
 
 

University of Birmingham

Noise suppression of proton magnetic resonance
spectroscopy improves paediatric brain tumour
classification
Zhao, Teddy; Grist, James T.; Auer, Dorothee P.; Avula, Shivaram; Bailey, Simon; Davies,
Nigel P.; Grundy, Richard G.; Khan, Omar; MacPherson, Lesley; Morgan, Paul S.; Pizer,
Barry; Rose, Heather E. L.; Sun, Yu; Wilson, Martin; Worthington, Lara; Arvanitis, Theodoros
N.; Peet, Andrew C.
DOI:
10.1002/nbm.5129

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Zhao, T, Grist, JT, Auer, DP, Avula, S, Bailey, S, Davies, NP, Grundy, RG, Khan, O, MacPherson, L, Morgan,
PS, Pizer, B, Rose, HEL, Sun, Y, Wilson, M, Worthington, L, Arvanitis, TN & Peet, AC 2024, 'Noise suppression
of proton magnetic resonance spectroscopy improves paediatric brain tumour classification', NMR in
biomedicine. https://doi.org/10.1002/nbm.5129

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 15. May. 2024

https://doi.org/10.1002/nbm.5129
https://doi.org/10.1002/nbm.5129
https://birmingham.elsevierpure.com/en/publications/e7af9f4a-bf99-47f6-b5d2-35727f8b66f9


R E S E A R CH A R T I C L E

Noise suppression of proton magnetic resonance spectroscopy
improves paediatric brain tumour classification

Teddy Zhao1,2 | James T. Grist1 | Dorothee P. Auer3 | Shivaram Avula4 |

Simon Bailey5 | Nigel P. Davies6 | Richard G. Grundy3 | Omar Khan7 |

Lesley MacPherson8 | Paul S. Morgan3,9,10 | Barry Pizer11 |

Heather E. L. Rose1,2 | Yu Sun1,2 | Martin Wilson12 |

Lara Worthington1,2,13 | Theodoros N. Arvanitis1,2,7,14 | Andrew C. Peet1,2

1Cancer and Genomic Sciences, University of

Birmingham, Birmingham, UK

2Oncology, Birmingham Children's Hospital,

Birmingham, UK

3Clinical Neuroscience, University of

Nottingham, Nottingham, UK

4Radiology, Alder Hey Children's NHS

Foundation Trust, Liverpool, UK

5Paediatric Oncology, Great North Children's

Hospital, Newcastle upon Tyne, UK

6Imaging and Medical Physics, University

Hospitals Birmingham NHS Foundation Trust,

Birmingham, UK

7Digital Healthcare, WMG, University of

Warwick, Coventry, UK

8Radiology, Birmingham Children's Hospital,

Birmingham, UK

9Children's Brain Tumour Research Centre,

University of Nottingham, Nottingham, UK

10Medical Physics, Nottingham University

Hospitals NHS Trust, Nottingham, UK

11University of Liverpool, Liverpool, UK

12Centre for Human Brain Health, University

of Birmingham, Birmingham, UK

13RRPPS, University Hospitals Birmingham

NHS Foundation Trust, Birmingham, UK

14Engineering, University of Birmingham,

Birmingham, UK

Correspondence

Andrew C. Peet, Institute of Child Health,

Whittall Street, Birmingham, B4 6NH, UK.

Email: a.peet@bham.ac.uk

Abstract

Proton magnetic resonance spectroscopy (1H-MRS) is increasingly used for clinical

brain tumour diagnosis, but suffers from limited spectral quality. This retrospective

and comparative study aims at improving paediatric brain tumour classification by

performing noise suppression on clinical 1H-MRS. Eighty-three/forty-two children

with either an ependymoma (ages 4.6 � 5.3/9.3 � 5.4), a medulloblastoma (ages 6.9

� 3.5/6.5 � 4.4), or a pilocytic astrocytoma (8.0 � 3.6/6.3 � 5.0), recruited from four

centres across England, were scanned with 1.5T/3T short-echo-time point-resolved

spectroscopy. The acquired raw 1H-MRS was quantified by using Totally Automatic

Robust Quantitation in NMR (TARQUIN), assessed by experienced spectroscopists,

and processed with adaptive wavelet noise suppression (AWNS). Metabolite concen-

trations were extracted as features, selected based on multiclass receiver operating

characteristics, and finally used for identifying brain tumour types with supervised

machine learning. The minority class was oversampled through the synthetic minority

oversampling technique for comparison purposes. Post-noise-suppression 1H-MRS

showed significantly elevated signal-to-noise ratios (P < .05, Wilcoxon signed-rank

test), stable full width at half-maximum (P > .05, Wilcoxon signed-rank test), and sig-

nificantly higher classification accuracy (P < .05, Wilcoxon signed-rank test). Specifi-

cally, the cross-validated overall and balanced classification accuracies can be

improved from 81% to 88% overall and 76% to 86% balanced for the 1.5T cohort,

whilst for the 3T cohort they can be improved from 62% to 76% overall and 46% to

56%, by applying Naïve Bayes on the oversampled 1H-MRS. The study shows that

fitting-based signal-to-noise ratios of clinical 1H-MRS can be significantly improved

by using AWNS with insignificantly altered line width, and the post-

Abbreviations: 1H-MRS, proton magnetic resonance spectroscopy; AUC, area under the curve; AWNS, adaptive wavelet noise suppression; CRLB, Cramér–Rao lower bound; DF, discriminant

functions; fSNR, fitting-based SNR; FWHM, full width at half-maximum; mAUC, multiclass area under the curve; NS, noise suppression; PBTs, paediatric brain tumours; ROC, receiver operating

characteristics; SMOTE, synthetic minority oversampling technique; SNR, signal-to-noise ratio; wSNR, whole-spectrum SNR.
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noise-suppression 1H-MRS may have better diagnostic performance for paediatric

brain tumours.
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1 | INTRODUCTION

Paediatric brain tumours (PBTs) remain amongst the most lethal cancers in childhood.1 Half of PBTs arise in the posterior fossa,2 among which

the most frequent tumour types are pilocytic astrocytomas, medulloblastomas, and ependymomas.3 Pilocytic astrocytomas, a subset of gliomas,

are the most common PBTs in the posterior fossa, and they are classified as World Health Organization (WHO) grade I tumours.4 Medulloblasto-

mas are the next most common tumours, which are classified as WHO grade IV. They have four main molecular groups that are associated with

diverse prognoses.5 Ependymomas6 are less common and are classified as grade II or III,7 although grading is challenging and not closely linked to

their malignant behaviour. The three tumour types require different treatment strategies that usually involve surgical resection, with adjuvant

treatment, including radiotherapy and chemotherapy, being dependent on diagnosis and a set of clinical, pathological, and radiological factors.8

For pilocytic astrocytomas, surgical resection alone is usually curative and, even if resection is not complete, patients often require no further

treatment. Surgical strategy is therefore aimed at minimising morbidity whilst aiming for as complete a resection as possible.9 For medulloblasto-

mas, surgical resection is an important part of their treatment but small residuals can be successfully treated with adjuvant radiotherapy and che-

motherapy. Many medulloblastomas have metastases at diagnosis and the prognostic value of extensive resection of the primary is less certain in

these cases, although often still attempted.10 For ependymomas, a complete resection is the key to maximising the chances of survival and

second-look surgery is advocated where the tumour has not been completely resected and the residual is thought amenable to further resec-

tion.11 Given the different surgical strategies required for these three tumour types, a pre-operative diagnosis is a significant contribution to their

clinical care.12 In addition, an early diagnosis can allow timely planning of adjuvant treatment and more informed discussions with the family.13 An

initial noninvasive diagnosis is made from clinical and imaging information, with this being confirmed or refined by histology and molecular analy-

sis after surgical resection.14

Conventional MRI is the standard diagnostic imaging modality, and it can present structural details of tissue and is normally involved in clinical

diagnostic determination.8 It allows limited differential classification between the three PBTs with conventional machine learning and requires

heavy computational analysis to achieve better performance.15 In contrast, proton magnetic resonance spectroscopy (1H-MRS)16 can reveal

metabolite profiles of human tissue in vivo17 by observing the T2 relaxation time variations of metabolites. Metabolite profiles were observed to

be cancer-specific18 and could reflect malignancy,19 supporting their use in the clinical diagnosis of PBTs.20 However, clinical 1H-MRS is challeng-

ing to acquire at high quality and in particular suffers from limited signal-to-noise ratio (SNR).21 This is due to the relatively low concentration of

protons from metabolites in comparison with bulk water and fat protons and the limitation on voxel size required for tumour localisation. Even for

well-designed MR systems, noise may still exist due to thermal motion of charged particles and electrons in the receiver coil.22 Spectral noise23

can introduce errors in estimating metabolite concentrations, which may lead to inaccurate metabolite- or spectrum-based PBT classification. In

clinical practice, the 1H-MRS SNR may not always be of acceptable quality, and it is affected by various factors such as the number of signals aver-

aged and voxel size.24 Apodisation is the commonly used method for clinical 1H-MRS postprocessing.25 Despite being able to increase the SNR to

some degree, apodisation decreases the spectral resolution, which shows as increased full width at half-maximum (FWHM). Consequently, apod-

isation makes overlapping spectra more difficult to separate and metabolite quantification no longer reliable.24 Wavelet analysis is a unified multi-

resolution processing technique for nonstationary signals.26 Wavelets were reported to be useful in 1H-MRS for quantification27, analysis,28 noise

suppression (NS),29 and clinical imaging biomarker identification.30 To reduce the detrimental effects of noise in clinical 1H-MRS, wavelet analysis

could potentially improve the accuracy of metabolite concentration estimation.

This article hypothesises that the metabolite concentrations that are estimated from post-noise-suppression (postNS) 1H-MRS have improved

diagnostic accuracy for PBTs. The aim is to investigate the potential of 1H-MRS NS for improving PBT classification.
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2 | MATERIALS AND METHODS

This retrospective study (Figure 1) was approved by the local research ethics committee (ethics number: 04/MRE04/41). Informed consent was

obtained from parents or guardians of all patients.

2.1 | Data acquisition

Structural imaging and 1H-MRS data of PBT cases, with a diagnosis of ependymoma (posterior fossa or supratentorial), medulloblastoma, and pil-

ocytic astrocytoma (posterior fossa), were collected from our four hospitals nationally between October 2004 and December 2019. Each patient

underwent MRI and 1H-MRS before surgical resection. Histological diagnosis was reviewed by local tumour boards. Histological subtypes of the

medulloblastomas and ependymomas were grouped together. Multisite imaging data were acquired by using scanners including Siemens Sym-

phony 1.5T, GE Signa LX 1.5T, Philips Ingenia 1.5T, Philips Intera 1.5T, Philips Achieva 3T, Philips X-series 3T, and Siemens Verio 3T

(Tables D1–D3). Structural images were acquired by using T1-weighted, T2-weighted, T1-weighted post-contrast and diffusion-weighted MR imag-

ing sequences.

Following conventional imaging that included gadolinium administration, 1H-MRS with water reference was acquired by using the point-

resolved spectroscopy sequence (field strength 1.5T or 3T, head coils or head and neck coils 8–32 channels, sampling frequency 1000–2500 Hz,

chemical shift displacement < 4% per ppm, echo time 30–41 ms, number of complex points 512, 1024, or 2048, number of signals averaged

128, pulse repetition time 1500–2200 ms, voxel size 13 � 13 � 13–20 � 20 � 20mm3: Tables D1–D3). Water suppression was performed

through chemical shift selective saturation pulses without outer-volume suppression. Volumes of interest were placed within the tumour by clini-

cal radiologists and MR technicians with reference to structural images. Contrast enhancement and low apparent diffusion coefficient were used

as guides where tumours exhibited some heterogeneity.

2.2 | Spectroscopy quantification and quality control

1H-MRS were quantified by using Totally Automatic Robust Quantitation in NMR (TARQUIN) (version 4.3.11) with the 1H brain full basis that

includes the basis of lipids and macromolecules.31 Quality-control parameters, which were obtained through quantification, included fitting-based

SNR (fSNR), whole-spectrum SNR (wSNR), FWHM (Appendix A.1), and Cramér–Rao lower bound (CRLB).24,32 1H-MRS filtering was subsequently

performed according to the aforementioned quality-control parameters and assessed visually by experienced spectroscopists for general quality

features, namely phasing, fitting, baseline drifting, and the presence of artefacts.

The following exclusion criteria were applied for raw patient 1H-MRS screening (Table D4): (1) missing histological diagnosis; (2) missing water

suppressed signals, water reference signals, or structural MR images that indicated the 1H-MRS voxel location; (3) 1H-MRS voxels only partially

containing tumours, as determined by visual inspection of the voxel location images produced on the scanner aided by reference to the available

image set; (4) very poor FWHM (> 0.15 ppm) of the spectrum; (5) very poor fSNR (< 4) of the spectrum. All the cases that passed quality-control

filtering described above were included in the final cohort for the following analysis in this study.

2.3 | Spectroscopy noise suppression

1H-MRS passing quality screening were processed by using a designed framework, adaptive wavelet noise suppression (AWNS), that combines

wavelets and a data-driven approach (Figures 1 and E1, Algorithm 1). Firstly, raw 1H-MRS was initially processed by a series of wavelet variations

(Table D5) in the frequency domain.33 Secondly, quantification of both original and postNS 1H-MRS was performed by using TARQUIN as

described above. Finally, quality metrics were used as the criteria for selecting the final postNS results. Among the multiple spectra produced from

the initial input spectrum, the spectrum was selected based on the fSNR and FWHM for the rest of the study. Apart from overall comparison, 1H-

MRS were additionally divided into three groups according to the noise level in each cohort to perform postNS evaluation, providing a poor-

quality group (4 < fSNR ≤ 10), a medium-quality group (10 < fSNR < 20), and a good-quality group (fSNR > 20). 1H-MRS NS was conducted by

using MATLAB (version 2020a, MathWorks, Natick, Massachusetts, United States).

2.4 | Metabolite analysis

For each individual case, metabolite concentrations were normalised based on the sum of all metabolite concentrations, including lipids and mac-

romolecules, as the features for tumour classification. Metabolites whose CRLB percentage values, according to the raw spectrum, were greater
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than 50% in all cases were excluded (Table D6). The diagnostic ability of a given metabolite to discriminate between the three tumour types was

calculated through a multiclass area under the curve (mAUC). The area under the curve (AUC) of the metabolite combinations that consist of

highly overlapped metabolites in chemical shifts was further evaluated. Such combinations include (1) creatine and phosphocreatine, at 3.9 ppm;

F IGURE 1 Flowchart showing the methods used for clinical magnetic resonance spectroscopy in this project. Abbreviations: 1H-MRS, proton
magnetic resonance spectroscopy; AWNS, adaptive wavelet noise suppression; FID, free induction decay; NS, noise suppression; SMOTE,
synthetic minority oversampling technique; fSNR, fitting-based signal-to-noise ratio; FWHM, full width at half-maximum; mAUC, multiclass area
under the curve; PreNS, pre-noise suppression; PostNS, post-noise suppression; PreOS, pre oversampling; PostOS, post oversampling.
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(2) glucose and glutathione, at 3.8 ppm; (3) glycine and myo-Inositol, at 3.6 ppm; (4) scyllo-Inositol and taurine, at 3.3 ppm;

(5) glycerophosphocholine, phosphocholine, and free choline, at 3.2 ppm; (6) citrate, glutamate, and glutamine, at 2.35 ppm; (7) N-acetylaspartate,

N-acetylaspartylglutamate, lipids at 2.0 ppm, and macromolecules at 2.0 ppm; (8) lipids and macromolecules at 1.3 ppm and lactate; (9) lipids and

macromolecules at 0.9 ppm. Between the three PBT types, bootstrapped multiclass receiver operating characteristics (ROC)34 were used to evalu-

ate the diagnostic ability of individual metabolites and metabolite combinations for discriminating between the three tumour types, and

bootstrapped multivariate and multiclass ROC with the multinomial logistic regression were used to evaluate the diagnostic ability for all the

metabolites.

2.5 | Tumour classification

Normalised metabolite concentrations were used as the potential features for tumour classification. Metabolite concentrations were ranked and

selected according to their mAUC, which demonstrates their diagnostic value across the three tumour types.35 Features used for classification

were set as no more than the number in the minority group minus one. Classification of tumours was performed by using linear and nonlinear clas-

sifiers, including linear discriminant analysis, k-nearest neighbours, Naïve Bayes, multinomial log–linear models via neural networks, and support

vector machines with a linear kernel. Oversampling was performed with an oversampling rate of 100% or 200% for the minority class by using

the adaptive synthetic minority oversampling technique (SMOTE) for classification only.36 The decision tree37 of tumour classification was

assessed by using resubstitution on linear discriminant functions. Classification accuracy was determined by using both leave-one-out and k-fold

cross-validation, and the statistical significance values of the difference between classification accuracies were adjusted by using Bonferroni cor-

rection (Appendix A.2). Test sets were generated through stratified sampling, and k was set based on the sample size of the minority class as

10 for the 1.5T cohort and 4 for the 3T cohort.

2.6 | Statistical analysis

The chi-squared test was performed to evaluate the association between patient sex and tumour types.

The Wilcoxon rank-sum test was performed to evaluate the patient age between tumour types and the tumour classification accuracy

between preNS and postNS 1H-MRS. The Kruskal–Wallis H test was performed to evaluate the noncategorical variables between the three

tumour types. The Wilcoxon signed-rank test was performed to evaluate the variables between preNS and postNS, namely the quality-control

parameters (fSNR, wSNR, FWHM, CRLB, and CRLB percentage values) of 1H-MRS and the AUC of metabolites. Specifically, the multivariant

AUC38 was used to compare multiple metabolites for their diagnostic ability, where metabolites were combined by performing regression before

being used for prediction and calculating ROC. Significance of the statistical analysis was determined when P < .05. All statistical analysis and

machine-learning experiments were conducted by using R (version 4.2.2, The R Foundation, Vienna, Austria).

3 | RESULTS

3.1 | Demographics

In the final cohort, a total of 83 patients (Table 1) were scanned at 1.5T (57% were male) and 42 patients scanned at 3T (43% were male).

Ependymomas were located in the posterior fossa except for three cases in the 1.5T cohort and one in the 3T cohort. Demographic statistics did

not suggest significant differences in sex (Table D7) and age (Table D8) between groups (P > .05), with the exception of significantly younger

ependymoma patients than the other two tumour types in the 1.5T cohort (P < .05).

3.2 | Spectral quality

PostNS 1H-MRS showed improved spectral quality across the three tumour types and three quality levels in both 1.5T and 3T cohorts (Table D9).

The fSNR was significantly improved from 19 � 13 to 27 � 17 (V = 0, P < .001) in the 1.5T cohort and 16 � 11 to 21 � 12 (V = 0, P < .001) in

the 3T cohort (Figures 2,E2–E5). The wSNR was significantly improved from 27 � 26 to 40 � 27 (V = 0, P < .001) in the 1.5T cohort and 25 �
23 to 35 � 30 (V = 0, P < .001) in the 3T cohort (Figures 2 and E2–E5). FWHM was not altered significantly in either 1.5T (V = 326, P = .17) or

3T (V = 136, P = .21) postNS 1H-MRS (Figures 2,E2–E5). An example showed reduced residual and slightly altered spectra (Figure 2). CRLB
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(Table D10) and CRLB percentage values (Table D11) were observed to be significantly reduced in postNS 1H-MRS (P < .05), with the exception

of insignificant change of scyllo-Inositol from the 1.5T cohort (V = 244, P = 0.194).

3.3 | Metabolite concentrations

Metabolite concentrations showed significant differences between different tumour types (Table 2) in both the 1.5T and the 3T postNS 1H-MRS,

some of which had their significance in postNS 1H-MRS. Most metabolites were consistently significantly different between the three tumour

types (P < .05) for either prenoise suppression (preNS, Table D12) or postNS 1H-MRS. For the 1.5T cohort, such metabolites included citrate, total

choline, total creatine, glutathione, glycine, total lipids and macromolecules at 0.9 ppm, 1.3 ppm, and 2.0 ppm, myo-Inositol, scyllo-Inositol, and

taurine. For the 3T cohort, such metabolites included total choline, total creatine, glutathione, glycine, lactate, macromolecules at 0.9 ppm and 1.3

ppm, scyllo-Inositol, and taurine. However, some metabolites were originally significantly different (P < .05) but lost their significance (P > .05) in

postNS 1H-MRS between the three tumour types. Such metabolites included glucose and lactate for the 1.5T cohort and total N-acetylaspartate

for the 3T cohort. Nevertheless, there were still some other metabolites that were significantly different (P < .05) in postNS 1H-MRS and were

originally not significantly different (P > .05) between the three tumour types, namely citrate, glucose, total lipids, and macromolecules at 0.9 ppm

from the 3T cohort.

TABLE 1 Demographic and clinical variables of patients.

1.5T cohort 3T cohort

Sample size 83 42

Site of primary tumours

Ependymomas 13† 4‡

Medulloblastomas 31 17

Pilocytic astrocytomas 39 21

Patient age (yrs)

At diagnosis

Ependymomas 4.6 � 5.3 9.2 � 5.3

Medulloblastomas 6.9 � 3.5 6.5 � 4.4

Pilocytic astrocytomas 8.0 � 3.6 6.3 � 5.1

At image acquisition

Ependymomas 4.6 � 5.3 9.3 � 5.4

Medulloblastomas 6.9 � 3.5 6.5 � 4.4

Pilocytic astrocytomas 8.0 � 3.6 6.3 � 5.0

Patient sex (F:M)

Ependymomas 8:5 3:1

Medulloblastomas 9:22 7:10

Pilocytic astrocytomas 19:20 13:8

Histological subtypes

Ependymomas

Grade II 7 2

Grade III, anapaestic 6 2

Medulloblastomas

Grade IV, classic 26 17

Grade IV, demoplastic-nodular 5 0

Pilocytic astrocytomas

Grade I 39 21

†Three of the 13 ependymomas were located supratentorially.
‡One of the four ependymomas was located supratentorially.
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3.4 | Diagnostic ability of metabolites

The mAUC was significantly improved for 10 and 9 out of 16 metabolites in the postNS 1H-MRS for the 1.5T and 3T cohorts, respectively

(Tables D13–D14). Among postNS 1H-MRS, the 1.5T cohort (Figure 3) showed that lactate and total lipids and macromolecules at 1.3 ppm (V =

0, P < .001), combined glutamate, glutamine and citrate (V = 3486, P < .001), total choline (V = 3486, P < .001), scyllo-Inositol and taurine

(V = 818, P < .001), glycine and myo-Inositol (V = 1, P < .001), and total creatine (V = 149, P < .001) had significantly improved mAUC, while the

combination of N-acetylaspartate, N-acetylaspartylglutamate, and total lipids and macromolecules at 2.0 ppm (V = 3486, P < .001) and the combi-

nation of glucose and glutathione had significantly reduced mAUC (V = 3486, P < .001).

At the same time, the 3T cohort (Figure 4) showed significantly improved mAUC for the combination of N-acetylaspartate, N-ace-

tylaspartylglutamate, and total lipids and macromolecules at 2.0 ppm (V = 42, P < .001), the combination of glutamate, glutamine, and citrate (V =

0, P < .001), scyllo-Inositol and taurine (V = 0, P < .001), glycine and myo-Inositol (V = 0, P < .001), and glucose and glutathione (V = 0, P < .001),

whilst it showed significantly decreased mAUC for total choline (V = 825, P < .001) and total creatine (V = 739, P < .001).

The ranking of individual metabolites by mAUC differed from preNS to postNS 1H-MRS (Figures 3 and 4). Taking the 3T pre-oversampling

cohort as an example, the top four metabolites in preNS 1H-MRS were total N-acetylaspartate (mAUC = 0.80 � 0.01), glycine (mAUC = 0.79 �
0.01), total choline (mAUC = 0.76 � 0.01), and scyllo-Inositol (mAUC = 0.74 � 0.01). However, the top four metabolites in postNS 1H-MRS were

glycine (mAUC = 0.85 � 0.01), total lipids and macromolecules at 2.0 ppm (mAUC = 0.81 � 0.01), glutamate and glutamine (mAUC = 0.79 �
0.01), and total N-acetylaspartate (mAUC = 0.79 � 0.01). Both the 1.5T and 3T postNS 1H-MRS provides improved multivariate AUC in compari-

son with preNS 1H-MRS (Figures 3 and 4). However, only the 1.5T cohort showed significant improvements (W = 41, P < .01), whilst the 3T

cohort showed insignificant improvement (W = 70, P = .13).

F IGURE 2 Plots showing an example of (A) pre- and (B) post-noise suppression 1H-MRS spectrum for a clinical case, and violin plots

comparatively showing the quality-control parameters for (C, E, G) 1.5T and (D, F, H) 3T pre- and post-noise suppression proton magnetic
resonance spectroscopy (1.5T, N = 83; 3T, N = 42), including (C–D) fitting-based signal-to-noise ratio (fSNR) and (E–F) whole-spectrum ratios
(wSNR) as well as (G–H) full width at half-maximum (FWHM)
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3.5 | Classification assessment

The decision tree of tumour classification showed misclassified cases in each group (Figure 5). Misclassified cases are dominated by borderline

cases, most of which are ependymomas. In general, postNS 1H-MRS with or without oversampling both showed fewer misclassified tumours com-

pared with the preNS and pre-oversampling 1H-MRS. By performing NS on the 1.5T cohort, misclassified tumours were reduced from 7 (8.4%) to

5 (6.0%) before and from 7 to 3 (3.6%) after performing oversampling. Among these misclassified tumours, 2 out of 7 were ependymomas,

reduced to 1 out of 5 before performing oversampling. For post-oversampling classification, misclassified cases were reduced from 7 to 3 for

postNS 1H-MRS, among which there was still one misclassified ependymoma. As for the 3.0T cohort, such overall reduction only showed in the

post-oversampling 3.0T cohort as 5 (11.9%) to 4 (9.5%) by performing 1H-MRS NS and two ependymomas remained misclassified after

performing NS.

TABLE 2 Estimated metabolite concentrations in mmol from 1.5T and 3T post-noise suppression proton magnetic resonance spectroscopy.

Metabolites

Ependymomas Medulloblastomas Pilocytic astrocytomas All Kruskal–Wallis H

Mean SD Mean SD Mean SD Mean SD H P

1.5T Cohort N = 13 N = 31 N = 39 N = 83

Citrate 1.1 0.5 0.7 0.5 0.4 0.3 0.6 0.5 22.4 < .000 1 ****

total Choline 2.4 0.7 3.8 1.9 1.0 0.6 2.2 1.8 51.9 < .000 1 ****

total Creatine 5.4 2.4 3.2 1.8 1.8 1.9 2.9 2.3 23.0 < .000 1 ****

Glucose 0.8 1.2 0.7 1.1 1.0 1.1 0.8 1.1 3.9 .141 2 ns

Glutamate and Glutamine 7.0 1.6 6.3 2.4 8.0 4.9 7.2 3.8 1.6 .449 7 ns

Glutathione 0.7 0.5 0.6 0.6 0.2 0.4 0.4 0.6 11.6 .003 1 **

Glycine 0.7 1.3 3.1 2.8 0.0 0.1 1.3 2.3 54.5 < .000 1 ****

Lactate 1.9 1.2 2.4 1.1 2.0 1.5 2.1 1.3 3.8 .146 7 ns

total LM at 0.9 ppm 3.9 1.6 8.8 4.7 4.4 1.5 6.0 3.8 30.0 < .000 1 ****

total LM at 1.3 ppm 10.5 6.8 22.7 15.1 9.2 4.9 14.4 11.9 30.2 < .000 1 ****

total LM at 2.0 ppm 8.8 2.6 11.4 4.8 6.5 3.3 8.7 4.4 25.3 < .000 1 ****

myo-Inositol 12.4 7.0 1.6 2.3 3.4 2.6 4.1 5.1 30.5 < .000 1 ****

total N-acetylaspartate 1.5 1.4 1.2 0.8 1.2 1.0 1.2 1.0 0.3 .858 3 ns

scyllo-Inositol 0.7 0.6 0.7 0.7 0.0 0.1 0.4 0.6 38.7 < .000 1 ****

Taurine 2.7 1.8 2.8 2.8 1.3 1.3 2.1 2.1 7.2 .027 8 *

3T Cohort N = 4 N = 17 N = 21 N = 42

Citrate 0.5 0.6 0.9 1.1 0.2 0.3 0.5 0.8 11.4 .003 4 **

total Choline 1.3 0.5 5.0 4.2 1.6 1.0 2.9 3.2 20.0 < .000 1 ***

total Creatine 2.0 1.2 5.1 3.8 3.2 2.1 3.8 3.0 8.7 .013 2 *

Glucose 0.8 0.6 2.4 2.6 0.7 1.2 1.4 2.0 10.0 .006 9 **

Glutamate and Glutamine 3.5 0.8 5.7 5.1 6.2 3.2 5.7 4.0 3.3 .194 3 ns

Glutathione 0.8 0.2 2.3 1.0 1.0 0.7 1.5 1.0 16.8 .000 2 ***

Glycine 1.6 1.2 3.9 2.0 0.5 0.6 2.0 2.1 24.7 < .000 1 ****

Lactate 1.8 1.1 2.2 1.6 0.9 0.6 1.5 1.3 7.0 .030 8 *

total LM at 0.9 ppm 3.2 1.2 6.5 5.0 5.2 5.9 5.6 5.3 8.7 .013 1 *

total LM at 1.3 ppm 12.3 11.3 23.4 19.9 9.9 9.9 15.6 16.0 14.4 .000 8 ***

total LM at 2.0 ppm 6.5 2.3 8.3 4.7 6.5 4.8 7.2 4.6 3.8 .147 5 ns

myo-Inositol 2.5 1.2 3.5 7.0 2.9 4.1 3.1 5.3 0.6 .759 0 ns

total N-acetylaspartate 1.0 0.6 1.3 0.9 2.1 1.4 1.7 1.2 5.0 .082 6 ns

scyllo-Inositol 0.0 0.1 0.6 1.7 0.1 0.2 0.3 1.1 9.2 .010 2 *

Taurine 1.2 0.9 6.3 4.6 1.3 1.3 3.3 4.0 21.0 < .000 1 ****

The concentrations of metabolites as well as lipids and molecules (LM) prior to normalisation. P values, which evaluated the difference between the three

tumour types, were calculated through Kruskal–Wallis H tests and highlighted with significant levels of < .05 as *, < .01 as **, and < .001 as ***.
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Overall and balanced classification accuracies showed significant improvement after NS generally (P < .05, Figures 6 and E6–E9,

Tables D15–D18). Prior to oversampling, NS had significantly improved tumour classification for both the 1.5T and 3T cohorts (P < .05). For

the 3T cohort in particular, oversampling improved classification further (P < .05).

Optimised cross-validated classification for the 1.5T and 3T cohorts was achieved through postNS 1H-MRS with Naïve Bayes. The balanced

classification accuracy of the 1.5T cohort was improved to 86% from 76% through postNS 1H-MRS. After oversampling, the optimal classification

accuracy was achieved as 88% overall and 86% balanced. For the 3T cohort, the overall classification accuracy was improved to 74% from 69%

and balanced accuracy to 55% from 51%. After performing oversampling, the overall and balanced classification accuracy was improved to 76%

from 62% and 56% from 46% through postNS 1H-MRS, respectively (Table 3, Figure 6). The results of k-fold cross-validation also showed signifi-

cant improvement of classification accuracy after NS and oversampling (Figures 6,E6–E9).

According to classification measures, postNS 1H-MRS showed optimal overall classification accuracy when combined with oversampling for

both the 1.5T and 3T cohorts (Table 3). Ependymoma identification was improved after performing NS in postNS 1H-MRS, showing as the

improved F1 score from 0.67 to 0.76 for the 1.5T cohort and 0 to 0.29 for the 3T cohort. After performing oversampling, optimal ependymoma

identification was achieved for the 1.5T cohort, showing as an F1 score improved from 0.69 � 0.02 to 0.80 � 0.03. For the 3T cohort,

ependymoma identification was not improved clearly through oversampled 1H-MRS.

F IGURE 3 Box and scatter plots describing the diagnostic ability alteration of metabolites as (A) combinations or (B) individuals through
multiclass (C) univariant or (D) multivariant receiver operating characteristics in the 1.5T cohort (N = 83), where the difference was compared
between pre (left) and post (right) noise suppression.
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4 | DISCUSSION

This study aimed to address the issue of 1H-MRS spectral quality in PBT classification through performing NS on a multisite dataset. PostNS 1H-

MRS showed significantly improved fSNR and insignificantly altered FWHM across all three tumour types and quality levels. Machine-learning

based classification performance was significantly improved through postNS 1H-MRS. Although some metabolites showed decreased mAUC,

most metabolites showed increased mAUC in postNS 1H-MRS. This finding corresponds to the final improved classification accuracy through all

the classifiers and indicates the potential utility of postNS 1H-MRS for PBT diagnosis. The improved classification performance of postNS 1H-

MRS might indicate better metabolite concentrations for tumour diagnosis. Wavelets are a useful tool and expected to enhance the clinical value

of 1H-MRS. Clinical 1H-MRS often has a limited fSNR (< 10) due to inherent lack of sensitivity and limitations on acquisition time. The metabolite

concentrations estimated from such 1H-MRS spectra may be inaccurate, which will lead to poor clinical performance of 1H-MRS. Higher field

strength with an optimised scanning protocol may be able to increase the resolution of MR spectra and the certainty of metabolite concentration

determination. However, the spectral noise of 1H-MRS may still be a problem in clinical practice and be a barrier to adoption. For example, the

size of voxels is restricted for a small tumour to avoid partial volume effects, and such a small voxel will inevitably lead to noisy 1H-MRS. Wavelets

can provide a flexible solution for 1H-MRS with a wide range of noise levels. The frequency-uniform filter used by wavelets can preserve the

probability distribution of noise (Appendix C),39 indicating the valid use of CRLB for postNS 1H-MRS spectra.25

F IGURE 4 Box and scatter plots describing the diagnostic ability alteration of metabolites as (A) combinations or (B) individuals through
multiclass (C) univariant or (D) multivariant receiver operating characteristics in the 3T cohort (N = 42), where the difference was compared
between pre (left) and post (right) noise suppression.
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AWNS achieves a robust performance by combining wavelet analysis with a data-driven approach. The use of wavelets has been considered

for 1H-MRS NS, but previous studies are limited to exploring the performance of specific wavelet bases and variations.29 However, the

unpredictable noise in clinical 1H-MRS makes it challenging to select a universal wavelet variation that is optimal in all situations. This question

remains unanswered in previous wavelet-related approaches. AWNS is designed to address this issue, where wavelet variations are selected

adaptively through a data-driven approach, where the selection is guided by quality-control parameters. In such a way, AWNS can theoretically

preserve the metabolite-related spectral components whilst largely removing signals originating from other sources. In addition, the improvement

of fSNR brought by AWNS remains robust for high-SNR spectra, and the CRLB for most metabolites can be reduced as well. This is because

AWNS considers the existence of noise and tries to suppress even low-level noise instead of only showing efficiency for low-SNR spectra.

Previous approaches to 1H-MRS NS evaluated their performance by observing the SNRs of experimental data, where the SNRs are defined

by using regional noise.29,40 Although recommended by the recent consensus,24 regional SNRs are unlikely to be able to reflect the accuracy of

quantified metabolite concentrations, because the fitting error that is relevant to 1H-MRS quantification has not been considered. In contrast,

AWNS uses fSNR (Equation A.1) to guide NS, thus the fitting performance of metabolites has been considered. Furthermore, the 1H-MRS

obtained from simulated, phantom, or healthy human brain in previous studies may contain only a few metabolites that have relatively simpler line

shapes.27,29,40 This leaves the question about how useful such approaches can be in clinical studies. To address this question, AWNS is designed

by considering the need of clinical questions and assessed by evaluating the case-by-case fSNR alteration and targeting the diagnostic perfor-

mance of 1H-MRS. Given the complexity of the brain tumour 1H-MRS used in this study, AWNS could be a more robust, powerful, and practical

solution for real-world 1H-MRS.

AWNS might be able to improve the 1H-MRS quantification performance. A naive wavelet decomposition and reconstruction process on a

time-domain signal simply removes the signal components according to their locations in the frequency domain, and in most cases the signal com-

ponents with higher frequency are considered as the noise to remove. Considering 1H-MRS, the self-repeated spectral components, which con-

tain little metabolite information, are considered as noise. To make sure the removed spectral components are dominated by noise and the

preserved ones are mainly contributed to by metabolites, AWNS optimises wavelet variations by maximising the fSNR and keeping the FWHM

within an acceptable range. As a result, postNS 1H-MRS showed significantly lower median CRLB for all metabolites and CRLB percentage values

F IGURE 5 Two-dimensional scatter plots showing the classification performance of common paediatric brain tumours with discriminant
functions (DF) through resubstitution and eligible metabolites. Classification was comparatively evaluated between (A, C, E, G) pre- and (B, D, F,
H) post-noise suppression (NS) and (A–B, E–F) pre- and (C–D, G–H) post-oversampling (OS) 1.5T (A–D, preOS N = 83, postOS N = 96) and 3T
(E–H, preOS N = 42, postOS N = 46) proton magnetic resonance spectroscopy. Investigated tumour types include ependymomas as square
markers, medulloblastomas as circular markers, and pilocytic astrocytomas as triangle markers, among which ependymomas were oversampled,
shown by white square markers, to 200% as comparison (C–D, G–H). Uncertainly classified cases are shown as transparent, with the contrast
indicating the probability of classification. Misclassified cases are marked with a cross mark, and misclassified ependymomas are additionally
marked with a plus mark.
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for most metabolites. This is because CRLB41 assesses whether the observation has unknown probability distributions by providing precision esti-

mators, and the removal of the irrelevant information makes the distribution clearer. In this process, AWNS does not add any new information to

spectra, but it learns from the prior knowledge of existing metabolites in the acquired 1H-MRS and attempts to remove the spectral components

that are irrelevant to such prior knowledge as much as possible. Since quantification24 is undertaken by fitting spectra with prior knowledge,

AWNS may thereby be able to improve the quantification performance. Compared with apodisation, a technique that increases the line width the-

oretically and therefore is only recommended for visualisation purposes,42 AWNS can keep the line width stable. Some metabolites are highly

overlapping in spectra, which makes it a challenge to increase the fitting performance for these overlapping metabolites and a NS method that

increases line width is undesirable.

The diagnostic ability of some metabolites has been different in postNS 1H-MRS. The results show that the alteration of metabolites' diagnos-

tic ability, determined through mAUC, varies after NS, even though most metabolites, as well as most metabolite combinations, showed signifi-

cantly improved mAUC. The potential reasons for this phenomenon include the vulnerability of some metabolite spectra to noise, overlapping

metabolite spectra, and the nature of metabolites itself. Firstly, metabolites that have slightly higher intensity than noise can be fitted successfully,

but the results are affected by noise, thus these metabolites can potentially be estimated more accurately in postNS 1H-MRS. For instance, the

combination of glutamate, glutamine, and taurine showed stably better diagnostic ability in both 1.5T and 3T postNS 1H-MRS. Secondly, some

metabolites overlap to such an extent that they are difficult to identify separately even if the noise has been suppressed and so little may be

gained by suppressing spectral noise. A typical example is the refined glycine in the 3T results that showed high mAUC, whilst it was mixed with

myo-Inositol in 1.5T spectra and therefore showed relatively lower mAUC. Lastly, it is assumed that more accurate metabolite concentrations can

provide improved classification performance of tumours, but some metabolites may then have less powerful diagnostic ability.

PostNS 1H-MRS improves the classification performance for these PBTs. The results of classification accuracy through metabolite selection

showed a significant improvement by postNS 1H-MRS rather than preNS 1H-MRS. Metabolite selection is a newly proposed method of feature

extraction for machine learning in PBT classification, which showed advantages over PCA.35 Our previous results showed improved classification

accuracy by using PCA on postNS 1H-MRS as well,33 indicating the robustness of noise suppression for 1H-MRS based tumour classification. It

remains unknown whether postNS 1H-MRS will provide more accurate metabolite concentration determination, but the classification perfor-

mance is improved, showing the advantage of 1H-MRS noise suppression in clinical decision making.

Decision evaluation through resubstitution showed that postNS 1H-MRS provides fewer misclassified cases, which indicates that postNS 1H-

MRS has the potential of improving clinical diagnosis of PBTs. However, misclassified cases were still presenting and also mostly borderline cases.

F IGURE 6 Box plots showing the significantly improved overall and balanced classification accuracy (AccOvra and AccBlcd) of the three brain
tumour types, ependymomas, medulloblastomas, and pilocytic astrocytomas, determined through (A–B, E–F) leave-one-out (LOO) and (C–D, G–
H) k-fold cross-validation (CV) and Naïve Bayes for (A, C, E, G) pre- and (B, D, F, H) post-oversampling (OS) 1.5T (A–D, preOS N = 83, postOS N
= 96) and 3T (E–H, preOS N = 42, postOS N = 46) pre- (grey) and post- (black) noise suppression (NS) proton magnetic resonance spectroscopy,
where oversampling was performed for ependymomas with an oversampling rate of 100%. Level of significance: ****, P < .0001
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It is noteworthy that resubstitution indicates ependymomas were classified well, but classification accuracy estimated through cross-validation

indicates ependymomas were poorly classified. This indicates that ependymomas are diverse and often different from other groups, and such

ependymomas are hard to classify, since prior knowledge of them does not exist in the training set when performing cross-validation, even when

oversampling has been performed. At the same time, these results also indicate that postNS 1H-MRS may have limited ability for classifying these

diverse ependymomas but can improve the classification for the rest tumours.

Oversampling through SMOTE was performed in this study because the ependymomas had a much smaller sample size than the other two

tumour classes and the balanced classification accuracy was consequently limited. The improvement of classification accuracy contributed by

oversampling ependymomas depended on the machine-learning classifiers used. Whether postNS 1H-MRS provides more sustainably improved

classification performance than oversampling is unclear. The results have not suggested whether the combination of NS and oversampling always

outperforms only NS or oversampling, although either of them can be helpful. NS aims to improve the classification accuracy through providing

more accurately estimated metabolite concentrations, while oversampling aims to rebalance the group size by creating artificial cases for the

minority group. Therefore, whether NS or oversampling is more helpful will be dependent on the cohort size and the 1H-MRS spectral quality.

The clinical utility of 1H-MRS NS for the tumours in this study should also be considered. The tumours all have surgical resection as their pre-

ferred initial treatment. However, the extent of surgical resection required depends greatly on the tumour type. A complete macroscopic re-

section is crucial if long-term survival is to be achieved in ependymomas, with even small fragments of residual tumour being difficult to control

with adjuvant radiotherapy and chemotherapy. Conversely, in cases of pilocytic astrocytoma, residual tumour post-surgery often requires no fur-

ther intervention, since many cases do not experience further tumour growth. In medulloblastomas, small tumour residuals post-surgery can often

but not always be successfully treated with radiotherapy and chemotherapy. Prior knowledge of the tumour type is therefore important in surgical

decision making. Furthermore, complex planning of radiotherapy and in particular proton therapy, often at a centre remote to the surgery, bene-

fits from early initiation rather than when a final histological or molecular diagnosis is available several days later. At the same time, families find

the time between the initial diagnostic MRI and definitive diagnosis particularly challenging, and an early noninvasive diagnosis can improve the

quality of discussions with the family. In addition to the direct clinical improvement that could result for the tumour types used in this study,

TABLE 3 Classification measures comparing pre- and post-noise suppression proton magnetic resonance spectroscopy with Naive Bayes.

Oversampling
Pre Post

Noise suppression Pre Post Pre Post

1.5T Cohort (N = 83)

All tumour types

Accuracy, overall 0.81 0.88 0.81 � 0.01 0.88 � 0.01

Accuracy, balanced 0.76 0.86 0.74 � 0.01 0.86 � 0.02

Matthew's correlation coefficient 0.71 0.81 0.67 � 0.02 0.79 � 0.02

Ependymomas

F1 score 0.52 0.74 0.52 � 0.02 0.69 � 0.03

Precision 0.50 0.71 0.48 � 0.02 0.66 � 0.02

Recall 0.54 0.77 0.54 � 0.02 0.77 � 0.02

Sensitivity 0.54 0.77 0.54 � 0.02 0.80 � 0.02

Specificity 0.90 0.94 0.89 � 0.01 0.93 � 0.01

3T Cohort (N = 42)

All tumour types

Accuracy, overall 0.69 0.74 0.62 � 0.03 0.76 � 0.01

Accuracy, balanced 0.51 0.55 0.46 � 0.02 0.56 � 0.02

Matthew's correlation coefficient 0.48 0.54 0.37 � 0.04 0.58 � 0.02

Ependymomas

F1 score 0.00 0.00 0.00 0.00

Precision 0.00 0.00 0.00 0.00

Recall 0.00 0.00 0.00 0.00

Sensitivity 0.00 0.00 0.00 0.00

Specificity 0.84 0.95 0.82 � 0.02 0.89 � 0.01
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the method should be readily applicable to other tumour types for which surgical resection is not the preferred initial treatment and an accurate

noninvasive diagnosis is particularly important.

Although more accurate determination of metabolite concentrations could be obtained through optimising MR sequences, increasing scan-

ning durations, or applying higher field strength, limitations imposed by clinical practice determine that 1H-MRS still suffers from low SNR and

improvements in postprocessing remain important. Current clinical MR investigations are often undertaken on 1.5T scanners, particularly where

spinal imaging is required. Where 1H-MRS is undertaken at higher field strength, smaller voxel sizes may be used, negating the advantages. Clini-

cally applicable sequences are also limited in acquisition time, especially for children, as longer scanning duration may not be tolerated. Instead,

NS as postprocessing can assist in improving the diagnostic accuracy of metabolite concentrations, which can be applied widely across different

scanners and protocols. In addition to improving the diagnostic performance of metabolites for clinical 1H-MRS, NS may also make it possible to

use some 1H-MRS data that fail to meet the SNR quality control screening.

The study has a series of limitations. For the method itself, the selection of wavelets is unsupervised and only determined according to the

fSNRs that are dominated by fitting residual, thus the risk of introducing signal-dependent noise variance43 has not been addressed. Regarding

the cohort, there is a limited sample size, particularly in the 3T cohort for its relatively smaller voxel size that leads to more noise in spectra. Mean-

while, the ependymoma patients are relatively younger than the remaining two groups in the 1.5T cohort, which could be due to higher frequency

of ependymomas in younger population.44 The ground truth of metabolite concentrations of in vivo brain tissues is not known and so there is no

definitive proof that the concentrations are determined more accurately in postNS 1H-MRS. Therefore, this study was undertaken with the

hypothesis that the metabolite concentrations determined from postNS 1H-MRS might provide better classification accuracy. Meanwhile,

the study of PBT classification is limited by the methodology and sample size. It is challenging to know the ground truth of metabolite concentra-

tions of in vivo brain tissues. Consequently, this study is under the hypothesis that the metabolite concentrations determined from postNS 1H-

MRS might provide better classification accuracy. Cell-signalling pathways in PBTs suggest association between metabolites45, whilst metabolites

were generally considered as independent during this classification. The limited classification accuracy suggested by the 3T cohort could be due

to the small ependymoma group, which meant that the range of 1H-MRS for this diagnosis would not be fully represented but also limited the

number of features we allowed in the classification. Higher accuracy would be expected in a dataset containing more ependymoma cases.

Considering noise suppression for clinical 1H-MRS, this article only presents a method that can improve the diagnostic ability of 1H-MRS by

suppressing the noise as an initial step. As following work, further optimisation for wavelet computing46 and selection28 is required, prior to mak-

ing the method available as a software package for being translated into clinical practice. The observed improvement of fSNR by AWNS seems to

be related to metabolite concentration levels, which means the performance of AWNS could be related to the spectral line shape. Therefore, fur-

ther assessment of AWNS will address not only simulated and phantom 1H-MRS, but also in vivo 1H-MRS acquired from multiple types of tissues.

5 | CONCLUSIONS

Noise suppression for clinical 1H-MRS can provide significantly improved spectral quality, metabolite concentrations with increased diagnostic

ability, and better classification performance for paediatric brain tumours.
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APPENDIX A: DEFINITIONS

A.1 | Quality-control parameters

A.1.1 | fSNR

The fitting-based signal-to-noise ratio (fSNR) was calculated based on the amplitude of the highest peak L of the spectrum and the fitting residual

σ1 between 0.2 and 4 ppm as

fSNR¼ L
σ1

,

where σ1 denotes the fitting residual, derived as the difference between the original spectrum and the combination of fitting bases finally deter-

mined, at the range of 0.2–4 ppm, and L is the height of the highest peak of the spectrum.

A.1.2 | wSNR

The whole-spectrum signal-to-noise ratio (wSNR) was calculated based on the amplitude of the highest peak L of the spectrum and the fitting

residual σ0 of the whole spectrum as

wSNR¼ L
σ0

,

where σ0 denotes the fitting residual derived as the difference between the original spectrum and the combination of fitting bases finally deter-

mined, throughout the whole spectrum, and L is the height of the highest peak of the spectrum.

A.1.3 | FWHM

The full width at half-maximum (FWHM) was calculated based on the width of the unsuppressed water peak at half its full height.24

A.2 | Classification accuracy parameters

αLOOCV ¼CPEPþCPMBþCPPA

TPEPþTPMBþTPPA
,

βLOOCV ¼1
3

CPEP

TPEP
þCPMB

TPMB
þCPPA

TPPA

� �
,

αk-fold ¼1
k

Xk CPFEPþCPFMBþCPFPA
TPFEPþTPFMBþTPFPA

,

βk-fold ¼ 1
3k

Xk CPEP

TPEP
þCPMB

TPMB
þCPPA

TPPA

� �
,

where αLOOCV denotes the leave-one-out cross-validated overall classification accuracy, βLOOCV the leave-one-out cross-validated balanced classi-

fication accuracy, αk-fold the k-fold cross-validated overall classification accuracy, βk-fold the k-fold cross-validated balanced classification accuracy,

CPX the correct predictions for tumour type X, TPX the total predictions for tumour type X, CPFX the correct predictions of the fold for tumour

type X, and TPFX the total predictions of the fold for tumour type X.
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APPENDIX B: ALGORITHM

Notation

xðnÞ A 1H-MRS signal defined in the time domain, where n denotes the time points.

Ψ A set of wavelet variations, including wavelet basis functions, wavelet transform methods, wavelet decomposition methods,

thresholding methods, and decomposition levels, where a wavelet variation is denoted by ψ i.

F Performing discrete Fourier transform on a time-domain signal.

x̂ðsÞ A 1H-MRS spectrum defined in the frequency domain, where s denotes the chemical shift.

fĉψ i ,τg A set of spectral components derived by using the wavelet ψ i and indexed by τ.

x̂0iðsÞ The reconstructed spectrum from spectral components fĉψ i ,τg with the cut-off τ0.

Q The quality-control metric, i.e. Q0 for that of x̂ðsÞ and Qi for that of x̂
0
iðsÞ.

ŷðsÞ The finally chosen spectrum with optimal Q from all x̂0iðsÞ.
yðnÞ The post-noise suppression 1H-MRS signal that is defined in the time domain.

APPENDIX C: PROOF

Consider that we have the noise ωðnÞ presenting in the free induction decay signal xðnÞ:

xðnÞ¼ x0ðnÞþωðnÞ, where n¼1,…,N:

Assuming the original noise follows the Gaussian distribution with the mean of zero, then

Eω½n1�ω½n2� ¼ σ2δ½n1�n2�:

Considering that the noise will be decomposed by using the orthonormal basis B¼fbkg0≤ k <N, the decomposed noise will be calculated as

ω̂B½k� ¼
XN
n¼1

ω½n�b ∗
k ½n�:

Such decomposed noise will also satisfy
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Efω̂B½k1�ω̂B½k2�g ¼ E PN1

n1¼1
ω½n1�b ∗

k1
½n1�

PN2

n2¼1
ω½n2�b ∗

k2
½n2�

¼ PN
n1¼1

PN
n2¼1

bk1 ðn1Þbk2 ðn2ÞEfω½n1�ω½n2�g

¼ σ2 < bk1 ,bk2 >

¼ σ2δ½k1�k2�,

indicating that the suppressed noise in the processed 1H-MRS signals also meets the Gaussian distribution.

TABLE D1 The selected clinical variables, scanning parameters, and quality-control parameters of the 1.5T cohort, Part I.

Case Site
Tumour
type Scanner NCC

FS
(Hz)

TE
(ms)

TR
(ms) NCP

Voxel size
(mm3)

fSNR
preNS

fSNR
postNS

#01 BCH EP Siemens Avanto 12 2,000 30 1,500 2,048 15�15�15 9.2 12.7

#02 BCH EP Siemens Avanto 12 2,000 30 1,500 2,048 15�15�15 9.7 15.3

#03 BCH EP GE Signa 8 2,500 30 1,500 2,048 15�15�15 11.1 14.6

#04 QMC EP Philips Intera 16 2,500 30 2,000 1,024 15�15�15 14.5 18.9

#05 BCH EP Siemens Symphony 16 2,000 30 1,500 2,048 15�15�15 19.0 30.6

#06 BCH EP Siemens Aera 20 1,000 30 2,200 1,024 15�15�15 22.7 34.6

#07 BCH EP Siemens Symphony 16 1,000 30 1,500 1,024 20�20�20 24.0 31.4

#08 BCH EP Siemens Symphony 16 2,000 30 1,500 2,048 15�15�15 24.5 39.3

#09 BCH EP Siemens Symphony 16 2,000 30 1,500 2,048 20�20�20 24.6 33.1

#10 AHCH EP Philips Ingenia 8 1,000 31 1,500 512 20�20�20 24.7 38.9

#11 BCH EP Siemens Symphony 16 1,000 30 1,500 1,024 20�20�20 25.5 32.4

#12 BCH EP Siemens Aera 20 1,000 30 2,200 1,024 15�15�15 25.7 38.3

#13 BCH EP Siemens Avanto 12 2,000 30 1,500 2,048 20�20�20 32.2 39.4

#14 BCH MB GE Signa 8 2,500 30 1,500 2,048 15�15�15 8.5 9.8

#15 BCH MB GE Signa 8 2,500 30 1,500 2,048 15�15�15 8.9 10.4

#16 BCH MB Siemens Avanto 12 2,000 30 1,500 2,048 15�15�15 13.4 19.6

#17 BCH MB Siemens Avanto 12 2,000 30 1,500 2,048 20�20�20 14.2 20.3

#18 BCH MB Siemens Symphony 16 1,000 30 1,500 1,024 15�15�15 14.8 23.5

#19 BCH MB Siemens Avanto 12 1,500 30 1,500 2,048 15�15�15 16.4 26.2

#20 BCH MB Siemens Symphony 16 1,000 30 1,500 1,024 15�15�15 16.5 22.6

#21 BCH MB Siemens Symphony 16 1,000 30 1,500 1,024 15�15�15 16.7 25.7

#22 BCH MB Siemens Symphony 16 1,000 30 1,500 1,024 15�15�15 18.8 24.1

#23 BCH MB Siemens Symphony 16 2,000 30 1,500 2,048 20�20�20 21.1 26.2

#24 BCH MB Siemens Avanto 12 2,000 30 1,500 2,048 20�20�20 21.2 28.7

#25 BCH MB Siemens Symphony 16 2,500 30 1,500 2,048 15�15�15 21.8 30.8

#26 BCH MB Siemens Avanto 12 2,000 30 1,500 2,048 20�20�20 21.9 32.5

#27 BCH MB Siemens Symphony 16 2,000 30 1,500 2,048 20�20�20 21.9 32.8

#28 BCH MB Siemens Avanto 12 2,000 30 1,500 2,048 15�15�15 24.2 36.8

#29 BCH MB Siemens Symphony 16 2,000 30 1,500 2,048 20�20�20 25.7 34.9

#30 BCH MB Siemens Symphony 16 2,000 30 1,500 2,048 20�20�20 25.7 37.3

#31 BCH MB Siemens Avanto 12 2,000 30 1,500 2,048 15�15�15 27.1 39.7

#32 BCH MB GE Signa 8 2,500 30 1,500 2,048 20�20�20 31.7 41.4

#33 BCH MB Siemens Avanto 12 2,000 30 1,500 2,048 20�20�20 32.2 36.5

#34 BCH MB Siemens Symphony 16 2,000 30 1,500 2,048 15�15�15 32.7 47.5

(Continues)
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TABLE D1 (Continued)

Case Site

Tumour

type Scanner NCC

FS

(Hz)

TE

(ms)

TR

(ms) NCP

Voxel size

(mm3)

fSNR

preNS

fSNR

postNS

#35 BCH MB Siemens Avanto 12 2,000 30 1,500 2,048 20�20�20 38.5 46.4

#36 BCH MB GE Signa 8 2,000 30 1,500 2,048 20�20�20 38.6 55.0

#37 BCH MB Siemens Symphony 16 1,000 30 1,500 1,024 20�20�20 38.7 48.5

#38 BCH MB Siemens Avanto 12 2,000 30 1,500 2,048 20�20�20 41.2 46.3

#39 BCH MB Siemens Symphony 16 2,000 30 1,500 2,048 20�20�20 42.7 61.2

#40 BCH MB Siemens Symphony 16 2,000 30 1,500 2,048 20�20�20 43.3 64.5

#41 BCH MB Siemens Symphony 16 1,000 30 1,500 1,024 20�20�20 48.1 65.8

#42 BCH MB Siemens Symphony 16 1,000 30 1,500 1,024 20�20�20 62.9 83.5

#43 BCH MB Siemens Symphony 16 2,000 30 1,500 2,048 20�20�20 63.0 83.6

#44 BCH MB Siemens Symphony 16 2,000 30 1,500 2,048 20�20�20 67.0 79.1

Abbreviations: AHCH, Alder Hey Children's NHS Foundation Trust, Liverpool; BCH, Birmingham Children's Hospital, Birmingham Women's and Children's

NHS Foundation Trust; QMC, Queen's Medical Centre, Nottingham University Hospitals NHS Trust; RVI, Royal Victoria Infirmary, The Newcastle upon

Tyne Hospitals NHS Foundation Trust. NCC, number of coil channels; FS, sampling frequency; TE, echo time; TR, repetition time; NCP, number of complex

points; fSNR, fitting-based signal-to-noise ratio; preNS, pre-noise suppression; postNS, post-noise suppression.

TABLE D2 The selected clinical variables, scanning parameters, and quality-control parameters of the 1.5T cohort, Part II.

Case Site
Tumour
type Scanner NCC

FS
(Hz)

TE
(ms)

TR
(ms) NCP

Voxel size
(mm3)

fSNR
preNS

fSNR
postNS

#45 BCH PA Siemens Symphony 16 2,500 30 1,500 2,048 15�15�15 5.1 7.1

#46 BCH PA Siemens Avanto 12 2,000 30 1,500 2,048 15�15�15 5.8 8.7

#47 BCH PA Siemens Symphony 16 1,000 30 1,500 1,024 15�15�15 6.3 8.8

#48 BCH PA Siemens Avanto 12 2,000 30 1,500 2,048 15�15�15 6.4 9.8

#49 BCH PA Siemens Symphony 16 2,000 30 1,500 2,048 15�15�15 6.5 11.2

#50 BCH PA Siemens Symphony 16 1,000 30 1,500 1,024 15�15�15 6.6 10.1

#51 BCH PA Siemens Symphony 16 2,000 30 1,500 2,048 20�20�20 6.7 9.9

#52 BCH PA Siemens Symphony 16 2,000 30 1,500 2,048 15�15�15 6.9 9.6

#53 BCH PA Siemens Avanto 12 2,000 30 1,500 2,048 15�15�15 6.9 10.6

#54 BCH PA Siemens Symphony 16 2,000 30 1,500 2,048 15�15�15 7.6 12.3

#55 BCH PA Siemens Symphony 16 1,000 30 1,500 1,024 15�15�15 7.7 14.3

#56 BCH PA GE Signa 8 2,500 30 1,500 2,048 15�15�15 7.9 8.7

#57 BCH PA Siemens Avanto 12 2,000 30 1,500 2,048 15�15�15 8.2 12.5

#58 BCH PA Siemens Symphony 16 2,000 30 1,500 2,048 15�15�15 8.4 13.5

#59 BCH PA Siemens Avanto 12 2,000 30 1,500 2,048 20�20�20 8.5 10.6

#60 BCH PA Siemens Symphony 16 2,000 30 1,500 2,048 15�15�15 8.8 12.8

#61 BCH PA Siemens Symphony 16 2,000 30 1,500 2,048 15�15�15 9.7 12.1

#62 BCH PA Siemens Avanto 12 2,000 30 1,500 2,048 20�20�20 10.1 14.3

#63 BCH PA Siemens Symphony 16 2,000 30 1,500 1,024 20�20�20 10.1 14.7

#64 BCH PA Siemens Symphony 16 2,000 30 1,500 2,048 20�20�20 10.5 17.3

#65 BCH PA Siemens Avanto 12 2,000 30 1,500 2,048 20�20�20 10.6 14.2

#66 BCH PA Siemens Symphony 16 2,000 30 1,500 2,048 20�20�20 10.6 15.3

#67 BCH PA GE Signa 8 2,500 30 1,500 2,048 20�20�20 10.7 14.9

#68 BCH PA Siemens Symphony 16 2,000 30 1,500 2,048 20�20�20 11.0 14.5

#69 BCH PA Siemens Symphony 16 2,000 30 1,500 2,048 20�20�20 11.1 13.6

#70 BCH PA Siemens Symphony 16 2,000 30 1,500 2,048 15�15�15 11.1 13.7

#71 BCH PA Siemens Avanto 12 2,000 35 1,500 2,048 13�13�13 12.3 17.4
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TABLE D2 (Continued)

Case Site

Tumour

type Scanner NCC

FS

(Hz)

TE

(ms)

TR

(ms) NCP

Voxel size

(mm3)

fSNR

preNS

fSNR

postNS

#72 BCH PA Siemens Avanto 12 2,000 30 1,500 2,048 15�15�15 12.6 17.0

#73 BCH PA Siemens Avanto 12 2,000 30 1,500 2,048 15�15�15 13.5 18.3

#74 BCH PA Siemens Symphony 16 2,000 30 1,500 2,048 20�20�20 13.6 19.9

#75 BCH PA Siemens Avanto 12 2,000 30 1,500 2,048 20�20�20 13.8 14.9

#76 BCH PA Siemens Aera 20 1,000 30 1,500 1,024 15�15�15 14.8 18.9

#77 BCH PA Siemens Symphony 16 2,000 30 1,500 2,048 20�20�20 14.9 19.6

#78 BCH PA Siemens Symphony 16 2,000 30 1,500 2,048 20�20�20 15.1 23.2

#79 BCH PA Siemens Symphony 16 2,000 30 1,500 2,048 20�20�20 15.2 19.0

#80 BCH PA Siemens Avanto 12 2,000 30 1,500 2,048 20�20�20 16.3 21.0

#81 BCH PA Siemens Symphony 16 2,000 30 1,500 2,048 15�15�15 17.2 26.4

#82 BCH PA Siemens Symphony 16 2,000 30 1,500 2,048 20�20�20 18.1 23.6

#83 BCH PA Siemens Symphony 16 1,000 30 1,500 2,048 20�20�20 20.6 29.7

Abbreviations: AHCH, Alder Hey Children's NHS Foundation Trust, Liverpool; BCH, Birmingham Children's Hospital, Birmingham Women's and Children's

NHS Foundation Trust; QMC, Queen's Medical Centre, Nottingham University Hospitals NHS Trust; RVI, Royal Victoria Infirmary, The Newcastle upon

Tyne Hospitals NHS Foundation Trust. NCC, number of coil channels; FS, sampling frequency; TE, echo time; TR, repetition time; NCP, number of complex

points; fSNR, fitting-based signal-to-noise ratio; preNS, pre-noise suppression; postNS, post-noise suppression.

TABLE D3 The selected clinical variables, scanning parameters, and quality-control parameters of the 3T cohort.

Case Site
Tumour
type Scanner NCC

FS
(Hz)

TE
(ms)

TR
(ms) NCP

Voxel size
(mm3)

fSNR
preNS

fSNR
postNS

#01 BCH EP Philips Achieva 16 2,000 41 2,000 1,024 13�13�13 5.9 8.8

#02 BCH EP Philips Achieva 16 2,000 36 2,000 1,024 13�13�13 7.5 9.1

#03 AHCH EP Philips Achieva 8 2,000 30 2,000 1,024 15�15�15 10.0 13.3

#04 AHCH EP Philips Achieva 8 2,000 40 2,000 1,024 15�15�15 15.5 20.6

#05 AHCH MB Philips Ingenia 8 2,000 39 2,000 1,024 15�15�15 8.9 13.0

#06 AHCH MB Philips Achieva 8 2,000 39 2,000 1,024 15�15�15 11.1 17.3

#07 BCH MB Siemens Avanto 16 2,000 38 2,000 1,024 13�13�13 14.9 21.8

#08 RVI MB Siemens Verio 32 2,000 30 2,120 2,048 20�20�20 15.5 18.9

#09 BCH MB Philips Achieva 32 2,000 36 2,000 1,024 13�13�13 17.9 25.6

#10 BCH MB Philips Achieva 16 2,000 36 2,000 1,024 15�15�15 18.3 27.1

#11 BCH MB Philips Achieva 16 2,000 36 2,000 1,024 15�15�15 18.9 25.2

#12 AHCH MB Philips Achieva 8 2,000 37 2,000 1,024 20�20�20 19.8 33.9

#13 AHCH MB Philips Achieva 8 2,000 41 2,000 1,024 15�15�15 20.9 27.7

#14 BCH MB Philips Achieva 16 2,000 36 2,000 1,024 20�20�20 22.8 30.8

#15 BCH MB Philips Achieva 16 2,000 38 2,000 1,024 20�20�20 23.0 30.8

#16 BCH MB Philips Achieva 16 2,000 37 2,000 1,024 15�15�15 26.7 33.7

#17 AHCH MB Philips Achieva 8 2,000 37 2,000 1,024 15�15�15 32.1 40.4

#18 BCH MB Philips Achieva 16 2,000 37 2,000 512 15�15�15 38.3 46.8

#19 AHCH MB Philips Achieva 8 2,000 37 2,000 1,024 20�20�20 38.6 47.0

#20 AHCH MB Philips Ingenia 8 2,000 40 2,000 1,024 20�20�20 38.9 44.2

#21 AHCH MB Philips Achieva 8 2,000 39 2,000 1,024 20�20�20 49.9 57.2

#22 BCH PA Philips Achieva 16 2,000 41 2,000 1,024 13�13�13 5.9 9.4

#23 BCH PA Philips Achieva 16 2,000 37 2,000 1,024 13�13�13 6.1 8.6

#24 AHCH PA Philips Achieva 8 2,000 37 2,000 1,024 15�15�15 7.1 10.2

#25 AHCH PA Philips Achieva 8 2,000 40 2,000 1,024 15�15�15 7.2 9.8

(Continues)
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TABLE D3 (Continued)

Case Site

Tumour

type Scanner NCC

FS

(Hz)

TE

(ms)

TR

(ms) NCP

Voxel size

(mm3)

fSNR

preNS

fSNR

postNS

#26 QMC PA Philips Achieva 8 2,000 37 2,000 1,024 15�15�15 7.7 10.8

#27 AHCH PA Philips Achieva 8 2,000 37 2,000 1,024 15�15�15 7.7 11.1

#28 AHCH PA Philips Ingenia 8 1,000 38 2,000 512 15�15�15 8.4 13.9

#29 AHCH PA Philips Achieva 8 2,000 41 2,000 1,024 15�15�15 8.7 11.7

#30 AHCH PA Philips Achieva 8 2,000 40 2,000 1,024 15�15�15 8.8 11.8

#31 RVI PA Siemens Verio 32 2,000 30 2,120 2,048 15�20�19 9.1 10.0

#32 AHCH PA Philips Achieva 8 2,000 37 2,000 1,024 15�15�15 9.2 14.5

#33 AHCH PA Philips Ingenia 8 2,000 41 2,000 1,024 15�15�15 9.8 14.1

#34 BCH PA Philips Achieva 16 2,000 38 2,000 1,024 13�13�13 10.2 15.6

#35 BCH PA Philips Achieva 32 2,000 37 2,000 1,024 13�13�13 10.4 15.0

#36 BCH PA Philips Achieva 32 2,000 38 2,000 1,024 15�15�15 11.0 15.3

#37 BCH PA Philips Achieva 16 2,000 37 2,000 1,024 15�15�15 12.1 19.3

#38 BCH PA Philips Achieva 16 2,000 37 2,000 1,024 15�15�15 12.8 19.3

#39 RVI PA Siemens Verio 32 2,000 30 2,120 2,048 20�20�20 14.6 19.0

#40 BCH PA Siemens Avanto 16 2,000 37 2,000 1,024 15�15�15 15.1 21.0

#41 BCH PA Philips Achieva 16 2,000 40 2,000 1,024 20�20�20 15.6 21.6

#42 BCH PA Philips Achieva 16 2,000 37 2,000 1,024 20�20�20 16.1 20.1

Abbreviations: AHCH, Alder Hey Children's NHS Foundation Trust, Liverpool; BCH, Birmingham Children's Hospital, Birmingham Women's and Children's

NHS Foundation Trust; QMC, Queen's Medical Centre, Nottingham University Hospitals NHS Trust; RVI, Royal Victoria Infirmary, The Newcastle upon

Tyne Hospitals NHS Foundation Trust. NCC, number of coil channels; FS, sampling frequency; TE, echo time; TR, repetition time; NCP, number of complex

points; fSNR, fitting-based signal-to-noise ratio; preNS, pre-noise suppression; postNS, post-noise suppression.

TABLE D4 Details of quality filtering for the acquired brain tumour proton magnetic resonance spectroscopy.

Ependymomas Medulloblastomas Pilocytic astrocytomas Total

1.5T cohort

Initial sample 23 39 54 116

Removed sample 10 8 15 33

Missing histology 0 1 0 1

Incomplete imaging data 2 4 3 9

Partial volume effects 1 1 3 5

Poor line width 3 0 1 4

Poor fSNR 2 0 2 4

Artefacts 2 2 6 10

Final sample †13 31 39 83

Birmingham (96%) 10 31 39 80

Liverpool (1%) 1 0 0 1

Nottingham (3%) 2 0 0 2

3T cohort

Initial sample 7 25 41 73

Removed sample 3 8 20 31

Missing histology 0 2 1 3

Incomplete imaging data 2 4 6 12

Partial volume effects 1 0 4 5

Poor line width 0 0 0 0

Poor fSNR 0 0 1 1
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TABLE D4 (Continued)

Ependymomas Medulloblastomas Pilocytic astrocytomas Total

Artefacts 0 2 8 10

Final sample ‡4 17 21 42

Birmingham (53%) 3 8 11 22

Liverpool (38%) 1 8 7 16

Newcastle (7%) 0 1 2 3

Nottingham (2%) 0 0 1 1

†Three of the 13 ependymomas were located supratentorially.
‡One of the four ependymomas was located supratentorially.

TABLE D5 List of wavelet variations used.

Vanish moments in
synthetic wavelets

Vanish moments in
analytic wavelets

Bi-orthogonal 1 1, 3, 5

2 2, 4, 6, 8

3 1, 3, 5, 7, 9

4 4

5 5

6 6

Reversed bi-orthogonal 1 1, 3, 5

2 2, 4, 6, 8

3 1, 3, 5, 7, 9

4 4

5 5

6 6

Coiflets 1, 2, 3, 4, 5

Daubechies 1, 2, 3, 4, 5, 6, 10, 15, 20, 25

Fejer–Korovki 4, 6, 8, 14, 22

Symlets 2, 3, 4, 5, 10, 15, 20, 25

Discrete approximation of Meyer /

Farras nearly symmetric first-stage filters

Haar /
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TABLE D6 Excluding metabolites according to duplication and Cramér–Rao lower bound percentage values.

Metabolite Condition Reason

�CrCH2 Excluded CRLB% is greater than 50% in all cases.

Alanine (Ala) Excluded CRLB% is greater than 50% in all cases.

Aspartate (Asp) Excluded CRLB% is greater than 50% in all cases.

Citrate (Cit) Included /

Creatine (Cr) Excluded Total creatine is included instead.

γ-aminobutyric acid (GABA) Excluded CRLB% is greater than 50% in all cases.

Glycerophosphocholine (GPC) Excluded Total choline is included instead.

Glucose (Glc) Included /

Glutamine (Gln) Excluded Combined glutamate and glutamine is included instead.

Glutathione (Glth or GSH) Included /

Glutamate (Glu) Excluded Combined glutamate and glutamine is included instead.

Glycine (Gly) Included /

myo-Inositol (mI or Ins) Included /

Lactate (Lac) Included /

Lipids at 0.9 ppm (Lip09) Excluded Total lipids and macromolecules at 0.9 ppm is included instead.

Lipids at 1.3 ppm, a (Lip13a) Excluded Total lipids and macromolecules at 1.3 ppm is included instead.

Lipids at 1.3 ppm, b (Lip13b) Excluded Total lipids and macromolecules at 1.3 ppm is included instead.

Lipids at 2.0 ppm (Lip20) Excluded Total lipids and macromolecules at 2.0 ppm is included instead.

MacroMolecules at 0.9 ppm (MM09) Excluded Total lipids and macromolecules at 0.9 ppm is included instead.

MacroMolecules at 1.2 ppm (MM12) Excluded Total lipids and macromolecules at 1.3 ppm is included instead.

MacroMolecules at 1.4 ppm (MM14) Excluded Total lipids and macromolecules at 1.3 ppm is included instead.

MacroMolecules at 1.7 ppm (MM17) Excluded Total lipids and macromolecules at 2.0 ppm is included instead.

MacroMolecules at 2.0 ppm (MM20) Excluded Total lipids and macromolecules at 2.0 ppm is included instead.

MacroMolecules at 3.8 ppm (MM38) Excluded Total lipids and macromolecules at 2.0 ppm is included instead.

N-acetylaspartate (NAA) Excluded Total N-acetylaspartate is included instead.

N-acetylaspartylglutamate (NAAG) Excluded Total N-acetylaspartate is included instead.

Phosphocholine (PCh) Excluded Total choline is included instead.

Phosphocreatine (PCr) Excluded Total creatine is included instead.

Phosphoethanolamine (PEth) Excluded CRLB% is greater than 50% in all cases.

scyllo-Inositol (sI or Scyllo) Included /

Taurine (Tau) Included /

total N-acetylaspartate (tNAA) Included /

total Choline (tCho) Included /

total Creatine (tCr) Included /

combined Glutamate and Glutamine (Glx) Included /

total Lipids and Macromolecules at 0.9 ppm (tLM09) Included /

total Lipids and Macromolecules at 1.3 ppm (tLM13) Included /

total Lipids and Macromolecules at 2.0 ppm (tLM20) Included /
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TABLE D8 Statistics of patient age.

1.5T 3T

Age (Mean � SD) Wilcoxon rank-sum Age (Mean � SD) Wilcoxon rank-sum

Type A Type B W P Type A Type B W P

Ependymoma j Medulloblastoma 4.6 � 5.3 6.9 � 3.5 74 .001 0 ** 9.2 � 5.3 6.5 � 4.4 37 .655 7 ns

Ependymoma j Pilocytic astrocytoma 4.6 � 5.3 8.0 � 3.6 84 .000 2 *** 9.2 � 5.3 6.3 � 5.0 44 .653 8 ns

Medulloblastoma j Pilocytic astrocytoma 6.9 � 3.5 8.0 � 3.6 529 .377 5 ns 6.5 � 4.4 6.3 � 5.0 162 .763 0 ns

Table showing the statistics for patient age between two tumour types. Significant levels are determined by the conditions as P < .05 (*), P < .01 (**), P

<.001 (***), and P < .0001 (****).

TABLE D7 Statistics of patient sex.

1.5T 3T

Sex (F:M) Chi-squared test Sex (F:M) Chi-squared test

Type A Type B χ2 P Type A Type B χ2 P

Ependymoma j Medulloblastoma 8: 5 9: 22 1.114 6 .291 1 3: 1 7: 10 0.312 5 .576 2

Ependymoma j Pilocytic astrocytoma 8: 5 19: 20 0.231 1 .630 7 3: 1 13: 8 < 0.000 1 .999 9

Medulloblastoma j Pilocytic astrocytoma 9: 22 19: 20 0.354 1 .551 7 7: 10 13: 8 0.652 3 .419 3

Table showing the statistics for patient sex between two tumour types. Significant levels are determined by the conditions as P < .05 (*), P < .01 (**), P <

.001 (***), and P < .0001 (****).

TABLE D9 Statistics of quality-control parameters.

1.5T 3T

PreNS PostNS Wilcoxon signed-rank PreNS PostNS Wilcoxon signed-rank

Mean SD Mean SD V P Mean SD Mean SD V P

fSNR

All 19.3 13.4 26.6 17.5 0 < .000 1 **** 16.1 11.0 21.1 11.6 0 < .000 1 ****

Groups by tumour type

EP 20.6 7.2 29.2 10.1 0 .000 2 *** 9.7 4.2 13.0 5.5 0 .125 0 ns

MB 29.7 15.6 40.0 19.9 0 < .000 1 **** 24.9 12.4 31.3 11.5 0 < .000 1 ****

PA 10.6 3.8 15.0 5.1 0 < .000 1 **** 10.2 3.1 14.4 4.2 0 < .000 1 ****

Groups by spectral quality

PQ 7.6 1.3 11.0 2.1 0 < .000 1 **** 8.0 1.3 11.2 2.0 0 < .000 1 ****

MQ 13.7 2.7 19.3 4.5 0 < .000 1 **** 14.7 3.0 21.0 4.8 0 < .000 1 ****

GQ 32.8 13.0 44.4 16.1 0 < .000 1 **** 33.2 11.6 38.9 9.4 0 .022 5 *

wSNR

All 26.4 19.3 39.6 27.3 0 < .000 1 **** 24.6 23.5 35.4 30.0 0 < .000 1 ****

Groups by tumour type

EP 29.3 10.5 44.3 16.7 0 .000 2 *** 12.0 4.6 17.8 7.5 0 .125 0 ns

MB 41.0 22.6 60.5 30.9 0 < .000 1 **** 40.7 30.3 57.3 37.2 0 < .000 1 ****

PA 13.8 5.1 21.5 7.8 0 < .000 1 **** 13.9 4.7 21.0 6.5 0 < .000 1 ****

Groups by spectral quality

PQ 11.2 5.2 17.2 7.3 0 < .000 1 **** 10.8 2.5 16.4 4.0 0 < .000 1 ****

MQ 17.8 4.2 27.8 6.6 0 < .000 1 **** 19.8 5.7 29.9 7.7 0 < .000 1 ****

GQ 45.2 19.5 66.6 26.6 0 < .000 1 **** 58.1 32.5 79.5 38.7 0 .003 9 **
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TABLE D9 (Continued)

1.5T 3T

PreNS PostNS Wilcoxon signed-rank PreNS PostNS Wilcoxon signed-rank

Mean SD Mean SD V P Mean SD Mean SD V P

FWHM

All 4.5 1.0 4.6 1.1 326 .174 6 ns 6.5 1.9 6.6 1.6 136 .206 6 ns

Groups by tumour type

EP 4.8 0.9 5.0 0.9 3 .280 7 ns 6.5 2.5 6.8 1.7 2 .375 0 ns

MB 4.3 1.2 4.3 1.1 83 .930 3 ns 6.4 1.8 6.6 1.6 12 .111 5 ns

PA 4.6 0.8 4.8 1.1 62 .315 4 ns 6.5 2.0 6.6 1.8 44 .916 5 ns

Groups by spectral quality

PQ 4.9 1.1 5.3 1.5 35 .052 1 ns 6.7 2.3 7.0 1.9 18 .197 1 ns

MQ 4.6 0.9 4.5 0.8 33 .605 6 ns 6.7 1.6 6.7 1.4 32 .681 3 ns

GQ 4.3 1.0 4.3 0.9 47 .728 9 ns 5.5 1.5 5.9 1.6 0 .031 0 ns

Table showing the statistical results of quality-control parameters (QCPs), namely fitting-based signal-to-noise ratio (fSNR), whole-spectrum signal-to-noise

ratio (wSNR), and full width at half-maximum (FWHM), from pre-noise suppression (preNS) and post-noise suppression (postNS) clinical brain tumour

proton magnetic resonance spectroscopy. The evaluation was presented for specific cases based on tumour type or spectral quality, namely ependymomas

(EP), medulloblastomas (MB), and pilocytic astrocytomas (PA) for tumour type-based groups, and poor quality (PQ), medium quality (MQ), and good quality

(GQ) for spectral quality-based groups. The difference between preNS and postNS QCPs was compared by performing Wilcoxon signed-rank tests, where

the significant levels are determined by the conditions as P < .05 (*), P < .01 (**), P <.001 (***), and P < .0001 (****).

TABLE D10 Statistics of Cramér–Rao lower bound values.

Median Mean SD Wilcoxon signed-rank

PreNS PostNS δ% PreNS PostNS δ% PreNS PostNS δ% V P

1.5T Cohort

Citrate 0.49 0.03 �94% 0.71 0.40 �44% 1.00 0.71 �29% 2,034 .003 1 **

total Choline 0.36 0.03 �92% 0.49 0.25 �49% 0.62 0.51 �18% 2,469 < .000 1 ****

total Creatine 0.51 0.03 �94% 0.69 0.43 �38% 0.68 0.74 9% 2,314 < .000 1 ****

Glucose 2.89 0.20 �93% 3.91 2.26 �42% 3.52 4.55 29% 1,155 .009 2 **

Glutathione 1.01 0.09 �91% 1.12 0.93 �17% 0.50 1.51 202% 539 .038 2 *

Glutamate and Glutamine 1.88 0.13 �93% 2.54 1.47 �42% 2.37 2.83 19% 2,607 < .000 1 ****

Glycine 2.38 0.18 �92% 3.25 2.31 �29% 2.55 5.39 111% 606 .008 6 **

Lactate 5.19 0.41 �92% 7.57 4.25 �44% 8.09 8.41 4% 2,244 < .000 1 ****

total LM at 0.9 ppm 2.18 0.20 �91% 2.54 1.20 �53% 2.20 1.97 �10% 2,699 < .000 1 ****

total LM at 1.3 ppm 9.50 0.77 �92% 11.93 6.16 �48% 13.68 10.23 �25% 2,627 < .000 1 ****

total LM at 2.0 ppm 3.78 0.25 �93% 4.78 3.05 �36% 4.21 8.09 92% 2,625 < .000 1 ****

myo-Inositol 2.37 0.15 �94% 3.52 2.27 �36% 4.08 5.14 26% 1,829 .001 6 ***

total N-acetylaspartate 1.13 0.09 �92% 1.70 0.99 �42% 2.09 1.77 �15% 2,310 .002 2 **

scyllo-Inositol 0.60 0.05 �92% 0.80 1.05 31% 0.57 2.16 279% 244 .190 4 ns

Taurine 1.39 0.08 �94% 2.29 1.73 �24% 2.77 5.21 88% 1,290 .005 8 **

3T Cohort

Citrate 0.62 0.10 �84% 0.89 0.25 �72% 0.88 0.31 �65% 443 .000 1 ***

total Choline 0.40 0.07 �83% 0.67 0.18 �73% 1.16 0.26 �78% 739 < .000 1 ****

total Creatine 0.74 0.12 �84% 1.03 0.27 �74% 1.01 0.36 �64% 785 < .000 1 ****

Glucose 2.96 0.54 �82% 5.34 1.07 �80% 8.77 1.46 �83% 245 .001 2 **

Glutathione 1.29 0.19 �85% 2.00 0.60 �70% 3.28 0.97 �70% 690 .000 2 ***

Glutamate and Glutamine 3.04 0.47 �85% 4.09 1.15 �72% 3.63 1.69 �53% 710 < .000 1 ****

Glycine 0.92 0.23 �75% 1.33 0.48 �64% 1.16 0.67 �42% 480 .000 4 ***
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TABLE D10 (Continued)

Median Mean SD Wilcoxon signed-rank

PreNS PostNS δ% PreNS PostNS δ% PreNS PostNS δ% V P

Lactate 2.52 0.64 �75% 2.92 1.44 �51% 2.21 1.96 �11% 332 .013 7 *

total LM at 0.9 ppm 3.39 0.42 �88% 4.79 1.39 �71% 6.08 2.35 �61% 750 < .000 1 ****

total LM at 1.3 ppm 14.57 1.70 �88% 29.35 5.14 �82% 75.46 8.02 �89% 816 < .000 1 ****

total LM at 2.0 ppm 5.57 0.82 �85% 6.43 1.88 �71% 7.02 2.89 �59% 741 < .000 1 ****

myo-Inositol 2.63 0.48 �82% 3.50 1.10 �69% 4.59 1.60 �65% 412 .001 4 **

N-acetylaspartate 1.02 0.14 �86% 1.39 0.42 �70% 1.50 0.64 �57% 743 < .000 1 ****

scyllo-Inositol 0.39 0.06 �85% 1.36 0.08 �94% 3.86 0.09 �98% 151 .000 5 ***

Taurine 2.21 0.51 �77% 2.49 1.25 �50% 1.25 1.47 18% 281 .007 7 **

Table comparing the uncertainty of metabolites as well as lipids and macromolecules (LM) measured from 1.5T and 3T pre- and post-noise suppression

proton magnetic resonance spectroscopy that is given by Cramér–Rao lower bound (CRLB) values. Significant levels are determined by the conditions as P

< .05 (*), P < .01 (**), P <.001 (***), and P < .0001 (****).

TABLE D11 Statistics of Cramér–Rao lower bound percentage values.

Median Mean SD Wilcoxon signed-rank

PreNS PostNS δ% PreNS PostNS δ% PreNS PostNS δ% V P

1.5T Cohort

Citrate 127% 9% �93% 163% 51% �69% 160% 81% �49% 2,493 < .000 1 ****

total Choline 18% 2% �92% 32% 11% �66% 37% 20% �47% 2,898 < .000 1 ****

total Creatine 39% 4% �89% 76% 23% �70% 163% 58% �64% 2,770 < .000 1 ****

Glucose 296% 22% �93% 451% 396% �12% 511% 2,188% 328% 1,430 < .000 1 ****

Glutathione 145% 11% �92% 190% 240% 26% 169% 646% 282% 540 .037 0 *

Glutamate and Glutamine 32% 2% �93% 47% 22% �52% 48% 55% 15% 2,878 < .000 1 ****

Glycine 111% 11% �90% 196% 81% �59% 213% 243% 14% 708 < .000 1 ****

Lactate 299% 23% �92% 520% 165% �68% 647% 282% �56% 2,574 < .000 1 ****

total LM at 0.9 ppm 45% 3% �93% 57% 21% �64% 56% 30% �46% 3,108 < .000 1 ****

total LM at 1.3 ppm 97% 8% �92% 160% 53% �67% 313% 87% �72% 3,018 < .000 1 ****

total LM at 2.0 ppm 54% 4% �93% 76% 37% �51% 61% 89% 45% 2,941 < .000 1 ****

myo-Inositol 154% 12% �93% 426% 70% �84% 1400% 155% �89% 2,234 < .000 1 ****

total N-acetylaspartate 100% 11% �89% 174% 66% �62% 173% 116% �33% 2,736 < .000 1 ****

scyllo-Inositol 143% 19% �87% 471% 178% �62% 844% 318% �62% 274 .042 3 *

Taurine 87% 8% �90% 233% 251% 8% 408% 1,612% 295% 1,524 < .000 1 ****

3T Cohort

Citrate 124% 19% �85% 157% 34% �79% 102% 37% �64% 483 < .000 1 ****

total Choline 21% 5% �78% 35% 8% �77% 41% 10% �75% 806 < .000 1 ****

total Creatine 27% 5% �80% 31% 7% �77% 20% 7% �64% 834 < .000 1 ****

Glucose 226% 43% �81% 415% 60% �86% 475% 61% �87% 607 .000 2 ***

Glutathione 141% 24% �83% 205% 34% �83% 311% 31% �90% 795 < .000 1 ****

Glutamate and Glutamine 79% 12% �85% 100% 22% �78% 65% 28% �58% 754 < .000 1 ****

Glycine 61% 11% �82% 602% 26% �96% 2691% 36% �99% 530 < .000 1 ****

Lactate 167% 34% �80% 239% 100% �58% 189% 180% �5% 373 .000 8 ***

total LM at 0.9 ppm 85% 10% �89% 108% 25% �77% 87% 38% �57% 816 < .000 1 ****

total LM at 1.3 ppm 128% 18% �86% 183% 40% �78% 191% 60% �69% 847 < .000 1 ****

total LM at 2.0 ppm 76% 10% �87% 88% 20% �77% 57% 26% �55% 799 < .000 1 ****

myo-Inositol 87% 15% �83% 131% 45% �65% 140% 69% �51% 440 .000 2 ***
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TABLE D12 Estimated metabolite concentrations in mmol from 1.5T and 3T pre-noise suppression proton magnetic resonance
spectroscopy.

Metabolites

Ependymomas Medulloblastomas Pilocytic astrocytomas All Kruskal–Wallis H

Mean SD Mean SD Mean SD Mean SD H P

1.5T Cohort N = 13 N = 31 N = 39 N = 83

Citrate 0.7 0.3 0.6 0.3 0.4 0.3 0.5 0.3 15.7 .000 4 ***

total Choline 1.9 1.0 3.3 1.6 1.1 0.4 2.0 1.5 46.3 < .000 1 ****

total Creatine 3.9 1.8 2.9 1.7 0.9 1.2 2.1 1.9 35.1 < .000 1 ****

Glucose 1.2 0.9 0.6 0.9 1.0 0.8 0.9 0.9 10.4 .005 4 **

Glutamate and Glutamine 6.9 2.4 6.4 2.5 5.7 2.2 6.1 2.4 3.8 .146 9 ns

Glutathione 0.4 0.5 0.7 0.5 0.3 0.3 0.4 0.4 9.3 .009 5 **

Glycine 1.9 3.5 3.1 2.5 0.2 0.3 1.5 2.5 49.4 < .000 1 ****

Lactate 1.7 1.7 2.6 1.6 1.9 1.1 2.1 1.4 6.1 .048 1 *

total LM at 0.9 ppm 4.3 2.6 7.4 4.1 4.0 1.5 5.3 3.3 24.6 < .000 1 ****

total LM at 1.3 ppm 14.9 16.8 20.4 15.2 7.3 4.7 13.4 13.1 29.6 < .000 1 ****

total LM at 2.0 ppm 7.9 2.1 9.6 3.1 5.2 1.9 7.2 3.2 40.4 < .000 1 ****

myo-Inositol 9.6 5.7 1.7 1.7 2.0 1.8 3.1 3.9 20.7 < .000 1 ****

total N-acetylaspartate 1.2 0.9 0.9 0.7 1.3 0.8 1.2 0.8 5.4 .067 2 ns

scyllo-Inositol 0.2 0.3 0.3 0.4 0.1 0.1 0.2 0.3 27.8 < .000 1 ****

Taurine 1.8 1.6 3.1 2.7 0.8 1.1 1.8 2.2 16.8 .000 2 ***

3T Cohort N = 4 N = 17 N = 21 N = 42

Citrate 0.5 0.6 0.7 0.3 0.4 0.3 0.5 0.4 5.0 .080 1 ns

total Choline 1.3 0.4 4.5 3.7 1.7 0.9 2.8 2.8 18.9 < .000 1 ***

total Creatine 1.9 1.1 4.4 2.8 3.1 2.2 3.5 2.5 7.2 .027 3 *

Glucose 0.9 0.3 1.5 1.2 0.6 0.7 1.0 0.1 4.5 .105 0 ns

Glutamate and Glutamine 3.5 0.1 4.8 3.8 5.1 3.6 4.8 3.5 1.1 .589 6 ns

Glutathione 0.9 0.3 2.2 2.1 0.9 0.8 1.4 1.5 12.4 .002 0 **

Glycine 1.2 0.8 3.9 2.3 0.9 1.5 2.2 2.3 21.1 < .000 1 ****

Lactate 1.7 0.8 2.2 1.9 0.9 1.1 1.5 1.5 8.3 .015 6 *

total LM at 0.9 ppm 3.6 1.3 6.4 6.2 5.0 5.7 5.4 5.6 6.0 .050 3 ns

total LM at 1.3 ppm 13.3 10.8 23.0 18.3 10.3 10.9 15.7 15.3 14.7 .000 6 ***

total LM at 2.0 ppm 6.2 2.2 8.7 4.1 6.8 3.7 7.5 3.8 5.2 .075 7 ns

myo-Inositol 2.9 2.4 2.7 2.6 3.0 3.9 2.9 3.2 0.1 .965 9 ns

total N-acetylaspartate 1.0 0.5 1.2 1.1 1.9 1.1 1.6 1.1 9.7 .008 0 **

scyllo-Inositol 0.0 0.4 0.7 0.1 0.3 0.2 0.5 8.8 .012 3 *

Taurine 1.0 0.7 5.7 4.6 1.1 0.3 3.0 0.5 18.5 < .000 1 ****

The concentrations of metabolites as well as lipids and molecules (LM) prior to normalisation. P values, which evaluated the difference between the three

tumour types, were calculated through Kruskal–Wallis H tests. Significant levels are determined by the conditions as P < .05 (*), P < .01 (**), P <.001 (***),

and P < .0001 (****).

TABLE D11 (Continued)

Median Mean SD Wilcoxon signed-rank

PreNS PostNS δ% PreNS PostNS δ% PreNS PostNS δ% V P

total N-acetylaspartate 93% 14% �85% 126% 27% �79% 151% 36% �76% 813 < .000 1 ****

scyllo-Inositol 247% 22% �91% 437% 54% �88% 886% 73% �92% 145 .001 3 **

Taurine 89% 22% �75% 131% 40% �70% 147% 50% �66% 312 .000 6 ***

Table comparing the uncertainty of metabolites as well as lipids and macromolecules (LM) measured from 1.5T and 3T pre- and post-noise suppression

proton magnetic resonance spectroscopy that is given by Cramér–Rao lower bound (CRLB) percentage values. Significant levels are determined by the

conditions as P < .05 (*), P < .01 (**), P <.001 (***), and P < .0001 (****).
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TABLE D13 Statistics of multiclass areas under the curve for metabolites as well as lipids and macromolecules.

PreNS PostNS Wilcoxon signed-rank

Mean SD Mean SD V P

1.5T Cohort

Citrate 0.579 5 0.028 7 0.701 3 0.005 0 0 < .000 1 ****

total Choline 0.688 6 0.008 3 0.772 6 0.005 0 0 < .000 1 ****

total Creatine 0.771 7 0.005 8 0.778 3 0.006 2 149 < .000 1 ****

Glucose 0.738 0 0.004 5 0.603 3 0.009 0 3,486 < .000 1 ****

Glutathione 0.559 0 0.007 3 0.643 7 0.005 8 0 < .000 1 ****

Glutamate and Glutamine 0.738 6 0.004 8 0.791 9 0.004 7 0 < .000 1 ****

Glycine 0.688 5 0.027 5 0.734 5 0.005 9 48 < .000 1 ****

Lactate 0.723 5 0.007 0 0.566 8 0.019 5 3,486 < .000 1 ****

total LM at 0.9 ppm 0.774 9 0.005 2 0.774 5 0.005 7 1,789 .836 3 ns

total LM at 1.3 ppm 0.665 9 0.009 2 0.757 3 0.007 6 0 < .000 1 ****

total LM at 2.0 ppm 0.550 3 0.008 2 0.613 5 0.012 1 0 < .000 1 ****

myo-Inositol 0.811 1 0.006 5 0.882 4 0.005 6 0 < .000 1 ****

total N-acetylaspartate 0.767 7 0.004 4 0.581 2 0.006 5 3,486 < .000 1 ****

scyllo-Inositol 0.607 0 0.006 7 0.772 9 0.006 1 0 < .000 1 ****

Taurine 0.632 3 0.005 2 0.602 6 0.007 2 3,486 < .000 1 ****

3T Cohort

Citrate 0.484 0 0.034 6 0.594 4 0.020 5 1 < .000 1 ****

total Choline 0.760 5 0.010 6 0.753 7 0.012 1 825 < .000 1 ****

total Creatine 0.639 4 0.023 7 0.634 1 0.025 8 739 .000 3 ***

Glucose 0.580 6 0.015 1 0.653 0 0.011 9 0 < .000 1 ****

Glutathione 0.649 9 0.010 4 0.653 6 0.010 9 230 .009 5 **

Glutamate and Glutamine 0.668 6 0.019 7 0.790 6 0.009 8 0 < .000 1 ****

Glycine 0.791 6 0.009 3 0.845 5 0.008 0 0 < .000 1 ****

Lactate 0.708 8 0.026 0 0.675 1 0.018 3 858 < .000 1 ****

total LM at 0.9 ppm 0.609 0 0.022 0 0.604 8 0.012 2 459 .930 2 ns

total LM at 1.3 ppm 0.639 4 0.020 6 0.621 8 0.022 5 901 < .000 1 ****

total LM at 2.0 ppm 0.682 8 0.010 2 0.805 1 0.008 1 0 < .000 1 ****

myo-Inositol 0.686 9 0.012 3 0.716 2 0.012 6 3 < .000 1 ****

total N-acetylaspartate 0.800 0 0.009 3 0.785 7 0.010 8 901 < .000 1 ****

scyllo-Inositol 0.738 1 0.006 5 0.680 6 0.011 7 903 < .000 1 ****

Taurine 0.697 0 0.010 6 0.750 4 0.010 9 0 < .000 1 ****

Table showing the multiclass area under the curve of metabolites as well as lipids and macromolecules (LM), comparatively between pre- and post-noise

suppression proton magnetic resonance spectroscopy. Significant levels are determined by the conditions as P < .05 (*), P < .01 (**), P <.001 (***), and P <

.0001 (****).
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TABLE D14 Statistics of multiclass areas under the curve for the combinations of metabolites as well as lipids and macromolecules.

Main peak

PreNS PostNS Wilcoxon signed-rank

Mean SD Mean SD V P

1.5T Cohort

total LM at 0.9 ppm �0.9 ppm 0.774 9 0.005 2 0.774 5 0.005 7 1,789 .836 3 ns

Lactate and total LM at 1.3 ppm �1.3 ppm 0.649 5 0.009 3 0.726 2 0.008 0 0 < .000 1 ****

total LM at 2.0 ppm and total N-acetylaspartate �2.0 ppm 0.624 4 0.008 2 0.571 5 0.007 4 3,486 < .000 1 ****

Citrate, glutamate, and glutamine �2.35 ppm 0.738 6 0.004 9 0.797 3 0.004 8 0 < .000 1 ****

total Choline �3.2 ppm 0.688 6 0.008 3 0.772 6 0.005 0 0 < .000 1 ****

scyllo-Inositol and taurine �3.3 ppm 0.665 0 0.005 1 0.668 7 0.007 2 818 < .000 1 ****

Glycine and myo-Inositol �3.6 ppm 0.789 4 0.005 6 0.814 2 0.003 6 1 < .000 1 ****

Glucose and glutathione �3.8 ppm 0.678 6 0.004 7 0.533 9 0.019 7 3,486 < .000 1 ****

total Creatine �3.9 ppm 0.771 7 0.005 8 0.778 3 0.006 2 149 < .000 1 ****

3T Cohort

total LM at 0.9 ppm �0.9 ppm 0.609 0 0.022 0 0.604 8 0.012 2 459 .930 2 ns

Lactate and total LM at 1.3 ppm �1.3 ppm 0.646 5 0.046 4 0.652 4 0.018 3 312 .082 1 ns

total LM at 2.0 ppm and total N-acetylaspartate �2.0 ppm 0.768 2 0.009 9 0.792 0 0.012 5 42 < .000 1 ****

Citrate, glutamate, and glutamine �2.35 ppm 0.710 8 0.013 4 0.776 1 0.009 8 0 < .000 1 ****

total Choline �3.2 ppm 0.760 5 0.010 6 0.753 7 0.012 1 825 < .000 1 ****

scyllo-Inositol and taurine �3.3 ppm 0.692 1 0.011 0 0.747 4 0.115 7 0 < .000 1 ****

Glycine and myo-Inositol �3.6 ppm 0.567 1 0.022 7 0.697 7 0.019 1 0 < .000 1 ****

Glucose and glutathione �3.8 ppm 0.579 2 0.011 2 0.686 5 0.009 7 0 < .000 1 ****

total Creatine �3.9 ppm 0.639 4 0.023 7 0.634 1 0.025 8 739 .000 3 ***

Table showing the multiclass area under the curve of metabolites as well as lipids and macromolecule (LM) combinations, comparatively between pre- and

post-noise suppression proton magnetic resonance spectroscopy. Significant levels are determined by the conditions as P < .05 (*), P < .01 (**), P <.001

(***), and P < .0001 (****).

TABLE D15 Statistics of the overall classification accuracy for the 1.5T cohort.

Type

ACC, preNS ACC, postNS Wilcoxon rank-sum

Mean SD Mean SD W P

LOOCV

preOS

kNN 82% 1% 88% 0% 0 < .000 1 ****

LDA 80% 0% 87% 0% 0 < .000 1 ****

NB 82% 0% 88% 0% 0 < .000 1 ****

NN 81% 0% 86% 0% 0 < .000 1 ****

SVM 83% 0% 92% 0% 0 < .000 1 ****

postOS

kNN 84% 1% 91% 1% 0 < .000 1 ****

LDA 78% 1% 90% 0% 0 < .000 1 ****

NB 80% 1% 88% 1% 0 < .000 1 ****

NN 81% 1% 87% 1% 0 < .000 1 ****

SVM 88% 1% 92% 0% 0 < .000 1 ****

k-fold

preOS

kNN 84% 4% 87% 3% 673 < .000 1 ****

LDA 83% 4% 88% 3% 366 < .000 1 ****

NB 85% 5% 89% 4% 521 < .000 1 ****
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TABLE D15 (Continued)

Type

ACC, preNS ACC, postNS Wilcoxon rank-sum

Mean SD Mean SD W P

NN 84% 4% 87% 3% 799 < .000 1 ****

SVM 82% 4% 90% 3% 213 < .000 1 ****

postOS

kNN 85% 4% 90% 3% 424 < .000 1 ****

LDA 80% 5% 90% 3% 84 < .000 1 ****

NB 82% 4% 88% 4% 331 < .000 1 ****

NN 83% 4% 87% 3% 487 < .000 1 ****

SVM 86% 4% 91% 4% 445 < .000 1 ****

Table comparatively showing the overall classification accuracy (ACC) for the 1.5T cohort between pre- and post-noise suppression (NS) in either pre- or

post-oversampling (OS) conditions. The ACC was generated by using either leave-one-out cross-validation (LOOCV) or k-fold cross-validation (k = 4), and

the machine-learning classifiers considered include k-nearest neighbours (kNN), linear discriminant analysis (LDA), naïve Bayes (NB), single-layer neural

network (NN), and support vector machine (SVM). Significant levels are determined by the conditions as P < .05 (*), P < .01 (**), P <.001 (***), and P < .0001

(****).

TABLE D16 Statistics of the balanced classification accuracy for the 1.5T cohort.

Type

ACC, preNS ACC, postNS Wilcoxon rank-sum

Mean SD Mean SD W P

LOOCV

preOS

kNN 75% 1% 85% 0% 0 < .000 1 ****

LDA 72% 0% 84% 0% 0 < .000 1 ****

NB 76% 0% 86% 0% 0 < .000 1 ****

NN 76% 0% 85% 0% 0 < .000 1 ****

SVM 80% 0% 90% 0% 0 < .000 1 ****

postOS

kNN 79% 2% 89% 2% 0 < .000 1 ****

LDA 71% 1% 89% 1% 0 < .000 1 ****

NB 74% 1% 85% 2% 0 < .000 1 ****

NN 77% 1% 86% 1% 0 < .000 1 ****

SVM 84% 1% 90% 0% 0 < .000 1 ****

k-fold

preOS

kNN 75% 6% 84% 5% 299 < .000 1 ****

LDA 74% 6% 87% 4% 78 < .000 1 ****

NB 78% 6% 86% 6% 408 < .000 1 ****

NN 80% 4% 86% 5% 464 < .000 1 ****

SVM 78% 5% 89% 5% 152 < .000 1 ****

postOS

kNN 80% 6% 89% 5% 368 < .000 1 ****

LDA 72% 6% 88% 4% 36 < .000 1 ****

NB 76% 5% 85% 6% 327 < .000 1 ****

NN 79% 6% 86% 4% 354 < .000 1 ****

SVM 82% 6% 89% 5% 428 < .000 1 ****

Table comparatively showing the balanced classification accuracy (ACC) for the 1.5T cohort between pre- and post-noise suppression (NS) in either pre- or

post-oversampling (OS) conditions. The ACC was generated by using either leave-one-out cross-validation (LOOCV) or k-fold cross-validation (k = 4), and the

machine-learning classifiers considered include k-nearest neighbours (kNN), linear discriminant analysis (LDA), naïve Bayes (NB), single-layer neural network

(NN), and support vector machine (SVM). Significant levels are determined by the conditions as P < .05 (*), P < .01 (**), P <.001 (***), and P < .0001 (****).
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TABLE D17 Statistics of the overall classification accuracy for the 3T cohort.

Type

ACC, preNS ACC, postNS Wilcoxon rank-sum

Mean SD Mean SD W P

LOOCV

preOS

kNN 83% 0% 73% 2% 2,500 < .000 1 ****

LDA 86% 0% 69% 0% 2,500 < .000 1 ****

NB 69% 0% 74% 0% 0 < .000 1 ****

NN 79% 0% 76% 0% 2,500 < .000 1 ****

SVM 81% 0% 71% 0% 2,500 < .000 1 ****

postOS

kNN 63% 3% 70% 3% 126 < .000 1 ****

LDA 71% 1% 78% 2% 5 < .000 1 ****

NB 61% 2% 76% 2% 0 < .000 1 ****

NN 69% 2% 79% 2% 0 < .000 1 ****

SVM 72% 2% 76% 2% 356 < .000 1 ****

k-fold

preOS

kNN 76% 4% 71% 3% 2,182 < .000 1 ****

LDA 77% 3% 75% 3% 1,639 .007 2 **

NB 69% 4% 73% 3% 450 < .000 1 ****

NN 74% 3% 74% 3% 1,228 .881 6 ns

SVM 77% 3% 75% 3% 1,841 < .000 1 ****

postOS

kNN 68% 5% 68% 3% 1,292 .774 0 ns

LDA 72% 4% 75% 4% 730 < .000 1 ****

NB 70% 4% 79% 3% 66 < .000 1 ****

NN 71% 4% 75% 4% 457 < .000 1 ****

SVM 72% 4% 77% 3% 452 < .000 1 ****

Table comparatively showing the overall classification accuracy (ACC) for the 3T cohort between pre- and post-noise suppression (NS) in either pre- or

post-oversampling (OS) conditions. The ACC was generated by using either leave-one-out cross-validation (LOOCV) or k-fold cross-validation (k = 4), and

the machine-learning classifiers considered include k-nearest neighbours (kNN), linear discriminant analysis (LDA), naïve Bayes (NB), single-layer neural

network (NN), and support vector machine (SVM). Significant levels are determined by the conditions as P < .05 (*), P < .01 (**), P <.001 (***), and P < .0001

(****).
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TABLE D18 Statistics of the balanced classification accuracy for the 3T cohort.

Type

ACC, preNS ACC, postNS Wilcoxon rank-sum

Mean SD Mean SD W P

LOOCV

preOS

kNN 62% 0% 54% 1% 2,500 < .000 1 ****

LDA 63% 0% 51% 0% 2,500 < .000 1 ****

NB 51% 0% 55% 0% 0 < .000 1 ****

NN 58% 0% 63% 0% 0 < .000 1 ****

SVM 59% 0% 53% 0% 2,500 < .000 1 ****

postOS

kNN 47% 2% 52% 2% 124 < .000 1 ****

LDA 53% 1% 61% 4% 9 < .000 1 ****

NB 46% 1% 56% 1% 0 < .000 1 ****

NN 54% 4% 59% 3% 554 < .000 1 ****

SVM 53% 2% 56% 2% 340 < .000 1 ****

k-fold

preOS

kNN 57% 3% 53% 3% 2,174 < .000 1 ****

LDA 57% 2% 56% 3% 1,497 .089 8 ns

NB 52% 3% 55% 3% 619 < .000 1 ****

NN 55% 3% 57% 3% 723 .000 2 ***

SVM 57% 2% 56% 3% 1,618 .011 4 *

postOS

kNN 53% 4% 52% 3% 1,470 .130 2 ns

LDA 56% 4% 60% 5% 690 .000 1 ***

NB 52% 3% 59% 2% 52 < .000 1 ****

NN 54% 3% 61% 5% 333 < .000 1 ****

SVM 54% 3% 60% 4% 317 < .000 1 ****

Table comparatively showing the balanced classification accuracy (ACC) for the 3T cohort between pre- and post-noise suppression (NS) in either pre- or

post-oversampling (OS) conditions. The ACC was generated by using either leave-one-out cross-validation (LOOCV) or k-fold cross-validation (k = 4), and

the machine-learning classifiers considered include k-nearest neighbours (kNN), linear discriminant analysis (LDA), naïve Bayes (NB), single-layer neural

network (NN), and support vector machine (SVM). Significant levels are determined by the conditions as P < .05 (*), P < .01 (**), P <.001 (***), and P < .0001

(****).
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APPENDIX D: TABLES

APPENDIX E: FIGURES

F IGURE E1 The detailed flowchart of adaptive wavelet noise suppression (AWNS).
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F IGURE E2 Diagrams showing the quality-control parameters of the 1.5T proton magnetic resonance spectroscopy data, including (A–D)
fitting-based signal-to-noise ratio (fSNR), (E–H) whole-spectrum signal-to-noise ratio (wSNR), and (I–L) full width at half-maximum (FWHM), for
each brain tumour type, including (A, E, I) ependymoma (EP), (B, F, J) medulloblastoma (MB), and (C, G, K) pilocytic astrocytoma (PA), with (D, H, L)
all the cases as the reference.
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F IGURE E3 Diagrams showing the quality-control parameters of the 3T proton magnetic resonance spectroscopy data, including (A–D)
fitting-based signal-to-noise ratio (fSNR), (E–H) whole-spectrum signal-to-noise ratio (wSNR), and (I–L) full width at half-maximum (FWHM), for
each brain tumour type, including (A, E, I) ependymoma (EP), (B, F, J) medulloblastoma (MB), and (C, G, K) pilocytic astrocytoma (PA), with (D, H, L)
all the cases as the reference.
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F IGURE E4 Diagrams showing the quality-control parameters of the 1.5T proton magnetic resonance spectroscopy data, including (A–D)
fitting-based signal-to-noise ratio (fSNR), (E–H) whole-spectrum signal-to-noise ratio (wSNR), and (I–L) full width at half-maximum (FWHM), for
each level of spectral quality, including (A, E, I) poor, (B, F, J) median, and (C, G, K) good quality, with (D, H, L) all the cases as the reference.
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F IGURE E5 Diagrams showing the quality-control parameters of the 3T proton magnetic resonance spectroscopy data, including (A–D)
fitting-based signal-to-noise ratio (fSNR), (E–H) whole-spectrum signal-to-noise ratio (wSNR), (I–L) and full width at half-maximum (FWHM), for
each level of spectral quality, including (A, E, I) poor, (B, F, J) median, and (C, G, K) good quality, with (D, H, L) all the cases as the reference.
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F IGURE E6 Box plots showing the significantly improved overall and balanced classification accuracy (AccOvra and AccBlcd) of the three
brain tumour types, ependymomas, medulloblastomas, and pilocytic astrocytomas, determined through (A–B, E–F) leave-one-out (LOO) and (C–
D, G–H) k-fold (k = 10 for the 1.5T cohort and k = 4 for the 3T cohort) cross-validation (CV) and k-nearest neighbours for (A, C, E, G) pre- and
(B, D, F, H) post-oversampling (OS) (A–D) 1.5T and (E–H) 3T pre- (grey) and post- (black) noise suppression proton magnetic resonance
spectroscopy data, where oversampling was performed for ependymomas with an oversampling rate of 100%. Level of significance: ns, P > 0.05;
**, P < 0.01; ****, P < 0.0001.

F IGURE E7 Box plots showing the significantly improved overall and balanced classification accuracy (AccOvra and AccBlcd) of the three
brain tumour types, ependymomas, medulloblastomas, and pilocytic astrocytomas, determined through (A–B, E–F) leave-one-out (LOO) and (C–
D, G–H) k-fold (k = 10 for the 1.5T cohort and k = 4 for the 3T cohort) cross-validation (CV) and linear discriminant analysis for (A, C, E, G) pre-
and (B, D, F, H) post-oversampling (A–D) 1.5T and (E–H) 3T pre- (grey) and post- (black) noise suppression proton magnetic resonance
spectroscopy data, where oversampling was performed for ependymomas with an oversampling rate of 100%. Level of significance: ns, P > 0.05;
**, P < .01; ***, P < .001; ****, P < .0001.
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F IGURE E8 Box plots showing the significantly improved overall and balanced classification accuracy (AccOvra and AccBlcd) of the three
brain tumour types, ependymomas, medulloblastomas, and pilocytic astrocytomas, determined through (A–B, E–F) leave-one-out (LOO) and (C–
D, G–H) k-fold (k = 10 for the 1.5T cohort and k = 4 for the 3T cohort) cross-validation (CV) and single-layer neural network for (A, C, E, G) pre-
and (B, D, F, H) post-oversampling (A–D) 1.5T and (E–H) 3T pre- (grey) and post- (black) noise suppression proton magnetic resonance
spectroscopy data, where oversampling was performed for ependymomas with an oversampling rate of 100%. Level of significance: ns, P > 0.05;
**, P < .01; ***, P < .001; ****, P < .0001.

F IGURE E9 Box plots showing the significantly improved overall and balanced classification accuracy (AccOvra and AccBlcd) of the three

brain tumour types, ependymomas, medulloblastomas, and pilocytic astrocytomas, determined through (A–B, E–F) leave-one-out (LOO) and (C–
D, G–H) k-fold (k = 10 for the 1.5T cohort and k = 4 for the 3T cohort) cross-validation (CV) and support vector machine with a linear kernel for
(A, C, E, G) pre- and (B, D, F, H) post-oversampling (A–D) 1.5T and (E–H) 3T pre- (grey) and post- (black) noise suppression proton magnetic
resonance spectroscopy data, where oversampling was performed for ependymomas with an oversampling rate of 100%. Level of significance: *,
P < .05; ****, P < .0001.
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