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We show that k-uniform hypergraphs on n vertices whose 
codegree is at least (2/3 + o(1))n can be decomposed into 
tight cycles, subject to the trivial divisibility conditions. As a 
corollary, we show those graphs contain tight Euler tours as 
well. In passing, we also investigate decompositions into tight 
paths.
In addition, we also prove an alternative condition for build-
ing absorbers for edge-decompositions of arbitrary k-uniform 
hypergraphs, which should be of independent interest.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Given a k-uniform hypergraph H, a decomposition of H is collection of subgraphs 
of H such that every edge is covered exactly once. If all these subgraphs are isomorphic 
copies of the same k-uniform graph F , we say H has an F -decomposition, and that H is 
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F -decomposable. We refer the reader to the survey of Glock, Kühn, and Osthus [8] for 
a recent account on extremal aspects of hypergraph decomposition problems. Here we 
investigate hypergraph decompositions into tight cycles.

Given � > k � 2, the k-uniform tight cycle of length �, denoted by C(k)
� , is the k-

graph whose vertices are {v1, . . . , v�} and its edges are {vi, vi+1, . . . , vi+k−1} for all i ∈
{1, . . . , �}, with the subindices understood modulo �. Given a vertex set S ⊆ V (H), we 
define the degree degH(S) of S as the number of edges of H which contain S. Given a 
vertex v ∈ V (H), we define the degree of v as the degree of {v}. Given some 0 � i < k, we 
let δi(H) (and Δi(H)) be the minimum (and maximum, respectively,) value of degH(S)
taken over all i-sets of vertices S. We call δk−1(H) the minimum codegree of H and 
sometimes we will write just δ(H) if k is clear from context.

We say that a k-graph H is C(k)
� -divisible if |E(H)| is divisible by � and the degree of 

every vertex of H is divisible by k. Clearly, being C(k)
� -divisible is a necessary condition 

to admit a C(k)
� -decomposition, but in general it is not a sufficient condition. We are 

interested in extremal questions of the sort: which conditions on the minimum degree 
of large C(k)

� -divisible graphs ensure the existence of C(k)
� -decompositions? Given � � k, 

we define the C(k)
� -decomposition threshold δC(k)

�
as the least d > 0 such that for every 

ε > 0, there exists n0 such that any C(k)
� -divisible k-graph H on n � n0 vertices with 

δk−1(H) � (d + ε)n admits an C(k)
� -decomposition.

In this paper, we are interested in δC(k)
�

. For k = 2, k-graphs are just graphs, tight 
cycles are just graph cycles, and minimum codegree is just minimum degree, and here 
much more is known about the values of δC(2)

�
. Barber, Kühn, Lo, and Osthus [3] show 

that δC(2)
4 = 2/3 and for each even � � 6, δC(2)

�
= 1/2. Taylor [16] proved exact minimum 

degree conditions which yield decompositions into cycles of length � in large graphs, for 
� = 4 and every even � � 8. For odd values of �, the situation is different. Joos and 
Kühn [11] showed that δC(2)

�
= 1/2 + c�, where c� is a sequence of non-zero numbers 

depending on � only, which satisfy c� → 0 when � → ∞.
For k = 3, the last two authors [14] showed that δC(3)

�
= 2/3 for all sufficiently large �. 

In fact, they show that the constant ‘2/3’ is also sharp for the more general problem 
of decomposing hypergraphs into tight cycles of possibly different lengths, which we 
describe now.

A (tight) cycle-decomposition of a k-graph H is an edge partition of H into tight cycles 
(of possibly different lengths). A condition which is easily seen to be necessary to admit 
a cycle-decomposition is that the degree of every vertex of H is divisible by k. We define 
the cycle-decomposition threshold δ(k)

cycle be the least d > 0 such that for every ε > 0, 
there exists n0 such that any k-graph H on n � n0 vertices with δk−1(H) � (d +ε)n such 
that every vertex of H has degree divisible by k admits a cycle-decomposition. Note that 
δ(2)
cycle = 0 as every graph with even degrees admits a cycle decomposition. For k = 3, the 

last two authors [14] showed that δ(3)
cycle = 2/3. Glock, Kühn and Osthus [8, Conjecture 

5.5] posed the following conjecture for k � 3.

Conjecture 1.1 (Glock, Kühn and Osthus). For k � 3, δ(k)
cycle � (k − 1)/k.
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Cycle decompositions are also related with generalisations of Euler tours to hy-
pergraphs. An Euler tour in a k-graph H is a sequence of (possibly repeating) ver-
tices v1 · · · vm such that each k cyclically consecutive vertices forms an edge of H, and 
all edges of H appear uniquely in this way. Similarly, we define the Euler tour thresh-
old δ(k)

Euler be the least d > 0 such that for every ε > 0, there exists n0 such that 
any k-graph H on n � n0 vertices with δk−1(H) � (d + ε)n such that every vertex of H
is divisible by k admits an Euler tour. Chung, Diaconis, and Graham [5] conjectured that 
every large K(k)

n such that every vertex has degree divisible by k admits an Euler tour. 
Glock, Joos, Kühn, and Osthus [6] confirmed this conjecture and showed the existence 
of Euler tours in suitable hypergraphs by using results on cycle decompositions, which 
in particular show δ(k)

Euler < 1 for all k. For k = 2, it is easy to see that δ(2)
Euler = 1/2

(as δ(H) � |V (H)|/2 is needed to ensure that the graph H is connected), and examples 
show that δ(k)

Euler � 1/2 holds for all k � 3 [6, Section 1.3]. The following conjecture for 
all k � 3 was posed.

Conjecture 1.2 (Glock, Kühn, and Osthus [8]). For k � 3, δ(k)
Euler � (k − 1)/k.

It was first conjectured that δ(k)
Euler = 1/2 for all k � 3 in [6], but this was disproven 

by the last two authors [14] by showing that δ(3)
Euler = 2/3.

Our main result bounds δC(k)
�

for every k � 2 and each sufficiently large �.

Theorem 1.3. For every k � 3 there exists an �0 ∈ N such that for every � � �0 it holds 
that δC(k)

�
� 2/3.

The case when k = 3 already appears in [14]. For k � 4, we do not know if the 
constant ‘2/3’ appearing in Theorem 1.3 is best-possible. We discuss lower bounds in 
Section 2.

In order to prove Theorem 1.3, we also find the decomposition threshold for tight 
paths. Given � > k � 2, the k-uniform tight path on � vertices, denoted by P (k)

� , is 
the k-graph whose vertices are {v1, . . . , v�} and its edges are {vi, vi+1, . . . , vi+k−1} for all 
i ∈ {1, . . . , � − k + 1}. A k-graph H is P (k)

� -divisible if |E(H)| is divisible by |E(P (k)
� )| =

� − k + 1. For � > k � 2, we naturally define the P (k)
� -decomposition threshold δP (k)

�
as 

the least d > 0 such that for every ε > 0, there exists n0 such that any P (k)
� -divisible 

k-graph H on n � n0 vertices with δk−1(H) � (d + ε)n admits an P (k)
� -decomposition. 

We prove that δP (k)
�

= 1/2.

Theorem 1.4. For every k � 3 and � � k + 1, δP (k)
�

= 1/2.

Using the techniques we apply to prove our main result, we can give bounds on δ(k)
cycle

and δ(k)
Euler, which in particular prove Conjectures 1.1 and 1.2 in a strong sense. In fact, 

we also prove that both thresholds are always equal.

Theorem 1.5. For all k � 3, 1/2 � δ(k)
Euler = δ(k)

cycle � inf�>k{δC(k)} � 2/3.

�
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1.1. Proof ideas

Our proof uses the ‘iterative absorption’ framework to tackle decomposition problems 
in hypergraphs; see [2] for a introduction. The proof of the main result (Theorem 1.3) has 
three ingredients: an Absorber lemma, a Vortex lemma, and a Cover-down lemma. The 
Vortex lemma gives a sequence of subsets V (H) = U0 ⊇ U1 ⊇ · · · ⊇ Ut, and Ut has size 
independent of n = |V (H)|. The Absorber lemma gives a small subgraph A ⊆ H such 
that for any C(k)

� -divisible leftover L ⊆ Ut, the k-graph A ∪L has a cycle decomposition. 
This reduces the problem to the search of a cycle packing in H ′ = H − A which only 
has uncovered edges in Ut (those can be later ‘absorbed’ by A). This is found using 
the Cover-down lemma: in the ith step we find a collection of edge-disjoint cycles which 
covers all edges in H ′[Ui] −H ′[Ui+1] but only uses few edges in H ′[Ui+1], this allows the 
process to be iterated.

Our proof of the Cover-down lemma requires a result of Joos and Kühn on ‘fractional 
decompositions’ [11], and a detour which finds and uses (tight) path decompositions.

Most of the work is required to prove the Absorber lemma. We follow the approach 
of [14], where absorbers are built by first finding ‘tour-trail decompositions’ of the leftover 
graphs. These decompositions consist of edge-disjoint subgraphs, each of which forms a 
tour or a trail. It turns out that it is simple to build absorbers if the leftover can be 
decomposed into tours. The goal is then to modify the leftover via the addition of gadgets, 
these will suitably modify a given tour-trail decomposition in steps, so that at the end 
no trails remain. We also prove an alternative condition for the existence of absorbers, 
see Lemma 3.3, which should be of independent interest.

In this high-level description, this is the same outline used to find cycle decompositions 
when k = 3 in [14], but the proof for k > 3 requires several non-trivial modifications. 
This is specially true in the construction of the absorbers, which is way more involved 
than in the k = 3 case, and can be considered the main new contribution of the paper.

1.2. Organisation

In Section 2 we give new lower bounds for the C(k)
� -decomposition threshold, for 

certain values of k and �.
In Section 3, we establish a connection between the notion of transformers and ab-

sorbers. In Section 4 we explain the iterative absorption method, including the statements 
of their key lemmata. At the end of this section we prove Theorem 1.3.

Sections 5 to 9 are devoted to the proofs of the lemmata used in the iterative ab-
sorption. Section 5 contains the proof of the Vortex lemma. The proof of the Absorber 
lemma is the main technical part of our paper, and its proof spans Sections 6, 7, and 8. 
The proof of the Cover-down lemma appears in Section 9. We prove Theorem 1.4 in 
Section 9.1.

In Section 10 we provide the necessary lemmata for the proof of Theorem 1.5. We 
finish in Section 11 with remarks and questions.
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1.3. Notation

Let [n] = {1, . . . , n}. Since isolated vertices make no difference in our context, we usu-
ally do not distinguish from a hypergraph H = (V (H), E(H)) and its set of edges E(H). 
For a subset U ⊆ V (H), we write H \U to mean the subgraph of H obtained by deleting 
vertices in U . We write H[U ] = H \ (V (H) \ U). For a k-graph G (not necessarily a 
subgraph of H), we write H−G = (V (H), E(H) \E(G)). We will suppress brackets and 
commas to refer to k-tuples of vertices when they are considered as edges of a hypergraph. 
For instance, for v1, . . . , vk ∈ V (H), v1 · · · vk ∈ H means that the edge {v1, . . . , vk} is 
in E(H). Whenever we have a set of vertices {v1, . . . , vm} indexed by an interval [m] any 
operation apply to the indices is considered to be modulo m. For a vertex set S ⊆ V (H), 
the neighbourhood NH(S) of S is the set of vertex sets T ⊆ V (H) \S such that S∪T ∈ H. 
Given U ⊆ V (H), define NH(S, U) = NH[S∪U ](S). The degrees degH(S) and degH(S, U)
correspond to |NH(S)| and |NH(S, U)|, respectively. We suppress H if it can be deduced 
from context.

We also use the following notation. Given k � 2 and r � 1, and a k-graph H, 
define δ(r)(H) to be the minimum of |N(e1) ∩ N(e2) ∩ · · · ∩ N(er)| among all possible 
choices of r different (k − 1)-sets of vertices e1, . . . , er. More generally, given a set of 
vertices U ⊆ V (H), we also define δ(r)(H, U) as the minimum of |U ∩N(e1) ∩N(e2) ∩
· · · ∩N(er)| among all possible choices of r different (k − 1)-sets of vertices e1, . . . , er.

We will use hierarchies in our statements. The phrase “a 	 b” means “for every b > 0, 
there exists a0 > 0, such that for all 0 < a � a0 the following statements hold”. We 
implicitly assume all constants in such hierarchies are positive, and if 1/a appears we 
assume a is an integer.

Suppose that Lemma A states that a k-graph H contains a subgraph J . We write 
‘apply Lemma A and obtain edge-disjoint subgraphs J1, . . . , J�’ to mean that ‘for each i ∈
[�], we apply Lemma A to H−

⋃
j∈[i−1] Jj to obtain Ji’. Note that H−

⋃
j∈[i−1] Jj will also 

satisfy the condition of Lemma A, but we will not check them explicitly. Furthermore, 
suppose that we have already found a subgraph H ′ of H and we say that ‘apply Lemma A 
and obtain subgraph J such that V (J) \ U are new vertices’ to mean the ‘we apply 
Lemma A to H − (V (H ′) \ U) to obtain J ’.

2. Lower bounds

Given a k-graph H, let C�(H) be the family of all C(k)
� in H and C�(H, e) the family 

of �-cycles containing a fixed edge e ∈ H. A fractional C(k)
� -decomposition of H is a 

function ω : C�(H) → [0, 1] such that, for every edge e ∈ H, 
∑

C∈C�(H,e) ω(C) = 1. 
We define the fractional C(k)

� -decomposition threshold δ∗C(k)
�

be the least d > 0 such 
that, for every ε > 0, there exists n0 such that any k-graph H on n � n0 vertices 
with δk−1(H) � (d + ε)n admits a fractional C(k)

� -decomposition.
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Here, we give lower bounds on the parameter δ∗C(k)
�

. Joos and Kühn [11] showed 
that δ∗C(k)

�
� 1

2 + 1
(k−1+2/k)(�−1) holds for each k � 2 and � not divisible by k. We 

give new bounds, which remove the dependency on k.

Proposition 2.1. Let 1 � i < k < � with � not divisible by k and r = k/ gcd(k, �). Let 
Ifree = {0 � i � k : i 
≡ 0 mod r}, Iodd = {0 � i � k : i 
≡ 0 mod 2} and Ieven = {0 �
i � k : i ≡ 0 mod 2}. Then

δ∗
C

(k)
�

� 1
2 + 1

2k(�− 1) max
{ ∑

i∈Ifree∩Iodd

(
k

i

)
,

∑
i∈Ifree∩Ieven

(
k

i

)}
� 1

2 + 1
4(�− 1) . (2.1)

Our constructions are based on [9, Proposition 3.1]. Given vertex-disjoint sets A, B
and 0 � i � k, we let H(k)

i (A, B) be the k-graph on A ∪ B such that e ∈ H(k)
i (A, B) if 

and only if |e ∩B| = i. We need the following observation.

Proposition 2.2. Let 1 � i < k < � and d = gcd(k, �). Let A and B be disjoint vertex 
sets, and let Hi = H(k)

i (A, B). Then Hi is C(k)
� -free for all k − i 
≡ 0 mod k/d.

Proof. Suppose � > k is such that v1 · · · v� are the vertices of a copy of C(k)
� in Hi. We 

shall show that k/d divides k − i. For all j ∈ [�], let φj ∈ {A, B} be such that vj ∈ φj

and let φ�+j = φj . Moreover, if two edges e1, e2 ∈ E(Hi) satisfy |e1 ∩ e2| = k − 1, then 
the two vertices u ∈ e1 \ e2 and v ∈ e2 \ e1 belong to the same vertex-class A or B. In 
particular, φj = φj+k for all j ∈ [�]. Hence, φj+d = φj for all j ∈ [�]. Thus

k − i = |{v1, . . . , vk} ∩A| = |{j ∈ [k] : φj = A}| ∈ {k/d, 2k/d, . . . , k}

as required. �
We say a k-graph H on n vertices admits an η-approximate F -decomposition if it 

has a collection of edge-disjoint copies of F covering all but ηnk edges. By a result of 
Rödl, Schacht, Siggers, and Tokushige [15], any bound on the codegree of k-graphs not 
containing η-approximate decompositions, for arbitrary small η, is essentially equivalent 
to bounding the corresponding numbers for fractional C(k)

� -decomposition. Thus, we will 
focus on the former.

Proof of Proposition 2.1. Let n be sufficiently large. Let A and B be disjoint vertex sets 
each of size �n/2
 and �n/2� respectively. For each 0 � i � k, let Hi = H(k)

i (A, B). Note 
that

|Hi|(
n
k

) = 1
2k

(
k

i

)
+ o(1) . (2.2)

Let d = gcd(k, �). Since � is not divisible by k, then r = k/d > 1. It holds that k− i 
≡
0 mod r if and only if i 
≡ 0 mod r. Let Hodd =

⋃
i∈I Hi and Heven =

⋃
i∈I Hi. Note 
odd even
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that δ(Hodd), δ(Heven) � n/2 −k. From (2.2) it follows that both |Hodd| and |Heven| have 
size (1

2 + o(1))
(
n
k

)
.

Let H ′
odd =

⋃
i∈Iodd∩Ifree

Hi and H ′
even =

⋃
i∈Ieven∩Ifree

Hi. Note that by (2.2), we have

|H ′
odd|(
n
k

) = 1
2k

∑
i∈Iodd∩Ifree

(
k

i

)
+ o(1) and |H ′

even|(
n
k

) = 1
2k

∑
i∈Ieven∩Ifree

(
k

i

)
+ o(1). (2.3)

Observe that given odd numbers i 
= j there is no tight path in Hodd connecting an 
edge from Hi with an edge of Hj . Therefore, Proposition 2.2 yields that no edge in H ′

odd
is contained in a copy of C(k)

� in Hodd. Let

p = 2|H ′
odd|

(�− 1)
(
n
k

) ,
and suppose η > 0 is given. Consider H∗

even to be a sub-k-graph of Heven such 
that δ(H∗

even) � (p − 4η)n/2 and

|H∗
even| � (p− 2.1η)|Heven| < |H ′

odd|/(�− 1) − ηnk. (2.4)

Such a sub-k-graph can be obtained by taking random edges from Heven independently 
with probability p − 3η.

We claim H = Hodd ∪ H∗
even does not admit an η-approximate C(k)

� -decomposition. 
Since no edge of H ′

odd is contained in a copy of C(k)
� in Hodd, each C(k)

� containing an 
edge in H ′

odd must contain at least one edge in H∗
even. Therefore, if H contains an η-

approximate C(k)
� -decomposition, then we have

(�− 1)|H∗
even| � |H ′

odd| − η|H| � |H ′
odd| − ηnk,

contradicting (2.4). Note that δ(H) � δ(Hodd) +δ(H∗
even) � (1 +p −4.5η)n/2. Therefore, 

from (2.3), letting n tend to infinity, and η tend to zero, we deduce that

δ∗
C

(k)
�

� lim
n→∞

1
2(1 + p) = 1

2 + 1
2k(�− 1)

∑
i∈Iodd∩Ifree

(
k

i

)
.

An analogous construction, selecting H∗
odd ⊆ Hodd as a random set of the appropriate 

size with respect to H ′
even, gives that

δ∗
C

(k)
�

� 1
2 + 1

2k(�− 1)
∑

i∈Ieven∩Ifree

(
k

i

)
,

and therefore we have

δ∗
C

(k)
�

� 1
2 + 1

2k(�− 1) max
{ ∑

i∈Iodd∩Ifree

(
k

i

)
,

∑
i∈Ieven∩Ifree

(
k

i

)}
,
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which gives the first inequality of (2.1).
To bound this last term, note that

∑
i∈Iodd∩Ifree

(
k

i

)
+

∑
i∈Ieven∩Ifree

(
k

i

)
=

∑
1�i�k,i 	≡0 mod r

(
k

i

)
� 2k−1.

The last inequality follows since 
∑

i∈[k] : i≡0 mod r

(
k
i

)
counts the number of sets of [k]

of size divisible by r, and we recall that r > 1. If Pr ⊆ P([k]) is that family, then 
X �→ X�{1} is an injection from Pr to P([k]) \ Pr, and thus |Pr| � |P([k])|/2 = 2k−1. 
We deduce that max

{∑
i∈Iodd∩Ifree

(
k
i

)
,
∑

i∈Ieven∩Ifree

(
k
i

)}
� 2k−2, which then yields

δ∗
C

(k)
�

� 1
2 + 1

4(�− 1) ,

as desired. �
We can get better bounds for some choices of k and � by looking at (2.1) in detail.

Corollary 2.3. Let 3 � k < � with � 
≡ 0 mod k. Then

δ∗
C

(k)
�

�
{

1
2 + 1

2(�−1) if k/ gcd(�, k) is even,
1
2 + 1−2−k

2(�−1) if gcd(�, k) = 1 and k is odd.

Proof. Let d = gcd(k, �) and k = dr. If r is even, then Iodd ∩ Ifree = Iodd. Therefore ∑
i∈Iodd∩Ifree

(
k
i

)
=
∑

i∈Iodd

(
k
i

)
= 2k−1, so δ∗C(k)

�
� 1

2+ 1
2(�−1) follows from Proposition 2.1.

If d = 1, then r = k, and therefore Ifree = [k−1]. This implies 
∑

i∈Ifree

(
k
i

)
= 2k−2 and 

therefore max
{∑

i∈Iodd∩Ifree

(
k
i

)
,
∑

i∈Ieven∩Ifree

(
k
i

)}
� 2k−1 − 1, then δ∗C(k)

�
� 1

2 + 1−2−k

2(�−1)
again follows from Proposition 2.1. �

Finally, we can get bounds for the non-fractional thresholds δC(k)
�

by modifying the k-
graphs we construct in the proof of Proposition 2.1 in such a way that they also are 
C(k)

� -divisible. By removing at most � − 1 edges it is easy to make the total number of 
edges divisible by �, so the only real challenge is to make every degree divisible by k. We 
prove later (Corollary 9.11) that, for each ε > 0 (assuming n sufficiently large), we can 
find F ⊆ H whose number of edges is divisible by �, δk−1(H−F ) � δk−1(H) −εn, and for 
each v ∈ V (H), degH−F (v) ≡ 0 mod k. Thus the graphs we construct in Proposition 2.1
can be modified to be C(k)

� -divisible, which implies the following bounds:

Corollary 2.4. For all 3 � k < � and � not divisible by k,
(i) δC(k)

�
� 1

2 + 1
4(�−1) ,

(ii) if k/ gcd(�, k) is even, then δC(k)
�

� 1
2 + 1

2(�−1) , and
(iii) if k/ gcd(�, k) = 1 and � is odd, then δC(k) � 1 + 1−2−k

.

� 2 2(�−1)
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3. Absorbers versus transformers

In this section, we introduce absorbers and transformers, which are essential tools in 
the iterative absorption technique. We prove that the existence of absorbers is essentially 
equivalent to the existence of transformers, and we work with the latter concept in the 
rest of the paper. We state our results in a general fashion, that is, for F -decompositions 
into general hypergraphs, not just cycles.

Given a k-graph F and 0 � i < k let divi(F ) = gcd{degF (S) : S ∈
(
V (F )

i

)
}. We say 

that a k-graph H is F -divisible if degH(S) is divisible by div|S|(S) for every subset S

of V (H) on at most k−1 vertices. It is not hard to check that this definition in fact gen-
eralises the notions of C(k)

� -divisible and P (k)
� -divisible introduced in Section 1 and that 

being F -divisible is a necessary condition for the existence of an F -decomposition. As 
before, this condition is not sufficient in general and hence we define the F -decomposition 
threshold δF to be the least d > 0 such that for every ε > 0, there exists n0 such that 
any F -divisible k-graph H on n � n0 vertices with δk−1(H) � (d + ε)n admits an 
F -decomposition.

Let F and G be k-graphs. We say that a k-graph A is an F -absorber for G if both A and 
A ∪G have F -decompositions and A[V (G)] = ∅. Note that if there is an F -absorber for G, 
then G is F -divisible. The following definition describes k-graphs containing absorbers 
in a robust way.

Definition 3.1. Let η : N → N be a function. We say that a k-graph H on n vertices 
is (F, mG, mW , η)-absorbing if, for all F -divisible subgraphs G of H with |V (G)| � mG

and W ⊆ V (H) \ V (G) with |W | � mW − η(|V (G)|), H \W contains an F -absorber A

for G with |V (A)| � η(|V (G)|).

We will use so-called transformers to construct absorbers. The rôle of transform-
ers is to replace G with a ‘homomorphic copy’ G′ of G. Given k-graphs G and G′, a 
function φ : V (G) → V (G′) is an edge-bijective homomorphism from G to G′ if we 
have G′ = {φ(v1) · · ·φ(vk) : v1 · · · vk ∈ G}. If such function exists, we say G and G′

are homomorphic. A (G, G′; F )-transformer is a k-graph T such that T ∪G and T ∪G′

are F -decomposable and T [V (G)] ∪ T [V (G′)] is empty. The following definition is anal-
ogous to Definition 3.1 but for transformers.

Definition 3.2. Let η : N → N be an increasing function with η(x) � x. We say that 
a k-graph H on n vertices is (F, mG, mW , η)-transformable if, for all vertex-disjoint 
homomorphic F -divisible subgraphs G, G′ of H and W ⊆ V (H) \ V (G ∪ G′) and 
|V (G)|, |V (G′)| � mG and |W | � mW − η(|V (G)|), H \ W contains a (G, G′; F )-
transformer T with |V (T )| � η(max{|V (G)|, |V (G′)|}).

It is not difficult to see that if a k-graph H is (F, mG, mW , η)-absorbing, then H is 
also (F, mG, mW , 2η)-transformable (see proof of Lemma 3.3). In fact, the converse is 
true with different constants as long as there are enough copies of F in H.
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Lemma 3.3. Let η : N −→ N be an increasing function with η(x) � x and mW , mG � 0. 
Let F be a k-graph and u1 · · ·uk ∈ F . Let H be a k-graph such that, for any 
distinct v1, . . . , vk ∈ V (H) and W ⊆ V (H) \ {vi : i ∈ [k]} with |W | � mW , 
(H∪{v1, . . . , vk}) \W contains a copy of F with ui mapped to vi for all i ∈ [k]. Then if H
is (F, mG, mW , η)-absorbing then H is (F, mG, mW , 2η)-transformable. Moreover, if H is 
(F, mG, mW , η)-transformable, then H is (F, mG, mW , η′)-absorbing for some increasing 
function η′ : N → N with η′(x) � x.

For k-graphs G and H and q ∈ N, we write G +qH to be the vertex-disjoint union of G
and q copies of H. We now show that, by adding q vertex-disjoint copies of F to G, the k-
graph G +qF has an edge-bijective homomorphism to K(k)

m . We will require the following 
theorem regarding the existence of F -decompositions in high codegree k-graphs.

Theorem 3.4 (Glock, Kühn, Lo and Osthus [7]). For all k-graphs F , there exists a con-
stant cF > 0 such that δF � 1 − cF .

A subsequent alternative proof of Theorem 3.4 was given by Keevash [12].

Lemma 3.5. Let F be a k-graph. Then, for all t ∈ N, there exist integers q = q(t)
and m = m(t) such that, for any F -divisible k-graph G with |G| = t, there exists an 
edge-bijective homomorphism from G + qF to K(k)

m .

Proof. Let cF > 0 be the constant given by Theorem 3.4. Let 1/m 	 1/t, 1/k, cF be such 
that K(k)

m is F -divisible and any F -divisible subgraph H of K(k)
m with δ(H) � (1 −cF /2)m

has an F -decomposition.
Let G′ be an isomorphic copy of G with V (G′) ⊆ V (K(k)

m ). Clearly there is an edge-
bijective homomorphism φ from G to G′. Since both G′ and K(k)

m are F -divisible, so 
is H = K(k)

m − G′. Note that since |G′| = t then δ(H) � (1 − t/m)m � (1 − cF /2)m. 
Hence H has an F -decomposition and we fix one. That is, H can be edge-partitioned into 
q = |H|/|F | copies of F . We extend φ to an edge-bijective homomorphism from G + qF

to K(k)
m , where we map each F in G + qF to a distinct copy of F in the F -decomposition 

of H = K(k)
m −G′. �

We now sketch how to construct absorbers from transformers, that is, the backwards 
direction of the proof of Lemma 3.3. Let G ⊆ H be an F -divisible k-graph with t
edges, and suppose we can find a qF , which is vertex-disjoint from G, inside H. By 
Lemma 3.5, G + qF has an edge-bijective homomorphism to K(k)

m . First, suppose that 
H contains a K(k)

m vertex-disjoint from G + qF . Then, by our assumption, H contains a 
(G +qF, K(k)

m ; F )-transformer T . Note that T1 = T∪qF is a (G, K(k)
m ; F )-transformer. Let 

s = t/|F |. Note that sF has t edges, precisely the same number of edges as G. Therefore, 
since m, q in Lemma 3.5 depend on t only, if there exists a copy of sF +qF ⊆ H which is 
vertex-disjoint from K(k)

m we can repeat the same construction as above. In the end, we 
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would obtain an (sF, K(k)
m ; F )-transformer T2. Then T1 ∪K(k)

m ∪T2 is a (G + qF, sF ; F )-
transformer and so qF ∪ T1 ∪K(k)

m ∪ T2 ∪ sF is an F -absorber for G.
However, an obvious obstacle with this approach is that H may not contain any such 

large clique K(k)
m . To overcome this problem, we consider the extension operator ∇ (which 

was introduced in [7, Definition 8.13]). Fix an edge u1 · · ·uk ∈ F . Consider any distinct 
vertices v1, . . . , vk ∈ V (H). Define ∇F,u1···uk

(v1 · · · vk) to be a copy of F − u1 · · ·uk with 
vi playing the rôles of ui. For a k-graph G on V (G) ⊆ V (H), define ∇F,u1···uk

(G) to be 
the union of 

⋃
e∈G ∇F,u1···uk

(e), where the ordering of each edge e ∈ G will be clear from 
the context and V (∇F,u1···uk

(e)) \ e are new vertices. Note that G ∪∇F,u1···uk
(G) is F -

decomposable. The hypothesis of Lemma 3.3 implies that ∇F,u1···uk
(G), ∇F,u1···uk

(K(k)
m )

and ∇F,u1···uk
(sF ) exist. Furthermore, there are edge-bijective homomorphisms between 

∇F,u1···uk
(G) and ∇F,u1···uk

(K(k)
m ), and between ∇F,u1···uk

(K(k)
m ) and ∇F,u1···uk

(sF ). We 
then construct transformers between them to obtain an F -absorber for G.

Proof of Lemma 3.3. First suppose that H is (F, mG, mW , η)-absorbing. Let G and G′

be vertex-disjoint F -divisible subgraphs of H with |V (G)|, |V (G′)| � mG. Let W ⊆
V (H) \ V (G ∪ G′) with |W | � mW − 2η(max{|V (G)|, |V (G′)|}). By the property of 
being (F, mG, mW , η)-absorbing, H \ (W ∪ V (G′)) contains an F -absorber A1 for G

with A1[V (G)] = ∅ and |V (A1)| � η(|V (G′)|). Also, H \ (W ∪ V (A1)) contains an F -
absorber A2 for G′ with A2[V (G′)] = ∅ and |V (A2)| � η(|V (G′)|). Let T = A1 ∪ A2. 
Note that T ∪G and T ∪G′ have F -decompositions and T [V (G ∪G′)] = ∅. Hence T is 
a (G, G′; F )-transformer. Moreover,

|V (T )| = |V (A1)| + |V (A2)| � η(|V (G)|) + η(|V (G′)|) � 2η(max{|V (G)|, |V (G′)|}).

So H is (F, mG, mW , 2η)-transformable.
Now suppose that H is (F, mG, mW , η)-transformable. Let q(t) and m(t) be the func-

tions given by Lemma 3.5. Let η′ be the function given by

η′(x) = 2η
(

max
j∈[(xk)]∪{0}

{
|V (F )|

(
m(j)
k

)})
.

We now show that H is (F, mG, mW , η′)-absorbing.
Let G be an F -divisible subgraph of H with |V (G)| � mG and W ⊆ V (H) \ V (G)

with |W | � mW − η′(mG). Let

q1 = q(|G|), m1 = m(|G|), q2 =
(
m1

k

)
/|F |.

Let (q1 + q2)F be in H \ (V (G) ∪W ), which exists by our assumption on H. Let G1 =
G + q1F and G3 = q2F . Hence, G1 and G3 are vertex-disjoint and are in H \ W . 
Let V ′ = {v′1, . . . , v′m1

} ⊆ V (H) \ (V (G1∪G3) ∪W ). Consider a G2 = K(k)
m1

on V ′, which 
may not exist in H. By Lemma 3.5, there exists an edge-bijective homomorphism φj
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from Gj to K(k)
m1

for j ∈ {1, 3}. Order edges in K(k)
m1

into v′i1 . . . v
′
ik

such that i1 < · · · < ik. 
By φ1 and φ3, this implies an ordering on all edges of G1∪G3. Fix an edge u1 · · ·uk ∈ F . 
Let

G′
1 = ∇F,u1...uk

(G1), G′
2 = ∇F,u1...uk

(K(k)
m1

), G′
3 = ∇F,u1...uk

(G3).

Let � = |V (F )|
(
m1
k

)
. Note that

|V (G′
j)| � |V (F )||Gj | = |V (F )|

(
m1

k

)
= �.

By the property of H, H contains vertex-disjoint G′
1, G

′
2, G

′
3 such that G′

i[V (Gj)] = ∅

for i ∈ [3] and j ∈ {1, 3}. Since H is (F, mG, mW , η)-transformable, H \ (W ∪ V (G′
3))

contains a (G′
1, G

′
2; F )-transformer T1 with |V (T1)| � η(�). Similarly, H \ (W ∪ V (G′

1) ∪
(T1 \ V (G′

2))) contains a (G′
2, G

′
3; F )-transformer T2 with |V (T2)| � η(�).

Let A = (G1 − G) ∪ G′
1 ∪ T1 ∪ G′

2 ∪ T2 ∪ G′
3 ∪ G3. Recall that (G1 − G), G1 ∪ G′

1, 
G′

3 ∪G3 and G3 have F -decompositions. Hence

A ∪G = (G1 ∪G′
1) ∪ (T1 ∪G′

2) ∪ (T2 ∪G′
3) ∪G3 and

A = (G1 −G) ∪ (G′
1 ∪ T1) ∪ (G′

2 ∪ T2) ∪ (G′
3 ∪G3)

are F -decomposable. Therefore A is an F -absorber for G. Note that A[V (G)] =
T1[V (G)] ⊆ T1[V (G′

1)] = ∅ and

|V (A)| � |V (T1)| + |V (T2)| � 2η(�) = η′(|V (G)|).

Hence H is (F, mG, mW , η′)-absorbing. �
4. Iterative absorption and proof of the main result

The method of iterative absorption is based on three main lemmata: the Vortex lemma, 
the Absorber lemma, and the Cover-down lemma. We state these lemmata while explain-
ing the general strategy, then we will use them to prove Theorem 1.3. The proofs of these 
lemmata are in Sections 5-9 (Sections 6-8 are dedicated to the Absorber lemma).

A sequence of nested subsets U0 ⊇ · · · ⊇ Ut of vertices of a k-graph H is a (δ, ξ, m)-
vortex for H if
(V1) U0 = V (H),
(V2) for each i ∈ [t], |Ui| = �ξ|Ui−1|
,
(V3) |Ut| = m,
(V4) δ(2)(H[Ui]) � δ|Ui|, for each 0 � i � t and
(V5) δ(2)(H[Ui], Ui+1) � δ|Ui+1|, for each 0 � i < t.
The Vortex lemma gives us the existence of vortices with the right parameters.
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Lemma 4.1 (Vortex lemma). Let δ > 0 and 1/m′ 	 ξ, 1/k. Let H be a k-graph on n � m′

vertices with δ(2)(H) � δ. Then H has a (δ− ξ, ξ, m)-vortex, for some �ξm′
 � m � m′.

Using the properties of such a vortex, we will iteratively find C(k)
� -packings covering 

the edges from H[Ui] in every step, without taking too many edges from the following 
sets Ui+1, . . . , Ut in the vortex. The Cover-down lemma will provide the existence of 
those packings in every step.

Lemma 4.2 (Cover-down lemma). For every k � 3 and every α > 0, there is an �0 ∈ N

such that for every μ > 0 and every n, � ∈ N with � � �0 and 1/n 	 μ, α the following 
holds. Let H be a k-graph on n vertices, and U ⊆ V (H) with |U | = �αn
, and they 
satisfy
(CD1) δ(2)(H) � 2αn,
(CD2) δ(2)(H, U) � α|U |, and
(CD3) degH(x) is divisible by k for each x ∈ V (H) \ U .
Then H contains a C(k)

� -decomposable subgraph F ⊆ H such that H − H[U ] ⊆ F

and Δk−1(F [U ]) � μn.

Finally, after repeated applications of the Cover-down lemma, we only need to consider 
the edges remaining in H[Ut]. For these last edges, we apply the Absorber lemma. This 
lemma says that the k-graph H is (C(k)

� , m, m, η′)-absorbing, and therefore, it contains 
an absorber for any possible C(k)

� -divisible k-graph left as a remainder in Ut (which is of 
size m).

Lemma 4.3 (Absorber lemma). Let 1/n 	 ε 	 1/�, 1/k, 1/m with k � 3 and � � 2(k2 −
k) +1. Let H be a k-graph on n vertices with δ(3)(H) � 2εn. Then H is (C(k)

� , m, m, η′)-
absorbing for some increasing function η′ : N → N satisfying η′(x) � x and independent 
of ε and n.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. We divide the proof into three steps: setting the vortex and ab-
sorber, covering down, and using the absorber to conclude. We suppose ε, �, m′, n0 are 
chosen according to the following hierarchy: 1/n0 	 1/m′ 	 ε, 1/� 	 1/k.

Let H be a C(k)
� -divisible k-graph on n � n0 with δk−1(H) � (2/3 +8ε)n and observe 

that this immediately implies that δ(3)(H) � 8εn and that δ(2)(H) � (1/3 + 8ε)n. To 
prove the lemma, it is enough to show that H has a C(k)

� -decomposition.

Step 1: Setting the vortex and absorber. By Lemma 4.1, we obtain a (1/3 +7ε, ε, m)-vortex 
U0 ⊇ · · · ⊇ Ut in H, for some m satisfying �εm′
 � m � m′.

Let L be the set of all C(k)
� -divisible subgraphs of H[Ut]. Clearly, |L| � 2(|Ut|

k ) � 2mk . 
Let L ∈ L be arbitrary. Clearly, δ(3)(H−H[U1]) � 7εn. By Lemma 4.3 and the choice of 
constants, we deduce H−H[U1] is (C(k)

� , m, m, η′)-absorbing for some increasing function 
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η′ : N → N which satisfies η′(x) � x. Thus, H − H[U1] contains an C(k)
� -absorber AL

for L, with AL[Ut] = ∅ and |AL| � η′(m). We iterate this argument, finding edge-
disjoint absorbers AL′ ⊆ H − H[U1], one for each L′ ∈ L. This indeed can be done, 
since all the absorbers found so far only span at most k|L|η′(m) � εn edges overall. 
Thus H −H[U1], after removing all edges of the already found absorbers, still satisfies 
δ(3)(H −H[U1]) � 6εn and thus Lemma 4.3 can still be invoked.

Let A =
⋃

L∈L AL ⊆ H − H[U1] be the edge-disjoint union of all absorbers. As 
argued before, A contains at most εn/3 edges in total. By construction, A is C(k)

� -
decomposable, and for each L ∈ L, A ∪L is C(k)

� -decomposable. Let H ′ := H −A. Note 
that δk−1(H ′) � (2/3 + 6ε)n and U0 ⊇ · · · ⊇ Ut is a (1/3 + 5ε, ε, m)-vortex for H ′ (this 
is because we have ensured A ⊆ H − H[U1]). Since H and A are C(k)

� -divisible, H ′ is 
also C(k)

� -divisible.

Step 2: Covering down. Now we want to find a C(k)
� -packing in H ′ which covers all edges 

in H ′ −H[Ut]. For this, we proceed as follows. Let Ut+1 = ∅. For each 0 � i � � we will 
find Hi ⊆ H ′[Ui] such that
(ai) H ′ −Hi has a C(k)

� -decomposition,
(bi) δ(2)(Hi) � (1/3 + 3ε)|Ui|,
(ci) δ(2)(Hi, Ui+1) � (1/3 + 3ε)|Ui+1|, and
(di) Hi[Ui+1] = H ′[Ui+1].

For i = 0 this is done by setting H0 = H ′. Now, suppose that for 0 � i < � we 
have found Hi ⊆ H ′[Ui] satisfying (ai)–(di), we construct Hi+1 ⊆ H ′[Ui+1] satisfy-
ing (ai+1)–(di+1). By (ai), Hi is C(k)

� -divisible. Let H ′
i = Hi − Hi[Ui+2]. By (bi)–(ci) 

and |Ui+2| � ε|Ui+1| � ε2|Ui|, we have
(C1) δ(2)(H ′

i) � (1/3 + 2ε)|Ui|,
(C2) δ(2)(H ′

i, Ui+1) � (1/3 + 2ε)|Ui+1|, and
(C3) degH′

i
(x) is divisible by k for each x ∈ Ui \ Ui+1.

Now we apply Lemma 4.2 with 1/3, �, ε6, |Ui|, H ′
i and Ui+1 playing the rôles of the 

parameters α, �, μ, n, H and U . By doing so, we obtain a C(k)
� -decomposable sub-

graph Fi ⊆ H ′
i such that H ′

i −H ′
i[Ui+1] ⊆ Fi and Δk−1(Fi[Ui+1]) � ε6|Ui|.

We let Hi+1 = H[Ui+1] −Fi, and we now show that it satisfies the required properties. 
Since H ′ − Hi+1 is the edge-disjoint union of H ′ − Hi and Fi and both are C(k)

� -
decomposable, we deduce that (ai+1) holds. Note that we have Δk−1(Fi[Ui+1]) �
ε6|Ui| � ε4|Ui+1| � ε|Ui+1|. From the definition of (1/3 + 5ε, ε, m)-vortex for H ′, we de-
duce that δ(2)(H ′[Ui+1]) � (1/3 + 5ε)|Ui+1| and δ(2)(H ′[Ui+1], Ui+2) � (1/3 + 5ε)|Ui+2|. 
Using this, we are able to deduce that δ(2)(H ′

i+1) � δ(2)(H ′[Ui+1]) − 2Δk−1(Fi[Ui+1]) �
(1/3 +5ε −2ε)|Ui+1| � (1/3 +3ε)|Ui+1|, and similarly we have δ(2)(H ′

i+1, Ui+2) � (1/3 +
3ε)|Ui+2|. This shows that (bi+1) and (ci+1) hold. Finally, since Fi ⊆ H ′

i = Hi−Hi[Ui+2]
we have that Hi+1[Ui+2] = Hi[Ui+2] = H ′[Ui+2], and therefore (di+1) holds.

At the end of this process, we have obtained Ht ⊆ H ′[Ut] such that H ′ − Ht has 
a C(k)

� -decomposition.
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Step 3: Finish. Since H ′ and H ′ −Ht are C(k)
� -divisible, we deduce Ht ⊆ H ′[Ut] is C(k)

� -
divisible. Therefore, Ht ∈ L, and by construction we know that Ht ∪ A has a C(k)

� -
decomposition. Thus H is the edge-disjoint union of Ht ∪ A and H ′ − Ht and both of 
them have C(k)

� -decompositions, so we deduce H has a C(k)
� -decomposition as well. �

5. Vortex lemma

We prove Lemma 4.1 by selecting subsets at random (cf. [2, Lemma 3.7]).

Proof. Let n0 = n and ni = �ξni−1
 for all i � 1. In particular, note ni � ξin. Let t be 
the largest i such that ni � m′ and let m = nt+1. Note that �ξm′
 � m � m′.

Let ξ0 = 0 and, for all i � 1, define ξi = ξi−1 + 2(ξin)−1/3. Thus we have

ξt+1 = 2n−1/3
∑
i∈[t]

(ξ−1/3)i � 2n−1/3
∑
i∈N

(ξ−1/3)i � 2(nξ)−1/3

1 − ξ−1/3 � ξ,

where in the last inequality we used 1/n � 1/m′ 	 ξ.
Clearly, taking U0 = V (H) is a (δ − ξ0, ξ, n0)-vortex in H. Suppose now we have 

already found a (δ − ξi−1, ξ, ni−1)-vortex U0 ⊇ · · · ⊇ Ui−1 in H for some i � t + 1. 
In particular, δ(2)(H[Ui−1]) � (δ − ξi−1)|Ui−1|. Let Ui ⊆ Ui−1 be a random subset 
of size ni. By standard concentration inequalities, with positive probability we have 
δ(2)(H[Ui]) � (δ− ξi−1−n

−1/3
i )|Ui| and δ(2)(H[Ui−1], Ui) � (δ− ξi−1−n

−1/3
i )|Ui|. Since 

ξi−1 +n
−1/3
i � ξi, we have found a (δ− ξi, ξ, ni)-vortex for H. In the end, we have found 

a (δ − ξt+1, ξ, nt+1)-vortex for H. Since m = nt+1 and ξt+1 � ξ, we are done. �
6. Transformers I: gadgets

In this and the next two sections we prove Lemma 4.3, the Absorber lemma. Following 
Lemma 3.3, it is enough to find transformers instead of absorbers. In this part, we 
introduce gadgets, which will be building blocks of our transformers.

A k-uniform trail is a sequence of (possibly repeated) vertices such that any k con-
secutive vertices form an edge, and no edge appears more than once. A k-uniform tour
is a k-uniform trail v1 · · · vt such that vi = vt−k+1+i for i ∈ [k − 1]. Let H be a k-graph. 
A tour-trail decomposition T of H is an edge-decomposition of H into tours and trails. 
Note that every k-graph has a tour-trail decomposition, namely, considering each edge 
of H as a trail (by giving to it an arbitrary ordering). A tour decomposition is a tour-trail 
decomposition consisting only of tours. When it comes to the construction of absorbers, 
it is of great help to work with remainder subgraphs which admit tour decompositions. 
Indeed, it is straightforward to find edge-bijective homomorphisms between tours and 
cycles.

To construct absorbers, we will prove that actually any C(k)
� -divisible k-graph can be 

augmented to a new, not-so-large, subgraph which does have such a tour decomposition. 
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This will be done in Section 7, see Lemma 7.1. In this section, we will describe certain 
small subgraphs which we will call gadgets. The augmented subgraph which we mentioned 
will be built as an edge-disjoint union of gadgets.

6.1. Residual graphs

Consider k ∈ N to be fixed. Now we introduce the terminology we need to describe 
the gadgets. Let P = v1v2 · · · vt be a trail. We define the ends of P to be the ordered 
(k − 1)-tuples vk−1vk−2 · · · v1 and vt−k+2vt−k+3 · · · vt. We denote by D(P ) the multiset 
of ends of P , (possibly counted with repetitions if both ends are the same). Let T be a 
tour-trail decomposition on vertex set V . We define the residual di-(k − 1)-graph D(T )
of T to be the multiset 

⋃
P D(P ), where the union is taken over all trails P in T . Thus 

D(T ) consists of ordered (k−1)-tuples of vertices in V , possibly counted with repetitions.
For i ∈ [k− 1] and a vertex v ∈ V , let pT ,i(v) be the number of ordered (k− 1)-tuples 

in D(T ) with v being the ith vertex. We say that T is balanced if, for all v ∈ V and 
i ∈ [k − 1],

pT ,i(v) = pT ,k−i(v). (6.1)

We omit T from the subscript if it is known from the context.
Observe that if v1 · · · vk−1, vk−1 · · · v1 ∈ D(T ), then there are trails Pi, Pj ∈ T that 

can be merged into a trail (if i 
= j) or tour (if i = j) with edge set E(Pi∪Pj). Thus there 
is another tour-trail decomposition with fewer trails than T , which is obtained from T
by removing Pi, Pj and adding the tour or trail born from joining Pi and Pj . We will 
abuse the notation by calling the resulting tour-trail decomposition by T . This merging 
procedure will be indicated by

D(T ) = D(T ) \ {v1 . . . vk−1, vk−1 . . . v1}.

Tours in T do not contribute to D(T ). Hence T is a tour decomposition if and only if 
D(T ) = ∅ (after merging procedures). Recall that our goal in Lemma 7.1 is to augment a 
C(k)

� -divisible k-graph to a k-graph which has a tour decomposition. Hence, conceptually, 
it may be helpful to assume that all tour-trail decompositions consist of only trails, as 
tours will not appear in D(T ).

Given a vertex x ∈ V and a k-tuple y=y1 · · · yk, for every i ∈ [k] we define

ri(y, x) = y1 · · · yi−1xyi+1 · · · yk , and si(y) = {y1 · · · yi−1yi+1 · · · yk} .

In words, ri(y, x) replaces the ith vertex in y with the vertex x, whilst si simply skips 
the ith vertex of y. Moreover, we define the reverse of y as y−1 = yk · · · y1. Finally, given 
a permutation σ of [k] we write σ(y) for the tuple yσ(1) · · · yσ(k).

Given vertices x, x′ ∈ V and (k − 1)-tuples z = z1 · · · zk−1 and z′ = z′1 · · · z′k−1, we 
define the following sets of (k − 1)-tuples:
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⇀

S
(k−1)
i (z, x, x′) = {z1 . . . zi−1xzi+1 . . . zk−1, zk−1 . . . zi+1x

′zi−1 . . . z1}
= {ri(z, x), (ri(z, x′))−1} and

⇀

T
(k−1)
i (z, z′, x, x′) =

⇀

S
(k−1)
i (z, x, x′) ∪

⇀

S
(k−1)
i (z′, x′, x)

= {ri(z, x), ri(z′, x′), (ri(z, x′))−1, (ri(z′, x))−1}.

For a k-tuple y (instead of a (k − 1)-tuple), it will be convenient to consider the 
set

⇀

S(k−1)
i (y, x, x′) with the same definition but omitting the last element of the tu-

ple yk. More precisely, given a k-tuple y we define

⇀

S
(k−1)
i (y, x, x′) =

⇀

S
(k−1)
i (sk(y), x, x′) = {ri(sk(y), x), ri(sk(y), x′)−1}.

An analogous definition holds for
⇀

T
(k−1)
i (y, y′, x, x′), where y and y′ are k-tuples. Since k

will be always clear from the context, we will omit it in the notation.
The two types of C(k)

� -decomposable k-graphs to be constructed will be Bj(x, x′) in 
Corollary 6.3 (which we call ‘balancer gadgets’) and Tj(y, y′, x, x′) in Lemma 6.6 (which 
we call ‘swapper gadgets’). This last swapper gadget has a tour-trail decomposition whose 
residual digraph is exactly

⇀

Tj(y, y′, x, x′). Essentially, the main properties of the gadgets 
are:
• The rôle of balancer gadgets Bj(x, x′) is to enable us to adjust pj(x) − pk−1−j(x)

without affecting other vertices in V (H) \ {x, x′}. Hence, by adding edge-disjoint 
copies of balancer gadgets, the resulting tour-trail decomposition T will be balanced 
(see Lemma 7.3).

• Suppose now T is balanced. Consider x ∈ V (H) and 1 � j � k/2, we can now pair 
the members of D(T ) containing x into pairs (y, y′) such that x is the jth vertex 
in y and (k − 1 − j)th vertex in y′. This is possible, as T is balanced. The swapper 
gadget Tj(y, y′, x, x′) will enable us to ‘replace’ x with a new vertex x′ in both y and 
y′. By repeated applications of this gadget, this will allow us to convert T into a tour 
decomposition (see Lemmata 7.6 and 7.10).

6.2. Basic gadgets

Our gadgets will be composed of union of edge-disjoint tight cycles C(k)
� , so they are 

C(k)
� -decomposable. In order to show that there exists a tour-trail decomposition T with 

the desired D(T ), we adopt the following convention. Given a tight cycle C = v1 · · · v�, 
we first consider a trail decomposition of C consisting of two trails C − v1 · · · vk =
v2 · · · v�v1 · · · vk−1 and v1 · · · vk. Note that the latter is a single edge. Then we pick a 
permutation σ of [k] and replace v1 · · · vk with vσ(1) · · · vσ(k). Let T be the resulting trail 
decomposition of C, so

T =
{

v2 · · · v�v1 · · · vk−1,

vσ(1) · · · vσ(k)

}
and D(T ) =

{
vk · · · v2, v1 · · · vk−1

vσ(k−1) · · · vσ(1), vσ(2) · · · vσ(k)

}
.
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Since a gadget is a union of edge-disjoint tight cycles C1, . . . , Cs, its tour-trail decompo-
sition T will be first given by T1∪· · ·∪Ts, where each Ti is a trail decomposition of Ci in 
the form above. For ease of checking, we often write D(T ) = D(T1) ∪ · · · ∪D(Ts) before 
merging some of the trails in T , that is, deleting pairs in D(T ) of form {y, y−1}.

The next lemma finds many trails of prescribed length which connect any given pair 
of ordered (k − 1)-tuples. It follows from [11, Lemma 2.3]. In particular, it shows that 
every edge is in a tight cycle.

Lemma 6.1. Let 1/n 	 ρ 	 ε 	 1/�, 1/k with k � 3 and � � k2 − k. Let H be a k-graph 
on n vertices with δ(2)(H) � εn. Then, for every two (k − 1)-tuples x = v1 · · · vk−1
and y = v�+1 · · · v�+k−1, H contains at least ρn�−k+1 trails v1 · · · v�+k−1 from x to y
on � edges, each of them with no repeated vertices, except possibly those already repeated 
in x and y. In particular, if x, y are disjoint, then each of these trails is a tight path of 
length �.

We now construct a C(k)
� -decomposable k-graph, which will be a basic building block 

of all of the next gadgets.

Lemma 6.2. Let 1/n 	 ε 	 1/�, 1/k with k � 3 and � � k2 − k + 1. Let H be a k-graph 
on n vertices with δ(2)(H) � εn. Let j ∈ [k−1]. Let x, x′ ∈ V (H) be distinct vertices and 
y be a k-tuple of V (H) such that Y = {yi : i ∈ [k] \ {j}} ∈ NH(x) ∩NH(x′). Then there 
exists a C(k)

� -decomposable k-graph G = Gj(y, x, x′) in H with |G| = 2� and a tour-trail 
decomposition Tj of G satisfying

D(Tj) =
⇀

Sj(y, x, x′) ∪
⇀

S1(σ1(y), x′, x) ∪
⇀

Sj−1(σ2(y), x, x′),

where σ1 = j12 · · · (j − 1)(j + 1) · · · k and σ2 = 2 · · · k1. Moreover, G[{x, x′} ∪ Y }] =
{x ∪ Y, x′ ∪ Y }.

Proof. Orient Y ∪ x and Y ∪ x′ into yk · · · yj+1xyj−1 · · · y1 and x′y1 · · · yj−1yj+1 · · · yk. 
By Lemma 6.1, there exist two tight cycles of length �,

C1 = yk · · · yj+1xyj−1 · · · y1vk+1 · · · v�,
C2 = x′y1 · · · yj−1yj+1 · · · ykuk+1 · · ·u�,

where vi and ui for k + 1 � i � � are new distinct vertices. Let G = C1 ∪C2. Define the 
tour-trail decomposition T of C1 ∪ C2 to be

Tj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xy1 . . . yj−1yj+1 . . . yk,

yk−1 . . . yj+1xyj−1 . . . y1vk+1 . . . v�yk . . . yj+1xyj−1 . . . y2,

yk . . . yj+1x
′yj−1 . . . y1,

y1 . . . yj−1yj+1 . . . ykuk+1 . . . u�x
′y1 . . . yj−1yj+1 . . . yk−1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.
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Fig. 1. The tour-trail decomposition Tj of the basic gadget G = Gj(y, x, x′) and its residual di-(k − 1)-
graph D(Tj). Dotted lines represent tight paths using new vertices.

In words, as explained before, the first trail in Tj consists of a single edge of C1 in a 
different order to how it appears in C1, and the second trail corresponds to C1 without 
the previous edge; similar with C2 and the third and fourth trails in Tj. Hence, D(Tj)
consists of

D(Tj) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yk−1 . . . yj+1yj−1 . . . y1x, y1 . . . yj−1yj+1 . . . yk,

y1 . . . yj−1xyj+1 . . . yk−1, yk . . . yj+1xyj−1 . . . y2,

y2 . . . yj−1x
′yj+1 . . . yk, yk−1 . . . yj+1x

′yj−1 . . . y1,

yk . . . yj+1yj−1 . . . y1, x′y1 . . . yj−1yj+1 . . . yk−1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=
⇀

Sj(y, x, x′) ∪
⇀

S1(σ1(y), x′, x) ∪
⇀

Sj−1(σ2(y), x, x′),

where σ1 = j1 · · · (j − 1)(j + 1) · · · k and σ2 = 2 · · · k1. See Fig. 1. �
In the following subsections we introduce further gadgets based on Gj(y, x, x′). For 

those, diagrams similar to the one in Fig. 1 would get more convoluted. Thus, we refrain 
from presenting such diagrams and check the main properties of the gadgets based solely 
on text and on a explicit list of elements in the residual di-(k − 1)-graphs D(T ) of the 
respective tour-trail decompositions T .

6.3. Balancer gadgets

Next, we will use Lemma 6.2 to construct a balancer gadget Bj = Bj(x, x′). As 
mentioned before, the main property of Bj(x, x′) is to enable us to increase pT ,i(x) −
pT ,k−1−i(x) (and decrease pT ,1(x) − pT ,k−1(x)) without affecting other vertices in V \
{x, x′}.
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Corollary 6.3 (Balancer gadgets). Let 1/n 	 ε 	 1/�, 1/k with k � 3 and � � k2−k+1. 
Let H be a k-graph on n vertices with δ(2)(H) � εn. Let j ∈ [k − 1] \ {1} and let x, x′ ∈
V (H) be distinct. Then there exists a C(k)

� -decomposable k-graph Bj = Bj(x, x′) with 
|Bj | = 2(j − 1)� and a tour-trail decomposition T ′

j of Bj such that for all i ∈ [k − 1], 
pT ′

j ,i
(v) − pT ′

j ,k−i(v) = 0 for all v ∈ V (H) \ {x, x′} and

pT ′
j ,i

(x) − pT ′
j ,k−i(x) = pT ′

j ,k−i(x′) − pT ′
j ,i

(x′) = 1i=j − 1i=k−j − j(1i=1 − 1i=k−1).

Moreover, when k is even and j = k/2, pT ′
k/2,k/2(v) ≡ 1v∈{x,x′} mod 2.

Proof. We will proceed by induction on j. Let y be a k-tuple such that Y = {yi : i ∈
[k] \ {j}} ∈ N(x) ∩ N(x′). By Lemma 6.2, there is a C(k)

� -decomposable k-graph Gj =
Gj(y, x, x′) such that

(i) Gj [{x, x′} ∪ Y ] = {x ∪ Y, x′ ∪ Y },
(ii) |Gj | = 2�, and
(iii) there exists a tour-trail decomposition Tj of Gj such that

D(Tj) =
⇀

Sj(y, x, x′) ∪
⇀

S1(σ1(y), x′, x) ∪
⇀

Sj−1(σ2(y), x, x′),

where σ1 = j12 · · · (j − 1)(j + 1) · · · k and σ2 = 2 · · · k1.
Note that, for all i ∈ [k− 1] and v ∈ V (H) \ {x, x′}, we have pTj ,i(v) − pTj ,k−i(v) = 0 as 
each of 

⇀

Sj(y, x, x′), 
⇀

S1(σ1(y), x′, x) and 
⇀

Sj(σ2(y), x, x′) contributes zero. Moreover,

pTj ,i(x) − pTj ,k−i(x) = pTj ,k−i(x′) − pTj ,i(x′)

= (1i=j − 1i=k−j) − (1i=1 − 1i=k−1) − (1i=j−1 − 1i=k−j+1) .
(6.2)

For j = 2, we set B2 = G2 and we are done. For j > 2, there exists Bj−1(x, x′) edge-
disjoint from Gj , by our induction hypothesis. Let T ′

j−1 be the corresponding tour-trail 
decomposition. Set Bj = Gj ∪ Bj−1(x, x′). Clearly |Bj | = |Gj | + |Bj−1| = 2(j − 1)�. 
Note that Bj is C(k)

� -decomposable and has a tour-trail decomposition T ′
j = Tj ∪ T ′

j−1. 
Together with (6.2), we deduce that T ′

j satisfies the desired properties. The moreover 
statement can be verified similarly. �
6.4. Swapper gadgets

The construction of swapper gadgets requires more steps. We start with the following 
proposition.

Proposition 6.4. Let 1/n 	 ε 	 1/�, 1/k with k � 3 and � � k2 − k + 1. Let H be 
a k-graph on n vertices with δ(3)(H) � εn. Let x, x′ ∈ V (H) be distinct vertices and y
be a (k − 1)-tuple of V (H) such that {x, x′} ∪ {yi : 2 � i � k − 1} is of size k. Then, 
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there exists a vertex yk ∈ V (H), a C(k)
� -decomposable k-graph F1 = F1(y, x, x′) in H

with |F1| = 3� and a tour-trail decomposition T1 such that

D(T1) =
{⇀

S1(y, x, x′) ∪ {xx′, xx′} if k = 3,
⇀

S1(y, x, x′) ∪ {xx′yk . . . y4, y4 . . . ykxx
′} if k � 4.

Moreover, F1[{x, x′, y2, . . . , yk−1}] = ∅, that is, xx′y2 · · · yk−1 is not an edge of F1.

Proof. Let yk ∈ N(xy2 · · · yk−1) ∩N(x′y2 · · · yk−1) ∩N(xx′y3 · · · yk−1), which exists by 
our assumption (here for k = 3 we consider y3 · · · y2 to be empty). By Lemma 6.1, there 
exist three tight cycles of length �

C1 = y2 · · · ykx′uk+1 · · ·u�,

C2 = xy2 · · · ykvk+1 · · · v�, and

C3 = y3 · · · ykx′xwk+1 · · ·w�,

where ui, vi, wi are all distinct new vertices. Let T1 = C1 ∪ C2 ∪ C3. Consider the trail 
decomposition T1 of T1 such that

T1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y3 · · · ykx′uk+1 · · ·u�y2 · · · yk,
x′y2 · · · yk,

y2 · · · ykvk+1 · · · v�xy2 · · · yk−1,

y2 · · · ykx,
y4 · · · ykx′xwk+1 · · ·w�y3 · · · ykx′,

y3 · · · ykxx′

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

and so

D(T1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x′yk · · · y3, y2 · · · yk,
yk−1 · · · y2x

′, y2 · · · yk,
yk · · · y2 xy2 · · · yk−1,

yk · · · y2, y3 · · · ykx,
xx′yk · · · y4, y3 · · · ykx′,

xyk · · · y3, y4 · · · ykxx′

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

as required. �
We construct a swapper gadget of the form T1(y, y′, x, x′) in the next proposition.

Proposition 6.5 (Swapper gadget – case j = 1). Let 1/n 	 ε 	 1/�, 1/k such that k � 3
and � � k2−k+1. Let H be a k-graph on n vertices with δ(3)(H) � εn. Consider vertices 
x, x′ ∈ V (H) and (k−1)-tuples y, y′ of V (H) such that both {x, x′} ∪{yi : 2 � i � k−1}



76 A. Lo et al. / Journal of Combinatorial Theory, Series B 167 (2024) 55–103
and {x, x′} ∪ {y′i : 2 � i � k − 1} are of size k. Then there exists a C(k)
� -decomposable 

k-graph T1 = T1(y, y′, x, x′) in H and a tour-trail decomposition T1 of T1 such that
(i) T1[{x, x′} ∪ {y1, . . . yk−1} ∪ {y′1, . . . , y′k−1}] = ∅ and |T1| = 2�k and
(ii) D(T1) =

⇀

T1(y, y′, x, x′).

Proof. We apply Proposition 6.4 twice, the first time for x, x′ and y as input and the 
second time with x′, x and y′ as input (we exchange the rôles of x and x′). This yields 
distinct vertices yk, y′k ∈ V (H) and two C(k)

� -decomposable k-graphs F = F1(y, x, x′)
and F ′ = F1(y′, x′, x) such that
(a1) V (F ) ∩ V (F ′) ⊆ {x, x′} ∪ {yi, y′i : i ∈ [k − 1]} and |F | = |F ′| = 3� and
(a2) there exists a tour-trail decomposition T of F ∪ F ′ such that

D(T ) = T1(y,y′, x′, x) ∪ {xx′yk · · · y4, y4 · · · ykxx′, x′xy′k · · · y′4, y′4 · · · y′kx′x},

where, for k = 3, we interpret the strings yk · · · y4 and y′k · · · y′4 to be empty.
If k = 3, then D(T ) = T1(y, y′, x′, x) ∪ {x′x, x′x, xx′, xx′} = T1(y, y′, x′, x), thus we are 
done. So we may assume that k � 4. Note that if we had yi = y′i for all i ∈ {4, . . . , k}, 
then D(T ) is as desired. Thus, our aim is to ‘replace’ yi, y′i with a new vertex zi, for each 
i = {4, . . . , k}. We do this in turns, as follows. For each i ∈ {4, . . . , k}, let

zi ∈ N(xx′z4 · · · zi−1yi · · · yk) ∩N(xx′z4 · · · zi−1y
′
i · · · y′k)

be a new vertex (here we consider z4 · · · z3 to be empty). Consider the two ordered 
edges zi · · · z4xx

′yk · · · yi and zi . . . z4x
′xy′k · · · y′i and apply Lemma 6.1 to obtain two 

tight cycles of length �,

Ci = zi · · · z4xx
′yk · · · yivik+1 · · · vi� and Di = zi · · · z4x

′xy′k · · · y′iwi
k+1 · · ·wi

�,

such that vij , wi
j are new vertices. Define a tour-trail decomposition T i of Ci ∪Di such 

that

T i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zi−1 · · · z4xx
′yk · · · yivik+1 · · · vi�zi · · · z4xx

′yk · · · yi+1,

zi · · · z4x
′xyk · · · yi,

zi−1 · · · z4x
′xy′k · · · y′iwi

k+1 · · ·wi
�zi · · · z4x

′xy′k · · · y′i+1
zi · · · z4xx

′y′k · · · y′i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Note that

D(T i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yi · · · ykx′xz4 · · · zi−1, zi . . . z4xx
′yk · · · yi+1,

yi+1 · · · ykxx′z4 · · · zi, zi−1 · · · z4x
′xyk · · · yi,

y′i · · · y′kxx′z4 · · · zi−1, zi · · · z4x
′xy′k · · · y′i+1,

y′ · · · y′ x′xz · · · z , z · · · z xx′y′ · · · y′

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
i+1 k 4 i i−1 4 k i
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=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yi · · · ykx′xz4 · · · zi−1,

y′i · · · y′kxx′z4 · · · zi−1,

zi−1 · · · z4x
′xyk · · · yi,

zi−1 · · · z4xx
′y′k · · · y′i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∪

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zi · · · z4xx
′yk · · · yi+1,

zi · · · z4x
′xy′k · · · y′i+1

yi+1 · · · ykxx′z4 · · · zi,
y′i+1 · · · y′kx′xz4 · · · zi

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

When i = k, then the second set can be simplified to an empty set. Note that 
D(T 4), · · · , D(T k) forms a ‘telescoping’ set of residual di-(k − 1)-graphs, so we deduce 
that

D

⎛
⎝ ⋃

4�i�k

T i

⎞
⎠ = {xx′y′k · · · y′4, y′4 · · · y′kxx′, x′xyk · · · y4, y4 · · · ykx′x}.

We are done by setting T1 = F ∪ F ′ ∪
⋃

4�i�k(Ci ∪Di) and T1 = T ∪
⋃

4�i�k T i. �
We can now describe the general version of the swapper gadget Tj, for all j ∈ [k− 1].

Lemma 6.6 (Swapper gadget – general case). Let 1/n 	 ε 	 1/�, 1/k such that k � 3
and � � k2 − k + 1. Let H be a k-graph on n vertices with δ(3)(H) � εn. Let j ∈
[k − 1] and consider distinct vertices x, x′ ∈ V (H) and (k − 1)-tuples y, y′ of V (H)
such that both {x, x′} ∪ {yi : i ∈ [k − 1] \ {j}} and {x, x′} ∪ {y′i : i ∈ [k − 1] \ {j}}
are of size k. Then there exists a C(k)

� -decomposable k-graph Tj = Tj(y, y′, x, x′) and a 
tour-trail decomposition Tj of Tj such that

(i) Tj [{x, x′} ∪ {y1, . . . yk−1} ∪ {y′1, . . . , y′k−1}] = ∅ and |Tj | � 3j�k and
(ii) D(Tj) =

⇀

Tj(y, y′, x, x′).

Proof. We proceed by induction on j. Note that Proposition 6.5 implies the case when 
j = 1, so we may assume that j � 2. Let

yk ∈ N(xy1 . . . yj−1yj+1 . . . yk−1) ∩N(x′y1 . . . yj−1yj+1 . . . yk−1)

be a new vertex. By Lemma 6.2, there exists a C(k)
� -decomposable k-graph Gj =

Gj(y, x, x′) with |Gj | = 2� and a tour-trail decomposition Gj of Gj satisfying

D(Gj) =
⇀

Sj(y, x, x′) ∪
⇀

S1(σ1(y), x′, x) ∪
⇀

Sj−1(σ2(y), x, x′),

where σ1 = j12 . . . (j − 1)(j + 1) . . . k and σ2 = 2 . . . k1. Analogously, there is a C(k)
� -

decomposable k-graph G′
j = G′

j(y′, x′, x) with |G′
j | = 2� and a tour-trail decomposi-

tion G′
j of Gj satisfying

D(G′
j) =

⇀

Sj(y′, x′, x) ∪
⇀

S1(σ1(y′), x, x′) ∪
⇀

Sj−1(σ2(y′), x′, x).

Note that
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|Gj ∪G′
j | = 4� (6.3)

and

D(Gj) ∪D(G′
j) =

⇀

Tj(y,y′, x, x′) ∪
⇀

T1(σ1(y), σ1(y′), x′, x) ∪
⇀

Tj−1(σ2(y), σ2(y′), x, x′).
(6.4)

Due to the induction hypothesis, there are C(k)
� -decomposable k-graphs

T1 = T1(σ1(y), σ1(y′), x, x′) and Tj−1 = Tj−1(σ2(y), σ2(y′), x′, x)

and a tour-trail decomposition T ∗
j of T1 ∪ Tj−1 such that their union T ∗

j = T1 ∪ Tj−1
satisfies

(i′) T ∗
j [{x, x′} ∪ {y1, . . . , yk−1} ∪ {y1, . . . , yk−1}] = ∅ and |T ∗

j | � 2 · 3j−1�k,
(ii′) D(T ∗

j ) =
⇀

T1(σ1(y), σ1(y′), x, x′) ∪
⇀

Tj−1(σ2(y), σ2(y′), x′, x).
We set Tj = Gj ∪G′

j ∪ T ∗
j and Tj = Gj ∪ G′

j ∪ T ∗
j . By (6.3) and (i′), we deduce that

|Tj | � 4� + 2 · 3j−1�k � 3j�k.

Moreover (6.4) and (ii′) imply that D(Tj) =
⇀

Tj(y, y′, x, x′) as required. �
7. Transformers II: tour-trail decompositions

Here, we use the gadgets constructed in the previous section to prove that any C(k)
� -

divisible k-graph can be augmented to a new, not-too-large, subgraph which has a tour 
decomposition. That is the content of the next crucial lemma, whose proof will be given 
at the end of this section. Note that we only require degG(v) is divisible by k for all 
vertices v ∈ V (G) instead of C(k)

� -divisible.

Lemma 7.1. Let 1/n 	 ε 	 ρ, 1/�, 1/k with k � 3 and � � k2 − k + 1. Let H be 
a k-graph on n vertices with δ(3)(H) � εn. Let G be a k-graph with V (G) ⊆ V (H)
and m = |V (G)| � εn1/k(k+1) such that degG(v) is divisible by k for all v ∈ V (G). Then 
H−G contains a C(k)

� -decomposable subgraph J such that G ∪J has a tour decomposition, 
J [V (G)] = ∅ and |G ∪ J | � 3k+2k4�2mk+1.

Moreover, if G′ has an edge-bijective homomorphism to G with V (G′) ⊆ V (H) \V (G), 
then we have H − G − G′ contains a subgraph J ′ such that G′ ∪ J ′ is edge-bijective 
homomorphic to G ∪ J and J ′[V (G′)] = ∅.

As described before, the lemma will be proven by starting with any tour-trail decom-
position of G, and adding gadgets to it repeatedly. We will first use balancer gadgets to 
make sure we have a balanced tour-trail decomposition, and then we will use swapper 
gadgets to eliminate any remaining trails one by one.
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7.1. Basic properties

We begin by stating basic properties of any tour-trail decomposition T . Recall that 
pT ,i(v) is the number of (directed) edges of T where v is the ith vertex and that the 
definition of balanced tour-trail decomposition is given in (6.1).

Proposition 7.2. Let H be a k-graph such that deg(v) is divisible by k for every vertex v ∈
V (H). Let T be a tour-trail decomposition of H. Then, for each v ∈ V (H),

∑
i∈[k−1]

ipT ,i(v) ≡ 0 mod k.

Moreover, if k is even and T is balanced, then pT ,k/2(v) is even for all v ∈ V (H).

Proof. Note that only trails in T contribute to 
∑

i∈[k−1] ipT ,i(x). Moreover, for any 
tour C, we have degC(v) ≡ 0 mod k for all v ∈ V (H). Hence by deleting all tours in T
and their corresponding edges in H, we may assume that T consists of trails only.

Fix v ∈ V (H). Let T = v1 · · · vt be a trail in T and consider I ⊆ [t] such that vi = v

for each i ∈ I. Let

φT (v) =
∑

i∈[t−k+1]

(
1v=vi + 1v=vi+1 + · · · + 1v=vi+k−1

)
.

Observe that every time the trail ‘passes through v’ it increases φT (v) by k except if it 
is at the beginning or the end of T . More precisely, it is not hard to check that

φT (v) = k|I ∩ [k, t− k]| +
∑

i∈[k−1]∪[t−k+1,t]

(
1v=vi + · · · + 1v=vi+k−1

)

≡
∑

i∈[k−1]

ipi,T (v) mod k.

On the other hand, it is easy to see that φT (v) =
∑

e∈T 1v∈e. Thus, summing over all 
trails in T , we get

0 ≡ degH(v) =
∑
T∈T

φT (v) ≡
∑

i∈[k−1]

ipi,T (v) mod k.

Furthermore, suppose that k is even and T is balanced, then

∑
i∈[k−1]

ipT ,i(v) =
∑

i∈[k/2−1]

kpT ,i(v) + (k/2)pT ,k/2(v) .

Since this is equivalent to 0 mod k, we get that pT ,k/2(v) is even. �
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7.2. Balancing

Recall that any k-graph admits a trail decomposition, by orienting edges arbitrarily. 
We begin by using balancer gadgets (as given by Corollary 6.3) repeatedly to obtain a 
balanced tour-trail decomposition of G.

Lemma 7.3. Let 1/n 	 ε 	 ρ, 1/�, 1/k with k � 3 and � � k2 − k + 1. Let H be 
a k-graph on n vertices and δ(3)(H) � εn. Let G be a k-graph with V (G) ⊆ V (H), 
m = |V (G)| � εn1/k2 and such that degG(v) is divisible by k for all v ∈ V (G). 
Then H − G contains a C(k)

� -decomposable J such that G ∪ J has a balanced tour-trail 
decomposition T ∗, J [V (G)] = ∅ and |G ∪ J | � �mk+1.

Proof. Let T0 be an arbitrary tour-trail decomposition of G. The following claim forms 
the basis of our proof and allows us to adjust the values of pT0,k/2(v).

Claim 7.4. Suppose k is even. Then H −G contains a C(k)
� -divisible subgraph Jk/2

with |Jk/2| � k�m/2 and Jk/2[V (G)] = ∅ such that there exists a tour-trail decompo-
sition Tk/2 of Jk/2 satisfying, for all v ∈ V (H),

pTk/2,k/2(v) ≡ 1pT0,k/2(v) is odd mod 2,

|pTk/2,1(v) − pTk/2,k−1(v)| = (k/2)1pT0,k/2(v) is odd,

pTk/2,i(v) − pTk/2,k−i(v) = 0 if i ∈ [2, k − 2].

Proof of claim. Note that 
∑

v∈V (H) pT0,k/2(v) = |D(T0)| is twice the number of trails 
in T0. Thus, there is an even number of vertices v such that pT0,k/2(v) is odd. Sup-
pose that v1, . . . , v2s ∈ V (H) are precisely those vertices, so pT0,k/2(vj) is odd for 
each j ∈ [2s]. For each j ∈ [s], we apply Corollary 6.3 and obtain edge-disjoint balancer 
gadgets Bk/2(v2j−1, v2j) in H − G. Let Jk/2 be the union of these balancer gadgets. 
Clearly, |Jk/2| � sk�/2 � k�m/2. Let Tk/2 be the tour-trail decomposition of Jk/2, which 
is the union of the corresponding tour-trail decompositions of each Bk/2(v2j−1, v2j). For 
all v ∈ V (H), we have pTk/2,k/2(v) ≡ 1 mod 2 if and only if v ∈ {v1, . . . , v2s}, which 
proves the first required property. We can deduce the other two properties using the 
properties of the corresponding tour-trail decomposition of each Bk/2(v2j−1, v2j). This 
proves the claim. �

If k is even, then let Jk/2 be given by Claim 7.4, otherwise just set Jk/2 = ∅. The 
next claim allows us to adjust the values of pT0,i(v) for 2 � i < k/2.

Claim 7.5. For each 2 � i < k/2, H − G − Jk/2 contains a C(k)
� -divisible subgraph Ji

such that there exists a tour-trail decomposition Ti of Ji satisfying, for all v ∈ V (H) and 
i′ ∈ [k − 1],
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pTi,i′(v) − pTi,k−i′(v) =

⎧⎪⎪⎨
⎪⎪⎩
pT0,k−i′(v) − pT0,i′(v) if i′ ∈ {i, k − i},
−i(pT0,k−i′(v) − pT0,i′(v)) if i′ ∈ {1, k − 1},
0 otherwise.

Moreover, |Ji| � 4i�
(
m
k

)
, Ji[V (G)] = ∅ and the Ji’s are edge-disjoint.

Proof of claim. Let 2 � i < k/2. Suppose that we have already constructed subgraphs 
J2, . . . , Ji−1. We now construct Ji as follows. Let H ′ = H −G − Jk/2 −

⋃
i′∈[2,i−1] Ji′ .

For all i′ ∈ [k− 1], note that 
∑

v∈V (H) pT0,i′(v) = |D(T0)| and so if we define wi(v) :=
pT0,i(v) − pT0,k−i(v) then

∑
v∈V (H)

wi(v) = 0. (7.1)

Define a (2-uniform) multidigraph Hi on V (H) such that, for all v ∈ V (H),

d−Hi
(v) = max{wi(v), 0} and d+

Hi
(v) = max{−wi(v), 0} . (7.2)

Note that Hi can be constructed greedily.1 Note that |Hi| = |D(T0)| is twice the number 
of trails in T0, so |Hi| � 2

(
m
k

)
. For each directed edge xy ∈ Hi, we apply Corollary 6.3 and 

obtain edge-disjoint balancer gadgets Bi(x, y) in H ′. Let Ji be the union of these balancer 
gadgets. Clearly, |Ji| � 2i�|Hi| � 4i�

(
m
k

)
. Let Ti be the tour-trail decomposition of Ji, 

which is the union of the corresponding tour-trail decompositions of each Bi(x, y). It is 
straightforward to check that Ti has the desired properties, which proves the claim. �

For each 2 � i < k/2, let Ji be given by Claim 7.5. Together with Jk/2, we have then 
edge-disjoint J2, . . . , J�k/2� for any k. Let H∗ = H − G −

⋃
2�i��k/2� Ji and set T ′ =

T0 ∪
⋃

2�i��k/2� Ti. Recall that 
∑

i∈[k−1] pT0,i(v) is the number of (k−1)-tuples in D(T0)
containing v, so 

∑
i∈[k−1] pT0,i(v) � 2

(
m
k

)
. For i ∈ {2, . . . , k− 2} and v ∈ V (H), we have

pT ′,i(v) = pT ′,k−i(v), (7.3)

pT ′,k/2(v) ≡ 0 mod 2 if k is even, and (7.4)

|pT ′,1(v) − pT ′,k−1(v)| �
∑

i∈[k−1]

ipT0,i(v) � 2(k − 1)
(
m

k

)
. (7.5)

Moreover, pT ′,1(v) = pT ′,k−1(v) for all v ∈ V (H) \ V (G).
We now balance pT ′,1(v) and pT ′,k−1(v) as follows. Note that �k/2� − 1 is the largest 

integer which is strictly less than k/2. We have

1 Indeed, let V + = {v ∈ V (H) : w(v) > 0} and V − = {v ∈ V (H) : w(v) < 0}. Note that (7.1) implies 
that ∑v∈V + w(v) = − ∑v∈V − w(v). Thus Hi can be obtained by adding appropriate edges from V + to V −.
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pT ′,1(v) − pT ′,k−1(v)
(7.3)= pT ′,1(v) − pT ′,k−1(v) +

∑
2�i�
k/2�−1

i (pT ′,i(v) − pT ′,k−i(v))

(7.4)
≡

∑
1�i�k−1

ipT ′,i(v)
Prop. 7.2≡ 0 (mod k).

For each v ∈ V (G), let

b(v) = (pT ′,1(v) − pT ′,k−1(v))/k,

so b(v) ∈ Z. Define (greedily) a multi-digraph H1 on V (H) such that, for all v ∈ V (H),

d−H1
(v) = max{b(v), 0} and d+

H1
(v) = max{−b(v), 0}.

By (7.5), Δ±(H1) � 2
(
m
k

)
and |H1| � m

(
m
k

)
. For each directed edge xy ∈ H1, we apply 

Corollary 6.3 to obtain edge-disjoint balancer gadgets Bk−1(x, y) in H∗. We call J1 the 
union of these balancer gadgets. Clearly, |J1| � 2(k − 1)�|H1| � 2(k − 1)�m

(
m
k

)
.

Let J =
⋃

1�i��k/2� Ji. Note that

|G ∪ J | �
(
m

k

)
+ 2(k − 1)�m

(
m

k

)
+

∑
2�i��k/2�

4i�
(
m

k

)
� 2k�m

(
m

k

)
� �mk+1.

Let T1 be the tour-trail decomposition of J1, which is the union of the corresponding 
tour-trail decompositions of each Bk−1(x, y). Note that given a Bk−1(x, y) and its tour-
trail decomposition T = T (x, y), we have, for all v ∈ V (H) and 2 � i � k − 2,

pT ,1(v) − pT ,k−1(v) = −k(1v=x − 1v=y) and pT ,i(v) − pT ,k−i(v) = 0 .

Hence T ∗ = T1 ∪ T ′ is a balanced tour-trail decomposition of J ∪G, as required. �
7.3. Focusing

The following lemma shows that all the residual D(T ∗) can be moved onto a fixed set 
of k − 1 vertices.

Lemma 7.6. Let 1/n 	 ε 	 1/�, 1/k with k � 3 and � � k2 − k + 1. Let H be a k-
graph on n vertices and δ(3)(H) � εn. Let G be a k-graph with V (G) ⊆ V (H) and 
m = |V (G)| � εn1/k2

/2 such that degG(v) is divisible by k for all vertices v ∈ V (G). 
Suppose that m is prime and |G| < m/k. Suppose that G has a balanced tour-trail 
decomposition T . Let z1, . . . , zk−1 ∈ V (H) \ V (G) be distinct vertices. Then H − G

contains a C(k)
� -decomposable J∗ such that |J∗| � 3kk�m, J∗[V (G)] = ∅ and G ∪J∗ has 

a balanced tour-trail decomposition T ∗ with |D(T ∗)| � 3m and satisfying

pT ∗,i(v) = 0 for all v /∈ {zi, zk − i} and pT ∗,i(zi) = pT ∗,i(zk−i) ,
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for all i ∈ [k − 1].

We first outline the proof of Lemma 7.6. Take z1, . . . , zk−1 ∈ V distinct vertices. 
Recall the definition of rj at the beginning of Section 6. For 1 � i � �k/2
, define the 
functions ζi, ζ̄i : V k−1 → V k−1 be such that, for a = a1 · · · ak−1 ∈ V k−1,

ζi(a) = rk−i(ri(a, zi), zk−i) = a1 · · · ai−1ziai+1 · · · ak−i−1zk−iak−i+1 · · · ak−1 and

ζ̄i(a) = rk−i(ri(a, zk−i), zi) = a1 · · · ai−1zk−iai+1 · · · ak−i−1ziak−i+1 · · · ak−1.

That is, ζi replaces the ith and (k−i)th vertices with the vertices zi and zk−i, respectively, 
whereas ζ̄i replaces the ith and (k− i)th vertices with vertices zk−i and zi, respectively. 
If k is even and i = k/2, then both ζk/2 and ζ̄k/2 replace the (k/2)th vertex with zk/2, 
this is ζ(a) = ζ̄(a) = rk/2(a, zk/2).

We say that a tour-trail decomposition T ′ is an i-convert of T if D(T ) can be par-
titioned into D1 and D2 of equal size such that D(T ′) = ζi(D1) ∪ ζ̄i(D2). Note that 
the definitions of ζi, ζ̄i and i-convert depend on a choice of z1, . . . , zk−1. However, such 
choice will be always clear from the context, so we omit it in the notation.

Let T0 be a balanced tour-trail decomposition of G. Our aim is to construct tour-trail 
decompositions T1, . . . , T�k/2� such that Ti is an i-convert of Ti−1. Notice that T�k/2�
will be the desired tour-trail decomposition. Indeed, observe first that for each edge a =
a1 · · · ak−1 ∈ D(T0) all of its vertices are replaced eventually by a vertex in {z1, . . . , zk−1}
in T�k/2�. And second, for every 1 � i < k/2, each directed edge increases the value of 
both pTi,i(zi) and pTi,i(zk−i) by exactly one with respect to their value in the previous 
tour-trail decomposition Ti−1. In particular, pTi,i(zi) = pTi,i(zk−i) for every 1 � i < k/2.

We will also need the following notation. Let T be a tour-trail decomposition and 1 �
i < k/2. Define Ai(T ) to be the multidigraph on V (H) such that every ordered tuple 
v1 · · · vk−1 in D(T ) corresponds to a distinct directed edge vivk−i in Ai(T ).

The following is immediate from our definition of i-convert and Aj(T ).

Proposition 7.7. Let k � 3 and 1 � i < k/2. Let V be a set of vertices, and 
let z1, . . . , zk−1 ∈ V be distinct vertices. Let T and T ′ be tour-trail decompositions of 
two (not necessarily of the same) subgraphs in V . Suppose T ′ is an i-convert of T . 
Then Aj(T ′) = Aj(T ) for all 1 � j < k/2 such that j 
= i.

The next lemma shows that we can always get a tour-trail decomposition such 
that Ai(T ) is strongly connected for all 1 � i < k/2 and spans V (G). The proof is 
simple and follows by greedily adding new arcs to Ai(T ).

Lemma 7.8. Let 1/n 	 ε 	 1/�, 1/k with k � 3 and � � k2 − k + 1. Let H be a k-graph 
on n vertices with δ(3)(H) � εn. Let U ⊆ V (H) with |U | = m � εn and m is a prime 
number. Then there exists a C(k)

� -decomposable J0 such that |J0| = �m, J0[U ] = ∅, J0 has 
a balanced tour-trail decomposition T0 satisfying V (D(T0)) ⊆ U and, for all 1 � i < k/2, 
Ai(T0) is a strongly connected multidigraph which spans U and |Ai(T0)| = 2m.
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Proof. Let u1, . . . , um be an enumeration of U . Consider j ∈ [m]. We apply Lemma 6.1
to obtain a copy Cj of C(k)

� with V (Cj) = uj+1 · · ·uj+k−1wj,k · · ·wj,�, where wj,j′ are 
new vertices. For its trail decomposition Tj we consider Cj to be a trail

uj+1 · · ·uj+k−1wj,k · · ·wj,�uj+1 · · ·uj+k−1.

Then uj+iuj+k−i, uj+k−iuj+i ∈ Ai(Tj) for all 1 � i < k/2. Let J0 =
⋃

j∈[m] Cj and 
T0 =

⋃
j∈[m] Tj (without simplification). Note that |J0| = �m as each Cj has � edges. 

Note that

|Ai(T0)| =
∑
j∈[m]

|Ai(Tj)| =
∑
j∈[m]

|D(Tj)| = 2m.

Moreover, since Ai(T0) consists on arcs uj1uj2 and uj1uj2 where j2 − j1 = k − 2i, and 
thus it spans U . Moreover, recall m is prime and in particular k− 2i does not divide m. 
Therefore, Ai never closes a cycle of length smaller than m and thus Ai(T0) is strongly 
connected for all 1 � i < k/2. �

We are now ready to prove Lemma 7.6.

Proof of Lemma 7.6. Apply Lemma 7.8 with U = V (G) and H = H \{z1, . . . , zk−1}, we 
obtain a C(k)

� -decomposable graph J0 ⊆ H −G such that

|J0| = �m, (7.6)

and J0 has a balanced tour-trail decomposition T0 such that, for all 1 � i < k/2, Ai(T0)
is a connected multidigraph which spans V (G).

Let G∗
0 = G ∪ J0 and T ∗

0 = T ∪ T0, considering all trails, without doing any further 
simplification even if it is possible to do so. For all 1 � i < k/2, Ai = Ai(T ∗

0 ). Thus Ai

is a connected multidigraph spanning V (G). Observe that since T ∗
0 is balanced, then Ai

is Eulerian. Let s be such that |D(T ∗
0 )| = 2s. Note that

2s = |Ai| = |D(T ∗
0 )| = 2|G| + |Ai(T0)| � 2m/k + 2m � 3m. (7.7)

Claim 7.9. There exist edge-disjoint k-graphs J0, . . . , J�k/2� in H −G such that
(i) each Ji is C(k)

� -decomposable and |Ji| � 2 · 3ik�s,
(ii) G ∪ J0 ∪

⋃
j∈[i] Jj has a balanced tour-trail decomposition T ∗

i , and
(iii) T ∗

i is an i-convert of T ∗
i−1.

We first show that the claim implies the lemma. Set J∗ = J0 ∪
⋃

j∈[�k/2�] Jj and 
set T ∗ = T ∗

�k/2�. Clearly, J∗ is C(k)
� -decomposable since each Jj is. Note that

|J∗| � |J0| +
∑

i∈[�k/2�]
|Ji|

(7.6),(i)
� �m + 2k�s

∑
i∈[�k/2�]

3i
(7.7)
� 3kk�m.
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Since T ∗ is balanced by (ii), (iii) implies that each v1 · · · vk−1 ∈ D(T ∗) satisfies

v1 · · · vk−1 ∈ {z1, zk−1} × {z2, zk−2} × · · · × {zk−1, z1}.

Hence, for all i ∈ [k − 1] and v ∈ V (H), pT ∗,i(v) = 0 unless v ∈ {zi, zk−i} as desired. 
Also |D(T ∗)| = |D(T )| = 2s � 3m by (iii) and (7.7). Therefore to complete the proof, 
it remains to prove Claim 7.9.

Proof of claim. Suppose that we have already found J0, . . . , Ji−1 and we now construct Ji
as follows.

Case 1: i = k/2. We first prove the case i = k/2 as it is simpler and illustrates some 
of the key ideas. If we are in this case, then k is even and, by Proposition 7.2, we 
have pTk/2−1,k/2(v) ≡ 0 (mod 2) for all v ∈ V (H). Also |D(T ∗

k/2−1)| = |T ∗
0 | = 2s. Take 

an arbitrary enumeration of D(T ∗
k/2−1) into b1, . . . , b2s such that b2j−1,k/2 = b2j,k/2 for 

all j ∈ [s], where bj = bj,1 · · · bj,k−1 (here we use the fact that pTk/2−1,k/2(v) is even). 
For every j ∈ [s], let

b∗j = b2j−1,k/2 = b2j,k/2.

Apply Lemma 6.6 to obtain a swapper gadget T j
k/2 = Tk/2(b2j−1, b−1

2j , zk/2, b
∗
j ) with a 

tour-trail decomposition T j such that

D(T j) =
⇀

Tk/2(b2j−1,b−1
2j , zk/2, b

∗
j ) = {b−1

2j−1,b
−1
2j , ζk/2(b2j−1), ζk/2(b2j)}.

We may further assume that these T j are edge-disjoint.
Let Jk/2 be the union of these swapper gadgets and Tk/2 be the union of their tour-trail 

decompositions, together with Tk/2−1. Note that |Jk/2| � 3k/2�ks, and since

D(T ∗
k/2) = D(T ∗

k/2−1) ∪
⋃
j∈[s]

{b−1
2j−1,b

−1
2j , ζk/2(b2j−1), ζk/2(b2j)}

= {bj ,b−1
j , ζk/2(bj) : j ∈ [2s]} = {ζk/2(bj) : j ∈ [2s]},

we deduce Tk/2 is a (k/2)-convert of Tk/2−1, as required.

Case 2: i < k/2. By (iii) and Proposition 7.7, we deduce that Ai(Ti−1) = Ai and so, it 
is an Eulerian multidigraph. Hence, there exists an enumeration of D(Ti) as b1, . . . , b2s, 
which corresponds to an Eulerian tour in Ai. Let bj = bj,1 · · · bj,k−1, so we have bj,k−i =
bj+1,i for all j ∈ [2s].

We now replace the (k − i)th vertex in each b2j−1 with zi and the ith vertex in 
each b2j with zi, as follows. For every j ∈ [s] let

b∗j = b2j−1,k−i = b2j,i.
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Apply Lemma 6.6 to obtain a swapper gadget T j = Ti(b2j , b−1
2j−1, zi, b

∗
j , ) with a tour-

trail T j such that

D(T j) =
⇀

Ti(b2j ,b−1
2j−1, zi, b

∗
j ) = {b−1

2j−1,b
−1
2j , rk−i(b2j−1, zi), ri(b2j , zi)}.

Recall that ri(b2j , zi) and rk−i(b2j−1, zi) correspond to the tuples b2j and b2j−1 replac-
ing b∗j with zi (see definition at the beginning of Section 6). Note that

D
(
Ti ∪

⋃
j∈[s]

T j
)

=
⋃

j∈[2s]

{b2j−1,b2j ,b−1
2j−1,b

−1
2j , rk−i(b2j−1, zi), ri(b2j , zi)}

=
⋃
j∈[s]

{rk−i(b2j−1, zi), ri(b2j , zi)}.

Equivalently, D(Ti∪
⋃

j∈[2s] T j) is obtained from D(Ti) by replacing the (k− i)th vertex 
in b2j−1 and ith vertex in b2j with zi.

By considering the pairs of tuples ri(b2j , zi), rk−i(b2j+1, zi), a similar argument im-
plies that we can replace the ith vertex in rk−i(b2j+1, zi) and (k−i)th vertex in ri(b2j , zi)
with zk−i.

Let Ji be the union of these swapper gadgets and Ti be the union of Ti−1 and 
the corresponding tour-trail decomposition. Notice that Ti is an i-convert of Ti−1 and 
that |Ji| � 3j�k · 2s. This finishes the proof of Claim 7.9. �

As discussed, this finishes the proof of the lemma. �
7.4. Untangling the last arcs

Observe that after Lemma 7.6 in the previous subsection we have found a tour-trail 
decomposition in which the arcs of its residual digraph lie in a small set of k − 1 ver-
tices z1, . . . , zk−1. Here we show how to ‘untangle’ those arcs in such a way that all 
‘cancel’ each other. After this cancellation, the trails from the tour-trail decomposition 
are removed and we obtain a tour decomposition.

Lemma 7.10. Let 1/n 	 ε 	 1/�, 1/k with k � 3 and � � k2 − k + 1. Let H be a 
k-graph on n vertices with δ(3)(H) � εn. Let G be a k-graph with V (G) ⊆ V (H) and 
|V (G)| � εn. Let z1, . . . , zk−1 ∈ V (G) be distinct vertices. Suppose that G has a balanced 
tour-trail decomposition T1 such that |D(T1)| � 5m and

pT1,i(v) = 0 for all v /∈ {zi, zk − i} and pT1,i(zi) = pT1,i(zk−i) ,

for all i ∈ [k − 1]. Then H − G contains a C(k)
� -decomposable subgraph J such that 

|J | � k3�|D(T1)|, J [V (G)] = ∅ and G ∪ J has a tour decomposition.
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Proof. We simplify T1 as much as possible. Let |D(T1)| = 2s and then we have, for 
all i ∈ [k − 1],

pT1,i(zi) = pT1,i(zk−i) =
{
s if i 
= k/2,
2s if i = k/2.

(7.8)

We now colour b ∈ D(T1) red if b starts at z1 (i.e. the first vertex of b is z1), 
and blue otherwise. So there are s red (k − 1)-tuples and s blue (k − 1)-tuples 
in D(T1). Ideally, we would like to transform all red (k − 1)-tuples to z1 · · · zk−1 and 
all blue (k − 1)-tuples to zk−1 · · · z1 (so that they would cancel out). A (k − 1)-tuple 
is i-bad if zi is at the “wrong place”. More precisely, an i-bad red (k − 1)-tuple (and an 
i-bad blue (k − 1)-tuple) will be of form v1 · · · vi−1zk−ivi+1 · · · vk−i−1zivk−i+1 · · · vk−1

(and v1 · · · vi−1zivi+1 · · · vk−i−1zk−ivk−i+1 · · · vk−1, respectively), where {vj , vk−j} =
{zj , zk−j} for all j ∈ [k − 1] \ {i, k − i}. Note that, by definition, all red tuples start 
with z1 and therefore are not 1-bad. Similarly, blue tuples cannot by 1-bad and thus, 
there are no 1-bad (k−1)-tuples. Analogously, there are no (k−1)-tuple which is (k−1)-
bad or k/2-bad. If a (k−1)-tuple is i-bad, then it is also (k−i)-bad. By (7.8), the number 
of red i-bad tuples is equal to the number of blue i-bad tuples.

We claim that there exist edge-disjoint k-graphs J2, . . . , J
k/2�−1 in G −H such that, 
for 2 � i < k/2,

(i) each Ji is C(k)
� -decomposable and |Ji| � 8i�ks,

(ii) G ∪
⋃

j∈[2,i] Jj has a balanced tour-trail decomposition Ti,
(iii) for all j ∈ [k − 1] and v ∈ V (H), pTi,j(v) = 0 unless v ∈ {zj , zk−j},
(iv) |D(Ti)| = |D(Ti−1)|, and
(v) D(Ti) contains no j-bad (k − 1)-tuple for all j ∈ [i].
Suppose that, for some 2 � i < k/2 −1, we have constructed J2, . . . , Ji−1. We describe 

the construction of Ji as follows.
Let a1, . . . , at be the i-bad red (k − 1)-tuples in D(Ti−1) and b1, . . . , bt be the i-bad 

blue (k − 1)-tuples in D(Ti−1). Consider any j ∈ [t]. Let

aj = aj,1 · · · aj,i−1zk−iaj,i+1 · · · aj,k−i−1ziaj,k−i+1 · · · aj,k−1

bj = bj,1 · · · bj,i−1zibj,i+1 · · · bj,k−i−1zk−ibj,k−i+1 · · · bj,k−1.

We now mimic the argument in the proof of Lemma 7.6 to swap zi and zk−i in aj ’s 
and bj ’s. However, we are unable to construct swapper gadgets Ti(aj , b−1

j , zi, zk−i) as 
both aj and bj contain both zi and zk−i. To overcome this problem, we first replace zi
with a new vertex w (so aj and bj are now free of zi). After this is done, then we can 
replace zk−i with zi, and finally we replace w with zk−i. We now formalise the proof as 
follows.

Let w ∈ V (H) \ {zi′ : i′ ∈ [k− 1]} be a new vertex. Apply Lemma 6.6 to obtain three 
edge-disjoint swapper gadgets
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Ti(aj ,b−1
j , w, zk−i), Ti(ri(aj , w)−1, rk−i(bj , w), zi, zk−i) and

Ti(rk−i(aj , zk−i), ri(bj , zk−i)−1, zi, w)

Let T j be its union and T j be the union of their tour-trail decompositions. It is not hard 
to check that after cancellation we obtain

D(T j) = {a−1
j , b−1

j , ζi(aj), ζ̄i(bj)} .

Note that ζi(aj) and ζ̄i(bj) are not i-bad.
Let Ji =

⋃
j∈[t] T

j and let Ti = Ti−1 ∪
⋃

j∈[t] T j be the corresponding tour-trail 
decomposition of G ∪

⋃
2�j�i Jj . This finishes the construction of Ji.

Now we have constructed Ji for all 2 � i < k/2. We set J =
⋃

2�i<k/2 Ji, so |J | �
2k3�s = k3�|D(T1)|. Note that T
k/2�−1 is a balanced tour-trail decomposition of G ∪
J without any bad (k − 1)-tuple. Therefore, after cancellation, D(T
k/2�−1) is empty, 
implying that T
k/2�−1 is a tour decomposition. �
7.5. Proof of Lemma 7.1

We now put the pieces together to prove Lemma 7.1.

Proof of Lemma 7.1. Apply Lemma 7.3 to obtain a C(k)
� -decomposable J1 in H−G such 

that |G ∪ J1| � �mk+1 and G ∪ J1 has a balanced tour-trail decomposition T1.
Let m1 be a prime between k�mk+1 and 2k�mk+1 (this exists by Bertrand’s postulate). 

Add isolated vertices to G ∪ J1 to obtain a subgraph G1 of H such that

|V (G1)| = m1 and |G1| � m1/k.

Let z1, . . . , zk−1 ∈ V (H) \ V (G1). Apply Lemma 7.6 (with G1, T1 playing the rôles 
of G, T ) to obtain a C(k)

� -decomposable J2 in H −G1 such that

|J2| � 3kk�m1

and G2 = G1∪J2 has a balanced tour-trail decomposition T2 satisfying, for all i ∈ [k−1]
and v ∈ V (H), pT2,i(v) = 0 unless v ∈ {zi, zk−i} and |D(T2)| � 3m1.

Apply Lemma 7.10 (with G2, T2 playing the rôles of G, T1) to acquire a C(k)
� -

decomposable subgraph J3 in H −G2 such that

|J3| � k3�|D(T2)| � 3k3�m1

and G2 ∪ J3 has a tour decomposition. We set J = J1 ∪ J2 ∪ J3 and so G ∪ J has a tour 
decomposition and

|G ∪ J | � m1 + 3kk�m1 + 3k3�m1 � 3k+2k4�2mk+1.
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To prove the ‘moreover’ statement, we simply repeat the identical construction of J
to obtain J ′ in H ′ = H − G − J − G′ as δ(3)(H ′) � εn/2. For example, J1 consists of 
edge-disjoint balancer gadgets. Then J ′

1 will consist of the same number of edge-disjoint 
balancer gadgets in the same configurations. Thus we can then assume that G ∪ J1 is 
homomorphic to G′∪J ′

1. Therefore, we obtain J ′ homomorphic to J and such that G ∪J

is homomorphic to G′ ∪ J ′. �
8. Transformers III: Proof of Lemma 4.3

Finally, in this section we use the machinery of transformers and tour-trail decompo-
sitions to find cycle absorbers and prove that every H with δ(3)(H) � 2εn contains an 
absorber for every given leftover G ⊆ H with |V (G)| sufficiently small. More precisely, 
we prove Lemma 4.3.

Proof of Lemma 4.3. Given n, ε, �, k, m, and H as in the statement of the lemma. Let 
η : N → N such that η(x) = 3k+3k5�3xk+1 and let W ⊆ V (H) be of size m � m0. 
By Lemma 6.1, given any two ordered k-tuples in V (H) \W , v1 · · · vk and v�−k+1 · · · v�, 
the k-graph H \W contains a tight walk v1 · · · v� on � vertices and no repeated vertices 
outside of v1 · · · vk and v�−k+1 · · · v�. In particular, there is an �-cycle in H \W covering 
any arbitrary k-tuple v1, . . . , vk in V (H) \W . Hence, by Lemma 3.3, it suffices to show 
that H is (C(k)

� , m0, m0, η)-transformable for some increasing function η : N → N which 
satisfies η(x) � x. Indeed, this will imply that H is (C(k)

� , m0, m0, η′)-absorbable for 
some increasing function η′ : N → N such that η′(x) � x, as desired. Observe that here, 
since η is independent of ε and n so is η′.

We will show that H is (C(k)
� , m0, m0, η)-transformable. To do so, let G1 and G2

be two vertex-disjoint C(k)
� -divisible k-graphs with V (G1), V (G2) ⊆ V (H); suppose that 

|V (G1)|, |V (G2)| � m0 and that there is an edge-bijective homomorphism from G1 to G2. 
Let W ⊆ V (H) \ V (G1 ∪ G2) with |W | � m0. Let m = max{|V (G1)|, |V (G2)|}. Let 
H ′ = H \W . It is enough to show that H ′ contains a (G1, G2; C(k)

� )-transformer of order 
at most η(m). This will be our task from now on.

Apply Lemma 7.1 with G1 and G2 playing the rôles of G and G′ to obtain edge-disjoint 
subgraphs J1 and J2 of H ′ −G1 −G2 such that
(a1) G1 ∪ J1 and G2 ∪ J2 have tour decompositions,
(a2) J1 and J2 are C(k)

� -decomposable,
(a3) J1[V (G1 ∪G2)] and J2[V (G1 ∪G2)] are empty,
(a4) |G1 ∪ J1|, |G2 ∪ J2| � 3k+2k4�2mk+1, and
(a5) there is an edge-bijective homomorphism φ from G1 ∪ J1 to G2 ∪ J2.

Let G′
j = Gj ∪ Jj for j ∈ [2]. We now claim that there exists a (G′

1, G
′
2; C(k)

� )-
transformer T ∗ with |T ∗| = (� −1)|G′

1|. Indeed, let {Ai : i ∈ [s]} be a tour decomposition 
of G′

1, and recall that φ is an edge-bijective homomorphism from G′
1 to G′

2. There-
fore, {φ(Ai) : i ∈ [s]} is a tour decomposition of G′

2. Now, suppose that for some i ∈ [s], 
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we have already constructed edge-disjoint T1, . . . , Ti−1 in H ′ − G′
1 − G′

2 such that, for 
i′ ∈ [i − 1]
(b1) Ti′ is an (Ai′ , φ(Ai′); C(k)

� )-transformer,
(b2) |Ti′ | = (� − 1)|Ai′ |, and
(b3) Ti′ [V (G′

1)] ∪ Ti′ [V (G′
2)] = ∅.

We construct Ti as follows. Let H∗ = H ′ − G′
1 − G′

2 −
⋃

i′∈[i−1] Ti′ . Let Ai = v1 · · · vt. 
Let wj = φ(vj) for all j ∈ [t], so φ(Ai) = w1 · · ·wt. Note that � − k2 + k− 1 � k2 − k by 
the choice of �. Therefore, by Lemma 6.1, H∗ contains tight paths P1, . . . , Ps, Q1, . . . , Qs

such that, for each j ∈ [t],
(c1) Pj is a tight path of length k2 − k from vj+1vj+2 · · · vj+k−1 to wjwj+1 · · ·wj+k−2,
(c2) Qj is a tight path of length � − k2 + k − 1 starting from wjwj+1 · · ·wj+k−2 and 

ending in vjvj+1 · · · vj+k−2, and
(c3) V (Pj) \ V (D(Pj)) and V (Qj) \ V (D(Qj)) are new vertices.
Each of vjvj+1 · · · vj+k−1 ∪ Pj ∪ Qj and wjwj+1 · · ·wj+k−1 ∪ Pj ∪ Qj+1 forms a C(k)

� . 
Hence, we are done by letting Ti =

⋃
j∈[s] Pj ∪Qj . This finishes the construction of Ti. 

Thus T ∗ =
⋃

i∈[s] Ti is the desired (G′
1, G

′
2; C(k)

� )-transformer.
We finish by defining T = J1 ∪ J2 ∪ T ∗, so

|V (T )| � k|T | � k(� + 1)|G′
1|

(a4)
� 3k+3k5�3mk+1 = η(m).

Together with (a2) and (a3), we deduce that T [V (G1)] is empty and

G1 ∪ T = ((G1 ∪ J1) ∪ T ∗) ∪ J2 = (G′
1 ∪ T ∗) ∪ J2

is C(k)
� -decomposable, and similarly G2 ∪ T is C(k)

� -decomposable. Therefore, T is 
a (G1, G2; C(k)

� )-transformer. �
9. Cover-down lemma

In this section we prove Lemma 4.2 which is the main step in the iterative part of 
iterative absorption. We prove this lemma by induction on k, and when dealing with k-
uniform hypergraphs we will require results on path decompositions for (k− 1)-uniform 
hypergraphs. To organise our arguments, we define the following two statements for each 
k � 3. The first statement corresponds precisely to the Cover-down lemma for k-graphs, 
while the second one concerns decompositions of k-graphs into paths.
(�k) For every α > 0, there is an �0 ∈ N such that for every μ > 0 and every n, � ∈ N

with � � �0 and 1/n 	 μ, α the following holds. Let H be a k-graph on n vertices 
and U ⊆ V (H) with |U | = �αn
 such that
(CD1) δ(2)(H) � 2αn,
(CD1) δ(2)(H, U) � α|U | and
(CD1) degH(x) is divisible by k for each x ∈ V (H) \ U .
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Then H contains a C(k)
� -decomposable subgraph F ⊆ H such that H −H[U ] ⊆ F

and Δk−1(F [U ]) � μn.
(�k) For every � � k and for every α > 0 there is an n0 such that the following holds. 

Every k-graph H on n � n0 vertices with δ(2)(H) � αn and |H| ≡ 0 mod �

contains a P (k)
� -decomposition.

Thus, Lemma 4.2 can be synthetically stated as follows.

Lemma 4.2 (Cover-down lemma (reprise)). (�k) holds for every k � 3.

We show Lemma 4.2 through an induction on k, in which (�k) is helpful to enable 
the induction step.

Lemma 9.1. For each k � 3, if (�k−1) holds, then (�k) holds.

Lemma 9.2. For each k � 3, if (�k) holds, then (�k) holds.

Assuming the validity of these two last lemmata, Lemma 4.2 follows easily, if we are 
provided with a base case. For this, we use the following result by Botler, Mota, Oshiro 
and Wakabayashi [4] on path decompositions in graphs. A graph is k�-edge-connected if 
after deleting fewer than k� edges it remains connected. It is not hard to check that every 
graph G is δ(2)(G)-edge-connected, so the following result immediately yields (�2).

Theorem 9.3 ([4]). For each � � 1, there exists k� such that each k�-edge-connected graph 
whose number of edges is divisible by � has a P (2)

� -decomposition.

The proof of Lemma 9.2 is given in the next subsection. The proof of Lemma 9.1 will 
require more effort and is given in Subsection 9.4, after some previous necessary results.

9.1. Path decompositions: Proof of Lemma 9.2 and Theorem 1.4

To see that the bound δP (k)
�

� 1/2 holds, consider the following example. Take the 
union of K(k)

�n/2� and K(k)

n/2� on vertex sets A and B, respectively. Delete a few edges if 

necessary so that the resulting k-graph H satisfies |H| ≡ 0 mod � but |H[A]| 
≡ 0 mod �. 
Then H is not P (k)

� -decomposable and δ(H) � (1/2 − o(1))n. On the other hand, note 
that the upper bound of Theorem 1.4 can be obtained from Lemmata 9.2 and 4.2.

The proof of Lemma 9.2 follows essentially the same strategy we use to prove The-
orem 1.3 in Section 4. The Vortex lemma is the same and for the Cover-down lemma 
we may use (�k), which is assumed to hold as a hypothesis. To see this, it is enough to 
notice that for every sufficiently large �′ divisible by �, a C(k)

�′ -decomposable subgraph 
is P (k)

� -decomposable as well. Hence, the only new ingredient needed is the following 
Absorber lemma for paths.
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Lemma 9.4 (Absorber lemma for paths). Let 1/n 	 ε 	 1/�, 1/k, 1/m0 with k � 3. Let 
H be a k-graph on n vertices with δ(2)(H) � εn. Then H is (P (k)

� , m0, m0, η′)-absorbing 
for some increasing function η′ : N → N satisfying η′(x) � x and independent of ε
and n.

Proof. Pick an arbitrary edge e ∈ P (k)
� and let a be any k-tuple in V (H). Since the 

inequality δ(2)(H) � εn holds, it is easy to see for every W ⊆ V (H) \ {v1, . . . , vk} of size 
at most m0 there is a copy of P (k)

� in (H ∪ {a}) \W in which a plays the rôle of e. We 
do this by simply extending a path (maybe in both directions) starting with a, which we 
can do simply because of δ(H) � δ(2)(H) � εn. This enables us to use Lemma 3.3, and 
hence, it is enough to prove that H is (P (k)

� , m0, m0, η)-transformable for some increasing 
function η : N → N.

Let �0 be the smallest number larger than k2 − k which is divisible by � and de-
fine η(x) = �0x

2. Let G, G′ ⊆ H be vertex-disjoint P (k)
� -divisible subgraphs such that 

there is an edge-bijective homomorphism φ from G to G′. Also, let W ⊆ V (H) \V (G ∪G′)
and suppose |V (G)|, |V (G′)| � m0 and |W | � m0 − η(|V (G)|). For every edge e ∈ G

apply Lemma 6.1 to find a path Pe ⊆ H \W between e and φ(e) with precisely �0 + 1
edges. Since �0 is divisible by �, T =

⋃
e∈G Pe is a (G, G′; P (k)

� )-transformer of size at 
most �0e(G) � η(max{|V (G)|, |V (G′)|}). �

We omit further details of proof of Lemma 9.2 and reference the reader to the proof 
of Theorem 1.3.

9.2. Well-behaved approximate cycle decompositions

Given a k-graph H such that δ(2)(H) � αn, we find a C(k)
� -packing C that covers 

almost all edges of H and such that the leftover is not too concentrated in any (k − 1)-
tuple. Here, a C(k)

� -packing is a set of edge-disjoint copies of C(k)
� . More precisely, we 

have the following lemma.

Lemma 9.5 (Well-behaved cycle decompositions). Given k ∈ N and α � 0 there is an �0 ∈
N such that for every γ > 0 and �, n ∈ N with � � �0 and 1/n 	 γ, α, 1/� the following 
holds. Let H be a k-graph on n vertices with δ(2)(H) � αn. Then H has a C(k)

� -packing 
C such that Δk−1(H −

⋃
C) � γn.

The case k = 3 is proven by the last two authors in [14] and here we follow the same 
lines. Given a k-graph H and an edge e ∈ H, recall that C�(H) and C�(H, e) are the 
family of all �-cycles in H and those containing e. The proof of Lemma 9.5 rests in a 
result by Joos and Kühn [11] about fractional Ck

� -decompositions (see the definition at 
the beginning of Section 2).

Theorem 9.6 (Joos and Kühn [11]). Given k ∈ N and α, μ � 0 there is an �0 ∈ N such 
that for every �, n ∈ N with � � �0 and 1/n 	 α, 1/� the following holds. Let H be a k-
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graph on n vertices with δ(2)(H) � αn. Then there is a fractional C(k)
� -decomposition ω

of H with

(1 − μ) 2|H|
Δk−1(H)� � ω(C) � (1 + μ) 2|H|

δk−1(H)�

for all cycles C ∈ C�(H).

Additionally, we need the following nibble-type matching theorem. The statement of 
the theorem is technical, but in our context the conditions are easy to check. Consider 
the following parameter g(H) = Δ1(H)/Δ2(H) for every k-graph H.

Theorem 9.7 (Alon and Yuster [1]). For every γ > 0, there is a ξ > 0 such that 
for every sufficiently large n the following holds. Let H be a k-graph on n vertices 
and let U1, . . . , Ut ⊆ V (H) be subsets of vertices with log t � g(H)1/(3k−3) and such 
that |Ui| � 5g(H)1/(3k−3) log(g(H)t) for every i ∈ [t]. Suppose that
(a) δ1(H) � (1 − ξ)Δ1(H) and
(b) Δ1(H) � (logn)7Δ2(H).
Then H contains a matching such that at most γ|Ui| vertices are uncovered in each Ui.

Lemma 9.5 follows by an straightforward application of Theorems 9.6 and 9.7.

Proof of Lemma 9.5. Given k ∈ N and α > 0 fix any μ, ξ < 1/3 and take �0 given by 
Theorem 9.6. Let � � �0, γ > 0 and let n be sufficiently large for an application of 
Theorems 9.6 and 9.7.

First, we apply Theorem 9.6 to obtain a fractional C(k)
� -decomposition ω of H satis-

fying

ω(C) � (1 + μ) 2|H|
δk−1(H)� � 3nk

δ(2)(H)�
� 3

α�n�−k
, (9.1)

for all cycles C ∈ C�(H).
Then, consider the auxiliary �-graph F with vertex set E(H) and an edge in F for each 

cycle in C�(H) corresponding to its set of � edges in H. Define a random subgraph F ′ ⊆ F

by keeping each edge C with probability pC = n1/2ω(C) � 1 by (9.1).
For every edge e ∈ H we have E[dF ′(e)] = n1/2∑

C∈C�(H,e) ω(C) = n1/2. Moreover, 
since two distinct edges e, f ∈ E(H) can participate together in at most O(n�−(k+1))
many C(k)

� in H, (9.1) implies that the expected 2-degree is bounded by E[dF ′(e, f)] =
O(n−1/2). Using standard concentration inequalities we get that with high probability 
dF ′(e) = (1 +o(1))n1/2 for each e ∈ V (F ′) and that Δ2(F ′) = O(logn). This means that

δ1(F ′) � (1 − o(1))Δ1(F ′), g(F ′) = Ω(n1/2/ logn) and g(F ′) = O(n1/2).
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For each (k − 1)-set S of vertices of H, let US ⊆ V (F ) correspond to the edges in 
H containing S. There are at most nk−1 such sets and each has size at least εn. Thus, 
it is easy to check that the conditions for Theorem 9.7 are satisfied. Therefore, there is 
a matching M in F ′ such that at most γn vertices in V (F ′) are uncovered in each US . 
The matching M in F ′ ⊆ F translates to a C(k)

� -packing C in H and the latter condition 
implies Δk−1(H −

⋃
C) � γn, as desired. �

9.3. Extending lemma

For this section we will use the following result (see [14, Theorem 5.5]).

Theorem 9.8. Let X1, . . . , Xt be Bernoulli random variables (not necessarily indepen-
dent) such that, for each i ∈ [t], we have P [Xi = 1|X1, . . . , Xi−1] � pi. Let Y1, . . . , Yt be 
independent Bernoulli random variables such that P [Yi = 1] = pi for all i ∈ [t]. Let X =∑

i∈[t] Xi and Y =
∑

i∈[t] Yi. Then P [X � k] � P [Y � k] for all k ∈ {0, 1, . . . , t}.

Let S be a multiset of ordered (k − 1)-tuples in an n-vertex set V , possibly with 
repetitions. We say that S is γ-sparse if the multi-(k − 1)-graph S formed by all the 
unoriented (k − 1)-sets from S, counting repetitions, has Δj(S) � γnk−j for each 0 �
j � k− 1. For instance, the j = 1 case says that no vertex is in more than γnk−1 tuples 
(counting repetitions). Recall the definition of ends of a trail P and D(P ) in Section 6.1.

Lemma 9.9 (Extending lemma). Let 1/n 	 γ 	 μ 	 ε, 1/�, 1/k. Let H be a k-graph on 
n vertices. Let S = {ai, bi : i ∈ [t]} be a multiset of ordered (k− 1)-tuples in V (H) such 
that
(a) S is γ-sparse and
(b) for each i ∈ [t], there are at least εn� trails P in H on � + 2(k − 1) vertices such 

that D(P ) = {ai, bi}.
Then, there exist edge-disjoint trails P1, . . . , Pt in H such that, for each i ∈ [t],

(i) Pi has � + 2(k − 1) vertices and D(Pi) = {ai, bi},
(ii) the vertices of Pi outside ai and bi are all distinct, and
(iii) Δk−1(

⋃
i∈[t] Pi) � μn.

Proof. The idea is to pick, sequentially, a trail Pi chosen uniformly at random among all 
the trails whose ends are ai and bi. Since S is γ-sparse and there are plenty of choices 
for Pi in each step, we expect that in each step the random choices do not affect the 
codegree of the graph formed by the yet unused edges in H by much. This will ensure 
that, even after removing the edges used by P1, . . . , Pi−1, there are still many trails Pi

available for the ith step. If all goes well, then we can continue the process until the end, 
thus finding the required trails.

We say that a trail P is i-good if P is on � +2(k−1) vertices, D(P ) = {ai, bi} and the 
vertices of P outside ai and bi are all distinct. Let Pi(H) be the set of all i-good trails 
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in H. We begin by noting that Pi(H) is large. Indeed, there are at most �2n�−1 � εn�/2
trails P on � + 2(k − 1) vertices with D(P ) = {ai, bi} that is not i-good. By (b), 
|Pi(H)| � εn�/2. Since μ 	 ε, we have

if G is a k-graph with Δk−1(G) � μn, then |Pi(H −G)| � εn�/3. (9.2)

We now describe the random process. For each i ∈ [t], assume we have already cho-
sen edge-disjoint P1, P2, . . . , Pi−1 ⊆ H, and we describe the choice of Pi. Let Gi−1 =⋃

j∈[i−1] Pj correspond to the edges of H used by the previous choices of Pj , which we 
need to avoid when choosing Pi (note that G0 is empty). If Δk−1(Gi−1) � μn, then 
(9.2) implies that |Pi(H −Gi−1)| � εn�/3 and we take Pi ∈ Pi(H −Gi−1) uniformly at 
random. Otherwise, if Δk−1(Gi−1) > μn, then let Pi = ∅.

In any case, the process outputs a collection of edge-disjoint subgraphs P1, . . . , Pt. 
Our task now is to show that with positive probability, there is a choice of P1, . . . , Pt

such that Δk−1(Gt) � μn. This will imply also that Pi ∈ Pi, which is what we needed. 
Formally, for each i ∈ [t], let Si be the event that Δk−1(Gi) � μn. Thus it is enough to 
show P [St] > 0.

Fix e ∈
(
V (H)
k−1

)
. For each i ∈ [t], let Xi(e) be the random variable that takes the value 

1 precisely if e belongs to an edge of Pi, and 0 otherwise. Equivalently, Xi(e) = 1 if and 
only if degPi

(e) � 1. Since Δk−1(Pi) � 2 for each i ∈ [t], we have

degGi
(e) � 2

∑
j∈[i]

Xj(e) . (9.3)

For each i ∈ [t], define

ri(e) = max{|e ∩ ai|, |e ∩ bi|} and p∗i (e) = min
{

1, 6�k
εn(k−1)−ri(e)

}
,

where here ai, bi are taken as the underlying (k − 1)-sets.

Claim 9.10. For each e ∈
(
V (H)
k−1

)
and i ∈ [t],

P [Xi(e) = 1|X1(e), X2(e), . . . , Xi−1(e)] � p∗i (e).

Proof of the claim. Fix e ∈
(
V (H)
k−1

)
and i ∈ [t]. Using conditional probabilities, we sepa-

rate our analysis depending on whether Si−1 holds or not. If Si−1 fails, then Pi = ∅ and 
so Xi(e) = 0 implying that our claim holds.

Now assume that Si−1 holds, so Δk−1(Gi−1) � μn. By (9.2), Pi will be chosen uni-
formly at random from Pi(H − Gi−1), which has size at least εn�/3 regardless of the 
values of X1(e), . . . , Xi−1(e).

If ri(e) = k − 1, then p∗i (e) = 1 and we are done. We may assume that r = ri(e) ∈
[k − 2] ∪ {0}. We now estimate the number of P ∈ Pi(H − Gi−1) with degP (e) � 1. If 
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we have P = v1v2 · · · v�+2(k−1) and degP (e) � 1, then j0 = min{j : vj ∈ e} ∈ [� + k − 1]
and |{j ∈ [k] : vj0+j /∈ e}| = 1. Recall that, for each P ∈ Pi(H − Gi−1), it holds 
that |V (P ) \ {ai, bi}| = � and it also holds that |e \ ai|, |e \ bi| � k − 1 − ri(e). Hence, 
we deduce that the number of P ∈ Pi(H − Gi−1) with degP (e) � 1 is certainly at 
most (� + k − 1)kn�−(k−1−ri(e)) � 2�kn�−(k−1−ri(e)). Thus we have

P [Xi(e) = 1|X1(e), . . . , Xi−1(e),Si−1] �
2�kn�−(k−1−ri(e))

|Pi(H −Gi−1)|
� 6�k

εnk−1−ri(e)
= p∗i (e) ,

as required. This finishes the proof of the claim. �
Now, we use that S is γ-sparse to argue that 

∑
i∈[t] p

∗
i (e) is small for each e ∈

(
V (H)
k−1

)
. 

Indeed, for each 0 � r � k − 1, let tr be the number of i ∈ [t] such that ri(e) = r. Since 
S is γ-sparse, we have tr � 2

(
k−1
r

)
γnk−r for each 0 � r � k − 1. Recall that we are 

assuming the hierarchy γ 	 μ 	 ε, 1/�, 1/k. Therefore, we have

∑
i∈[t]

p∗i (e) = tk−1 +
∑

0�r�k−2

tr ·
6�k

εnk−1−r
� μ

30n. (9.4)

We now claim that

P

⎡
⎣∑
i∈[t]

Xi(e) �
μ

3n

⎤
⎦ � exp

(
−μ

3n
)
. (9.5)

Indeed, (9.4) implies that 7 
∑

i∈[t] p
∗
i (e) � μn/3, so the bound follows from Theorem 9.8

combined with a Chernoff-type bound [10, Corollary 2.4].
For each e ∈

(
V (H)

2
)
, let Xe :=

∑
i∈[t] Xi(e). Let E be the event that maxe Xe � μn/3. 

By using a union bound over all the (at most nk−1) possible choices of e and using (9.5), 
we deduce that E holds with probability at least 1 − o(1).

Now we can show that St holds with positive probability. In fact, we shall prove 
that P [St|E ] = 1, which then will imply P [St] � P [St|E ]P [E ] � 1 − o(1). So assume E
holds, that is, maxe Xe � μn/3. Note that S0 holds deterministically, and suppose 
that i ∈ [t] is the minimum such that Si fails to hold. Since Si−1 holds, using (9.3)
we deduce

Δk−1(Gi) � 2 + Δk−1(Gi−1) = 2 + max
e

degGi−1
(e) � 2

⎛
⎝1 + max

e

∑
j∈[i−1]

Xi(e)

⎞
⎠

� 2
(
1 + max

e
Xe

)
� 2

(
1 + μ

3n
)
� μn,

where in the penultimate inequality we used E , and in the last inequality we used 1/n 	
μ. Thus Si holds, a contradiction. �
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The following corollary of Lemma 9.9 allows us to find a sparse path-decomposable 
subgraph whose removal adjusts the degrees modulo k. This was used in proving Corol-
lary 2.4.

Corollary 9.11. Let 0 < 1/n 	 μ 	 1/�, 1/k, ε with � > k � 3. Let H be a k-graph on n

vertices such that δ(2)(H) � εn. Then there exists a P (k)
� -decomposable subgraph H ′ such 

that
(i) |H ′| � �2kn,
(ii) Δk−1(H ′) � μn, and
(iii) for each x ∈ V (H), we have degH−H′(x) ≡ 0 mod k.

Proof. We start by finding a (2-uniform) multidigraph D on V = V (H) such that 
d+
D(v) − d−D(v) + degH(v) ≡ 0 mod k holds for each v ∈ V . This can be constructed 

greedily, starting from an empty digraph D. As long as there is a pair of vertices u, v and 
0 < i � j < k with d+

D(u) − d−D(u) +degH(u) ≡ i mod k and d+
D(v) − d−D(v) +degH(v) ≡

j mod k, we pick them by minimising i and maximising j, and then we add the directed 
edge u → v to D. Since 

∑
x∈V (H) degH(x) = k|H| ≡ 0 mod k, this process is guaranteed 

to end. By construction, we have d+
D(v), d−D(v) � k for each v ∈ V , and D has at most 

kn arcs.
Let �0 be the minimum integer divisible by � such that �0 � k2 − k + 2. We clearly 

have the inequality �0 � �2. Given vertices u, v ∈ V , suppose that T = Tu,v ⊆ H is 
a P (k)

� -decomposable subgraph on �0 edges such that degT (u) = k − 1, degT (v) = 1
and degT (w) ≡ 0 mod k for all other vertices. Suppose we can find an edge-disjoint 
collection T of such subgraphs Tu,v, one for each edge u → v in D, with the additional 
condition that the union H ′ of those subgraphs has codegree at most μn. Then H ′ is 
easily seen to satisfy the required conditions. We now describe the construction of such 
a family.

Each Tu,v will be chosen as follows. Given uv ∈ E(D), we pick a (k − 2)-tuple of 
vertices x(u, v) = x2 · · ·xk−1 ∈ (V \ {u, v})k−2, uniformly at random. Then, we consider 
the (k − 1)-tuples vu,v = uxk−1 · · ·x2 and wu,v = x2 · · ·xk−1v. Note that a trail with 
ends vu,v and wu,v using �0 edges and no new repeating vertices forms a Tu,v with the 
required characteristics. In particular, such a Tu,v has a P (k)

� -decomposition.
Consider the multiset of ordered (k − 1)-tuples Q =

⋃
uv∈E(D){vu,v, wu,v}. Since the 

bounds Δ+(D), Δ−(D) � k hold and x(u, v) was chosen at random for each directed 
edge uv ∈ E(D), we can assume that Q is γ-sparse. Select a new constant ρ which satisfies 
the hierarchy μ 	 ρ 	 ε. By Lemma 6.1, for each uv ∈ E(D), there exist ρn�0−k+1 trails 
with �0 edges and ends vu,v and wu,v. Then, Lemma 9.9 (with ρ in place of ε) provides 
us with an edge-disjoint collection of trails {Tuv : uv ∈ E(D)}, one for each uv ∈ E(D), 
such that Tuv has ends vu,v and wu,v, no repeated vertices save for those in the ends, 
and H ′ =

⋃
uv∈E(D) Puv satisfies Δk−1(H ′) � μn, which is all we needed. �
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9.4. Cover-down lemma: Proof of Lemma 9.1

For this section, we will require a few pieces of new notation. Given a k-graph H, a 
vertex set U ⊆ V (H), a (k− 1)-tuple e ∈

(
V (H)
k−1

)
, and a set of (k− 1)-tuples G ⊆

(
V (H)
k−1

)
, 

define NH(e, U ; G) = N(e, U) ∩G. Moreover, define

δ(2)(H;U,G) = min
{
NH(e1, U ;G) ∩NH(e2, U ;G) : e1, e2 ∈

(
V (H)
k − 1

)}
.

Proof of Lemma 9.1. Given k ∈ N and α > 0 take �0 ∈ N larger than the one given 
by (�k−1) and sufficiently large for an application of Lemma 9.5. Moreover, for μ > 0 we 
take auxiliary variables γ, pi and μi for every i ∈ [k − 1], under the following hierarchy

0 < γ 	 μ1 	 p1 	 · · · 	 μk−1 	 pk−1 	 μk 	 μ, α .

Finally take γi = γ + 2pi 	 μi+1 and αi = piα
2/2 −

∑
0�j�i−1 μj � μi. Let n ∈ N be 

sufficiently large and let H be as in the statement of the lemma.
Step 1: Setting the stages. For every 0 � i � k − 1, let Hi = {e ∈ H : |e ∩ U | = i}
and let Ri ⊆ Hi be defined by choosing edges independently at random from Hi with 
probability pi. Moreover, let R�i =

⋃
i�j�k−1 Rj . Considering (CD2), by standard con-

centration inequalities we have that with non-zero probability the following inequalities 
happen simultaneously: for every 0 � i � k − 1,

Δk−1(Ri) � 2pin , (9.6)

δ(2)(R�i ∪H[U ];U,Gi−1) �
piα|U |

2 � piα
2n

2 , (9.7)

where Gi = {e ∈
(

V
k−1

)
: |e ∩U | � i} (we include the degenerate cases G−1 =G0 =

(
V

k−1
)
). 

From now on for every 0 � i � k − 1 we consider Ri to be a fixed graph with those 
properties.

Define H� = H−H[U ] −R�0 and observe that δ(2)(H�) � αn/2. Hence we can apply 
Lemma 9.5 to find a C(k)

� -packing C in H� such that Δk−1(H� −
⋃
C) � γn. We shall 

find a C(k)
� -packing that covers the leftover J = H� −

⋃
C and the graph R�0. We do 

this in stages, covering the edges Ji = (J ∩Hi) ∪Ri (and some from R�i) in each stage.
Step 2: The first k−1 stages. To start, let C−1 = J−1 = ∅. Let 0 � i < k−2 and denote 
the edges which were covered in previous stages by J�i−1 =

⋃
0�j�i−1 Jj . Suppose there 

is a C(k)
� -packing Ci−1 such that

⋃
Ci−1 ∩H[U ] = ∅, J�i−1 ⊆

⋃
Ci−1 , and Δk−1

(⋃
Ci−1 − J�i−1

)
�

∑
0�j�i

μjn .

(9.8)

Note that (9.8) holds vacuously for i = 0. We shall prove the existence of a packing Ci
satisfying (9.8) for i instead of i − 1.
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Let R̃�i+1 and J̃i be the remaining edges from R�i+1 and Ji after deleting
⋃
Ci−1. 

More precisely let R̃�i+1 = R�i+1 −
⋃
Ci−1 and J̃i = Ji −

⋃
Ci−1. Because of (9.7)

and (9.8) we have that

δ(2)(R̃�i+1;U,Gi) �
(pi+1α

2

2 −
∑

0�j�i+1
μj

)
n = αi+1n � μi+1n . (9.9)

Moreover, in view of (9.6), we obtain

Δk−1(J̃i) � Δk−1(J) + Δk−1(Ri) � γn + 2piαn = γin . (9.10)

Enumerate edges of J̃i into e1, . . . , et. For each j ∈ [t], we oriented ej arbitrarily and let 
{aj , bj} be such that D(ej) = {a−1

j , b−1
j }. Note that S = {aj , bj : j ∈ [t]} is γi-

sparse. Moreover, (9.9) and Lemma 6.1 implies, for each j ∈ [t], R̃i+1 contains at 
least αi+1n

�−k trails P on � + k − 2 vertices such that D(P ) = {aj , bj}. We apply 
Lemma 9.9 with αi+1, μi+1, γi, � − k, R̃i+1 in the rôles of α, μ, γ, �, H to obtain edge-
disjoint trails P1, . . . , Pt in R̃i+1 such that, for each j ∈ [t],

(i) Pj has � + k − 2 vertices and D(Pj) = {aj , bj},
(ii) the vertices of Pj outside aj and bj are all distinct, and
(iii) Δk−1(

⋃
j∈[t] Pj) � μi+1n.

Note that ei ∪ Pi is C(k)
� , so J̃i ∪

⋃
j∈[t] Pj has a C(k)

� -decomposition C′
i. It is easy to see 

that by taking Ci = Ci−1 ∪ C′
i we obtain a C

(k)
� -packing satisfying (9.8) with i instead 

of i − 1.
Step 3: The last stage. For the last stage, a few changes are needed. This is because in 
the previous stages we used edges from Hi+1 to extend paths in Hi, which is no longer 
possible at this stage. Instead, we rely on the path decompositions ensured by (�k−1).

As before, we define J̃k−1 = Jk−1 −
⋃
Ck−2. For every vertex v ∈ V (H) \ U , we 

let F (v) = {e \ {v} ∈
(
V
k

)
: v ∈ e ∈ J̃k−1} be the link graph of v in the hypergraph J̃k−1. 

Note that F (v) is completely contained in U . We shall apply (�k−1) to find a P (k−1)
k -

decomposition in F (v). For this, we first prove that |F (v)| = degJ̃k−1
(v) is divisible by k. 

Indeed, (CD3) says that degH(v) is divisible by k, and since J̃k−1 = H −H[U ] −
⋃
C −⋃

Ck−2 we have degJ̃k−1
(v) is divisible by k as well. Moreover, because of (9.7) and (9.9)

we have that

δ(2)(F (v)) � pk−1α
2

2 n−
∑

0�j�k−1

μjn � αk−1n .

Hence, (�k−1) yields a P (k−1)
k -decomposition of F (v). Notice that each path in this 

decomposition corresponds to a P (k)
k+1 in J̃k−1 when we include the vertex v in every edge. 

Call this P (k)
k+1-packing Pv and observe that paths from Pv and Pu are edge-disjoint for 

every u 
= v. This means P =
⋃

v∈V (H)\U Pv is a P (k)
k+1-decomposition of J̃k−1.
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Now we continue as in the previous stages and observe that

Δk−1(J̃k−1) � Δk−1(J) + Δk−1(Rk−1) � γn + 2pk−1αn = γkn ,

which implies that D(P) (without simplification) is γk-sparse. Moreover, (9.8) implies

δ(2)((H − Ck−2)[U ]) = δ(2)(H[U ]) � α|U | .

By Lemma 6.1, for any P ∈ P with D(P ) = {a−1, b−1}, (H − Ck−2)[U ] contains at 
least αn�−k−1 trails Q on � + k − 3 vertices such that D(Q) = {a, b}. Finally, we 
apply Lemma 9.9 as in the previous stages to obtain edge-disjoint trails {QP : P ∈ P}
in (H − Ck−2)[U ] such that, for each P ∈ P,

(i) QP has � + k − 3 vertices and D(QP ) = {a, b} such that D(P ) = {a−1, b−1},
(ii) the vertices of QP outside D(QP ) are all distinct, and
(iii) Δk−1(

⋃
P∈P QP ) � μkn.

Each P ∪ QP forms a C(k)
� , so J̃k−1 ∪

⋃
P∈P QP =

⋃
P∈P(P ∪ QP ) has a C(k)

� -
decomposition C′

k−1. Thus, recalling (9.8), it is easy to see that the C(k)
� -packing 

C� = C ∪ Ck−2 ∪ C′
k−1 satisfies the requirements of the lemma. �

10. Eulerian tours

We first show that a lower bound of (essentially) n/2 on the codegree of k-graphs is 
necessary to ensure that every edge is in some tight cycle. The bound is asymptotically 
tight by Lemma 6.1 (which can be used to find cycles which contain any given edge). 
This also provides the lower bound in Theorem 1.5.

Proposition 10.1. For all k � 3 and m � 2, there exists a k-graph H on n = 2mk vertices 
with δ(H) � n/2 − 2k + 1 such that deg(v) is divisible by k for all v ∈ V (H) and there 
is an edge that is not contained in any tight cycle. In particular, we have the bounds 
δ(k)
cycle, δ

(k)
Euler � 1/2.

Proof. Let A and B be disjoint vertex-sets each of size mk. Recall that, for 0 � i � k, 
we defined Hi = H

(k)
i (A, B) as the k-graph with vertex set A ∪ B such that e ∈ Hi if 

and only if |e ∩B| = i. Consider the k-graph

H� =
⋃

i∈({0}∪[k])\{1,k−1}
H

(k)
i (A,B) ,

and observe that δ(H�) � n/2 −k+1. Note that each vertex has the same vertex-degree. 
By removing at most k−1 perfect matchings in each of H�[A] = H0(A, B) and H�[B] =
Hk(A, B), we may assume that each vertex has vertex-degree divisible by k. Additionally, 
remove edges a1 · · · ak ∈ H�[A] and b1 · · · bk ∈ H�[B] and add two edges a1 · · · ak−1bk
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and b1 · · · bk−1ak. Call the resulting graph H. Note that the bound δ(H) � n/2 − 2k+ 1
holds, and for every vertex v, dH(v) is divisible by k.

We now claim that the edge a1 · · · ak−1bk is not contained in any tight cycle. Indeed, 
for k = 3, note that degH(a1b3) = degH(a2b3) = 1, so a1a2b3 can only be the end of 
any tight path implying that a1a2b3 is not contained in any tight cycle. Now assume 
that k � 4. Since a1 · · · ak−1bk is the only edge in H ∩H1(A, B) (i.e. with exactly k − 1
vertices in A) any tight path of length at least k+1 containing a1 · · · ak−1bk as a second 
edge must travel from H0(A, B) to 

⋃
i�2 H

i(A, B). However, there is no other edge in 
H ∩H1(A, B) to close such a tight path into a cycle.

Since we have ensured every degree in H is divisible by k, this construction shows 
that δ(k)

cycle, δ
(k)
Euler � 1/2. �

We split the other inequalities in Theorem 1.5 into several lemmata.

Lemma 10.2. For k � 3, δ(k)
Euler � δ

(k)
cycle.

Proof. Let � = k2 and k � 3. Let 0 < 1/n 	 γ 	 μ 	 ε. Let H be a k-graph on n
vertices with δ(H) �

(
δ(k)
cycle + ε

)
n such that degH(v) is divisible by k for all v ∈ V (H). 

Note that δ(H) � (1/2 + ε)n by Proposition 10.1. Let σ1, . . . , σt be an enumeration of 
all ordered (k − 1)-tuples of V (H), so t = n!/(n − k + 1)!. For each i ∈ [t], let ai = σi

and bi = σ−1
i+1, with indices taken modulo t. Let S = {ai, bi : i ∈ [t]} be the multisets. 

Note that S is γ-sparse. By Lemma 6.1, for all i ∈ [t], H contains at least εn� trails P on 
� +2(k−1) vertices such that D(P ) = {ai, bi}. Apply Lemma 9.9 to obtain edge-disjoint 
trails {Pi : i ∈ [t]} in H such that, for each i ∈ [t],

(i) Pi has � + 2(k − 1) vertices and D(Pi) = {ai, bi};
(ii) the vertices of Pi outside D(Pi) are all distinct and
(iii) Δk−1(

⋃
i∈[t] Pi) � μn.

Let P =
⋃

i∈[t] Pi, and note that (after joining trails) we obtain a tour in H. Con-
sider the k-graph H ′ = H − P. Note that degH′(v) is divisible by k for all v ∈ V (H ′)
and δ(H ′) � δ(H) − μn � (δ(k)

cycle + ε/2)n. Thus there is a cycle-decomposition C of H ′. 
By attaching each cycle to the tour P, we obtain an Eulerian tour in H. Hence we 
obtain δ(k)

Euler � δ(k)
cycle, as desired. �

Lemma 10.3. For k � 3, δ(k)
cycle � δ(k)

Euler.

Proof (sketch). Let δ = δ(k)
Euler, by Proposition 10.1 we have δ � 1/2. Given ε > 0, let n

be sufficiently large and let H be a k-graph on n vertices with δ(H) � (δ+2ε)n with all 
vertex-degree divisible by k. It is enough to show that H is decomposable into cycles.

The idea is to use the iterative absorption framework. Indeed, since δ � 1/2, we 
have δ(2)(H) � 4εn. Thus there exists � large enough (depending on ε only) such that 
the Vortex lemma (Lemma 4.1) and the Cover-down lemma (Lemma 4.2) work in this 
setting. Thus it is possible to find a vortex U0 ⊇ U1 ⊇ · · · ⊇ Ut to find a C(k)

� -packing 
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which cover all edges except but those located in Ut. In fact, we can assume that the 
leftover F ⊆ H[Ut] satisfies δ(F ) � (δ+ε)|Ut| (see the proof of Theorem 1.3 in Section 4
for detailed calculations to make these two steps work). The only missing step is the 
construction of an absorber for such a constant-sized leftover.

The key observation here is that since the leftover F will satisfy δ(F ) � (δ+ε)|Ut|, we 
can assume that F admits an Euler tour. Since an Euler tour admits an edge-bijective 
homomorphism from a cycle, we can easily build a cycle-decomposable transformer be-
tween such a leftover and a cycle, and this step requires only δ(2)(H) � εn (this is exactly 
what is done in the proof of Lemma 4.3). �
Lemma 10.4. For k � 3, δ(k)

cycle � inf�>k{δC(k)
�

}.

Proof. Let δ = inf�>k{δC(k)
�

}. Note that δ � 1/2 by Proposition 10.1.
Let 1/n 	 ε and let H be a k-graph on n vertices with δ(H) � (δ + 3ε)n and every 

degree divisible by k. By the definition of infimum, there exists � (depending on ε only) 
such that δC(k)

�
� δ+ ε. Since δ(H) � (1/2 +2ε)n, we can use Lemma 6.1 to find a cycle 

C whose removal leaves a number of edges divisible by �. Thus δ(H −C) � (δ + 2ε)n �
(δC(k)

�
+ ε)n, and therefore H − C admits a C(k)

� -decomposition. Together with C, this 
is a cycle decomposition of H. �

Theorem 1.5 follows immediately from Lemma 10.2, Lemma 10.4, Proposition 10.1
and Theorem 1.3.

11. Concluding remarks

Theorem 1.5 and Theorem 1.3 show that, for all k and sufficiently large �, the in-
equalities 1/2 � δ(k)

Euler = δ(k)
cycle � δC(k)

�
� 2/3 are valid. For k = 3, the second 

and third authors [14] gave an example showing that δ(3)
Euler � 2/3, and therefore, 

δ(3)
Euler = δ(3)

cycle = δC(3)
�

= 2/3 for large �. However, we were unable to generalise the exam-
ples presented there for k � 4. Our best example (Proposition 10.1) gives us δ(k)

cycle � 1/2, 
so we suggest the following question.

Question 11.1. Does there exist k � 4 such that δ(k)
cycle > 1/2?

We gave a new lower bound for the fractional C(k)
� -decomposition threshold δ∗C(k)

�

in Proposition 2.1. Moreover, when k/ gcd(�, k) is even or gcd(�, k) = 1, we are able 
to calculate the value given by our bound in a explicit form (see Corollary 2.3). Is 
the construction given by Proposition 2.1 best-possible? We would like to propose the 
following weaker question.

Question 11.2. Given k � 2, does there exist �0 such that, for all � > �0 with � 
≡ 0
mod k, δ∗C(k) � 1 + 1 ?
� 2 2(�−1)
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When k = 2, we believe that �0 should be 1, which also implies the Nash-Williams 
conjecture [13] on δK3 (cf. [3, Theorem 1.4]).
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