O +

(
y3
y1
− y2

3
y1y2

− y3y4
y1y2

+ y2
3y4
y1y2

2

)
O

+
(
y3
y2
− y

2
3y4
y1y2

2

)
O +

(
1− y3

y1

)(
1− y3

y2

)(
1− y4

y1

)(
1− y4

y2

)
O .

Table 2. The equivariant QK product for Gr(2, 4).
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size |SBE|, in a convenient basis of the quotient ring R3d. The eigenvalues of MQ are equal
to Q(x̂), the operator Q evaluated at the Bethe vacua. Hence the sum over Bethe vacua can
be performed by taking the trace over a product of companion matrices, without having to
solve for the eigenvalues themselves.

JK residue. Specialising the JK residue formula (2.24)–(2.25) to the CS levels (4.1),
we have:〈

L
〉
P1×S1

=
∞∑
d=0

qd Id[L ] ,

Id[L ] =
∑
ma≥0
|m|=d

(−1)Nc

Nc!

∮
JK

Nc∏
a=1

[
dxa
2πi

(detx)−1∏nf

α=1(1− xay−1
α )

]
∆(x)Fm(x, y)L (x, y) ,

(4.22)

where it is understood that the JK residue is a sum over all the residues at the codimension-
Nc singularities {xa = yαa}, and we defined the flux-dependent factor:

Fm(x, y) = (−1)|m|(Nc−1)∏Nc
a=1 x

Ncma
a

(detx)|m|∏Nc
a=1

∏nf

α=1(1− xay−1
α )ma

. (4.23)

This is a completely explicit formula for the genus-zero degree-d K-theoretic enumerative
invariants of the Grassmannian. In the 2d limit (which gives us the quantum cohomology
of X), the equivalence between the physical and the mathematical results is rigorously
established [35], and similar considerations hold in 3d as well [8, 19].

Obviously, the Bethe-vacua formula (4.20) is more powerful in principle, since it gives
us the full answer directly as a rational function in q, while the JK residue formula gives
us that same answer as a Taylor series in q, in which case we need to compute each term
individually. The JK residue formula is nonetheless very practical to compute specific
enumerative invariants Id[L ], at fixed degree, as opposed to the full correlation functions.

4.2.1 Two-point functions and topological metric

In the basis for QKT (X) spanned by the Schubert classes, {Oλ}, the topological metric is
given by:

ηµν =
〈
OµOν

〉
P1×S1

, (4.24)

where we insert the double Grothendieck polynomials in the integrand of (4.22) as indi-
cated, plugging in L (x, y) = Gµ(x, y)Gν(x, y). Alternatively, we can use the Bethe-vacua
formula (4.20). Let us consider a few simple examples.

Topological metric for QKT (P1). For the abelian U(1)−1 theory with 2 matter multi-
plets with charge 1, we find the following metric in the non-equivariant limit:

ηµν = 1
1− q

(
1 1
1 q

)
, (4.25)

in the basis {1,O }. In the equivariant case, the components are the same as above
except for:

η , = 1− y2
y1

+ q

1− q . (4.26)
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Topological metric for QKT (P2). For the abelian theory U(1)− 3
2

with nf = 3, we find
the following y-dependent components for the topological metric:

η , = 1− y3
y1

+ q

1− q ,

η , =
(

1− y3
y1

)(
1− y3

y2

)
+ q

1− q .
(4.27)

The other components (up to symmetry, ηµν = ηνµ) are the same as in the non-equivariant
limit, where we have:

ηµν = 1
1− q

 1 1 1
1 1 q
1 q q

 , (4.28)

in the basis {1,O ,O }.

Topological metric for QKT (P4). For U(1)− 5
2

with nf = 5, we find that the components
of the topological metric have the explicit form:

η1,4 = 1− y5
y1

+ q

1− q ,

η2,3 = 1− y4y5
y1y2

+ q

1− q ,

η2,4 =
(

1− y5
y1

)(
1− y5

y2

)
+ q

1− q ,

η3,3 = 1 + y4y
2
5

y1y2y3
− y4y5
y2y3

− y4y5
y1y3

− y4y5
y1y2

+ y2
4y5

y1y2y3
+ q

1− q ,

η3,4 =
(

1− y5
y1

)(
1− y5

y2

)(
1− y5

y3

)
+ q

1− q ,

η4,4 =
(

1− y5
y1

)(
1− y5

y2

)(
1− y5

y3

)(
1− y5

y4

)
+ q

1− q ,

(4.29)

with the obvious index notation µ, ν = 0, · · · , 4. The other components are the same as in
the non-equivariant limit, in which case we find:

ηµν = 1
1− q


1 1 1 1 1
1 1 1 1 q
1 1 1 q q
1 1 q q q
1 q q q q

 . (4.30)

Topological metric for QKT (Gr(2, 4)). For the Gr(2, 4) case, the y-dependent com-
ponents of the topological metric have the following explicit form:

η
,

=
(

1− y3y4
y1y2

)
+ q

1− q ,

η
,

= η
,

= η
,

=
(

1− y4
y1

)
+ q

1− q ,

η
,

(q, y) =
(

1− y3
y1

)(
1− y4

y1

)
+ q

1− q ,
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η
,

=
(

1− y4
y1

)2
+ q

1− q ,

η
,

(q, y) =
(

1− y3
y1

)(
1− y4

y1

)(
1− y4

y2

)
+ q

1− q ,

η
,

(q, y) =
(

1− y4
y1

)(
1− y4

y2

)
+ q

1− q ,

η
,

(q, y) =
(

1− y3
y1

)(
1− y3

y2

)(
1− y4

y1

)(
1− y4

y2

)
+
(

1− y3y4
y1y2

)
q + q2

1− q . (4.31)

The other components take the same form as in the non-equivariant limit, namely:

ηµν = 1
1− q



1 1 1 1 1 1
1 1 1 1 1 q

1 1 1 q q q

1 1 q 1 q q

1 1 q q q q

1 q q q q q2


, (4.32)

in the basis {1,O ,O ,O ,O ,O }.

4.2.2 Three-point functions and structure constants

The knowledge of the correlators implies the knowledge of the ring structure, so the JK
residue formula gives us another way to compute the ring QKT (X). Let us decompose the
ring structure constants as:

Nµνλ =
∑
d≥0
N (d)λ
µν qd , N (d)λ

µν ∈ Z(y) . (4.33)

These quantities can be computed using the JK residue formula (4.22), as:

N (d)λ
µν = Id

[
OµOν O∨λ

]
, (4.34)

where we introduced the dual basis {O∨λ}, indexed by partitions λ, such that:〈
OµO∨ ν

〉
P1×S1

= δµ
ν . (4.35)

The dual structure sheaves O∨λ [6] can be realised by dual Grothendieck lines whose 1d
Witten indices give us the following dual double Grothendieck polynomials:

O∨λ(x, y) = detx∏Nc
a=1 ynf−Nc+a−λ∨a

Oλ∨(x, yD) , (4.36)

where λ∨ is the partition dual to λ:

[λ∨1 , · · · , λ∨Nc
] = [Nc − nf − λNc , · · · , Nc − nf − λ1] , (4.37)

and yD denotes the order-inverted SU(nf ) parameters, yDα = ynf +1−α.
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Dual double Grothendieck polynomials for Pnf−1. For the Schubert cells of
QKT (Pnf−1), we have the following dual double Grothendieck polynomials:

O∨ λ(x, y) ≡ x

yλ+1

nf−1∏
α=λ+2

(1− xy−1
α ) , λ = 1, · · · , nf − 1 . (4.38)

Dual double Grothendieck polynomials for Gr(2, 4). For the case of Gr(2, 4) the
dual double Grothendieck polynomials associated with the dual structure sheaves defined
in (4.36) read:

O∨, (x, y) = x1x2
y1y3

− x1x
2
2

y1y3y4
− x2

1x
2
2

y1y2y2
3

+ x2
1x

2
2

y1y3y2
4
− x2

1x2
y1y3y4

+ x2
1x

3
2

y1y2y2
3y4

+ x3
1x

2
2

y1y2y2
3y4
− x3

1x
3
2

y1y2y2
3y

2
4
,

O∨, (x, y) = x1x2
y2y3

− x1x
2
2

y2y3y4
− x2

1x2
y2y3y4

+ x2
1x

2
2

y2y3y2
4
,

O∨, (x, y) = x1x2
y1y4

− x2
1x

2
2

y1y2y3y4
− x2

1x
2
2

y1y2y2
4
− x2

1x
2
2

y1y3y2
4

+ x2
1x

3
2

y1y2y3y2
4

+ x3
1x

2
2

y1y2y3y2
4
,

O∨, (x, y) = x1x2
y2y4

− x2
1x

2
2

y2y3y2
4
,

O∨, (x, y) = x1x2
y3y4

.

(4.39)

Structure constants for QKT (Gr(2, 4)). As an example of an application of the
JK residue formula (4.22), we can compute the structure constants up to some degree d
using (4.34). Given the explicit expression for the dual double Grothendieck polynomials,
this is a straightforward computation (using e.g. Mathematica). For instance, computing
up to order q4, we find:〈

O O O∨ 〉
P1×S1 = 1− y3

y2
,〈

O O O∨
〉
P1×S1

= y3
y1
q ,〈

O O O∨
〉
P1×S1

=
(

1− y2
y1

)(
1− y4

y1

)(
1− y4

y3

)
− q y4

y1
,〈

O O O∨
〉
P1×S1

= q

(
1− y3

y1

)(
1− y3

y2

)
y4
y2
,

(4.40)

which indeed agrees with the results already reported in table 2.

4.2.3 Classical limit (q → 0): K-theoretic Littlewood-Richardson coefficients

As a sanity check of our computations, it is interesting to consider the “classical” limit
q → 0 (that is, the large-volume limit), in which case the equivariant quantum K-theory
QKT (X) reduces to the equivariant K-theory KT (X), with the ring structure (3.26) given
in terms of the K-theoretic LR coefficients:

Cλµ
ν = N (0)ν

λµ . (4.41)
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The JK-residue formula (4.22) gives us an explicit expression for these LR coefficients:

Cλµ
ν = (−1)Nc

Nc!

∮
JK

Nc∏
a=1

[
dxa
2πi

(detx)−1 ∏
b ̸=a(xa − xb)∏nf

α=1(1− xay−1
α )

]
Oλ(x, y)Oµ(x, y)O∨ ν(x, y) .

(4.42)
This is the general formula in the equivariant case. For yi = 1, this reduces to:

Cλµ
ν = (−1)Nc

Nc!

∮
(xa=1)

Nc∏
a=1

[
dxa
2πi

∏
b ̸=a(xa − xb)
(1− xa)nf

]
(detx)1−Nc Gλ(x)Gµ(x)Gν∨(x) ,

(4.43)
in terms of the ordinary Grothendieck polynomials, with a single residue at {xa = 1}. We
checked in many examples that this formula always returns an integer, as expected. It
also appears to agree with the known K-theoretic LR coefficients — see e.g. [29, 61]. For
instance, one can easily check that:

C[1,0],[1,0]
[2,1] = −1 for Nc = 2 , nf = 4 ,

C[2,0,0],[2,1,0]
[3,2,1] = −2 for Nc = 3 , nf = 9 ,

C[3,2,1,0],[3,2,1,0]
[5,4,2,2] = −9 for Nc = 4 , nf = 10 .

(4.44)

Here we picked examples with |ν| > |λ|+ |µ|, which would vanish in the cohomological limit.
It may be worthwhile to obtain a direct proof that this residue formula indeed gives us the
K-theoretic LR coefficients. We leave this as a another challenge for the interested reader.

4.3 Generalised QK rings

Finally, let us comment on the generalisation of the above considerations when one chooses
other Chern-Simons levels (k, l) in the geometric window. The same computations can
obviously be performed in such cases, and it is expected that the more general twisted
chiral rings essentially corresponds to the level structure of Ruan and Zhang [21]:

R3d[k, l in geometric window] ?←→ QKT (X) with level structure. (4.45)

To the best of our knowledge, the precise map between the physics of the CS levels k, l
and the mathematical notions of [21] has not been worked out yet, and we hope to better
address this point in future work — see [7, 8, 43] for some relevant past works. Here, we
simply point out that we can easily compute the left-hand-side of (4.45) for any value
of k, l. It would be interesting to compare these results to direct enumerative geometry
computations of QK rings with non-trivial level structure.

Generalised QK rings for Gr(2, 4). Recall that the ordinary QK ring is given by
R3d[0,−1], which gives us (4.19) in the non-equivariant limit. As an example of a generalised
QK ring for Gr(2, 4), consider R3d[1,−1], for the gauge theory U(2)1,−1 with 4 fundamentals.
By direct computation, one can work out its ring structure in the basis of Schubert classes,
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which reads:

O2 = O +O −O , O O = −qO + qO ,

O O = O , O2 = −qO + qO +O ,

O O = −q + qO +O , O O = −qO + qO ,

O O = −q + qO +O , O O = −qO + qO ,

O O = −qO + qO , O2 = −qO − qO + 2qO ,

O2 = O , O O = −qO + qO ,

O O = −q + qO , O2 = q2 − q2O .

O O = −qO + qO ,

(4.46)

All the other Gr(2, 4) theories in the geometric window can be worked out similarly. We
list a few other non-equivariant rings R3d[k, l] for Gr(2, 4) in appendix B.

5 Quantum cohomology and Schubert defects in the 2d GLSM

In this section, we briefly discuss the dimensional reduction of the 3d GLSM to the ordinary
2d GLSM onto the Grassmannian. The 2d GLSM of interest is the 2d N = (2, 2) U(Nc)
gauge theory with nf fundamental chiral multiplets. Its twisted chiral ring gives us the
quantum cohomology of X = Gr(Nc, nf ), and turning on the twisted masses mα corresponds
to the T -equivariant deformation:14

R2d ∼= QH•
T (X) . (5.1)

We can similarly compute genus-zero Gromov-Witten (GW) invariants as correlation
functions in the 2d GLSM [5, 32].

It is interesting to see how these 2d quantities emerge from our discussion above, by
taking the 2d limit of the 3d GLSM. Let us consider the limit β → 0 on Σ× S1, where β is
the radius of the S1. The 3d and 2d variables are related as:

xa = e−2πβσa , yα = e−2πβmα , q = (−2πβ)nf q2d , (5.2)

with σa the 2d Coulomb-branch scalars, of mass dimension 1. Note that q2d has mass
dimension nf due to the non-trivial running of the 2d FI parameters.

5.1 Defect point operators and Schubert polynomials

The Poincaré duals of the Schubert varieties, ωλ ≡ [Xλ], are also called the Schubert classes:

ωλ ∈ H2|λ|(X) , (5.3)

and similarly in the equivariant setting. The equivariant Schubert classes in cohomology
can be written as double Schubert polynomials Sλ(σ,m), where σa ∈ H2(X) correspond to

14Here we use the notation mα instead of mi, to diminish clutter in some formulas.
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the Chern roots of S — see e.g. [62–64]. The double Schubert polynomial Sλ(σ,m) indexed
by the partition λ can be written as [65]:

Sλ(σ,m) ≡
det1≤a,b≤Nc

(∏λa+Nc−b
α=1 (σb −mα)

)
∏

1≤b<a≤Nc
(σa − σb)

. (5.4)

In the non-equivariant limit, mα → 0, they reduce to the Schur polynomials:

sλ(σ) ≡
det1≤a,b≤Nc

(
σ
λNc−b+1−nf +Nc
a

)
∏

1≤b<a≤Nc
(σa − σb)

. (5.5)

We should insert these polynomials in the 2d A-model computation, as we will review below.
Taking the 2d limit β → 0 using the parameterisation (5.2), we easily check that the

double Grothendieck polynomials (3.69) reduce to the double Schubert polynomials (5.4),
with the scaling:

Gλ(x, y)→ (2πβ)|λ|Sλ(σ,m) (5.6)

up to higher-order terms in β. Therefore, we expect that the Schubert polynomials can be
obtained from the point defects in 2d that we can obtain by wrapping the Grothendieck
lines along the S1.

5.1.1 Schubert point defects and 0d N = 2 quivers

Let us thus consider the 2d GLSM coupled to a defect operator, dubbed Schubert defect,
defined by coupling the 2d theory to a 0d N = 2 supersymmetric quiver — that is, a
supersymmetric matrix model (SMM) at the point p ∈ Σ — see e.g. [66, 67] for discussions
of such gauged SMMs.

The 0d quiver is defined exactly as in the 3d/1d case. We have the 0d gauge group G0d =∏n
l=1 U(rl) with bifundamental chiral matter multiplets connecting each two consecutive

nodes of the 0d defect, as well as Ml 0d fundamental fermi multiplets at each U(rl) node,
exactly as in figure 2. Similarly to (3.36), we denote these defects by:

ω

[
r

M

]
,

[
r

M

]
≡
[
r1 · · · rn
M1 · · · Mn

]
. (5.7)

The “supersymmetric vacuum equations” for this defect theory are similar to the ones of
the 1d defect, namely we still have to solve (3.39) and (3.42). Therefore, the defect restricts
the 2d field ϕ at p ∈ Σ to the Schubert cell given as in (3.56).

The defect contributes to the 2d A-model according to its supersymmetric ‘partition
function’, which can be obtained by naive dimensional reduction of the 1d index. This gives
us a polynomial in σa and mα, which we denote by:

ωλ(σ,m) ≡ Z0d
[
r1 · · · rn
M1 · · · Mn

]
(σ,m) . (5.8)

For definiteness, let us consider the ‘generic Schubert defect’ defined as in figure 3. Then
the parameters rl and Ml are given by (3.63). This supersymmetric matrix model can be
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reduced to a JK residue, similarly to the 1d index. One finds:

ωλ(σ,m) =
n∏
l=1

1
l!

∮
dls(l)

(2πi)l ∆(l)(s) Z0d
matter(s, σ,m) , (5.9)

where s(l)
il

are the components of the adjoint complex scalar that live in the 0d N = 2 U(rl)
vector multiplet. The matter contribution is given by:

Z0d
matter(σ,m) =

n−1∏
l=1

 rl∏
il=1

∏
α(l)∈Il

(
s

(l)
il
−mα(l)

)
∏l+1
jl+1=1

(
s

(l)
il
−s(l+1)

jl+1

)
 rn∏
in=1

∏
α(n)∈In

(
s

(n)
in
−mα(n)

)
∏Nc
a=1

(
s

(n)
in
−σa

) , (5.10)

and we defined the Vandermonde determinant factor as in (3.77):

∆(l)(s) ≡
∏

1≤il ̸=jl≤l

(
s

(l)
il
− s(l)

jl

)
. (5.11)

The factors appearing in the numerator of (5.10) come from the Fermi multiplets at each
node of the 0d quiver. These are indexed by the sets Il defined in (3.37). Meanwhile, the
factors in the denominator originate from the bifundamental chiral multiplets of the 0d
quiver. The contour integrals in (5.9) should be performed recursively, starting with the
U(r1) node.

The case of 1-partitions. In the case of the parition λ = [λ1, 0, · · · , 0], the partition
function (5.9) becomes:

ω[λ1,0,··· ,0](σ,m) =
∮

ds

2πi

∏
α∈I1(s−mα)∏Nc
a=1(s− σa)

=
∑

1≤a≤Nc

∏
α∈I1 (σa −mα)∏Nc
b ̸=a (σa − σb)

. (5.12)

The generic partition. Jumping ahead to the general case, let us take the partition
λ = [λ1, · · · , λn, 0, · · · , 0]. Doing the contour integrals (5.9) recursively, as we did for (3.80),
we find the following explicit form for the partition function of the matrix model:

ωλ(σ,m) =
∑
J

n∏
l=1

∆(Jl)(σ)
∏
il∈Jl

∏
α(l)∈Il

(σil −mα(l))∏
jl+1∈Jl+1

(
σil − σjl+1

)
 ,

=
∑
J

n∏
l=1

∏
il∈Jl

∏
α(l)∈Il

(σil −mα(l))∏
jl+1∈Jl+1∖Jl

(
σil − σjl+1

) , (5.13)

with the indexing sets J defined in (3.81). The Vandermonde factor appearing in the
first line is defined exactly as in (3.83). The expression (5.13) can be massaged into the
determinant formula:

ωλ(σ,m) =
det1≤a,b≤Nc

[∏Nc
l=Nc−b+1

∏
α(l)∈Il

(σa −mα(l))
]

∏
1≤b<a≤Nc

(σa − σb)
= Sλ(σ,m) , (5.14)

which is none other that the double Schubert polynomial (5.4).
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Double Schubert polynomials for Gr(2, 4). As an example, let us write down the
Schubert polynomials for Gr(2, 4):

S (σ,m) = σ1 + σ2 −m1 −m2 ,

S (σ,m) = σ1σ2 −m1σ1 −m1σ2 +m2
1 ,

S (σ,m) = σ2
1 + σ1σ2 + σ2

2 − (m1 +m2 +m3)σ1 − (m1 +m2 +m3)σ2

+m1m2 +m1m3 +m2m3 ,

S (σ,m) = σ1σ
2
2 + σ2

1σ2 + (m2
1 +m1m2 +m1m3)σ1 + (m2

1 +m1m2 +m1m3)σ2

−m1σ
2
1 −m1σ

2
2 − (2m1 +m2 +m3)σ1σ2 −m2

1m2 −m2
1m3 ,

S (σ,m) = σ2
1σ

2
2 − (m2

1m2 +m1m
2
2)σ1 − (m2

1m2 +m1m
2
2)σ2 + (m1 +m2)2σ1σ2

+m1m2σ
2
1 +m1m2σ

2
2 − (m1 +m2)σ2

1σ2 − (m1 +m2)σ1σ
2
2 +m2

1m
2
2 .

(5.15)

They are indeed obtained as the 2d limit of the Grothendieck polynomials (3.72).

5.2 Localisation formula on P1 and GW invariants

Any A-model correlation function of the Grassmannian GLSM on P1 can be obtained from
a JK residue similar to (4.22), as derived in [31, 32]:

〈
ω
〉
P1 =

∞∑
d=0

qd2d I2d
d [ω] ,

I2d
d [ω] =

∑
ma≥0
|m|=d

(−1)d(Nc−1)

Nc!

∮
JK

Nc∏
a=1

[
dσa
2πi

1∏nf

α=1(σa−mα)1+ma

]
∆(σ)ω(x,y) ,

(5.16)

where ∆(σ) = ∏
a ̸=b(σa − σb). This formula captures all the genus-0 GW invariants of

Gr(Nc, nf ). The 3d and 2d formulas are related by a naive scaling limit. Indeed, if we
assume that the insertion in 3d gives a 2d insertion according to:

L → (2πβ)dωω , (5.17)

where dω is the mass-dimension of the homogenous polynomial ω = ω(σ), and if we further
assume that we can commute the limit and the integration, then one finds:15

Id[L ]→ (2πβ)−dim(X)−dnf +dω I2d
d [ω] . (5.18)

Let us write down the quantum cohomology ring in the Schubert basis as:

ωλωµ = cλµ
ν ων , cλµ

ν =
∑
d≥0

c
(d)ν
λµ q2

2d . (5.19)

15Of course, integration and β → 0 limit do not commute in general, which is why QK-theoretic invariants
contain strictly more information than GW invariants. In the computation of the general 3d/1d observables
in the small radius limit, one must generally consider the contribution of several ‘holonomy saddles’ [68],
which decomposes the 3d quantities into several 2d observables.
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By dimensional analysis, we see that, in the non-equivariant limit mα = 0, only one single
degree d can contribute to cλµν in 2d, with:

|λ|+ |µ| = |ν|+ dnf . (5.20)

In particular, using the fact that |λ∨| = dim(X) − |λ|, we find that the structure ring
constants in the Schubert basis can be deduced from the 3d results above whenever (5.20)
holds true:

N (d)ν
λµ → c

(d)ν
λµ . (5.21)

In particular, for d = 0 and in the non-equivariant limit, the K-theoretic LR coefficients (4.41)
that satisfy |λ|+ |µ| = |ν| are equal to the ordinary LR coefficients for the product of Schur
polynomials, as expected.
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A The JK residue formula and the sum over 3d vacua

In this appendix, we further study the JK residue formula (2.14) for the genus-zero
topologically twisted index of the 3d N = 2 SQCD[Nc, k, l, nf , 0] theory. We show that
the JK residues that contribute non-trivially to the index can be organised in terms of the
3d vacua that contribute to the Witten index recently analysed in [36]. In particular, for
(k, l) in the geometric window as defined in section 2.2, only the so-called Higgs-branch
singularities (2.28) contribute.

A.1 Singularity structure of the twisted index integrand

Let us first review the singularity structure of the twisted-index integrand (2.15). Consider
the set of all codimension-one singularities of this integrand on:

M̃ ∼=
(
P1
)Nc

, (A.1)

a natural compactification of the space spanned by the gauge variables xa, a = 1, · · · , Nc.
Here, M̃ is really a compactification of a covering space of the classical 3d Coulomb branch
M ∼= (C∗)Nc/SNc , and we are effectively dealing with an abelianised theory. Then, one can
consider the 3d monopole operators T±

a for each factor U(1)a ⊂ U(Nc), whose charges are
governed by the singularities of the integrand at xa = 0 and xa =∞.
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The integrand then has two types of codimension-one singularities, from either the
matter fields or the monopole operators, in any given topological sector indexed by the
abelianised magnetic flux m. To every hyperplane singularity H, we assign a gauge charge
Q = (Qa) under ∏Nc

a=1 U(1)a, as follows [34]:

Matter field singularities. Depending on the value of the magnetic fluxes m ∈ ZNc ,
there can be singularites that arise from the chiral multiplet contribution to Zm(x, y)
in (2.15). They are characterised by the singular hyperplanes Hρa,i defined by:

Hρa,α ≡ {x ∈ M̃ : xρ y−1
α = 1 } , α = 1, · · · , nf , (A.2)

with ρa being the fundamental weights of U(Nc). To such hyperplanes, we assign the gauge
charges of the corresponding chiral multiplets:

Qa,α = ρa = (0, · · · , 0, 1︸︷︷︸
a−th

, 0, · · · , 0) , α = 1, · · · , nf , a = 1, · · · , Nc . (A.3)

Note that the charge vectors are the same for the nf distinct fundamental chiral multiplets.

Monopole operators singularities. These singularities as associated to the monopole
operators that we can define semi-classically in the asymptotic regions of the classical
Coulomb branch M. Depending on the whether we consider the limit xa =∞ (σa = −∞)
or xa = 0 (σa =∞), we have the monopole operators T+

a or T−
a , respectively. We define

the corresponding hyperplanes:

Ha,± ≡ {x ∈ M̃ : xa = 0, ∞} , a = 1, · · · , Nc . (A.4)

In these asymptotic regions, the JK form Im in (2.15) has the following behaviour:

Im ∼ x
±
(
Q

(±)
a (m)−ra,±

)
a

dxa
xa

, (A.5)

with Q
(±)
a (m) ≡ ∑Nc

b=1Q
(±) b
a mb being the 1-loop-exact gauge charges of the monopole

operators under ∏Nc
a=1 U(1)a. These are the gauge charges that we should assign to the

hyperplanes (A.4). They take the explicit form: [34]:

Q(±)b
a = δba

(
±k − nf

2

)
± l , a, b = 1, · · · , Nc . (A.6)

Note also that ra,± are the R-charges of the monopole operators.

A.2 JK residue prescription and phases of SQCD[Nc, k, l, nf , 0]

In order to define the JK residue, we need to consider the set of all codimension-Nc

singularites in each flux sector m:
M̃m

sing ⊂ M̃ . (A.7)

Such singularities arise from the intersection of rs ≥ Nc hyperplanes — for generic yi we
have rs = Nc always, which is the case we will focus on. The JK residue prescription [69]
instructs us to pick ‘the JK residue’ at the singularity x = x∗ ∈ M̃m

sing:

JK-Res
x=x∗

[Q(x∗), ηξ] Im[L ](x, y, q) . (A.8)
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This is defined in terms of the gauge charges Q assigned to the Nc hyperplanes, as follows.
Let us first define the positive cone generated by the charges Q(x∗) = (Q1, · · · , QN ) as:

Cone+ (Q(x∗)) ≡ {c1Q1 + · · ·+ csQNc : c1, · · · , cNc > 0} ⊂ CNc . (A.9)

We note that, for the definition of this cone to make sense, we need these charges to be
projective in the sense that they live in a half-space of CNc . In the non-projective case, the
JK residue is ill-defined. Then, we are instructed to pick an auxiliary parameter η ∈ CNc ,
which could be arbitrary as long as it is not parallel to any of the JK charges. Here, we will
choose to allign η ≡ ηξ with the real 3d FI parameter ξ, as follows:

ηξ ≡ ξ(1, · · · , 1) ∈ CNc . (A.10)

We thus assume that ξ ̸= 0 in the following. Then, the singular points x∗ ∈ M̃m
sing that

contribute non-trivially to the JK residue are those such that η ∈ Cone+(Q(x∗)) — see
e.g. [34] for further details.

Hence, to determine which singularities contribute to the correlation function (2.14)
for SQCD[Nc, k, l, nf , 0], we need to determine all the possible positive cones that contain
η = ηξ. That is, we need to find all possible abelianised gauge charges Q(p1)

1 , · · · , Q(pNc )
Nc

such that:

η =
Nc∑
a=1

ca Q
(pa)
a , ca > 0 , ∀a = 1, · · · , Nc . (A.11)

Here, we use the labels pa ∈ {+,−, 1, · · · , nf} depending on whether the associated sin-
gularity comes from the monopole operators T± or the fundamental chiral multiplets Φα,
α = 1, · · · , nf , respectively. Let us first work out the case Nc = 2. We will then briefly
discuss the general case.

For SQCD[2, k, l, nf , 0]. Consider the U(2)k,k+2l gauge theory coupled with nf matter
multiplets in the fundamental representation. In this case, we have the following charges
defining the singular hyperplanes:

Q
(α)
1 = (1, 0) , Q

(α)
2 = (0, 1) i = 1, · · · , nf , (A.12)

for the matter singularities (A.3). And,

Q
(±)
1 =

(
±k − nf

2 ± l, ±l
)
, Q

(±)
2 =

(
±l, ±k − nf

2 ± l
)
, (A.13)

for the monopole singularities (A.6). To find which singularities do contribute for dif-
ferent choices of CS levels k and l, and for a given nf , we need to study the equa-
tions (A.11), namely:

ξ(1, 1) = c1Q
(p1)
1 + c2Q

(p2)
2 , p1, p2 ∈ {+,−, 1, · · · , nf} , (A.14)

with the constraint that c1, c2 > 0. The solutions to these equations are closely related to
the 3d vacua that contribute to the 3d Witten index, hence we shall index the solutions as
in [36]. We have the following possibilities,
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• Type I. In this case, all the contributing singularities come from the matter multiplets.
In this case, equations (A.14) become:

ξ(1, 1) = c1(1, 0) + c2(0, 1) , (A.15)

which has the unique solution c1 = c2 = ξ. Thus, this type of singularities does indeed
contribute to the correlation function if ξ > 0.

Let α1, α2 ∈ {1, · · · , nf}, α1 ̸= α2, denote two possible distinct matter singularities.
In this case, the JK residue (2.14) for Nc = 2 becomes:

⟨L ⟩P1×S1 = Θ(ξ)
∑
m∈Z2

∑
1≤α1<α2≤nf

Res
x1=yα1
x2=yα2

Im[L ](q, x, y) , (A.16)

where we used the residual gauge symmetry to cancel the 2! factor. Here Θ is the
Heaviside step function, as in [36]. We further note that, although the residue formula
is formally given in terms of a sum over all topological sectors m ∈ Z2, only the
topological sectors with m1,m2 ≥ 0 actually contribute singularities. From the point of
view of the semi-classical analysis of the vacua [36], we get a 3d Gr(2, nf ) Higgs-branch
vacuum spanned by the matter multiplets.

• Type II. In this case, we take one of the contributing singularities to be from the
matter multiplets and the other from one of the monopoles T (±)

1,2 . The equations (A.14)
become:

ξ(1, 1) = c1(1, 0) + c
(±)
2 (±l, ±k − nf

2 ± l) , (A.17)

which have the solution:

c1 = ξ

(
±k − nf

2
)

±k − nf

2 ± l
> 0 , c2 = ξ

±k − nf

2 ± l
> 0 . (A.18)

The corresponding 3d supersymmetric vacuum is a hybrid topological-Higgs vacuum
of the form: Pnf−1 ×U(1)

k+l±
nf
2

[36].

• Type III. In this case, all the contributing singularities come from the two monopole
operators T±

1,2 (A.6). We actually have three possible choices. The first two are
where we take the singular hyperplanes x(+)

1,2 = ∞ or x(−)
1,2 = 0. The corresponding

equations (A.14) take the following form:

ξ(1, 1) = c
(±)
1

(
±k − nf

2 ± l, ±l
)

+ c
(±)
2

(
±l, ±k − nf

2 ± l
)
. (A.19)

In either case, we have the unique solution:

c
(±)
1 = c

(±)
2 = ξ

±k − nf

2 ± 2l
> 0 , iff ξ

(
±k − nf

2 ± 2l
)
> 0 . (A.20)

From the point of view of moduli space of vacua, in this case, we find topological
vacua of the form 3d TQFT with gauge group U(2)±k, ±k−nf

2 ±2l [36].
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The third choice of intersecting hyperplanes is x(+)
1 =∞ and x

(−)
2 = 0. This leads to

the equations:
ξ(1, 1) = c

(+)
1 Q

(+)
1 + c

(−)
2 Q

(−)
2 . (A.21)

These two equations can be uniquely solved by:

c
(+)
1 = ξ

k + nf

2(
k + nf

2
) (
k − nf

2
)

+ 2kl
> 0 , c

(−)
2 = −ξ

k − nf

2(
k + nf

2
) (
k − nf

2
)

+ 2kl
> 0 .

(A.22)
We can simplify these constraints into the following:

|k| < nf
2 , ξ

(
k2 + 2kl −

n2
f

4

)
> 0 . (A.23)

In this case, the moduli space of vacua consists of topological ones of the form of a
TQFT with a gauge group U(1)

k+l−
nf
2
×U(1

l

)
k+l+

nf
2

[36].

In the analysis above, we tacitly assumed that we are staying away from the marginal
case, which is the case when |k| = nf

2 . In the marginal case, the monopole charges become
parallel to each other and render the JK residue ill-defined — that is, the singularities
become non-projective –, as we can see from (A.6). These non-projective singularities are
conjecturally associated with strongly-coupled 3d vacua which are not accounted for when
solving the semi-classical 3d vacuum equations [36]. It may be interesting to apply the
methods of [38] to better deal with the marginal case. We will not consider this issue further
in this work.

For SQCD[Nc, k, l, nf , 0]. It is straightforward to extend the analysis of the Nc = 2
case above to the general case. One finds a one-to-one correspondence between the possible
mixtures of the singularities and types of supersymmetric vacua that we get from the
semi-classical analysis of [36].

B Other generalised QK(Gr(2, 4)) rings

In this appendix, we provide a few more examples for the non-equivariant rings R3d[k, l]
for the Gr(2, 4) 3d GLSM, for different values of the CS levels k, l in the geometric window,
in addition to the ones discussed in subsection 4.3. Specifically, we write down the result
for the cases (k, l) = (0, 0), (1, 0) and (2,−2) in the Schubert class basis. In each of these
three cases, we give both the topological metric (4.24) and the 3d ring structure.

B.1 Case (k, l) = (0, 0)

In this case, we find that the 2-point function (4.24), computed up to degree d = 4, has the
following form:

⟨Oµ Oν⟩(k,l)=(0,0)
P1×S1 =



1 1 1 1 1 1
1 1 1 1 1 0
1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 0 0
1 0 0 0 0 0


. (B.1)
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Meanwhile, the generalised QK ring R3d[0, 0] has the following structure:

O2 = O +O −O .

O O = O ,

O O = O ,

O O = −q + 2qO − qO − qO + qO +O ,

O O = −qO + qO + qO − qO ,

O2 = O ,

O O = −q + qO ,

O O = −qO + qO + qO − qO ,

O O = −qO + qO ,

O2 = O ,

O O = −qO + qO + qO − qO ,

O O = −qO + qO ,

O2 = q2 − 2q2O −
(
q − q2

)
O −

(
q − q2

)
O −

(
q2 − 3q

)
O − qO ,

O O = −q2 + 2q2O − q2O − q2O −
(
q − q2

)
O + qO ,

O2 = q2 − 2q2O + q2O + q2O − q2O .

(B.2)

B.2 Case (k, l) = (1, 0)

In this case, we find that the 2-point function takes the form:

⟨Oµ Oν⟩(k,l)=(1,0)
P1×S1 =



1 1 1 1 1 1
1 1 1 1 1 0
1 1 1 0 0 0
1 1 0 1 0 −q
1 1 0 0 0 −q
1 0 0 −q −q 0


, (B.3)

and we have the following R3d[1, 0] ring structure:

O2 = O +O −O .

O O = O ,

O O = q − 2qO + qO + qO − (q − 1)O ,

O O = q − 2qO + qO + qO − qO +O ,

O O = qO − 2qO − qO + 2qO ,

O2 = O ,

O O = q − qO − qO + qO ,

O O = O − 2qO − qO + 2qO ,
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O O = qO − 2qO + qO ,

O2 = q2 −
(
2q2 − q

)
O −

(
q − q2

)
O −

(
2q − q2

)
O −

(
q2 − 2q

)
O +O ,

O O = q2 −
(
2q2 − q

)
O −

(
q − q2

)
O −

(
q − q2

)
O − q2O + qO ,

O O = q2O −
(
2q2 − q

)
O − q2O −

(
q − 2q2

)
O − qO ,

O2 = q2 − 2q2O +
(
q2 + q

)
O +

(
q2 + q

)
O −

(
q2 + 4q

)
O + 2qO ,

O O = −q2 + 3q2O − 3q2O − 2q2O +
(
3q2 + q

)
O − 2qO ,

O2 = q2 − 3q2O + 3q2O + 3q2O − 5q2O + q2O . (B.4)

B.3 Case (k, l) = (2,−2)

In this case, the 2-point function reads (here up to order q4):

⟨Oµ Oν⟩(k,l)=(2,−2)
P1×S1

=



q4 + q2 + 1 q4 + q2 + 1 q4 + q2 + 1 q4 + q2 + 1 q4 + q2 + 1 q4 + q2 + 1
q4 + q2 + 1 q4 + q2 + 1 q4 + q2 + 1 q4 + q2 + 1 q4 + q2 + 1 q4 + q2

q4 + q2 + 1 q4 + q2 + 1 q4 + q2 + 1 q4 + q2 q4 + q2 q4 + q2

q4 + q2 + 1 q4 + q2 + 1 q4 + q2 q4 + q2 + 1 q4 + q2 q4 + q2

q4 + q2 + 1 q4 + q2 + 1 q4 + q2 q4 + q2 q4 + q2 q4 + q2

q4 + q2 + 1 q4 + q2 q4 + q2 q4 + q2 q4 + q2 q4 + q2


. (B.5)

For the ring R3d[2,−2], we find:

O2 = O +O −O ,

O O = O ,

O O = −2q + qO + qO +O ,

O O = −q + qO +O ,

O O = q2 − qO + qO − qO + qO ,

O2 = O ,

O O = q2 − q − qO + 2qO − qO + qO ,

O O = q2 − qO + qO − qO + qO ,

O O = q2 − qO + qO ,

O2 = −2qO − qO + qO + qO + (q + 1)O ,

O O = q − qO − qO − qO + 2qO ,

O O = q2 − qO − qO + 2qO ,

O2 = −qO − qO + qO + qO ,

O O = q2 − qO + qO ,

O2 = q2 . (B.6)

All the other theories in the geometric window can be worked out similarly.
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C Another example: the 3d GLSM for Gr(3, 5)

In this appendix, we briefly display another example, namely the 3d GLSM onto Gr(3, 5)
that gives us its ordinary QK ring. This is the U(3) 1

2 ,−
5
2

gauge theory with nf = 5. We
restrict ourselves to the non-equivariant limit for simplicity of exposition. The Grothendieck
lines are shown explicitly in figures 5 and 6.

C.1 QK(Gr(3, 5))

O2 = O +O −O , O O = O +O −O ,

O O = O , O O = O +O −O ,

O O = O , O O = O ,

O O = q − qO +O , O O = qO − qO +O ,

O O = qO , O2 = O +O −O ,

O O = O , O O = q − qO +O ,

O O = O , O O = qO ,

O O = O + qO − qO , O O = qO + qO − qO ,

O O = qO , O2 = O ,

O O = O , O O = q ,

O O = O , O O = qO

O O = qO , O O = qO ,

O2 = qO − qO +O , O O = qO ,

O O = qO , O O = qO + qO − qO ,

O O = qO + qO − qO , O O = qO

O2 = O , O O = qO ,

O O = qO , O O = qO ,

O O = qO , O2 = qO + qO − qO ,

O O = qO , O O = qO + qO − qO ,

O O = qO , O2 = qO ,

O O = qO , O O = q2 ,

O2 = q2 − q2O + qO , O O = q2O ,

O2 = q2O (C.1)
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5
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φ4
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3

5
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0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


321

φ4
3φ3

2φ2
1

(4)
(3) (12)

Figure 5. The Hasse diagram associated with the Schubert subvarieties of Gr(3, 5). The defining
partitions are displayed at Young tableaux, and the ‘generic’ Grothendieck line defects are shown ex-
plicitly.
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φ2
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Figure 6. The Hasse diagram associated with the Schubert subvarieties of Gr(3, 5), with the 1d
quivers simplified using the duality moves (3.65).
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