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ABSTRACT
While sensitivity analysis improves the transparency and reliability of mathematical models, its uptake by
modelers is still scarce. This is partially explained by its technical requirements, which may be hard to
understand and implement by the nonspecialist. Here we propose a sensitivity analysis approach based on
the concept of discrepancy that is as easy to understand as the visual inspection of input-output scatterplots.
First, we show that some discrepancy measures are able to rank the most influential parameters of a model
almost as accurately as the variance-based total sensitivity index. We then introduce an ersatz-discrepancy
whose performance as a sensitivity measure is similar that of the best-performing discrepancy algorithms,
is simple to implement, easier to interpret and orders of magnitude faster.
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1. Introduction

Global Sensitivity Analysis (GSA) examines model output sensi-
tivity when varying all uncertain inputs across their entire range
simultaneously (Saltelli 2002). It aids modelers and analysts in
exploring the impact of assumptions, identifying influential
inputs, simplifying problems and supporting model-based
decision-making (Razavi et al. 2021). GSA promotes transparent
modeling and aligns with guidelines from institutions like the
European Commission, the Intergovernmental Panel on Cli-
mate Change and the US Environmental Protection Agency (US
Environmental Protection Agency 2009; Saltelli et al. 2020;
European Commission 2023; Saltelli and Di Fiore 2023).

With over 50 years of development, modelers have access to
various GSA procedures and a rich literature guiding method
selection for specific SA situations (Becker 2020; Puy et al. 2022).
One of the most widespread routines are variance-based meth-
ods, which decompose the output variance of a d-dimensional
model into contributions from individual inputs, pairs of inputs,
triplets, etc., up to the dth term. Sobol’ indices quantify these
components of variance: the first-order index Si represents the
main effect of each input, while the total-order index Ti accounts
for the effect of an input along with all its possible interactions
with other inputs (Homma and Saltelli 1996). Variance-based
methods have strong statistical foundations (ANOVA), can han-
dle factor sets and support tasks like “factor fixing” (identify
which input/s are the least influential and hence can be fixed
to simplify the model) and “factor prioritization” (which inputs
convey the most uncertainty to the model output) (Saltelli et al.
2008).

CONTACT Arnald Puy a.puy@bham.ac.uk School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT,
UK.
#Additional affiliation: Centre for the Study of the Sciences and the Humanities, University of Bergen, Norway.
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When the output is long-tailed or displays extreme values,
moment-independent methods may be preferred over variance-
based methods because they do not assume normality or
finite output variance. They assess sensitivities based on the
entire distribution of the model output and can also deal with
correlated inputs. A well-known moment-independent index
is the delta measure (δ) (Borgonovo 2007), which looks at
the entire input/output distribution and does not require the
inputs to be independent. Another example is the PAWN index,
which differs from other moment-independent approaches in
its reliance on cumulative distribution functions (rather than
probability distribution functions) to characterize the output
variance (Pianosi and Wagener 2015; Puy, Lo Piano, and Saltelli
2020).

Recent additions to the pool of GSA methods include
VARS (Razavi and Gupta 2016), Shapley effects or Kernel-
based dependence measures. VARS makes use of variogram
and covariogram functions to characterize the variability in the
response surface. It is theoretically linked to the Sobol’ variance-
based approach and is especially useful when the interest lies
in appraising the topology of a given function. Shapley effects
rely on Shapley values (the average marginal contribution of a
given feature across all possible feature combinations) to explore
sensitivities, and are also linked to Sobol’ indices given that they
are bracketed by Si and Ti (Owen 2014). As for kernel-based
dependence measures, they make use of the maximum mean
discrepancy or the Hilbert-Schmidt independence criterion as
a distance metric between the unconditional and conditional
output distributions, or the joint input–output distribution and
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the product of their marginals. They can deal with different types
of data (categorical, multivariate), are computationally efficient
under high-dimensional outputs and apt to assess how the input
influences different features of the output distribution (Barr
and Rabitz 2022, 2023). Other methods are also available and
we refer the reader to recent reviews of the state-of-the-art for
further information (Borgonovo and Plischke 2016; Pianosi et al.
2016; Razavi et al. 2021).

Despite this abundance of methods, there is still a scarce
uptake of GSA in mathematical modeling. When an SA is
performed, it is often conducted by moving “One variable-
At-a-Time” (OAT) to determine its influence on the output,
an approach that only works in low-dimensional, linear mod-
els (Saltelli et al. 2010). It has been suggested that a key reason
behind this neglect is that proper GSA methods are grounded on
statistical theory and may be hard to understand and implement
by non-specialists (Saltelli et al. 2019). The investment of
time and financial resources needed to acquire proficiency
in concepts such as probability and random variables, Monte
Carlo sampling, correlation, statistical moments or design of
experiments may be deemed as a significant hurdle. On the
other hand, while OAT approaches may lack appropriateness,
they offer a more intuitive and straightforward handling: if
altering a single input results in a change in the model’s
output, it indicates sensitivity of the output to that particular
uncertain input.

Here we propose a GSA measure whose use and interpre-
tation requires little to no statistical training and that is as
intuitive as the visual inspection of input–output scatterplots.
Since the presence (absence) of “shape” in a scatterplot indicates
an influential (non-influential) input, we build on the concept
of discrepancy (the deviation of the distribution of points in
a multi-dimensional space from the uniform distribution) to
turn discrepancy into a sensitivity measure. We show that
some discrepancy algorithms nicely match the behavior of
the total-order sensitivity index, a variance-based measure
which estimates the first-order effect of a given input plus
its interactions with all the rest (Homma and Saltelli 1996).
We also present a simple-to-implement ersatz discrepancy
whose behavior as a sensitivity index approximates that of
the best-performing discrepancy algorithms at a much more
affordable computational cost. Our contribution thus provides
modelers with a straightforward GSA tool by turning the
concept of discrepancy upside down: from a tool to inspect
the input space of a sample to an index to examine its
output space.

2. Materials and Methods

2.1. The Link between Scatterplots and Discrepancy

Due to their ease of interpretation, scatterplots are widely used in
GSA as a preliminary exploration of sensitivities before embark-
ing on more quantitative approaches (Pianosi et al. 2016). To
understand the rationale, let us first define � = [0, 1)d as a
d-dimensional unit hypercube containing Ns sampling points
produced with the Sobol’ quasi-random number sequence and
represented by the matrix X, such that

X =

⎡
⎢⎢⎢⎣

x(1)
1 x(1)

2 · · · x(1)

d
x(2)

1 x(2)
2 · · · x(2)

d· · · · · · · · · · · ·
x(Ns)

1 x(Ns)
2 · · · x(Ns)

d

⎤
⎥⎥⎥⎦ , (1)

where x(i)
k is the value taken by the kth input in the ith row, and

x(i) = (x(i)
1 , . . . , x(i)

d ). Let

y =

⎡
⎢⎢⎣

y(1)

y(2)

. . .

y(Ns)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f (x(1))

f (x(2))

. . .

f (x(Ns))

⎤
⎥⎥⎦ (2)

be the vector of responses after evaluating the function (model)
f (.) in each of the Ns rows in X. If y is sensitive to changes in xk, a
scatterplot of y against xk will display a trend or shape, meaning
that the distribution of y-points over the abscissa (over input
xk) will be nonuniform (Saltelli et al. 2008, 28). Generally, the
sharper the trend/shape, the larger the area without points and
the stronger the influence of xk on y. In contrast, a scatterplot
where the dots are uniformly distributed across the space formed
by xk and y evidences a totally non-influential parameter (Fig-
ure 1(a)–(c)). This heuristic suggests that, in a two-dimensional
space, the deviation of points from the uniform distribution can
inform on the extent to which y is sensitive to xk.

There are different ways to assess the “uniformity” of a sam-
ple. Geometrical criteria such as maximin or minimax respec-
tively maximize the minimal distance between all points or
minimize the maximal distance between any location in space
and all points of the sample (Pronzato 2017). These criteria are
notably used in circle packing problems. In contrast, unifor-
mity criteria measure how the spread of points deviates from a
uniform spread of points (in the sense of a multi-dimensional
uniform distribution): taking a subspace of the parameter space
Jx = [0, x), we count the number of points Ns[0,x)

in the subspace

Figure 1. Scatterplots of xk , k = 1, 2 against y for three different two-dimensional functions. The red dots show the running mean across 100 simulations. The functions
are F1, F2, and F3 in Azzini and Rosati (2022). In (a), y is completely driven by x1 while x2 is non-influential. In (b), x1 is more influential than x2 given its sharper trend. In
(c), x1 is more influential than x2 given the presence of larger areas where points are more rarefied. Note that y has been rescaled to (0,1), while the x’s are already in (0,1)
being sampled from the unit hypercube.
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and compare it to the total number of the points Ns of the sample.
The resulting value is subtracted by the volume of the subspace
Vol[0,x), ∣∣∣∣Ns[0,x)

Ns
− Vol[0,x)

∣∣∣∣ . (3)

The resulting quantity is known as the discrepancy at point x.
Notice that with this description, the origin of the domain ([0]d)
is part of every subspace.

Several measures calculate the discrepancy over the whole
domain, assumed to be the unit hypercube. Fang, Li, and Sud-
jianto (2006) proposed seven criteria to assess the quality of
discrepancy measures, which we reproduce in Box 1.

Box 1. Fang, Li, and Sudjianto’s (2006) quality criteria
for discrepancy measures.

1. They should be invariant under permuting factors
and/or runs.

2. They should be invariant under coordinate rotation.
3. They should measure not only uniformity of the hyper-

cube, but also of any sub-projections.
4. They should have some geometric meaning.
5. They should be easy to compute.
6. They should satisfy the Koksma-Hlawka inequality.
7. They should be consistent with other criteria in exper-

imental design, such as the aforementioned distance
criteria.

As for criteria 6 in Box 1, the Koksma-Hlawka inequality
reads as

ε = ∣∣E(y) − ȳ(Vol[0,x))
∣∣ ≤ V(f )D∗, (4)

where E(y) is the true mean of y, ȳ(Vol[0,x)), is the sample
mean and V(f ) is the total variation of f in the sense of Hardy
and Krause (Fang, Li, and Sudjianto 2006). Hence, averaging a
function over samples of points with a low discrepancy would
achieve a lower integration error as compared to a random
sample [also called Monte Carlo (MC) sampling]. Quasi-Monte
Carlo (QMC) methods are designed with that problem in mind.
For well behaved functions, they typically achieve an integration
error close to O(N−1

s ). There is an extensive body of literature
covering methods to create a sample with a low discrepancy.
Notably, the low discrepancy sequence of Sobol’ (1967) is one
of the most widely used methods and its randomized version
nearly achieves a convergence rate of O(N−3/2

s ) (Owen 2021).
On the matter of discrepancy measures, the Lp-discrepancy

measure (Fang et al. 2018), for instance, takes the average of all
discrepancies, as

Dp =
{∫ ∣∣∣∣Ns[0,x)

Ns
− Vol[0,x)

∣∣∣∣
p

dx
}1/p

. (5)

When p → ∞, the measure is known as the “star
discrepancy,” which corresponds to the Kolmogorov-Smirnov
goodness-of-fit statistic (Fang et al. 2018),

D∗ = sup
x∈X

∣∣∣∣Ns[0,x)

n
− Vol[0,x)

∣∣∣∣ . (6)

When p = 2, the measure is known as the “star L2 discrep-
ancy” (Warnock 1972), which corresponds to the Cramér-Von
Mises goodness-of-fit statistic (Fang et al. 2018). Its analytical
formulation reads as

SL2(XNs
d ) = 3−d − 21−d

Ns

Ns∑
i=1

d∏
k=1

[
1 − (x(i)

k )2
]

+ 1
Ns2

Ns∑
i=1

Ns∑
j=1

d∏
k=1

[
1 − max(x(i)

k , x(j)
k )

]
. (7)

The “modified discrepancy” M2 slightly varies the “star L2
discrepancy” (Franco 2008), and reads as

M2(XNs
d ) =

(
4
3

)d
− 21−d

Ns

Ns∑
i=1

d∏
k=1

[
3 − (x(i)

k )2
]

+ 1
Ns2

Ns∑
i=1

Ns∑
j=1

d∏
k=1

[
2 − max(x(i)

k , x(j)
k )

]
. (8)

Equations (5)–(8) do not satisfy the quality criteria listed in
Box 1 as they lack sensitivity, vary after rotation and consider the
origin to have a special role. To mitigate these issues, some modi-
fied formulations of the L2-discrepancy have been proposed. As
we shall see, these methods treat the corners of the hypercube
differently. The “centered discrepancy” C2, for instance, does not
use the origin of the domain when selecting samples to create
the volumes, but the closest corner points of the domain to
Jx (Hickernell 1998a), as

C2(XNs
d ) =

(
13
12

)d
− 2

Ns

Ns∑
i=1

d∏
k=1

(
1 + 1

2
| x(i)

k − 0.5 | (9)

−1
2

| x(i)
k − 0.5 |2

)

+ 1
N2

s

Ns∑
i,j=1

d∏
k=1

(
1 + 1

2
| x(i)

k − 0.5 | +1
2

| x(j)
k − 0.5 |

−1
2

| x(i)
k − x(j)

k |
)

.

The “symmetric” discrepancy S2 is a variation of the centered
discrepancy that accounts for the symmetric volume of Jx (Hick-
ernell 1998a):

S2(XNs
d ) =

(
4
3

)d
− 2

Ns

Ns∑
i=1

d∏
k=1

(
1 + 2x(i)

k − 2
(

x(i)
k

)2
)

+ 2d

N2
s

Ns∑
i,j=1

d∏
k=1

(
1− | x(i)

k − x(j)
k |

)
. (10)

The “wraparound discrepancy” WD2, on the other hand,
does not use any corners nor the origin [hence it is also called
“unanchored discrepancy”; see Hickernell (1998b)],

WD2(XNs
d ) = −

(
4
3

)d
(11)

+ 1
N2

s

Ns∑
i,j=1

d∏
k=1

(
3
2
− | x(i)

k − x(j)
k | + | x(i)

k − x(j)
k |2

)
.
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The centered discrepancy C2 and the wraparound discrep-
ancy WD2 are the most commonly used formulations nowadays.
As per numerical complexity, these equations have a complexity
of O(N2

s d).

2.2. An Ersatz Discrepancy

The discrepancies presented in (5)–(11) are state-of-the-art
measures used in the design of computer experiments, requiring
statistical training to understand. They are also computationally
complex due to their reliance on column-wise and row-wise
loops, which limits their scalability for larger sample sizes
and higher-dimensional settings. Here, we propose an ersatz
discrepancy (S-ersatz hereafter) that addresses these issues
and leverages the link between scatterplots, discrepancy, and
sensitivity discussed in Section 2.1.

We suggest to split the xk, y plane into a uniform grid formed
by �√Ns	 × �√Ns	 cells, where �.	 stands for the ceiling func-
tion, and calculate the ratio between the number of cells with
points (NP) and the total number of cells (NT). Mathematically,
this translates into

Sersatz = NP
NT

. (12)

Let us now define Nx and Ny as the number of cells along the x-
(y-) axis of the grid, and n(i)

k as the number of points in the cell
at the intersection of the ith row and the kth column. Based on
the properties of a uniform grid, we can also write

Nx = Ny = �√Ns	
NT = NxNy

NP =
Nx∑
i=1

Ny∑
k=1

I[n(i)
k > 0]

(13)

where I(.) is the indicator function which evaluates to 1 if the
condition inside the parentheses is true and 0 otherwise. Hence,

Sersatz =
∑Nx

i=1
∑Ny

k=1 I[n(i)
k > 0]

NxNy
. (14)

We also provide an algorithmic description of (14) (Algo-
rithm 1). The S-ersatz value thus informs on the fraction of cells
that are populated by at least one point: the closer this value is to
1, the more the design approaches a uniform distribution, and
the less influential xk is.

Note that the S-ersatz is very close to the general definition of
the discrepancy, but differs from previous discrepancy measures
in the following features:

1. S-ersatz counts 1 for a cell containing a point and 0 if not,
in contrast to the conventional method that calculates the
ratio of points to samples in each cell. This results in exact
upper and lower bounds: under Quasi-Monte Carlo (QMC)
sampling, S-ersatz ∈ [1/Ns, 1], whereas under random sam-
pling, S-ersatz ∈ [1/Ns, 0.63] (proof provided below). Other
methods lack straightforward lower bound expressions that
cover all combinations of sample sizes and dimensions.

2. Cells are intentionally pre-defined as a uniform grid,
corresponding to “property A” described by Sobol’ (1976).

Algorithm 1 The S-ersatz of discrepancy.
1: Calculate the number of cells along the x and y axes of the

grid:
2: Nx = Ny = �√Ns	
3: Calculate the total number of cells in the grid:
4: NT = Nx · Ny
5: Initialize a variable NP to 0 
 Count of cells with points
6: for i = 1 to Nx do
7: for k = 1 to Ny do
8: if Np(i, k) > 0 then 
 Using the indicator function
9: Increment NP by 1

10: end if
11: end for
12: end for
13: Calculate the ersatz score Sersatz:
14: Sersatz = NP

NT

“Property A” for a low-discrepancy sequence implies that
within any binary segment of the n-dimensional sequence
of length 2Ns , there is precisely one point in each 2Ns hyper-
octant resulting from subdividing the unit hypercube along
its length extensions into halves (Kucherenko, Albrecht, and
Saltelli 2015). This property is fundamental in designing
certain QMC methods, such as the Sobol’ low-discrepancy
sequence.

3. Larger values signify superior uniform properties. For (5)–
(11), smaller values are preferable, as they indicate a smaller
difference between the distribution of sampling points and
a distribution with an equal proportion of points in each
explored sub-region of the unit hypercube.

We graphically represent our approach in Figure 2 for both
random (a) and quasi-random (b) numbers [Quasi-Monte Carlo
(QMC), using the low discrepancy sequence of Sobol’]. The
latter are known to outperform the former in sampling the
unit hypercube by leaving smaller unexplored volumes. This
means that a design with QMC should display larger S-ersatz
values than a design based on random numbers. For Ns = 22

(first column), the plane is partitioned into four cells given that
�√Ns	 × �√Ns	 = 4. For Ns = 2b, b = 4, 6 (second and
third columns), the plane is partitioned into 16 and 64 cells,
respectively. The ratio of sampled cells to the total number of
cells is 3/4 = 0.75, 11/16 = 0.68 and 40/64 = 0.62 in a), and
3/4 = 0.75, 12/16 = 0.75 and 59/64 = 0.92 in b). The behavior
of the S-ersatz therefore nicely matches the well-known capacity
of quasi-random sequences in covering the domain of interest
more evenly and quicker than random numbers (Figure 2(c)).

Figure 2 also indicates that the S-ersatz upper bound for
non-influential parameters sampled with QRN approaches 1,
while with random numbers, it stabilizes at around ∼ 0.63.
This is because, on average, if we randomly sample n cells with
n sampling points, the fraction of cells with at least one point
would equal 1 − 1

e = 0.6321206.
The proof is as follows: let us define the probability of a

specific grid cell remaining non-sampled when n points are
allocated to n grid cells as (1 − 1

n )n. In consequence, and
using the concept of complementary probabilities, the proba-
bility of a sampled grid cell can be defined as 1 − (1 − 1

n )n,
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Figure 2. The S-ersatz discrepancy. (a) and (b) show planes with sampling points produced using random and QMC (Sobol’ sequence), respectively, for a total sample size
of Ns = 2b , b = 2, 4, 6. (c) Evolution of the S-ersatz through different Ns .

with the average number of cells sampled at least one time
denoted as n

[
1 − (1 − 1

n )n]. With n approaching infinity, we
have limn→∞

(
1 − 1

n
)n = e−1 = 1

e . It follows that the average
number of cells with at least one sampling point is n

(
1 − 1

e
)
,

and hence the fraction of cells with at least one sampling point
is n

(
1− 1

e
)

n = 1 − 1
e = 0.6321206.

If we compare our S-ersatz measure with Fang, Li, and Sud-
jianto’s (2006) quality criteria for discrepancy measures, we see
that it displays all properties except number 3 (Box 1):

1,2. It is invariant under rotation and ordering, meaning that
changing the order or rotating the space only alters the
positions of the subdividing cells, with the respective frac-
tions and global metric remaining unaffected. It is also an
unanchored discrepancy, as the origin and corners of the
hypercube do not play specific roles.

3. The measure indicates the discrepancy for a given sub-
projection. Nevertheless, a composite measure can account
for all sub-projections.

4. It holds a geometrical meaning, directly linked to the spread
of points in the space’s subdivision.

5. It is simple to approach and implement, in contrast to other
SA methods such as Sobol’, and it is computationally fast
due to low algorithmic complexity.

6,7. S-ersatz’s definition derives from the discrepancy’s defini-
tion, satisfying the Koksma-Hlawka inequality. A high value
indicates a lower integration error.

Furthermore, as opposed to classical discrepancy measures,
both the upper and lower bounds are exactly known. The worst
case would place all points in a single cell, while the ideal case
would place a point per cell. This implies S-ersatz ∈ [1/Ns, 1].
Other methods do not have simple expressions for their lower
bounds which work for all combinations of number of samples
and dimensions.

2.3. A Sensitivity Analysis Setting

To explore the extent to which the concept of discrepancy is
apt to distinguish influential from non-influential inputs, we
benchmark the performance of (7)–(11) and of the S-ersatz

(Algorithm 1) in a GSA setting. Specifically, we assess how well
each discrepancy measure ranks the most influential parame-
ters, that is, those that convey the most uncertainty to the model
output. While the number of influential parameters varies based
on the model’s functional form, GSA practitioners generally
observe that a small fraction of model inputs typically drives
most output variations. This reflects the Pareto principle, where
20% of inputs account for 80% of effects. Consequently, most
practitioners focus on identifying only the top-ranked inputs
(Sheikholeslami et al. 2019).

As a yardstick of quality, we compare the ranking produced
by each discrepancy measure against the ranking produced
by Jansen’s (1999) estimator, one of the most accurate variance-
based total-order estimators (Saltelli et al. 2010; Puy et al.
2022). Total-order estimators measure the proportion of
variance conveyed to y by the first-order effect of xk jointly
with its interactions with all the other parameters (Homma
and Saltelli 1996). The total-order effect is computed as
follows:

Tk = 1 − Vx∼k [Exk(y|x∼k)]
V(y)

= Ex∼k [Vxk(y|x∼k)]
V(y)

, (15)

where E(.) and V(.) are the mean and the variance operator,
respectively, and x∼k denotes all parameters but xk. We pro-
vide Jansen’s (1999) estimator of Tk in (16).

To minimize the influence of the benchmarking design on
the results of the analysis, we randomize the main factors that
condition the accuracy of sensitivity estimators: the sampling
method τ , base sample size Ns, model dimensionality d, form
of the test function ε and distribution of model inputs φ (Becker
2020; Puy et al. 2022). We describe these factors with probability
distributions selected to cover a wide range of sensitivity anal-
ysis settings, from low-dimensional, computationally inexpen-
sive designs to complex, high-dimensional problems formed by
inputs whose uncertainty is described by dissimilar mathemati-
cal functions (Figure 3). Although not exhaustive, this approach
permits us to go beyond classic benchmarking exercises, which
tend to focus on a handful of test functions or just move one
design factor at-a-time (Pianosi and Wagener 2015; Azzini and
Rosati 2021).
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Figure 3. Tree diagram with the uncertain inputs, their distributions and their levels. DU and Logitnorm stand for “discrete uniform” and “log-normal” distribution,
respectively.

We first create a 29 × 5 sample matrix using quasi-random
numbers (Sobol’ 1967, 1976), where the ith row represents a
random combination of τ , Ns, d, ε, φ values and each column is
a factor whose uncertainty is described with its selected proba-
bility distribution (Figure 3). In the ith row of this matrix we do
the following (Saltelli et al. 2010):

1. We construct two sample matrices with the sampling method
as defined by τ (i):

• A C(i) × d(i) sample matrix, where C(i) = N(i)
s (d(i) +

1). This sample matrix is formed by an A matrix and
d(i) ABk matrices. In the latter, all columns come from A
except the kth, which comes from B. This sampling design
is required to run a sensitivity analysis with the Jansen
estimator (Lo Piano et al. 2021b; Puy et al. 2022). We refer
to this matrix as the “Jansen matrix”.

• A C(i) × d(i) sample matrix formed by an A matrix only
given that discrepancy measures do not require a specific
sampling design. We match the number of rows of the
Jansen matrix to ensure that the comparison between the
latter and the discrepancy measures is done on the same
total number of model runs. We refer to this matrix as the
“Discrepancy matrix”.

2. We define the distribution of each input in these matrices
according to the value set by φ(i) (Figure S1).

3. We run a metafunction rowwise through both the Jansen
and the Discrepancy matrices and produce two vectors with
the model output, which we refer to as yJ and yD, respec-
tively. Our metafunction, whose functional form is defined
by ε(i), is based on the Becker (2020) metafunction and ran-
domizes over 13 univariate functions representing common
responses in physical systems and in classic SA functions
(from cubic, exponential or periodic to sinusoidal, see Fig-
ure S2). A detailed explanation of the metafunction can be
found in Becker (2020) and in Puy et al. (2022).

4. We use yJ to produce a vector with the total-order indices T,
calculated with the Jansen (1999) estimator, which reads as

follows:
1

2Ns

∑Ns
i=1

[
f (A)(i) − f (ABk)

(i)]2

V(y)
, (16)

where f (.) is the function or model of interest and V(y)
the unconditional variance of the model output y. We also
use yD to produce seven vectors with the discrepancy values
D, one vector for each of the seven discrepancy measures
tested.

5. We rank-transform T and D using Savage scores, which
emphasize and downplay top and low ranks, respec-
tively (Iman and Conover 1987; Savage 1956). Savage scores
are computed by summing the reciprocals of the ranks
assigned to a specific element and all the elements below
it in a ranked set. Mathematically, if Ss represents the Savage
score, and r is the rank assigned to the kth element in a vector
of length d, the Savage score is given by the formula

Ss =
d∑

r=k

1
r

(17)

where r is the rank assigned to the kth element of a vector of
length d. For example, if you have a vector x = (x1, x2, x3)
where x1 > x2 > x3, the Savage scores would be Ss1 = 1 +
1
2 + 1

3 , Ss2 = 1
2 + 1

3 , and Ss3 = 1
3 .

To check how well discrepancy measures match the ranks
produced with the Jansen estimator, we calculate for each
discrepancy measure the Pearson correlation between T and
D, which we denote as r.

3. Results

3.1. Discrepancy Measures for Sensitivity Analysis

Figure 4(a) presents the results of the analysis in a non-
orthogonal domain given that the total number of model
runs C is a function of the sample size Ns and the function
dimensionality d (Point 1 in Section 2.3). We observe that the
symmetric (S2), the centered (C2), the wraparound (WD2) and
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Figure 4. Results of the benchmarking. (a) Distribution of the Pearson correlation r between the Savage scores-transformed ranks yielded by each discrepancy measure
and the Savage scores-transformed ranks produced by the Jansen (1999) estimator. Each dot is a simulation that randomizes the sample size Ns , the dimensionality d, the
underlying probability distributions φ, the sampling method τ and the functional form of the metafunction ε. The x-axis shows the total cost of the analysis C (the number
of model runs), for C = Ns(d + 1), and hence the non-orthogonality of the sampling domain. The total number of simulations is 29. (b) Density plots of r values. (c) Tile
plot showing the p-values of a pairwise Mood test on medians. (d) Hierarchical clustering.

the S-ersatz present consistently high r values throughout most
of the domain investigated, with lower values concentrating
largely on the leftmost part of the domain (characterized by
simulations with low sample sizes and increasing dimensional-
ity). In contrast, no discernible pattern is visible for the star, L2,
centered (C2) or modified (M2) measures, which comparatively
present a much larger number of low and negative r values
(Figure 4(a)).

Overall, the distribution of r values is left-skewed for all
discrepancy measures. This suggests that they are able to prop-
erly approximate the Savage-transformed ranks produced by
the Jansen estimator in a non-negligible number of SA settings.
According to median values, the discrepancy measure that better
matches the Jansen Savage-transformed ranks is the symmetric
(S2) (r = 0.81), followed by the wraparound (WD2) (r = 0.78)
and the centered (C2) (r = 0.74). The S-ersatz also displays a
good performance (r = 0.72), and its spread is as small as that
of the symmetric (S2) (Figure 4(b)).

To check whether these median r values come from different
distributions, we conduct a pairwise Mood test on medians
with corrections for multiple testing and set the probability
of a Type I error at α = 0.05. The pairwise Mood test on
medians is a nonparametric test that compares the medians of

several independent continuous distributions (Mood, Graybill,
and Boes 2007).

We cannot reject the null hypothesis of a difference in medi-
ans between the wraparound (WD2) and the symmetric (S2),
between the modified (M2) and the star (SL2), or between the
ersatz, the L2 and the centered measure (C2) (Figure 4(c)). A
hierarchical cluster analysis suggests that the difference in the
distribution of r values is mainly between two groups: the group
formed by the modified (M2) and the star, and the group formed
by all the rest. The star and the modified (M2) discrepancy
present the most similar distributions, followed by the S-ersatz
and the symmetric (S2) discrepancy (Figure 4(d)).

The capacity of discrepancy measures in matching the
Savage-transformed ranks of the Jansen estimator seems to
be mostly determined by high-order interactions between the
benchmark factors selected in our analysis (Figure 3). The
model dimensionality (d) and the base sample size (Ns) are
the only factors with a small but still discernible effect on
the accuracy of discrepancy measures, especially on the S-
ersatz: higher dimensionalities and larger sample sizes tend to
respectively diminish and increase their performance (Figure 5).
Interestingly, the variability in the performance of discrepancy
measures does not seem to be critically determined by the
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Figure 5. Scatterplot of xk against r (the Pearson correlation) for each discrepancy measure. The red hexbins display simulations where r < 0. The number of simulations
in each facet is Ns = 29.

functional form of the model (ε), the underlying distribution (φ)
or the sampling method used to design the sample matrix (τ ).

As displayed in Figures 4–5, some simulations yield r < 0.
To explore the reasons underlying this rank reversal, we plot
all simulations where at least one discrepancy measure yielded
r < 0 and cross-check the other r values. We observe that
the production of negative r values is measure-specific: in the
same simulation some discrepancy measures yielded r < 0
while others produced very high r values and hence accurately
matched the rankings of the Jansen estimator (Figures S4–S13).
This indicates that certain discrepancy measures, especially the
modified (M2) and the star, may be more volatile than the rest
when used in an SA setting.

3.2. Computational Complexity

The numerical efficiency of a sensitivity analysis method (how
much time it requires to run its algorithmic implementation)

is an important property to take into account when deciding
which SA approach to use. If the model of interest is already
computationally burdensome, the large sample size needed
to compute Sobol’ indices or the extra computational strain
added by a demanding discrepancy measure may make the
implementation of the latter unfeasible. To pinpoint the
computational requirements of discrepancy measures, we
calculate the time it takes to evaluate each expression with the
R package microbenchmark (Mersmann 2021), which uses
sub-millisecond accurate timing functions. We use the imple-
mentations of (7)–(11) in the R package sensitivity (Iooss
et al. 2022), which are written in C++. Our implementation of
the S-ersatz algorithm uses base R language (Puy 2022). To gain
robust insights into the time complexity of all these discrepancy
measures, we explore their efficiency through a wide range
of sample sizes Ns (100–5000) and dimensionalities d (3–
100), which we treat as random factors following the approach
described in Section 2.3. The results, which are presented in
Figure 6, match the expected numerical complexity of the
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Figure 6. Time complexity of discrepancy measures. In the d facet Ns = 500, while in the Ns facet, d = 5.

different discrepancy measures, O(N2
s d), and of the S-ersatz,

O(Nsd).

4. Discussion and Conclusions

SA is a key method to ensure the quality of model-based infer-
ences and promote responsible modeling (Saltelli et al. 2020;
Saltelli and Di Fiore 2023). Here we investigate the utility of
using discrepancy measures as tools to assess the sensitivity of
a model output to its input uncertainties. Our contribution can
be summarized in three key aspects:

1. We try to make SA more accessible to the non-specialist
by linking the sensitivity of a given input to this input’s
capacity to leave “holes” in the input-output scatterplot. The
use of discrepancy measures as a SA method thus permits
an easy explanation as to why a factor is identified as more
influential than another: for instance, x1 is more influential
than x2 when the scatterplot of x1 against y displays a more
discernible shape and more “holes” than the scatterplot of x2
against y. The capacity to be translated into comprehensive
language is regarded as a desirable property of a good SA
method (Saltelli et al. 2008), and this feature is also shared by
variance-based methods: the first-order index (Si) says that x1
is more important than x2 when fixing x1 leads on average to a
greater reduction in the output variance than fixing x2. As for
the total-order index (Ti), it says that x1 is more important
than x2 when fixing all factors but x1 leaves on average a
greater residual variance than doing the same on x2.

2. We present numerical evidence that discrepancy is an effec-
tive proxy for Sobol’s total-order sensitivity index, whose
use is considered best practice in variance-based SA (Homma
and Saltelli 1996; Saltelli et al. 2008). We cannot compare
the discrepancy measure against the theoretical, analytic val-
ues of the Sobol’ indices as this would limit our analysis to
those functions for which such a solution exists [a library
of such functions is available in Kucherenko et al. (2011)].
Instead, our analysis randomly generates test functions over
broad ranges of linearity and additivity to ensure that our
results remain independent of the choice of the test func-
tion. Such approach also aligns better with current SA prac-
tices: most of the time the effects of nonlinearities and non-
additivities in models are unknown to analysts before run-
ning the model, including the “true” Sobol’ indices. Overall,
our approach might have greater appeal for those users that
have less familiarity with statistical or mathematical concepts
such as ANOVA of functional decompositions. The results

might also be easier to communicate by the analyst to the
owner of the problem for those cases where the two are not
the same person.

Finally, it is also worth stating that, although the S-ersatz
is able to capture effects given by interactions like the total-
order index, it can not treat group (set) effects as this would
imply to plot y along the sorted set. A future exploration of
this topic could be attempted using Fourier decompositions
as in the sensitivity analysis method known as FAST (Saltelli,
Tarantola, and Chan 1999).

3. We introduce an ersatz discrepancy whose behavior in an
SA setting approximates the best discrepancy measures at a
much reduced computational cost. We observe the existence
of two groups: (a) the group formed by the wraparound, the
centered, the symmetric, the L2 and the S-ersatz, and (b) the
group formed by the modified and the star discrepancies. The
second group matches the behavior of the Jansen estimator
worse than the first group because both the modified and
the star discrepancy give the origin of the domain ([0]d) a
special meaning: points further away from the origin affect
less the measures. As for discrepancy measures in the first
group, their behavior is similar because they also treat the
origin and corner points in the same way. Their differences
due to the dimensionality do not play an important role here
given our focus on 2D sub-projections.

Our results suggest that the symmetric is the most robust
discrepancy measure for SA, and that it should be prioritized
over the other measures if the practitioner is interested in
a discrepancy-based SA. However, its numerical complex-
ity might make it computationally unaffordable for high-
dimensional models or if several model runs are required.
In those settings, the S-ersatz offers a much lighter and effi-
cient alternative without trading too much in accuracy. If
the correlation between the Jansen and the symmetric equals
r = 0.81 and the correlation between the Jansen and the S-
ersatz equals r = 0.72, this implies a 9% accuracy loss if using
the latter.

Regardless of whether the symmetric or the S-ersatz measure
is selected, it is crucial to ensure the quality of the sampling by
using randomized QMC methods like Sobol’ low-discrepancy
sequences, which ensure uniformity on sub-projections (Sobol’
1967; Kucherenko, Albrecht, and Saltelli 2015). It is important to
have a uniform distribution on the sample axis because we are
constructing 2D sub-projections between xk and y and because
the S-ersatz discretizes the projected space into boxes. It is
not sufficient to only have good sub-projection on 1D sub-
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projections as the output is still determined by the sample values
in all dimensions.

The use of discrepancy measures in an SA setting can be
extended to higher dimensions to appraise high order interac-
tions. Both the centered and the wraparound discrepancy, how-
ever, are known to have shortcomings with regards to dimen-
sionality: the centered suffers from the curse of dimensionality,
whereas the wraparound is not sensitive to a shift of dimen-
sion (Zhou, Fang, and Ning 2013; Fang et al. 2018). Our results
may therefore change should we increase the sub-projections’
dimensionality. Recently, some work has been done to com-
bine the complementary benefits of both the centered and the
wraparound discrepancy into a single measure: the mixture
discrepancy MD2 (see Zhou, Fang, and Ning 2013). This method
could also prove to be efficient here as it should give a more
uniform importance to every part of the domain. Finally, and
given that our study has focused on scalar outputs only, further
work can be directed to explore how discrepancy measures
perform as SA tools under multi-variate outputs. In current SA
practices, the most appropriate method appears to be contingent
upon the nature of the output, be it a map, a time-series or a
multi-variate result (Constantine 2015; Razavi et al. 2021).

Supplementary Materials

In the online Supplementary Materials we include Figures S1–S13, which
provide additional information about the metafunction used in Section 2.3
and the results presented in Section 3.1. In the zip file we include the R code
to reproduce our results and all the figures of the manuscript, as well as a
README file with instructions on how to execute the code. The R code
can also be retrieved from Puy (2022). Finally, a function to calculate the
S-ersatz is available in the R package sensobol (Puy et al. 2022) and the
Python library SALib (Herman and Usher 2017).
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