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Abstract

In previous magnetoencephalography (MEG) studies, children with autism spectrum disor-

der (ASD) have been shown to respond differently to speech stimuli than typically develop-

ing (TD) children. Quantitative evaluation of this difference in responsiveness may support

early diagnosis and intervention for ASD. The objective of this research is to investigate the

relationship between syllable-induced P1m and social impairment in children with ASD and

TD children. We analyzed 49 children with ASD aged 40–92 months and age-matched 26

TD children. We evaluated their social impairment by means of the Social Responsiveness

Scale (SRS) and their intelligence ability using the Kaufman Assessment Battery for Chil-

dren (K-ABC). Multiple regression analysis with SRS score as the dependent variable and

syllable-induced P1m latency or intensity and intelligence ability as explanatory variables

revealed that SRS score was associated with syllable-induced P1m latency in the left hemi-

sphere only in the TD group and not in the ASD group. A second finding was that increased

leftward-lateralization of intensity was correlated with higher SRS scores only in the ASD

group. These results provide valuable insights but also highlight the intricate nature of neural

mechanisms and their relationship with autistic traits.

Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired

social interaction and communication along with restricted and repetitive behavioral patterns

and fixated interests, as defined in the Diagnostic and Statistical Manual of Mental Disorders,

Fifth Edition (DSM-5) [1]. Early diagnosis and intervention are vital for optimizing outcomes

in individuals with ASD [2–4]; However, clinical diagnosis of ASD in young children can be

challenging, as the characteristic symptoms may be less evident during the early developmental
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stages. Surveys of families with children affected by ASD highlight common delays between

the initial emergence of caregiver concerns and the comprehensive evaluation as well as

between the evaluation and official ASD diagnosis [5–7]. Notably, a recent multicenter surveil-

lance study reported that, while 85% of caregivers noted concerns regarding developmental

delays by 36 months of age, only 61% of the children underwent a comprehensive evaluation

by 48 months. The median age at diagnosis was 52 months [3].

Diagnosing ASD proves to be challenging due to several factors including time constraints

during office visits, the subtle nature of social developmental milestones, and the variability of

signs and symptoms observed in individual children. The process can be further complicated

by numerous elements that potentially delay the diagnosis, including the presence of less

severe symptoms, female gender, concurrent issues such as anxiety or hyperactivity, lack of

continuous care, and others such as socioeconomic factors and language barriers [7–10].

Moreover, the symptoms can be obscured or exacerbated by coexisting problems, which may

affect both the timing and accuracy of the diagnosis. The lapse in establishing a timely diagno-

sis is clinically concerning as it might postpone the implementation of evidence-based behav-

ioral interventions, potentially leading to suboptimal outcomes [11]. Implementing

interventions such as the Early Start Denver Model, a behavioral therapy specifically designed

for children with ASD, has been shown to enhance social, language, and cognitive functions,

especially when initiated before the age of 5 (between 12 and 60 months) [12–14]. These find-

ings underscore the importance of early diagnosis and intervention to improve the prognosis

and quality of life of individuals with ASD. Given the fluctuating and sometimes elusive nature

of behavioral autistic traits highlighted above, delving into the biological and physiological

characteristics of ASD may forge a path towards more precise diagnostics and nuanced evalua-

tions of treatment responses.

In recent years, brain imaging techniques have become primary methods for probing the

neural foundations of ASD. Numerous neuroscience studies have employed tools such as mag-

netic resonance imaging (MRI), functional near infrared spectroscopy, positron emission

tomography (PET), electroencephalography (EEG), magnetoencephalography (MEG), and

transcranial magnetic stimulation. In light of this, McPartland and colleagues conducted an

extensive review of the advancements in understanding ASD using these techniques [15].

They concluded that, while this body of research has offered critical insights, consistent find-

ings across different studies remain elusive—with some exceptions, such as Kang et al. [16].

This lack of consistency might be due to a predominant emphasis on unveiling new results

rather than solidifying existing knowledge, which can inadvertently overlook potentially sig-

nificant findings, as demonstrated by Kang et al. [16]. Additionally, the inherent heterogeneity

of ASD, which is diagnosed based solely on behavioral criteria and covers a broad spectrum of

neural anomalies, necessitates an approach that acknowledges potential variations in neural

pathology across individuals.

A more nuanced strategy might correlate specific aspects of autistic traits, such as the sever-

ity of social challenges or the manifestation of restricted and repetitive behaviors, with their

neurological foundations. Given the early onset of ASD symptoms, it is especially beneficial to

target younger demographics in these studies. However, when focusing on the use of imaging

techniques in young children, we encounter certain limitations. For instance, it is challenging

to use MRI methodologies, including functional MRI and diffusion tensor imaging, with

young children. The primary obstacles are children’s sensitivity to noise and the need for them

to remain motionless during scans. The use of PET imaging adds to these challenges because

of the introduction of radioactive tracers, which pose significant safety concerns.

Both MEG and EEG stand out as safer alternatives. They operate without noise and avoid

radiation exposure risks, making them safe, noninvasive, and direct methods for measuring
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the brain’s magneto-electrical activity. These techniques yield detailed data that include fre-

quency and phase information, enabling a deeper understanding of neural activity during

information processing, even without evident behavior [17]. Importantly, MEG exhibits less

sensitivity to conductivity variations among different anatomical structures, like the brain,

cerebrospinal fluid, skull, and scalp, compared to EEG. This is because MEG measures mag-

netic fields rather than electric potentials [18,19]. Given these advantages, MEG holds signifi-

cant promise for ASD research, especially in pediatric populations.

Auditory-evoked potentials (AEPs in EEG recordings and AEFs in MEG recordings) repre-

sent the auditory system’s electromagnetic signals, generated in response to sound stimuli.

These signals, precisely captured through EEG or MEG, are distinguished based on their

occurrence time post-stimulus onset: early responses within 10 ms, middle-latency responses

between 10 and 50 ms, and long-latency responses between 60 and 500 ms [20]. The long-

latency response, especially notable in the cortical region, can be outlined using averaging

techniques to enhance the target response’s signal-to-noise ratio (SNR) [21–23].

Central to our discussion is the long-latency response of AEF, characterized by three nota-

ble peaks at approximately 50 ms (P1m), 100 ms (N1m), and 200 ms (P2m). Within these, the

first and second peaks are often the focus of examination. However, it is important to note

that, in children younger than 10 years old, the second peak may not be fully developed and

might be less discernible, making the first peak a more reliable measure to assess the auditory

cortex response in this age group [24–27]. In early childhood, the latency of these peaks devi-

ates significantly from adult patterns, resulting in varied nomenclatures for the first peak

across different studies, including P1m [28,29], M50 [25,30,31], P50m [32], and P100m [33].

In this study, we will adopt the term P1m for consistency. The P1m, primarily generated by

neural activity in the primary and associative auditory cortices [34], acts as a pre-attentional

response, reflecting the developmental status of the central auditory pathways. Specifically, its

amplitude and latency indicate neural synchrony and auditory stimulation transmission time,

respectively [34–36].

In numerous studies, a consistent observation is the delayed latency in the P1m component

of AEFs elicited by pure tones in individuals with ASD. Roberts et al. [37] noted this in chil-

dren with ASD (average age: 10.41 ± 2.51 years) compared to TD children (average age:

10.88 ± 2.70 years). This observation was confirmed by Matsuzaki et al. [38], who extended the

research to include both children and adults with ASD (children: 10.07 ± 2.38 years, adults:

23.80 ± 6.26 years) and their TD counterparts (children: 9.21 ± 1.60 years, adults: 26.97 ± 1.29

years). Further studies consolidated these findings, linking longer P1m latencies with poorer

language and communication skills in children with ASD ranging in age from 8 to 12 years

[39]. This body of research is supported by works from Stephen et al. [40] (child participants

aged 22.5 ± 2.6 months and 40.6 ± 2.5 months for TD and ASD groups respectively) and

Demopoulos et al. [41] (child participants aged 11.47 ± 3.48 years and 13.78 ± 3.57 years for

TD and ASD groups respectively), leading to a consensus that atypical auditory cortex neural

activity is a significant characteristic of ASD, manifesting as prolonged pure-tone-evoked P1m

latencies when compared to TD controls. Despite these findings, it is noteworthy that a recent

meta-analysis by Williams et al. found no practically significant group differences in P1m

intensities, adding a nuanced perspective to the ongoing discourse [42]. Overall, these studies

suggest a complex picture of atypical auditory cortex neural activity in individuals with ASD,

primarily manifesting as prolonged pure-tone-evoked P1m latencies compared to TD controls,

though intensity differences remain inconclusive.

In our preceding research, we shifted the focus to syllable-induced P1m, specifically

employing the Japanese syllable /ne/ as an auditory stimulus, which is rich in prosodic infor-

mation and social cues [29,43–47]. This choice of stimulus, inherently not purely auditory,
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potentially mirrors the aberrant processing of social information in children with ASD. Yoshi-

mura et al. reported that, among 59 TD children with an average age of 48.6 ± 8.5 months, a

weak intensity of syllable-evoked P1m in the left hemisphere was associated with lower skills

in conceptual inference [29]. The conceptual inference was gauged using the riddle subscale of

the K-ABC [48]. In a subsequent study, Yoshimura et al. [45] compared 33 TD children and

30 children with ASD within roughly the same age range (TD children aged 67.4 ± 10.7

months, children with ASD aged 66.9 ± 12.0 months). For TD children, a shorter latency of

syllable-induced P1m in either hemisphere was related to higher skills in conceptual inference.

Notably, these correlations were not significant in children with ASD.

Highlighting the intricate nature of the relationship, Yoshimura et al. observed that the

association between characteristics of P1m (i.e., latency and intensity) and skills in conceptual

inference differed depending on the stimuli. In a study using pure-tone instead of the human

voice to induce P1m, 46 TD children (aged 70.3 ± 5.9 months) and 29 children with ASD

(aged 74.7 ± 10.8 months) were examined. The results indicated that neither the latency nor

intensity of pure-tone-induced P1m in either hemisphere correlated with conceptual inference

in TD children. In contrast, among the ASD group, a shorter latency in the left hemisphere

was linked to enhanced conceptual inference skills [49].

Yoshimura et al. continued their investigations by studying the relationship between the

evolution of conceptual inference skills and changes in P1m latency and intensity over time.

They engaged 20 TD children and conducted two measurements. The participants’ ages were

51.0 ± 9.7 months at the first measurement and 69.0 ± 8.9 months at the second measurement.

A significant increase in the intensity of P1m in the left hemisphere was strongly correlated

with better development of conceptual inference skills. However, the latency of syllable-evoked

P1m showed no significant relation to this development [50].

In this context, Kikuchi et al. [51] ventured to compare conceptual inference skills in chil-

dren with ASD (aged 71.3 (62–92) months) and TD children (aged 70.8 (60–82) months).

(This study did not provide standard deviations for the age data.) The researchers identified

that children with ASD exhibited significantly lower conceptual inference skills, suggesting

that diminished skills in conceptual inference could be an aspect of autistic symptomatology.

Given the observed connection between syllable-evoked P1m and conceptual inference skills

in TD children, it is intriguing to consider if syllable-evoked P1m might also relate to other

facets of autistic symptomatology. However, the specifics of how syllable-evoked P1m inter-

plays with the severity of autistic symptoms remain uninvestigated.

Here, we explicitly acknowledge the exploratory nature of the present study. Accordingly,

our hypotheses are formulated on provisional grounds: (i) Stronger intensity of the syllable-

evoked P1m in the left hemisphere corresponds with better conceptual inference skills among

TD children [11], (ii) diminished conceptual inference skills potentially reflect certain facets of

autistic symptomatology [51], and (iii) TD children typically display a leftward lateralization

in syllable-induced P1m, which is characterized by a more pronounced intensity in the left

hemisphere compared to the right. Additionally, this lateralization seems to be subdued in

children with ASD [29,45]. Given these observations, we postulate that a reduced intensity of

syllable-evoked P1m, especially in the left hemisphere, correlates with more pronounced autis-

tic traits. Furthermore, a decreased leftward lateralization in the intensity of this response—

potentially indicated by a diminished intensity in the left hemisphere coupled with an aug-

mented intensity in the right—also signifies more accentuated autistic traits. To validate our

hypothesis, we propose employing linear regression models to predict the degree of autistic

traits, as denoted by scores on the SRS [52], using the data derived from the intensity measure-

ments of the syllable-evoked P1m in both hemispheres. Additionally, we aim to assess any cor-

relation between P1m latency and the severity of autistic traits. The knowledge gleaned from
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this investigation holds promise for substantially influencing the clinical approach towards

diagnosing and managing ASD. By identifying a more objective and noninvasive metric for

autistic traits, our ambition is to set the stage for more timely diagnosis and early interven-

tions.Method

Experimental design and sample size calculation

In this study, we evaluated the severity of autism symptoms in child participants, both with

and without ASD, using the SRS [52]. We assessed their intelligence using the Japanese version

of the K-ABC [48]. The syllable-evoked P1m data were derived from MEG recordings. Our

primary goal was to investigate the relationship between autistic symptoms, as indicated by the

total T-scores on the SRS, and the intensity of the P1m response across children with and with-

out ASD. To capture a comprehensive view of this relationship, we employed a multiple linear

regression model. This model considered the possible influence of fluid intelligence, as mea-

sured by the Mental Processing Scale (MPS) from the K-ABC, on autism symptoms [53].

Specifically, our model aimed to predict the total T-scores of the SRS based on the (log-

transformed) intensity of P1m from either the left or right hemisphere and the MPS scores in

the K-ABC. To determine the required sample size for this investigation, we began by estimat-

ing the effect size using a squared multiple correlation coefficient (R2) based on a preliminary

sample [54]. This sample comprised data from six TD children from our prior studies [29,45].

Our preliminary analysis, conducted on this sample, produced R2 values of 0.365 and 0.469 for

models considering the right and left P1m (log-transformed) intensities, respectively. To be

conservative, we chose to proceed with the smaller R2 value of 0.365. Setting the alpha at 0.05

and the power (1—beta) at 0.80, we arrived at an effect size F2 of 0.574 [55], determining a

total sample size of 21 to accommodate the two predictors. We used G*Power version 3.121.6

[56,57] for this sample size computation. We concluded to enlist at least 25 participants in

each group. This margin would accommodate potential exclusions for any unforeseen reasons.

Participants

We recruited participants from Kanazawa University and affiliated hospitals, securing 57 chil-

dren with ASD and 26 TD children. The diagnosis of ASD followed the criteria in the Diagnos-

tic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) [58], utilizing either

the Diagnostic Interview for Social and Communication Disorders (DISCO) [59] or the

Autism Diagnostic Observation Schedule (ADOS) [60]. To mitigate the potential confounding

effects of intellectual disability, we excluded six children with ASD who scored below 70 on the

K-ABC Mental Processing Scale. Additionally, two children with ASD were excluded due to

missing data concerning head location during the MEG recording. Consequently, our study

included 49 children with ASD (37 boys and 12 girls; aged 40–92 months) and 26 TD children

(21 boys and 5 girls; aged 42–89 months). Table 1 presents the characteristics of the

participants.

The Research Center for Child Mental Development at Kanazawa University (https://

kodomokokoro.w3.kanazawa-u.ac.jp/en/) continuously recruits children both with ASD and

TD children as part of the research initiative known as the "Bambi Plan," which focuses on

ASD research. Our participant pool was drawn from individuals recruited at this center

between the years 2009 and 2014. We accessed their data between September 1 and September

30, 2022, for research purpose and had access to information that could identify individual

participants during or after data collection. Notably, there was an overlap in the participant

pool with some of our previous studies [29,45–47,51]. We integrated all available data from

these earlier studies, which included 8 TD children (7 boys and 1 girl, aged 42–75 months) and
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21 children with ASD (19 boys and 2 girls, aged 40–92 months), supplementing it with new

participants. While there was an overlap in the data, the focal points and results of the current

study are distinct from those of previous research. Exclusion criteria were defined, ruling out

potential participants with (1) blindness, (2) deafness, (3) any other neuropsychiatric disorder,

or (4) an ongoing medication regimen. Written informed consent was obtained from parents

of the children prior to their participation in the study. The Ethics Committee of Kanazawa

University Hospital approved the methods and procedures, all of which were conducted in

accordance with the Declaration of Helsinki.

Psychological assessment

We used the SRS to assess the participants’ autistic traits. The SRS is a 65-item rating scale

used to quantify sociality and autistic mannerisms in both TD children and children with

autism spectrum conditions. It generates a single measure by assessing social awareness, social

cognition, social communication, social motivation, and autistic mannerisms. The SRS was

completed by the parents of each participant in both groups, and we utilized gender-normed T

scores (referred to as SRS-T) for each subscale in our analyses. Higher SRS-T scores indicate

more severe autistic traits. While research on the validity of children’s self-ratings is ongoing,

the SRS can be administerd by a parent, teacher, or other adult informant. The SRS is rated

based on the observation of children in their natural social contexts, reflecting what has been

observed over weeks or even months rather than a single clinical or laboratory observation

[52]. This feature of the SRS enables it to leverage the informant’s accumulated knowledge of

the child’s behavior over time. Researches has shown that the SRS shows good agreement with

other parent- or teacher-reported assesments of ASD related behaviors, such as the Social

Communication Questionnaire [61–63], Children’s Communication Checklist [63,64], and

Social and Communication Disorders Checklist [65]. Additionally, the SRS scores are known

to exhibit high inter-rater reliability [52] and are distributed continuously throughout a popu-

lation [66].

For this study, we evaluated the intelligence of the participants using the Japanese version

of the K-ABC. The K-ABC is a widely used standardized test designed to distinguish intelli-

gence from knowledge [48,67]. The K-ABC defines a set of problem-solving skills as intelli-

gence and includes a range of subtests designed to assess various aspects of intelligence, such

Table 1. Characteristics of participants.

N ASD N = 49 TD N = 26 t or χ2 p
Sex (%boys) 76% 80% 0.268 0.605

Age in months 66.8 (10.9) 65.8 (12.9) −0.324 0.747

SRST-scores

Total 72.1 (11.9) 49.2 (6.5) −9.097 0.000*
Social awareness 65.9 (9.9) 48.0 (7.4) −8.132 0.000*
Social cognition 73.4 (11.7) 50.2 (9.6) −8.694 0.000*

Social communication 69.7 (12.2) 48.5 (6.3) −8.273 0.000*
Social motivation 60.9 (10.6) 52.4 (7.9) −3.572 0.001*

Autistic mannerism 74.8 (15.5) 48.6 (7.6) −8.099 0.000*
K-ABC Mental processing scale score 101.8 (15.1) 101.4 (11.2) −0.117 0.908

Numbers are mean (standard deviation) or counts.

K-ABC, Kaufman Assessment Battery for Children.

*p< .05.

https://doi.org/10.1371/journal.pone.0298020.t001
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as short- and long-term memory, fluid ability, language development, reasoning, and verbal

and non-verbal comprehension. Combining these subtests, intelligence is measured using the

Mental Processing Scale [48]. In our study, we administered the K-ABC Mental Processing

Scale score to the children in both groups (ASD and TD), and their scores were presented as

standardized scores that were age-adjusted, normalized to have an average of 100, and a stan-

dard deviation of 15. The K-ABC is a well-established measure of intelligence and has demon-

strated good reliability and validity across the age range of 2.5 to 12.5 years [48,67].

MEG recordings

The MEG data were recorded with a 151-channel superconducting quantum interference

device (SQUID) and a whole-head coaxial gradiometer MEG system for children (PQ 1151R;

Yokogawa⁄KIT, Kanazawa, Japan) in a magnetically shielded room (Daido Steel, Nagoya,

Japan) installed at the MEG Center of Ricoh Company Limited (Kanazawa, Japan). We used a

customized child-seized MEG. The child MEG system ensures that the sensors can be effec-

tively positioned within the reach of the child’s brain and that the head movement is well con-

strained [68]. To encourage the children and minimize movement during the measurements,

an experimenter was present in the room. During the MEG recordings, auditory stimuli were

presented, as described below. The children were instructed to watch a silent video on a screen

while listening to the auditory stimuli. MEG recordings were conducted for 12 minutes during

the presentation of stimuli, and bandpass-filtered MEG data (0.16–200 Hz) were collected at a

sampling rate of 1000 Hz. During MEG recordings of the children, we employed three coils to

create a magnetic field associated with distinct brain landmarks (both mastoid processes and

nasion) in order to track their head placement. Anatomical data from MRI could not be

obtained because of the children’s sensitivity to noise and difficulty remaining still during the

scans.

AEF stimuli and procedures

In this study, we employed a typical oddball paradigm in which sequences comprised standard

stimuli 83% of the time (456 times) and deviant stimuli 17% of the time (90 times). The stan-

dard stimulus maintained a stable pitch contour throughout the pronunciation of the syllable

/ne/, while the deviant stimulus featured a falling pitch. These sounds were articulated by a

female native Japanese speaker and captured using a condenser microphone (NT1-A; Rode,

Silverwater, NSW, Australia). As depicted in Fig 1, each stimulus persisted for a duration of

342 ms. The consonant /n/ lasted for 65 ms, preceding the vowel /e/. The time between stimuli

was 818 ms at a level of around 65 dB (A-weighted), compared to an average background

noise of 43 dB, as determined by an integrating sound level meter (LY20; Yokogawa, Tokyo,

Japan). Participants received the auditory stimuli binaurally, meaning through both ears. The

stimuli were transmitted via loudspeakers (HK195 Speakers; Harman Kardon, Stamford, CT,

USA) located outside the magnetically shielded room housing the MEG equipment. The

speakers delivered the sound into the MEG chamber through a specialized sound-conduction

system that utilized a gap or aperture in the chamber’s structure, ensuring the sound quality

was maintained without interfering with the MEG’s magnetic field. This setup facilitated a

12-minute stimulus-presentation session.

This figure presents the sound waveforms of the standard /ne/ (left panel) and deviant /Ne/

(right panel) voice stimuli used in the study. The total duration of each stimulus is 342 ms, seg-

mented into 65 ms for the consonant /n/ and 277 ms for the subsequent vowel sound /e/. This

illustration is intended to provide a clear understanding of the structural and temporal charac-

teristics of the stimuli employed in our experiments. The MEG analysis onset time was defined
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as the beginning of the vowel portion. It is important to note that only the standard stimuli

were used for the subsequent equivalent current dipole (ECD) estimation, as only this condi-

tion provided a sufficient number of epochs for accurate ECD calculation.

Equivalent current dipoles for the AEFs

To identify the source of the P1m component of the AEF, we used a widely accepted method

called ECDs. MEG signals are thought to originate from the apical dendrites of the pyramidal

cells in the cerebral cortex. The ECD model is an idealized point source of neural activation,

which represents coherent activation of a large number of pyramidal cells in a small area of the

cortex. In this study, we used ECDs to estimate the source of the P1m component of the AEF.

To calculate the ECDs without using MRI-based anatomical information, we adapted a

spherical model to represent the volume conductor, positioning it at the center of the MEG

helmet. The onset time of the syllable stimuli (designated as 0 ms) was set at the onset of the

vowel /e/ rather than the consonant /n/ in accordance with our prior studies [29,45–47,51].

We then averaged the time series spanning from -150 ms to 1000 ms (with a minimum of 300

epochs for standard stimuli) for every sensor, after baseline correction.

The baseline was set from −50 ms to 0 ms relative to the onset of the vowel /e/. Artifact-con-

taminated segments (such as eye blinks, eye movements, and bodily motions, typically exceed-

ing ± 4 pT) were omitted from the analysis. A uniform ECD model facilitated the computation

of the current sources, engaging at least 42 sensors per hemisphere [80]. All procedural steps

and parameters were aligned with our earlier studies [29,45–47,50,51], ensuring the findings

from this research can be directly compared with our prior results.

We acknowledge the significance of selecting the appropriate onset time for syllable stimuli,

specifically between the consonant /n/ and the vowel /e/. To maintain consistency with our

previous studies [29,45–47,51], which predominantly examined the vowel /e/ response, we

opted for this latter setting in our current study. This choice is pivotal for enabling direct com-

parisons with prior findings, thereby enriching our understanding of auditory processing in

typically developing children and children with ASD. However, we must acknowledge a cru-

cial assumption in this approach: a minimal brain response to the consonant /n/ due to its

lower sound intensity compared to the vowel /e/. While this assumption would be reasonable,

Fig 1. Waveform of the auditory stimuli.

https://doi.org/10.1371/journal.pone.0298020.g001
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it may not fully encapsulate the natural auditory processing mechanisms and could inadver-

tently obscure the brain’s response to the consonant /n/. This aspect warrants careful consider-

ation in interpreting our findings.

We approved the estimated ECDs if the following conditions were met: (i) the goodness of

fit (GOF) surpassed 85% during the response’s target period, which indicates how well the esti-

mated ECD matches the measured MEG signal; (ii) the position of the estimated dipoles in the

single ECD model remained steady within a ± 5 mm range for each coordinate for a minimum

of 6 ms; (iii) dipole intensities were equal to or less than 80 nA; and (iv) the direction of the

estimated ECD was in an anterosuperior orientation. The time point was identified as the

latency, when the estimated dipole intensity value had reached a maximum and met the above

criteria within the time window from 40 to 150 ms. Importantly, only the standard stimuli

were used for the subsequent ECD estimation, as only this condition provided a sufficient

number of epochs for accurate ECD calculation after artifact rejection across all child

participants.

Statistical analysis

Our primary hypothesis was that a reduced intensity of syllable-evoked P1m, especially in the

left hemisphere, correlates with more pronounced autistic traits. Additionally, a decreased left-

ward lateralization in the intensity of this response also signifies more pronounced autistic

traits.

First, to evaluate this hypothesis, our statistical model aimed to explore any potential differ-

ential correlation between the intensity of syllable-evoked P1m and autistic traits between chil-

dren with ASD and TD children. Recognizing the potential influence of intellectual abilities on

SRS scores, as suggested in prior research [69], we incorporated this variable into our model.

Thus, we performed a linear regression analysis predicting the SRS total T-score based on the

intensity of the left (or right) P1m, diagnostic category (ASD or TD), MPS scores, and an inter-

action term between P1m intensity and diagnosis. This interaction term is vital for discerning

potential variations in the relationship between P1m intensity in the respective hemispheres

and autistic traits among the two groups. The inclusion of MPS scores mitigates the potential

confounding effect of intelligence on SRS scores. We conducted this regression twice—once

for the left hemisphere and once for the right—without adjusting for multiple comparisons,

given the few preplanned and likely correlated comparisons [70,71]. Consequently, we set the

statistical significance level at p< .05. Aligning with our previous methods [29,45], we used

log-transformed intensity values rather than raw intensity for comparisons. For thoroughness,

we also executed the same analysis using P1m latency in place of log-intensity.

Second, to delve deeper into the relationship between syllable-induced P1m intensity and

autistic traits, we sought to discern how changes in the P1m intensity, either diminished in the

left hemisphere or amplified in the right, might correlate with more pronounced autistic traits

within each diagnostic group (i.e., TD children and children with ASD). We performed sepa-

rate linear regression analyses for each group predicting the SRS total T-score based on P1m

intensity (either left or right) and MPS scores. This analysis was undertaken four times—once

for each hemisphere within both diagnostic categories—without corrections for multiple com-

parisons, setting the significance threshold at p< .05, given the preplanned and potentially

correlated comparisons [70,71]. For completeness, P1m latency was also examined in lieu of

log-intensity.

Third, we sought to identify any varying correlations between the degree of leftward lateral-

ization in P1m intensity and autistic traits across children with ASD and TD children. A linear

regression analysis was undertaken to predict the SRS total T-score based on the P1m’s
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leftward lateralization (defined as log-transformed P1m intensity in the left hemisphere minus

its counterpart in the right), diagnostic category, MPS scores, and an interaction between P1m

leftward lateralization and diagnosis. Similarly, we conducted an analysis replacing log-inten-

sity with P1m latency with a significance level set at p< .05, following the rationale of limited

preplanned and potentially interlinked comparisons [70,71].

Fourth, we aimed to probe the association between the leftward lateralization of syllable-

induced P1m and autistic traits within each diagnostic group. We performed separate linear

regression analyses for each group predicting the SRS total T-score based on P1m’s leftward

lateralization and MPS scores. This analysis phase was executed twice, once for each diagnostic

category, again without multiple comparison corrections. The statistical significance threshold

was retained at p< .05 due to the limited preplanned and potentially correlated comparisons

[70,71]. As a thoroughness measure, we also examined P1m latency as an alternative to log-

intensity.

Before applying any linear regression model, we verified that our data meet the assumptions

for regression analysis. Specifically, we used standard methods to verify the linearity, normal-

ity, homogeneity of variance, influence, and collinearity. As a result, the assumption of homo-

geneity was violated in some of the regression models. Therefore, we used heteroscedasticity-

robust standard errors [72].

Results

MEG data were collected from 26 TD children and 49 children with ASD. Only responses to

the standard stimuli yielded a sufficient number of epochs for accurate ECD calculation across

participants. Therefore, only responses to standard stimuli were analyzed. Eleven participants

did not achieve the minimum of 300 epochs. Specifically, data from two TD children and nine

children with ASD were excluded. The numbers of participants excluded were not significantly

different between groups (χ2 = 1.55, p = 0.214). Thus, the responses were averaged over

403.8 ± 2.2 (mean ± SD) epochs for the 24 TD children and 382.4 ± 39.1 epochs for the 40 chil-

dren with ASD. A Student’s t-test revealed that the average number of epochs was significantly

higher for the TD children (t(62) = 2.26, p = 0.03). The syllable-induced AEF displayed promi-

nent peaks in the 40–150 ms time window (i.e., P1m) for the majority of participants in both

hemispheres when the baseline was set from −50 ms to 0 ms relative to the onset of the vowel

/e/. Fig 2 presents these waveforms and the magnetic contour map of P1m for a representative

participant. S1 Fig displays the group averages of waveforms for the TD and ASD participants

in the left and right hemispheres.

To ensure that the initial head positions did not differ statistically between the ASD and TD

groups, we attached three coils to each participant’s skull, positioned at both mastoid processes

and the nasion. Each coil created a magnetic field that enabled us to track their initial head

positions. A Student’s t-test revealed significant differences between the ASD and TD groups

in the y-coordinate of the coil at both the left mastoid process (t(62) = -2.22, p = 0.03) and the

right mastoid process (t(62) = -2.05, p = 0.04), which might affect the results (as discussed in

the limitations section). No significant differences were observed in the x and z coordinates of

these coils. Similarly, no significant differences were found in any coordinate of the coil at the

nasion. Detailed results are presented in the S1 Table.

This figure presents these waveforms and the magnetic contour map of P1m for a represen-

tative participant. Syllable-induced AEF with a baseline from −50 to 0 ms relative to the onset

of the vowel /e/. The resultant AEF displayed a pronounced activity peak between 45 and 150

ms. The onset of the consonant /n/ is at −65 ms relative to that of /e/. The blue arrow displays

the direction of the estimated dipole moment.
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In total, the ECD sources for P1m in the left hemisphere were reliably estimated for 21 TD

children and 38 children with ASD. The dipole latency in the left hemisphere was 78.7 ± 19.2

(mean ± SD) ms for TD children and 78.4 ± 20.1 ms for children with ASD. The difference in

latency between the two groups was not significant (t(57) = 0.06, p = 0.96). The log-trans-

formed intensity of these dipoles was 2.8 ± 0.5 for TD children and 2.7 ± 0.6 for children with

ASD. The difference in log-transformed intensity between the two groups was also not signifi-

cant (t(57) = 0.71, p = 0.48).

For the right hemisphere, the ECD sources for P1m were reliably estimated for 23 TD chil-

dren and 33 children with ASD. The dipole latency was 72.7 ± 20.1 (mean ± SD) ms for TD

children and 81.9 ± 18.7 ms for children with ASD. The difference in latency between the two

groups was not significant (t(54) = −1.74, p = 0.09). The log-transformed intensity of these

dipoles was 2.6 ± 0.4 for TD children and 2.7 ± 0.4 for children with ASD. Again, the difference

in intensity was not statistically significant between the two groups (t(54) = −0.84, p = 0.41).

Fig 3 presents violin plots of P1m latency and log-transformed intensity within each group.

Fig 2. Neuromagnetic response to the standard syllable /ne/ stimuli.

https://doi.org/10.1371/journal.pone.0298020.g002
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Besides reporting no significant group differences in P1 latency and log-transformed inten-

sity, we also examined the asymmetry of P1 intensity between the TD and ASD groups. It is

important to note that this analysis revealed no significant difference in the asymmetry of P1

amplitude between the two groups. We delve into the details of this analysis, including the cal-

culation method and considerations for outlier exclusion, in a later section of this manuscript.

The figure displays violin plots illustrating the distribution of P1m latency and log-trans-

formed intensity values for both the right (R) and left (L) hemispheres, separated by diagnostic

group (ASD and TD). The top two plots represent the right hemisphere with the first showcas-

ing P1m latency and the second depicting the log-transformed P1m intensity. The bottom two

plots correspond to the left hemisphere; the first illustrates P1m latency, and the second dem-

onstrates the log-transformed P1m intensity. The width of each "violin" indicates the density

of the data at different values, offering a visual representation of the data’s distribution.

TD children, typically developing children; ASD, Autism spectrum disorder.

Significant relationship between left P1m latency and SRS T-scores

We conducted linear regression analyses to predict the SRS total T-score with variables includ-

ing left (or right) P1m intensity, diagnostic group (ASD or TD), MPS scores, and an interac-

tion term between left (or right) P1m intensity and diagnosis. Consistent with our previous

methods [29,45] and as described in the Method section, we utilized log-transformed intensity

values rather than raw intensities for these models. These models did not yield any statistically

significant factors. Separate regression analyses were then performed for each group to predict

the SRS total T-score based on left (or right) P1m log-intensity and MPS scores. Again, no sig-

nificant factors emerged from these models. Details are provided in S2 and S3 Tables.

Transitioning our focus from intensity to latency, we conducted linear regression analyses

with variables including left (or right) P1m latency, diagnostic group, MPS scores, and the cor-

responding interaction term. Notably, only the effect of left P1m latency was significant (t(54)

= −2.64, p = 0.011). Additional separate regressions for each diagnostic group were then per-

formed using left (or right) P1m latency and MPS scores. Within these, only the TD group

Fig 3. Violin plots of P1m latency and log-transformed intensity by diagnostic group.

https://doi.org/10.1371/journal.pone.0298020.g003
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showed a significant effect for left P1m latency (t(18) = −2.59, p = 0.018). The results from

these analyses are presented in Tables 2 and 3. Fig 4 shows a visual representation of the rela-

tion between left P1m latency and SRS total T-score.

To visualize the relation between SRS total T-scores and P1m latency in the left hemisphere

for TD children, we performed a simple regression to predict SRS total T-scores based solely

on P1m latency, excluding the mental processing scale for clarity. The effect of P1m latency on

SRS total T-scores remains significant in this simplified model (t(19) = -2.68, p = 0.015). The

figure depicts individual data points for TD children. The solid line represents the predicted

regression line, and the shaded area around it denotes the 95% confidence intervals based on

our regression model.

SRS, social responsiveness scale; TD children, typically developing children.

Table 2. Association between SRS total T-score and right or left P1m latency controlling for K-ABC mental processing scale score.

Coeff. Robust SE t p 95%CI F Prob > F R2

vs. SRS total T-score

Right P1m Latency −0.11 0.84 −1.37 0.177 −0.28 0.05 21.42 <0.001 0.55

Diagnosis 9.23 10.26 0.90 0.372 −11.37 29.83

Interaction between right P1m latency and diagnosis 0.15 0.13 1.16 0.253 −0.11 0.41

Mental processing scale score 0.06 0.11 0.56 0.579 −0.15 0.27

vs. SRS total T-score

Left P1m latency −0.14 0.06 −2.64 0.011* −0.29 −0.04 28.82 <0.001 0.54

Diagnosis 14.64 9.77 1.50 0.140 −4.95 34.23

Interaction between left P1m latency and diagnosis 0.08 0.12 0.70 0.486 −0.15 0.32

Mental processing scale score −0.00 0.12 −0.04 0.971 −0.24 0.23

Coeff., regression coefficient; SE, standard error; CI, confidence interval.

*p < .05.

https://doi.org/10.1371/journal.pone.0298020.t002

Table 3. Association between SRS total T-score and right or left P1m latency for each diagnosis group controlling for K-ABC mental processing scale score.

Coeff. Robust SE t p 95%CI F Prob > F R2

vs. SRS total T-score

TD

Right P1m latency −0.12 0.09 −1.37 0.187 −0.3 0.06 1.07 0.36 0.14

Mental processing scale score −0.04 0.08 −0.46 0.651 −0.21 0.13

ASD

Right P1m latency 0.04 0.1 0.39 0.702 −0.17 0.24 0.31 0.73 0.02

Mental processing scale score 0.1 0.15 0.71 0.485 −0.19 0.41

vs. SRS total T-score

TD

Left P1m latency −0.17 0.65 −2.59 0.018* −0.3 −0.03 3.76 0.04 0.22

Mental processing scale score −0.07 0.11 −0.62 0.541 −0.29 0.16

ASD

Left P1m latency −0.08 0.1 −0.8 0.427 −0.28 0.12 0.33 0.72 0.02

Mental processing scale score 0.01 0.14 0.09 0.93 −0.28 0.3

Coeff., regression coefficient; SE, standard error; CI, confidence interval.

*p < .05.

https://doi.org/10.1371/journal.pone.0298020.t003
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Given the significant difference in the average number of epochs between the ASD and TD

groups, we introduced another regression model to account for the SNR. We used the square

root of the number of averages for each participant as a proxy for SNR [73] and added it to the

original regression model. In particular, this revised model predicts the SRS total T-score

based on the left P1m latency, diagnostic group (ASD or TD), MPS scores, interaction between

left P1m latency and diagnosis, and square root of the number of averages. By integrating the

SNR proxy, we ensure relationships observed with left P1m latency are not only a result of

SNR variations. Even with this adjustment, the left P1m latency remained a significant predic-

tor (t(53) = −2.62, p = 0.011). Adopting a similar approach for the separate group-based

regressions, the left P1m latency remained a significant predictor (t(17) = −2.61, p = 0.018)

within the TD group. All other factors remained nonsignificant. Detailed results are provided

in S4 Table.

In summary, our findings emphasize a significant association between more pronounced

autistic traits and the shorter latency of syllable-induced P1m, predominantly in the TD group

and localized to the left hemisphere. Such a relationship was not evident with P1m log-

intensity.

More pronounced autistic symptoms are associated with stronger leftward

lateralization in P1m intensity, exclusively in children with ASD

We performed a linear regression analysis to predict the SRS total T-score using P1m’s left-

ward lateralization (defined as the log-transformed P1m intensity in the left hemisphere minus

its counterpart in the right), diagnostic group, MPS scores, and an interaction term between

P1m leftward lateralization and diagnosis. For this analysis, we only included participants for

Fig 4. Relationship between SRS Total T-Scores and P1m latency in the left hemisphere.

https://doi.org/10.1371/journal.pone.0298020.g004
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whom an ECD could be reliably estimated in both hemispheres. Prior to executing this model,

we identified a potential outlier; one child with ASD exhibited extremely low leftward laterali-

zation (evidenced by a z-score below −3). Grubb’s test confirmed this observation as the sole

outlier in our sample. Consequently, we excluded this participant from our analysis. This

resulted in participants comprising 21 TD children and 30 children with ASD with leftward

lateralization of 0.27 ± 0.45 nAm for TD children and 0.06 ± 0.61 nAm (mean ± SD) for chil-

dren with ASD. The difference in leftward lateralization between the two groups was not sig-

nificant (t(50) = 1.36, p = 0.18). Within this model, both the interaction effect (t(46) = 2.20,

p = 0.033) and the effect of diagnosis (t(46) = 7.27, p< 0.001) were found to be significant. Fig

5 provides a visual representation of this interaction. We then conducted separate regressions

for each group, considering leftward lateralization and MPS scores. Notably, only in the ASD

group was the effect of leftward lateralization significant (t(27) = 2.32, p = 0.028). Results from

these analyses are provided in Table 4.

As significant differences were observed in the initial head position (i.e., y-coordinate of the

coils at both the left and right mastoid process), we investigated whether the leftward lateraliza-

tion in log-transformed P1m intensity correlated with these initial head positions. To this end,

we employed simple regression analysis to predict the leftward lateralization in log-trans-

formed P1m intensity based on the x, y, or z coordinates of each coil separately. A significant

correlation was found between the leftward lateralization in log-transformed P1m intensity

and the x coordinate of the coil at the nasion (t(50) = -2.61, p = 0.01), indicating that a larger

leftward lateralization of intensity corresponds to a left-located coil at the nasion. No signifi-

cant associations were observed in any of the other models. Detailed results are presented in

the S5 Table.

Fig 5. Relationship between SRS Total T-Scores and P1m’s leftward lateralization.

https://doi.org/10.1371/journal.pone.0298020.g005
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This figure illustrates the relationship between SRS total T-scores and P1m’s leftward later-

alization in log-transformed intensity (defined as the log-transformed P1m intensity in the left

hemisphere minus that in the right) for ASD and TD children. Separate simple regressions

were performed for each group to predict SRS total T-scores based on this measure of P1m’s

leftward lateralization, excluding the mental processing scale for clarity. The effect of leftward

lateralization in log-transformed P1m intensity on SRS total T-scores was found to be signifi-

cant only for TD children (t(28) = 2.15, p = 0.04). Individual data points for each group are

plotted, with each line corresponding to a diagnostic group, illustrating how predicted SRS

scores vary with P1m’s leftward lateralization.

SRS, social responsiveness scale; ASD, autism spectrum disorder; TD children, typically

developing children.

Using the approach previously described and recognizing the significant difference in

epoch averages between the ASD and TD groups, we adjusted our model to factor in the SNR,

using the square root of averages as an SNR proxy [86]. Post-adjustment, the interaction

between leftward lateralization and diagnosis retained its significance (t(45) = −2.38,

p = 0.022). Similarly, in the adjusted regression for the ASD group, the effect of leftward later-

alization remained significant (t(26) = 2.81, p = 0.009). Comprehensive results of this modified

analysis are available in S6 Table.

In a subsequent step, we modified our regression analyses by replacing the leftward laterali-

zation intensity with its latency counterpart (defined as P1m latency in the left hemisphere

minus that in the right) to predict the SRS total T-scores. The latency-based leftward lateraliza-

tion was 4.95 ± 18.24 (mean ± SD) ms for TD children and −1.94 ± 21.86 ms for children with

ASD. The difference between the two groups was not significant (t(50) = 1.18, p = 0.24). For

this latency-based leftward lateralization, no potential outliers were observed. This modifica-

tion yielded no significant predictors with the exception of the effect of diagnosis (t(47) = 8.28,

p< 0.001). These details are found in S7 Table.

In summary, our findings demonstrate that pronounced autistic symptoms correlate with

enhanced leftward lateralization of P1m intensity exclusively in children diagnosed with ASD.

This relationship is absent in TD children. Moreover, a similar correlation was not observed

when considering leftward lateralization in terms of latency.

Table 4. Association between SRS total T-score and leftward lateralization in P1m log-intensity controlling for K-ABC mental processing scale score.

Coeff. Robust SE t p 95%CI F Prob > F R2

vs. SRS total T-score

Leftward lateralization in log-intensity −2.70 3.09 −0.87 0.387 −8.92 3.52 22.56 <0.001 0.59

Diagnosis 18.68 2.57 7.27 <0.001* 13.51 23.85

Interaction between leftward lateralization in log-intensity and diagnosis 9.81 4.46 2.20 0.033* 0.84 18.78

Mental processing scale score 0.05 0.11 0.43 0.667 −0.18 0.28

vs. SRS total T-score

TD

Leftward lateralization in log-intensity −2.95 3.27 −0.9 0.379 −9.81 3.92 0.41 0.67 0.04

Mental processing scale score −0.03 0.12 −0.28 0.782 −0.28 0.21

ASD

Leftward lateralization in log-intensity 7.22 3.12 2.32 0.028* 0.83 13.62 3.18 0.06 0.13

Mental processing scale score 0.08 0.15 0.54 0.595 −0.23 0.39

Coeff., regression coefficient; SE, standard error; CI, confidence interval.

Leftward lateralization in log-intensity is defined as the log-transformed P1m intensity in the left hemisphere minus its counterpart in the right.

*p < .05.

https://doi.org/10.1371/journal.pone.0298020.t004

PLOS ONE Neural responses to p1m and social impairment in children with ASD and typically developing Peers

PLOS ONE | https://doi.org/10.1371/journal.pone.0298020 March 8, 2024 16 / 27

https://doi.org/10.1371/journal.pone.0298020.t004
https://doi.org/10.1371/journal.pone.0298020


Results of analyses with new participants only

In the present study, some participants overlapped with participants included in our previous

studies. We excluded them and performed all analyses on ’new’ participants only to test

whether the results could be reproduced. Twenty-eight children with ASD and 18 TD children

were included in these analyses. To summarize the main results, the relationship between left

P1m latency and SRS T-scores in the TD group did not maintain statistical significance; the

association between SRS total T-score and leftward lateralization in P1m log-intensity in the

ASD group f remained statistically significant. Other detailed results are given in the S8 Table.

Discussion

The primary objective of this study was to investigate the relationship between syllable-

induced P1m responses and the severity of autistic traits. We postulated that a reduced inten-

sity of the P1m response, especially in the left hemisphere, would be indicative of more pro-

nounced autistic traits. Additionally, we hypothesized that a decrease in leftward lateralization

of the response’s intensity—potentially characterized by a diminished intensity in the left

hemisphere accompanied by an enhanced intensity in the right—would also signify height-

ened autistic traits. Beyond this, we sought to determine any potential correlation between

P1m latency and the severity of autistic traits.

Our empirical observations, however, present a nuanced understanding of our hypotheses:

(i) Contrary to our initial supposition, the most notable association between autistic traits and

the syllable-induced P1m response was observed in terms of latency rather than intensity. This

relationship was predominantly evident in the TD group with a significant effect localized in

the left hemisphere. Such a correlation with the P1m log-intensity was absent. (ii) Our second

key observation was that, in children diagnosed with ASD, more pronounced autistic symp-

toms were significantly associated with an increased leftward lateralization of the P1m inten-

sity. Interestingly, this correlation was not seen in the TD group. Additionally, when

evaluating leftward lateralization in terms of latency, no such relationship was discerned.

We identified a significant association between a shorter latency of syllable-induced P1m in

the left hemisphere and pronounced autistic traits. Interestingly, this correlation is primarily

evident in TD children and appears nonsignificant in children with ASD. At first glance, this

finding suggests a potential link between neural auditory processing and autistic traits. How-

ever, it is crucial to consider that the SRS scale may not reflect the same underlying physiology

in TD and ASD individuals. In TD children, the SRS could represent a range of cognitive pro-

cessing styles related to autistic traits, while in ASD children, it might reflect more specific

aspects of ASD pathology, such as excitatory/inhibitory (E/I) imbalances [74]. From this per-

spective, the observed correlation between shorter P1m latency and higher SRS scores in TD

children could indicate a relationship between P1m latency and a broad spectrum of cognitive

processing that relates to autistic traits rather than being solely indicative of autism-specific

pathology. This spectrum might include neural adaptations or processing efficiencies unre-

lated to autism but still captured by SRS scores. Conversely, the lack of a significant correlation

in ASD children hints at the involvement of different neural processes that are reflected in

their SRS scores. These processes could be linked to specific neurophysiological characteristics,

such as E/I imbalances, which are considered characteristic of ASD pathology [74]. Therefore,

the shorter P1m latency in TD children might reflect a neural process less directly related to

autistic pathology, perhaps involved in more general social information processing. In con-

trast, in children with ASD, given their pronounced social deficits, such general social infor-

mation processing might no longer be associated with the severity of their social deficits.

Instead, their social deficits might be more directly related to autism-specific pathology, which
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might not be reflected in P1m latency. This could explain why we failed to find a significant

relation between P1m latency and SRS scores in this population. Our findings highlight the

need for further research to explore the specific neurophysiological underpinnings of SRS

scores in both TD and ASD individuals. Future studies should aim to disentangle the relation-

ships between neural markers like P1m latency, autism-specific pathology, and other mecha-

nisms involved in social information processing. Such research would offer a clearer

understanding of the complex interplay between auditory processing and social responsiveness

traits in both populations.

Further insight can be gleaned from Yoshimura et al.’s research [50]. In their study, the

relationship between the evolution of conceptual inference skills and shifts in P1m latency was

explored over time. By engaging TD children and taking two measurements—initially around

51 months and subsequently around 69 months—it was discerned that changes in the latency

of syllable-evoked P1m were not significantly linked with the development of conceptual infer-

ence skills. Reflecting on this, if the aforementioned compensatory mechanism does exist, its

influence might be more pronounced during the earlier developmental stages.

However, while the studies discussed offer intriguing insights into the potential relationship

between the latency of the syllable-induced P1m in the left hemisphere and pronounced autis-

tic traits, caution is advised in interpreting these findings. The small sample sizes inherent in

these studies could introduce variability that might not be representative of the broader popu-

lation. It is essential to acknowledge that these initial observations, though promising, require

further validation through more extensive, population-based studies. Only with more compre-

hensive data can we draw definitive conclusions about the complex interplay between neural

markers like P1m latency and the manifestations of autistic traits. Until then, these studies

serve as a foundation, prompting deeper exploration and understanding in the realm of neuro-

developmental research.

Informed by Yoshimura et al.’s study, which noted that TD children usually display a

marked leftward lateralization in syllable-induced P1m intensity—a characteristic subdued in

children with ASD [45]—we initially conjectured that decreased leftward lateralization might

indicate more pronounced autistic traits. Contrary to our expectations, we found a significant

association between reduced leftward lateralization and milder autistic symptoms. Intrigu-

ingly, this correlation was exclusive to the ASD group and not significant in the TD group.

The divergence between our initial hypothesis and the observed findings necessitates deeper

reflection. One interpretation could be that the diminished leftward lateralization observed in

ASD children, as seen in Yoshimura et al.’s findings [45], might be indicative of a neural com-

pensatory mechanism. In essence, the brains of children with ASD might recalibrate, reducing

their inherent leftward lateralization, to offset pronounced autistic traits.

Broadening our perspective from MEG to other imaging modalities, a consistent pattern

emerges across various neuroimaging studies, all pointing towards atypical brain lateralization

in ASD. For instance, Postema et al., leveraging an expansive dataset from the ENIGMA con-

sortium, identified significant associations between ASD and alterations in cortical thickness

asymmetry, especially in frontal and temporal regions [75]. Functional MRI studies also con-

sistently report atypical lateralization across various networks in individuals with ASD [76–

79]. Distinct white matter tracts in ASD further exhibit nonconventional asymmetry patterns

[80–82]. Interestingly, only one study to our knowledge, by Conti et al. [83], has directly

probed the correlation between the degree of brain lateralization and autistic symptoms, as

measured by the ADOS-G. This study pinpointed significant associations between brain later-

alization of diffusion indexes and clinical severity in newly diagnosed toddlers with ASD.

Given this context, our research deepens Yoshimura et al.’s observations [45] by demonstrat-

ing a correlation between leftward P1m intensity lateralization and autistic symptoms.
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Moreover, we also extend the insights from Conti et al.’s study [83]. Our findings highlight

that atypical lateralization, not only in structural (DTI) but also in functional (EEG) terms,

correlates with the severity of autistic symptoms.

It is important to note that we did not observe a significant association between the inten-

sity of P1m in the left hemisphere and autistic traits in TD children. This finding is somewhat

surprising, especially in light of the reported association between a stronger intensity of P1m

in the left hemisphere and better conceptual inference skills among TD children [29]. Given

the known association between ASD and diminished conceptual inference skills [51], one

might anticipate a stronger correlation. This discrepancy suggests that the intensity of P1m in

the left hemisphere might be specifically associated with conceptual inference in this popula-

tion, but not necessarily with other facets of autistic symptomatology. Another potential expla-

nation for our observation could be a lack of statistical power. Our sample size calculation

indicates that a minimum total sample size of 21 is needed to accommodate two predictors

(i.e., P1m log-intensity and MPS scores in K-ABC) to predict the SRS total T-score. Given this

minimum requirement, the sample size for this analysis (predicting the SRS total T-score

based on P1m log-intensity in the left hemisphere and MPS scores in K-ABC) might be on the

threshold. As such, there is a possibility we might have missed this effect due to chance.

Lastly, another approach to interpreting our P1m results involves considering the broader

framework of auditory processing, particularly in relation to the potential contribution of the

’sustained negative shift’ of current, as described in adults [84] and in both adults and children

[85]. The processing of sounds characterized by periodicity/pitch and/or formant structure,

such as vowels, is associated with a greater sustained negative shift of cortical source current,

known as the sustained field (SF), which persists throughout stimulus presentation. This SF,

captured by MEG/EEG, is thought to reflect the activation of non-synchronized neuronal pop-

ulations [86,87]. These neurons function as ’feature detectors’ for perceptually salient features

of complex sounds, facilitating higher-level processing [88–90]. The enhancement of MEG/

EEG-measured SF occurs when stimuli are perceptually salient [91] or carry semantic meaning

[92], and its magnitude varies with phonetic features, such as periodic versus non-periodic

vowels [85]. Notably, SF is evident in the time range of the P1m component or even earlier,

suggesting that the co-occurrence of SF with P1m might influence the contour and amplitude

of the P1m. This interaction is particularly relevant in our findings, where we observed an

association between autistic traits and syllable-induced P1m latency and its leftward lateraliza-

tion in intencity, possibly reflecting a latent relationship between autistic traits and SF. The

potential connection between autistic traits and SF is compelling, given the emerging behav-

ioral and electrophysiological evidence of impaired attentional responses to speech in children

with ASD. This might imply reduced perceptual salience of speech stimuli and atypical higher-

level processing. Earlier studies indicate that children with ASD exhibit specific deficits in ori-

enting to vowel sounds compared to simple and complex tones [93], highlighting their poten-

tially reduced perceptual salience to speech. Moreover, these deficits may be linked to atypical

higher-level processing of auditory stimuli in this population [94]. Given these considerations,

future research aiming to further elucidate the complex interplay between autistic traits, SF,

and properties of P1m could offer a richer understanding of the neural basis of ASD and how

it is reflected in MEG/EEG measurements.

This study has several limitations. First, although social auditory stimuli were used in this

study, no controlled experiments with auditory stimuli of a different nature, such as pure

tones, were conducted; therefore, it is unclear whether the relationship between AEF and autis-

tic traits found in this study is specific to social auditory stimuli or whether it is also found

with other forms of auditory stimuli. Therefore, it is unclear whether social auditory stimuli

are more useful than general auditory stimuli in assessing the relationship between AEF and
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autistic traits. In the future, similar studies should be conducted using non-social auditory sti-

muli, such as pure tones, to verify whether similar results can be replicated. Another limitation

arises from setting the baseline relative to the onset of the vowel /e/. Our study’s focus on the

vowel /e/, setting the baseline relative to its onset, inherently implies a possible oversight of the

brain’s response to the preceding consonant /n/. This approach, while methodologically sound

for our current research objectives, may mask nuances in the brain’s processing of the /n/ con-

sonant. This limitation is particularly pertinent when considering the differential responses

between TD children and children with ASD. Our findings, thus, should be interpreted with

an awareness of this potential masking effect. In light of this, future research endeavors should

contemplate including stimuli combinations like /ne/ and /e/ to comprehensively investigate

the brain’s distinct responses to consonants and vowels. Such explorations would be instru-

mental in deepening our understanding of auditory processing variations between TD and

ASD groups, potentially leading to more nuanced insights into their auditory processing char-

acteristics. There are also important limitations regarding the sample in this study. First,

because the age of the sample was over 3 years, it is not known whether the association

between AEF and autistic traits found in the present study is also found in children under 2

years of age, and the findings of the present study cannot be directly used for early diagnosis

for these children. Furthermore, the sample size may have been small, limiting the detection

power. Future studies should be conducted with a wider sample age range and larger sample

size. Another limitation, as underscored by recent research, concerns the potential intersection

of Auditory Processing Disorder (APD) symptoms within the ASD population. Studies by

Sharma et al. [95] and Lunardelo et al. [96] revealed P1 amplitude abnormalities in children

with APD in response to speech stimuli, specifically the /da/ sound, which is similar to the /ne/

sound utilized in our research. These findings imply that P1 irregularities may not be unique

to ASD and could also signify a central auditory processing deficit characteristic of APD.

Moreover, the work of James et al. [84] indicates a potentially high incidence of APD symp-

toms among children with ASD. This overlap suggests that the P1 abnormalities we observed

in children with ASD might partially reflect a broader spectrum of auditory processing chal-

lenges extending beyond the confines of ASD. The absence of a direct evaluation of APD in

our study is a notable oversight. This limitation warrants caution in attributing the P1 abnor-

malities solely to ASD and suggests the need for future research to disentangle the auditory

processing profiles of ASD from those of APD. Undertaking such research would provide a

more comprehensive understanding of the auditory processing dynamics in neurodevelop-

mental disorders. In this study, participants were monitored using a video camera to detect

noticeable body movements. An examiner accompanied the children in the shielded room and

instructed them to maintain a constant head position throughout the experiment. Instances of

pronounced body movement were excluded based on noise detection. Additionally, partici-

pants who exhibited significant shifts in head position during the session were excluded due to

a reduction in the GOF in the P1m dipole analysis. Despite these measures, we observed signif-

icant differences in the initial head positions between the two groups. Specifically, the positions

of both the right and left mastoid processes in children with ASD were significantly more pos-

terior compared to those in TD children. This difference could reflect variations in initial head

positioning or head shape; either factor could potentially influence the results of dipole estima-

tion. Indeed, while the position of the mastoid process did not affect the leftward lateralization

of log-transformed P1m intensity, the x-coordinate of the coil at the nasion was found to sig-

nificantly influence the estimation of this parameter. Furthermore, this study did not compre-

hensively account for the impact of fine head movements and variations in head shape, which

are factors that could introduce additional variability in the neuroimaging data. Future
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research should consider these aspects more thoroughly to mitigate their potential effects on

data interpretation.

Another limitation pertains to the sample characteristics of our study. We did not observe a

significant group difference in intensity-based leftward lateralization between the two groups,

which contrasts with the findings from Yoshimura et al. [45]. This discrepancy could poten-

tially be attributed to the smaller sample size in our study; P1m was reliably estimated in both

hemispheres for 21 TD children and 30 children with ASD in our study while Yoshimura et al.

had reliable P1m estimates for 30 TD children and 33 children with ASD. This difference in

sample size might have influenced the findings. Regardless of the reason, the inconsistency

limits the utility of this particular MEG variable as a potential neurobiomarker.

In conclusion, this study explored the complex relationship between syllable-evoked P1m

responses and the severity of autistic traits. Guided by prior research, our initial hypotheses

anticipated specific correlations, but our empirical observations nuanced these expectations.

Specifically, the relationship between autistic traits and syllable-induced P1m was more pro-

nounced with latency than with intensity, a connection predominantly observed in the TD

group. For children with ASD, increased severity of autistic symptoms was associated with a

more pronounced leftward lateralization of the P1m intensity. However, these insights come

with a caveat. Given the limited sample size of this study, our findings should be viewed as pre-

liminary. They set the stage for future research, emphasizing the need for more extensive, pop-

ulation-based investigations. In essence, our results provide valuable insights but also highlight

the intricate nature of neural mechanisms and their relationship with autistic traits.
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Cortical auditory evoked potentials with different acoustic stimuli: Evidence of differences and similari-

ties in coding in auditory processing disorders. Int J Pediatr Otorhinolaryngol. 2021; 151:110944.

https://doi.org/10.1016/j.ijporl.2021.110944 PMID: 34773882

PLOS ONE Neural responses to p1m and social impairment in children with ASD and typically developing Peers

PLOS ONE | https://doi.org/10.1371/journal.pone.0298020 March 8, 2024 27 / 27

https://doi.org/10.1371/journal.pone.0180441
https://doi.org/10.1371/journal.pone.0180441
http://www.ncbi.nlm.nih.gov/pubmed/28727776
https://doi.org/10.1016/j.cortex.2023.10.020
https://doi.org/10.1016/j.cortex.2023.10.020
http://www.ncbi.nlm.nih.gov/pubmed/38061210
https://doi.org/10.1016/j.neuroimage.2020.117501
https://doi.org/10.1016/j.neuroimage.2020.117501
http://www.ncbi.nlm.nih.gov/pubmed/33169697
https://doi.org/10.1073/pnas.0835631100
http://www.ncbi.nlm.nih.gov/pubmed/12702776
https://doi.org/10.1016/j.ijporl.2021.110944
http://www.ncbi.nlm.nih.gov/pubmed/34773882
https://doi.org/10.1371/journal.pone.0298020

