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ABSTRACT Variational quantum algorithms (VQAs) offer the most promising path to obtaining quan-
tum advantages via noisy intermediate-scale quantum (NISQ) processors. Such systems leverage classical
optimization to tune the parameters of a parameterized quantum circuit (PQC). The goal is minimizing
a cost function that depends on measurement outputs obtained from the PQC. Optimization is typically
implemented via stochastic gradient descent (SGD). On NISQ computers, gate noise due to imperfections
and decoherence affects the stochastic gradient estimates by introducing a bias. Quantum error mitigation
(QEM) techniques can reduce the estimation bias without requiring any increase in the number of qubits,
but they in turn cause an increase in the variance of the gradient estimates. This work studies the impact of
quantum gate noise on the convergence of SGD for the variational eigensolver (VQE), a fundamental instance
of VQAs. The main goal is ascertaining conditions under which QEM can enhance the performance of SGD
for VQEs. It is shown that quantum gate noise induces a nonzero error-floor on the convergence error of
SGD (evaluated with respect to a reference noiseless PQC), which depends on the number of noisy gates,
the strength of the noise, as well as the eigenspectrum of the observable being measured and minimized. In
contrast, with QEM, any arbitrarily small error can be obtained. Furthermore, for error levels attainable with
or without QEM, QEM can reduce the number of required iterations, but only as long as the quantum noise
level is sufficiently large, and a sufficiently large number of measurements is allowed at each SGD iteration.
Numerical examples for a max-cut problem corroborate the main theoretical findings.

INDEX TERMS Quantum computing, quantum error mitigation, quantum gate noise, variational quantum
algorithms.

I. INTRODUCTION
A. MOTIVATION
Current noisy intermediate-scale quantum (NISQ) proces-
sors are severely limited by the availability of a small
number of qubits and by the unavoidable errors due to
quantum gate noise. Quantum gate noise refers to unwanted
interactions of qubits with the environment, leading to
decoherence; as well as to the imperfect execution of
user-specified quantum gates on the physical device,
leading to gate infidelity. While fault-tolerant computation
is not feasible on NISQ processors due to the small
number of available qubits [1], forms of quantum error

mitigation (QEM), which do not require the addition
of further qubits, are possible [2], [3]. Many promising
applications of NISQ devices involve parameterized
quantum circuits (PQCs), whose architecture—or ansatz—is
compatible with NISQ processors. As illustrated in Fig. 1,
VQAs tune the parameters θ defining the operation of a PQC
via a classical optimizer that relies on measurements from
the PQC [4], [5]. This article studies the impact of quantum
gate noise on the performance of VQAs by focusing on the
question of whether QEM can be effective in enhancing the
performance of an optimized PQC and/or in reducing the
optimization complexity.
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FIGURE 1. Illustration of the VQA framework the model parameter
vector θ, specifying the operation of a, generally noisy, PQC U (θ), is
optimized via SGD based on measurement outputs. The measurement
outputs are used to produce an estimate ĝt of the gradient. The estimate
ĝt is affected by the inherent randomness of quantum measurements, as
well as by the noise introduced by the imperfections of the quantum
gates within the PQC.

To address this question, we consider the most fundamen-
tal instance of VQAs, namely the variational quantum eigen-
solver (VQE) [6]. The goal of the VQE is to ensure that the
output state of the PQC, denoted as |�(θ )〉, provides a good
approximation of the ground state of a given observable H.
Mathematically, we wish to approximately solve the problem

θ∗ = argmin
θ
〈H〉|�(θ )〉 (1)

of minimizing the expected value of observableH when eval-
uated for the output state |�(θ )〉. Assuming that the ansatz
of the PQC is sufficiently expressive, the solution |�(θ∗)〉
obtained from problem (1) is a close approximation of the
desired eigenstate. Applications of VQEs include the solu-
tion of quadratic unconstrained binary optimization [7], [8],
as well as problems in quantum chemistry [9].
In a VQE, the optimization (1) of the parameters θ of

the PQC is typically carried out in an iterative manner by
means of stochastic gradient descent (SGD). SGD estimates
the gradient ∇θ 〈H〉|�(θ )〉 of the expected value 〈H〉|�(θ )〉 via
measurements from the output of the PQC [4], [5]. Such
estimates are affected by the inherent randomness of quan-
tum measurements, as well as by the noise introduced by the
imperfections of the quantum gates within the PQC and by
decoherence. As a result of such quantum gate noise, as illus-
trated in Fig. 3(a), the estimates of the gradient ∇θ 〈H〉|�(θ )〉
are biased [10].
QEM techniques provide an algorithmic approach to mit-

igate quantum gate noise in NISQ devices. Unlike quan-
tum error correction codes [1], [11], [12], quantum er-
ror mitigation requires no additional qubit resources. Ex-
amples of quantum error mitigation techniques include
quasi-probabilistic QEM [2], zero noise extrapolation [2],
[13], randomized compiling [14], and Pauli-frame random-
ization [15]. Henceforth, we use QEM to denote quasi-
probabilistic quantum error mitigation.
As illustrated in Fig. 2, QEM provides protection against

quantum gate noise by running multiple, Nc, noisy quantum
circuits, which are sampled from a set of circuits imple-
mentable on the NISQ device, and by postprocessing the
measurement outputs. As sketched in Fig. 3(b), QEM can
reduce the mentioned quantum noise-induced bias in the

TABLE 1. Main Notations Used in This Article

measurement of a quantum observable, while generally in-
creasing the corresponding variance [16].
Using QEM, one can hence obtain a less biased estimate

of the gradient ∇θ 〈H〉|�(θ )〉. This can potentially improve the
convergence of SGD when applied to the VQE problem (1).
However, the bias reduction should be weighted against the
variance increase as a function of the number of quantum
measurements that one can afford at any SGD iteration. Un-
der which conditions is it advantageous to trade an increased
variance for a decrease in the bias in VQEs?

B. MAIN CONTRIBUTIONS
This article aims at providing some theoretical insights on
the potential advantages of QEM for VQE by studying the
convergence of SGD for problem (1) with and without QEM.
Assuming that gradients are estimated via the parameter-
shift rule [4], the specific contributions are summarized in
Table 2, where we report the derived upper bounds on the
number of SGD iterations required to ensure convergence to
a target error floor of orderO(δ)1 for any δ > 0.We compare
the performance of SGDwith shot noise only; as well as with
shot and gate noise with and without QEM. For all schemes,
as per the notation detailed in Table 1, we fix the number of
model parameters θ to integer D; the number of measure-
ments per-iteration as 2DNm for some integer Nm; and we
quantify the noise level with parameter γ ∈ [0, 1]. Noise is
modeled as an Pauli quantum channel that can account for
spatial correlations across the qubits [18]. The ansatz and the
observable H determine a constant μ (see Section III-C for
details). The main results are described as follows.

1) We first quantify the impact of the inherent random-
ness of quantum measurements, also known as shot
noise, as well as of the bias induced by quantum gate
noise, on the convergence of SGD.We show that, while
the impact of shot noise—quantified by the variance
term V in Table 2—can be arbitrarily decreased by
increasing the number Nm of quantum measurements,
the presence of quantum gate noise induces a nonzero
error floor on the convergence of SGD. The error floor
is caused by the bias in the estimate of the gradient, as
quantified by the term BE in Table 2, which is proved to
depend on the strength of the quantum gate noise γ , on
the numberD of free parameters of the PQC, and on the
eigenspectrum of the observable H. Accordingly, the

1In this work, we use the standard big-O notation O(·), with notation
Õ(·) further hiding the poly-logarithmic factors [17].

3103119 VOLUME 3, 2022
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FIGURE 2. VQA aided by quasi-probabilistic quantum error mitigation (QEM). (a) Noisy PQC where gate noise channel E acts on a CNOT gate. (b)
quasi-probabilistic representation (QPR) of a CNOT gate as a linear combination of a set of operations {Oi} implementable on the quantum computer. (c)
QEM approach, whereby multiple circuits are sampled, and their outputs combined, in order to approximate the operation of the PQC in the absence of
quantum gate noise.

TABLE 2. (Left) Upper Bounds on the Number of Iterations T Required to Ensure a Target Error Floor, E[L(θT )] − L(θ∗ ), of Order O(δ) for Any δ > 0 When
Only Shot Noise Is Present, As Well As in the Presence of Both Shot and Gate Noise With and Without QEM. Parameters V , VE , and V QEM quantify the
respective variances of the gradient estimates; μ > 0 is a positive constant dependent on the ansatz and on the observable H; BE > 0 accounts for the
bias due to quantum gate noise; and functions c(γ ), c1(γ ), and c2(γ ) are detailed in Section IV-B and Section V-C.

derived upper bound on the number of SGD iterations
in the presence of gate noise diverges for any error
floor δ smaller than some level, BE/μ, dependent on
the bias.

2) To mitigate the error floor induced by quantum gate
noise, we then study the impact of QEM on the conver-
gence of SGD. As seen in Table 2, QEM can obtain any
error δ > 0 in a finite number of iterations thanks to the
elimination of the bias on the gradient estimate caused
by quantum gate noise. Therefore, in order to obtain an
error smaller than BE/μ, QEM is necessary. For levels
of the error larger than BE/μ, QEM can help reduce
the number of required SGD iterations. According to
the bounds derived in this article, this is the case if
the noise level γ is sufficiently large and if the num-
ber Nc of circuits sampled at each iteration is large
enough. In fact, as illustrated in Fig. 3, QEM causes
an increase in the variance of the gradient estimator, as

quantified by the term VQEM in Table 2. In particular,
QEM adds a contribution to the variance that decreases
as 1/Nc, requiring a sufficiently large value of Nc to
ensure that this term does not dominate the overall
performance.

3) We corroborate the theoretical findings with numerical
experiments on the VQE problem of maximizing the
weighted max-cut Hamiltonian [8].

C. RELATED WORKS
1) IMPACT OF QUANTUM GATE NOISE
Recent works [19], [20] provide numerical evidence for the
detrimental impact of the quantum gate noise on the train-
ability of PQCs. Wang et al. [21] provided a theoretical ex-
planation of this phenomenon by showing that local Pauli
gate noise induces barren plateaus in the loss function. This
means that the gradient of the cost function vanishes with a

VOLUME 3, 2022 3103119
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FIGURE 3. Illustration of the effect of QEM. (Top) Without QEM, the
presence of quantum gate noise results in a biased gradient estimator.
(Bottom) Employing QEM by sampling Nc circuits can decrease the bias,
at the cost of increase in the variance, unless Nc is sufficiently large.

rate exponential in the number of qubits, as long as the circuit
depth is linear in the number of qubits.
Even in the absence of barren plateaus, quantum gate noise

can affect the convergence of SGD algorithms for the opti-
mization of PQCs by causing the stochastic gradients to be
biased estimates of the gradients. This aspect was studied
from a theoretical standpoint in [10] for VQE by focus-
ing on gradient estimators based on symmetric logarithmic
derivative operators. The variance of the resulting gradient
estimator was quantified in [10] via the quantum Fisher in-
formation, which was shown to decrease with increasing gate
noise. In contrast, the focus of this work is on SGD schemes
that leverage the more commonly used parameter-shift rule-
based gradient estimators.
Also related is the work [22], which studies the impact

of noisy gates on the convergence of SGD used for empiri-
cal risk minimization in supervised learning. However, Du
et al. [22] do not explicitly characterize the nonzero error
floor induced by the quantum gate noise. Furthermore, none
of the above-mentioned works account for the impact of
QEM.

2) QUANTUM ERROR MITIGATION
The detrimental effect of quantum gate noise observed in
the references summarized above suggest that optimization
of PQCs can indeed benefit from quantum error mitigation.
Earlier works that attempt to investigate the advantage of
quantum error mitigation include [23], which demonstrates
enhanced performance in terms of accuracy for VQE with
error mitigation via zero noise extrapolation on a supercon-
ducting quantum processor. Resorting to error mitigation via
hidden inverses [24], Leyton-Ortega et al. [25] proves experi-
mentally that error-mitigated VQE converges faster when ap-
plied to problems in quantum chemistry. Other studies focus

on developing error mitigation strategies that can efficiently
mitigate the bias induced by quantum gate noise [26], [27].
In particular, Strikis et al. [28] proposed a learning-based
quasi-probabilistic error mitigation strategy (LB-QEM) that
does not require knowledge of noise model and gate decom-
positions. Strikis et al. [28] showed experimentally that the
LB-QEM can reduce the bias induced by gate noise for VQE.
None of the above-mentioned works provide a theoretical
analysis of the observed enhanced convergence performance
of SGD-based VQE due to QEM.
In a different line of research, the work in [21] and [29] ad-

dressed the question of whether error mitigation techniques
can improve the resolvability of any two points on the cost
landscape, thus tackling noise-induced barren plateaus. It is
shown that QEM improves resolvability under global depo-
larizing noise, provided that the number of qubits is small.
However, any improvement in resolvability due to QEM de-
grades exponentially for large problem sizes, in terms of the
number of qubits and circuit depth, in the presence of local
depolarizing noise.
Overall, to the best of authors’ knowledge, no prior work

has addressed the convergence performance of SGD-based
VQE with the parameter-shift rule and in the presence of
QEM.

D. ORGANIZATION
The rest of this article is organized as follows. In Section II,
we detail the VQE problem (1), the solution method based on
SGD, as well as the considered quantum gate noise model.
Section III presents the convergence analysis of SGD for
VQE when gate noise is negligible. The impact of gate noise
on the convergence of SGD is studied in Section IV. In Sec-
tion V, we analyze the convergence of SGD with QEM. Fi-
nally, SectionVI presents numerical experiments that corrob-
orate our analytical findings. Finally, Section VII concludes
this article.

II. PROBLEM FORMULATION
The goal of the VQE is to prepare a quantum state, via a
PQC that minimizes the expectation of an observable. This
problem is also at the core of quantum machine learning
algorithms, and is the focus of this article. This section first
introduces the VQE problem, as well as the standard solution
method based on SGD. Then, we describe the noise model
assumed for the quantum circuit.

A. VARIATIONAL QUANTUM EIGENSOLVER
An ideal, noiseless, PQC implements a unitary transforma-
tion U (θ ), operating on n qubits, that is, parameterized by
a vector θ = (θ1, . . . , θD), with θd ∈ R for d = 1, . . .,D. A
common architecture for the PQC, also known as ansatz,
prescribes unitaries of the form [30]

U (θ ) =
D∏
d=1

Ud (θd )Vd (2)

3103119 VOLUME 3, 2022
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where the dth parameter θd in vector θ determines the op-
eration of the dth unitary Ud (θd ). The parameterized gate is
assumed to be given as [31]

Ud (θd ) = exp

(
−iθd

2
Gd

)
(3)

whereGd ∈ {I,X,Y,Z}⊗n denotes the Pauli string generator.
Furthermore, the unitaryVd in (2) is fixed, and not dependent
on parameters θ .

The noiseless PQC is applied to n qubits that are initially
in the ground state |0〉 to yield the parameterized quantum
state

|�(θ )〉 = U (θ )|0〉. (4)

The pure-state density matrix corresponding to the quantum
state (4) is denoted as

�(θ ) = |�(θ )〉〈�(θ )|. (5)

The VQE seeks to find the parameter vector θ ∈ RD that
addresses the problem (1), which we restate here as

min
θ∈RD

{
L(θ ) := 〈H〉|�(θ )〉

}
(6)

where the loss function L(θ ) is the expected value

〈H〉|�(θ )〉 = 〈0|U†(θ )HU (θ )|0〉 = Tr (H�(θ )) (7)

of an observableH for the state |�(θ )〉 produced by the PQC.
We denote as

L∗ = min
θ∈RD

L(θ ) (8)

the minimum value of the loss function.
The Hermitian matrix H describing the observable can be

written via its eigendecomposition as

H =
Nh∑
y=1

hy�y (9)

where {hy}Nhy=1 denote the Nh ≤ 2n distinct eigenvalues of

matrix H, and {�y}Nhy=1 are the projection operators onto the
corresponding eigenspaces. Consequently, the loss function
L(θ ) in problem (6) can be expressed as

L(θ ) =
Nh∑
y=1

hy Tr (�y�(θ )). (10)

B. STOCHASTIC GRADIENT DESCENT
Assuming the ideal case in which the PQC is noiseless, prob-
lem (6) can be addressed by following a hybrid quantum-
classical optimization approach. Accordingly, Nm measure-
ments of the observable H are made for the output state
|�(θ )〉 of PQC, producing samples {Hj}Nmj=1 with Hj ∈
{h1, . . . , hNh}. From these samples, an estimate of the loss
function L(θ ) is obtained as

L̂(θ ) = 〈̂H〉|�(θ )〉 =
1

Nm

Nm∑
j=1

Hj (11)

where the “hat” notation is used for empirical estimates. The
empirical estimate (11) is used as input to classical optimiza-
tion algorithm.

In this work, we focus on the standard implementation of
VQE based on SGD optimization. Starting from an initial-
ization θ0 ∈ RD, SGD performs the iterative update of the
parameter θ as

θ t+1 = θ t − ηt ĝt (12)

for iterations t = 1, . . . ,T , where ĝt represents a stochastic
estimate of the gradient

∇L(θ )|θ=θ t =

⎡⎢⎢⎣
∂L(θ )
∂θ1
...

∂L(θ )
∂θD

⎤⎥⎥⎦
θ=θ t

(13)

of the loss function L(θ ) at the current iterate θ = θ t , and
ηt > 0 denotes the learning rate at the tth iteration. We will
detail how to obtain the estimate ĝt as a function of mea-
surements of observable H of the form (11) in the following
sections.

C. NOISY QUANTUM GATES
In the current era of NISQ hardware, the implementation of
the unitary gates that determine the operation of the PQC in
(2) is subject to quantum gate noise due to decoherence as
well as gate infidelities. Therefore, a quantum computer can
in practice only implement a given set 	 of, generally noisy,
quantum operations.
The set 	 = {Oθ

i } consists of a set of gates {Oθ
i } that can

be implemented on the quantum device. The notationOθ
i em-

phasizes the possible dependence of operationO on a model
parameter θ . Each gate Oθ

i can be modeled as a quantum
channel, that is, as a completely positive trace preserving
map between density matrices. Accordingly, we can write
the corresponding maps asOθ

i (ρ) = ρ′, where ρ is the input
density matrix and ρ′ the output density matrix [32]. The
operations in set 	 can be determined via quantum gate set
tomography as detailed in [3].
Each unitary gate Ud (θd )Vd in the ideal, noiseless, PQC

(2) corresponds to the noiseless quantum channel

ρ′ = U θd
d (ρ) = VdUd (θd )ρUd (θd )†V †

d . (14)

Thus, the operation of the overall noiseless PQC U (θ ) in
(2) on the initial state ρ0 = |0〉〈0| can be expressed as the
composition of the mappings

U θ (ρ0) = U θD
D ◦ . . . ◦ U θ1

1 (ρ0) (15)

where ◦ indicates the composition operation.
In practice, the quantum gates in the ideal PQC (15) can be

only approximately implemented on the quantum computer,
in the sense that the set of feasible operations	 includes only
noisy versions of such gates. Formally, given the noiseless
parameterized gate U θd

d (·) in (14), we assume that the set 	

includes a noisy operation of the form

Oθd
i (·) = E ◦ U θd

d (·) = Ũ θd
d (·) (16)

where E (·) represents a quantum channel. Following (16), we
will write as Ũ θd

d (·) the noisy quantum gate corresponding to

the noiseless gate U θd
d (·) in (14).

VOLUME 3, 2022 3103119
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Throughout this work, we model gate noise via Pauli
quantum channels acting on the n qubits of the form

E (ρ) = (1− ε)ρ + ε
∑
j

E jρE
†
j (17)

where 0 ≤ ε ≤ 1 is the error probability, and the sum in (17)
runs over a subset of 4n − 1 n-length Pauli strings Ej, ex-
cluding the identity matrix. The noise model in (17) includes
the standard model with independent channels across the n
qubits, and it can also more generally account for spatial cor-
relations across n qubits [18]. It is practically well justified
when quantum gate set tomography returns a real, diagonal
matrix for the Pauli transfer matrix representation [33].
We write Ps, with s ∈ {0, 1, 2, 3}, for a single-qubit Pauli

operator, where P0 = I, P1 = X , P2 = Y , and P3 = Z. With
this notation, the Kraus operators in (17) can be written as

Ej = √p jPs j,0 ⊗ . . .⊗ Psj,n−1 (18)

where s j,k ∈ {0, 1, 2, 3} for k = 0, 1, . . . , n− 1; we have the
equality

∑
j p j = 1; and the indices s j,k cannot be all equal

to 0.
As an important example that we will assume in some

of the theoretical derivations, the noise model (17) includes
the depolarizing noise channel, which is obtained when the
Kraus operators Ej include all 4n − 1 Pauli strings exclud-
ing the identity matrix, and p j = 1/(4n − 1). Note that this
corresponds to a situation in which the gate noise applies
separately to each qubit.
Overall, when QEM is not applied, the actual implemen-

tation of PQC (2) on the quantum computer amounts to the
following composition of noisy gates:

Ũ θ (·) = Ũ θD
D ◦ . . . ◦ Ũ θ1

1 (·) (19)

where each operation Ũ θd
d (·), for d = 1, . . . ,D, belongs to

the family of quantum operations 	. Accordingly, the PQC
operation of (19) on the initial quantum state ρ0 = |0〉〈0|
results in the output noisy quantum state

ρE (θ ) = Ũ θ (ρ0). (20)

D. FEASIBLE QUANTUM GATE SET
Apart from the noisy gates (16), in order to enable QEM,
we assume that the set 	 of implementable operations
also includes the noisy cascade of Pauli operations and
ideal gates U θ

d (·). To denote an n-qubit Pauli operation, we,
henceforth, use the following standard convention. Let s =
(s0, . . . , sn−1) be a vector of indices with sk ∈ {0, 1, 2, 3} for
k = 0, . . . , n− 1. Using this notation, we denote an n-qubit
Pauli operator as

Ps(·) = Ps0 (·)⊗ . . .⊗ Psn−1 (·) (21)

where

Psk (·) = Psk (·)P†sk (22)

for k = 0, . . . , n− 1. The set of implementable operations	

then includes all the noisy gates Ũ θ
d (·), as well as the noisy

concatenations E ◦ Ps ◦ U θ
d of Pauli operationPs on the ideal

unitary for all s ∈ {0, 1, 2, 3}⊗n.

III. IMPACT OF SHOT NOISE
We start our analysis of the SGD-based optimization for the
VQE problem (6) by assuming that the quantum gate noise
is negligible. This amounts to assuming that the set 	 of
feasible quantum operations includes all gates U θd

d (·) in (15),
and hence, we have Ũ θd

d (·) = U θd
d (·) in (16). Accordingly,

the analysis in this section only accounts for the randomness
due to shot noise, that is, due to the inherent stochasticity
of quantum measurements. The impact of gate noise will be
studied in the following section.

A. ESTIMATING THE GRADIENT
With no gate noise, the dth component of the gradient,
[gt ]d = [∇L(θ t )]d , can be estimated via the parameter shift-
rule as [34]

[ĝt ]d = 1

2

(
〈̂H〉|�(θ t+ π

2 ed )〉 − 〈̂H〉|�(θ t− π
2 ed )〉

)
(23)

where ed denotes a unit vector with all zero elements except
in the dth position. In (23), the quantum state |�(θ t + π

2 ed )〉
is obtained by shifting the phase of dth parameter θd by
π/2; and |�(θ t − π

2 ed )〉 is obtained by shifting the phase
of dth parameter θd by −π/2. Furthermore, as in (11), the
notation 〈̂H〉|�(θ )〉 describes an empirical estimation of the
expected observable H, obtained from Nm independent iden-
tically distributed (i.i.d.) measurements {H1, . . . ,HNm} of the
observable under state |�(θ )〉.

The measurements of observable H return Hj = hy with
probability

p(y|θ ) = Tr (�y�(θ )), y ∈ {1, . . . ,Nh} (24)

for all measurements j = 1, . . . ,Nm. The resulting empirical
estimator of each expected value in (23) evaluates as in (11).
Therefore, estimating the full gradient vector (13) requires
running the PQC a number of times equal to 2DNm.
Upon obtaining a solution θT after T iterations, the final

outcome of the VQE is evaluated as 〈H〉|�(θT )〉, where the
expectation is taken over a large number of measurements.

B. PROPERTIES OF THE GRADIENT ESTIMATE
The estimate in (23) is unbiased, i.e., we have

E[ĝt ] = gt = ∇L(θ t ) (25)

where the expectation E[·] is taken with respect to the 2DNm
measurements used in (23). Therefore, we can decompose
the gradient estimator (23) as

ĝt = gt + ξt (26)

with noise ξt satisfying the conditions E[ξt ] = 0 and
var (ξt ) = E[‖ĝt − gt‖2]. The following lemma gives an up-
per bound on the variance var (ξt ). To this end, we first
rewrite the empirical estimate (11) as

〈̂H〉|�(θ )〉 =
1

Nm

Nm∑
j=1

Nh∑
y=1

hyI{Yj = y} (27)

where Yj ∈ {1, . . . ,Nh} is the random variable defining the
index corresponding to the jth measurement so that we have
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the equality Hj = hYj . Furthermore, we introduce the vari-
ance of the Bernoulli quantum measurement I{Yj = y} as

ν(p(y|θ )) = p(y|θ )(1− p(y|θ )) (28)

where p(y|θ ) is as defined in (24).
Lemma III.1: The variance of the unbiased gradient esti-

mator ĝt in (23) can be upper bounded as

var (ξt ) ≤ νNhD Tr (H2)

2Nm
:= V (29)

where ν ∈ [0, 0.25] is

ν = max
θ∈RD

max
y∈{1,...,Nh}

ν(p(y|θ )) (30)

with ν(p(y|θ )) in (28).
Proof: The proof is in Appendix A. �
Lemma III.1 shows that the variance of the gradient esti-

mate (26) decreases (at least) as 1/(2Nm) with respect to the
number of per-parameter measurements 2Nm, while being
proportional to the number of parameters, D. The term ν in
(30) captures the maximum variance of the Bernoulli mea-
surement indicator variables I{Yj = y}, hence accounting for
the degree of randomness of the measurements. Finally, the
term Tr (H2) is a scale parameter dependent on the numeri-
cal values {hy}Nhy=1 of the observable H.

C. CONVERGENCE OF SGD
We now study the convergence properties of SGD in (12)
with the unbiased estimator (26) in the case under study of
noiseless gates. Toward this goal, we make the following
assumptions on the loss function as in [10] and [30]. These
assumptions are further discussed in Appendix B.
Assumption III.1: The loss function L(θ ) is L-smooth,

i.e., we have the inequality

L(θ ) ≤ L(θ ′)+∇L(θ ′)T (θ − θ ′)+ L
2
‖θ − θ ′‖2 (31)

for all θ, θ ′ ∈ �. Furthermore, it satisfies the μ-Polyak–
Lojasiewicz (PL) condition, i.e., there exists a constant μ >

0 and μ ≤ L such that the inequality

‖∇L(θ )‖2 ≥ 2μ(L(θ )− L∗) (32)

holds for all θ ∈ �.
In practice, the constant μ depends on the number n

of qubits and the number of gate parameters D, since a
larger circuit is typically characterized by smaller-gradient
norms [35].
The following result gives a bound on the optimality of

the SGD output θT after T iteration. The proof of the result
is based on the classical convergence analysis of SGD, and
can be found in [17, Th. 6].
Theorem III.1: Under Assumption III.1, for any given ini-

tial point θ0, the following bound holds for any fixed learning
rate ηt = η ≤ 1/L:

E[L(θT )]− L∗ ≤ (1− ημ)T (E[L(θ0)]− L∗)+ 1

2

[
ηLV
μ

]
(33)

where V is as defined in (29), and the expectation is taken
over the distribution of the measurement outputs. Further-
more, given some target error level δ > 0, for learning rate
η = ηshot−noise ≤ min{ 1L ,

δμ
LV }, a number of iterations

T shot−noise = Õ
(
log

1

δ
+ V

δμ

) L
μ

(34)

is sufficient to ensure an error E[L(θT )]− L∗ = O(δ).
The result in (33) shows that SGDwith the unbiased gradi-

ent estimator (26) converges up to an error floor of the order
O(ηLV ). By choosing the learning rate η sufficiently small,
this error can be made arbitrarily small, thereby guaranteeing
convergence in at most T shot−noise iterations.

IV. IMPACT OF GATE NOISE
In this section, we study the impact of gate noise. To this
end, we assume that all quantum gate Ũ θd

d (·) ∈ 	 in the PQC
(15) can be written as in (16) with quantum noise (17). As
we will see, the presence of noisy gates induces a bias in the
gradient estimator (26) studied in the previous section. The
main result of this section quantifies the impact of the bias in
the gradient estimate on the convergence of SGD in (12).

A. ESTIMATING THE GRADIENT
To start, in a manner similar to (11), let us denote as 〈̂H〉ρE (θ ),
the empirical estimator of the observable H obtained from
measurements of the state ρE (θ ) in (20) produced by the
noisy PQC. This estimate is obtained from Nm i.i.d. mea-
surements {HE

1 , . . . ,HE
Nm
} of observable H under the noisy

quantum state ρE (θ ). We also write as {Y E
1 , . . . ,Y E

Nm
}, with

Y E
j ∈ {1, . . . ,Nh}, the corresponding indices of the measure-

ment outcomes, so that we have HE
j = hY E

j
. Accordingly, the

output Y E
j = y is produced with the probability

pE (y|θ ) = Tr (�yρ
E (θ )). (35)

At tth iteration, following the parameter shift rule as in
(23), we adopt the stochastic gradient estimator ĝEt whose dth
component is obtained as

[ĝEt ]d =
1

2

(
〈̂H〉ρE (θ t+ π

2 ed )
− 〈̂H〉ρE (θ t− π

2 ed )

)
. (36)

The estimate (36) involves the noisy quantum states ρE (θ t ±
π
2 ed ) in (20) that are produced by the noisy PQC with dth
parameter θd phase-shifted by π/2 or −π/2. In a manner
similar to (28), we define the variance of the Bernoulli quan-
tum measurement I{Y E

j = y} as
ν(pE (y|θ )) = pE (y|θ )(1− pE (y|θ )). (37)

B. PROPERTIES OF THE GRADIENT ESTIMATE
The stochastic gradient estimator in (36) is affected by two
sources of randomness, namely the shot noise due to quan-
tum measurements as studied in the previous section, and
the distortion caused by the noisy quantum gates. While shot
noise does not cause a bias in the gradient estimate (36), the
quantum gate noise causes the estimate (36) to be biased,
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i.e., E[ĝEt ] �= gt where gt = ∇L(θ t ) is the exact gradient at
iteration t as in (25).
To elaborate on this point, we decompose the biased gra-

dient estimator in (36) as

ĝEt = gt +
(
gEt − gt

)
︸ ︷︷ ︸

bias

+ξEt (38)

where the noise term is zero mean, i.e., E[ξEt ] = 0, and we
have defined

[gEt ]d =
1

2

(
〈H〉ρE (θ t+ π

2 ed )
− 〈H〉ρE (θ t− π

2 ed )

)
. (39)

The gradient (39) represents the average of the estimate (36),
where the expectation is taken over the quantum measure-
ments. Consequently, the difference (gEt − gt ) in (39) cap-
tures the bias due to gate noise.
The following lemma presents bounds on the bias and

on the variance of the measurement noise of the gradient
estimator in (36). To proceed, we write the noisy quantum
state in (20) in terms of the following decomposition [36]:

ρE (θ ) = (1− γ )�(θ )+ γ ρ̃(θ ) (40)

where parameter γ = 1− (1− ε)D describes the level of
noise. In particular, we have γ = 0 if there is no gate noise
(ε = 0), and γ = 1 when the noise level is maximal. The
decomposition (40) amounts to a convex combination of the
ideal state density matrix �(θ ) = |�(θ )〉〈�(θ )| and of the
error density matrix ρ̃(θ ) defined as

ρ̃(θ ) = 1

γ
(ρE (θ )− (1− γ )�(θ )). (41)

Note that, under the noise model of (17), matrix ρ̃(θ ) is
indeed a valid density operator for γ > 0 [36].

Let Ỹ ∈ {1, . . . ,Nh} denote the index of the quantummea-
surement H̃ = hỸ of the observableH under the error density
matrix ρ̃(θ ) in (40). The probability of observing Ỹ = y ∈
{1, . . . ,Nh} is given as

p̃(y|θ ) = Tr (�yρ̃(θ )). (42)

In a manner similar to (28), we define the variance of the
Bernoulli quantum measurement I{Ỹ = y} as

ν( p̃(y|θ )) = p̃(y|θ )(1− p̃(y|θ )).
Lemma IV.1: The following upper bound holds on the

variance of the stochastic gradient estimator ĝEt

var (ξEt ) ≤
DNh Tr (H2)

2Nm
c(γ ) := V E (43)

where c(γ ) = maxy∈{1,...,Nh}maxθ∈RD ν(pE (y|θ )), with
ν(pE (y|θ )) = γ ν( p̃(y|θ ))+ ν((1− γ ))(p(y|θ )− p̃(y|θ ))2

+ (1− γ )ν(p(y|θ )) (44)

and γ = 1− (1− ε)D; p(y|θ ) as in (24); and p̃(y|θ ) in (42).
Furthermore, the norm of the bias in (38) can be bounded as

‖bias ‖2 ≤ 4D‖H‖2∞γ := BE . (45)

Proof: Proof is included in Appendix C. �
The bound (45) on the bias of the estimator ĝEt can be seen

to be increasing with the noise level γ ; to be proportional to

the number of parameters D; and to depend on the spectrum
of the problem Hamiltonian. In contrast, the upper boundV E
in (43) quantifies the impact of shot noise and gate noise on
the variance of the gradient estimator in (36). By (43), the
variance of the gradient estimator decreases as 1/2Nm with
respect to the total number of per-parameter measurements.
Furthermore, unlike the bias, the variance V E is not neces-
sarily increasing with the noise level γ .
To see this, note that for a fixed number Nm of measure-

ments, the impact of the gate noise on the variance is captured
by the term ν(pE (y|θ )) in (44). In the absence of gate noise,
i.e., when ε = γ = 0, we have the equality ν(pE (y|θ )) =
ν(p(y|θ )), whereby the varianceV E reduces to the varianceV
in (29) caused solely by shot noise. The variance ν(pE (y|θ ))
is not necessarily monotonically increasing with the noise γ .
In fact, as shown in Appendix D, there exists a γ ∗(y, θ ) ∈
[0, 1] such that the variance ν(pE (y|θ )) is a concave function
of γ , increasing in the range γ ∈ [0, γ ∗(y, θ )] and decreasing
in the range γ ∈ (γ ∗(y, θ ), 1].

C. CONVERGENCE OF SGD
Using the results in the previous section, we now study the
convergence properties of the SGD with the biased estimator
ĝEt . As in the previous section, we evaluate the performance
of the obtained solution θT after T iterations of the SGD
update (26) by assuming the availability of a noiseless PQC
for testing. In other words, we evaluate the final performance
in terms of the loss L(θT ) in (6). In practice, this requires
the application of QEM for final testing (but not during the
optimization phase). The following theorem illustrates the
convergence properties of the biased gradient estimator.
Theorem IV.1: Under Assumption III.1, for any given ini-

tial point θ0, the following bound on the optimality gap holds
for the SGD with the biased gradient estimator in (36), given
any fixed learning rate ηt = η ≤ 1/L:

E[L(θT )]− L∗ ≤ (1− ημ)T (E[L(θ0)]− L∗)

+ 1

2

[
BE + ηLV E

μ

]
(46)

where the expectations are taken over quantum measure-
ments, andV E and BE are defined as shown in (43) and (45),
respectively. Furthermore, given some target error level δ >

BE/μ > 0, for learning rate η = ηgate−noise ≤ min{ 1L ,
δμ

LV E },
a number of iterations

T gate−noise = Õ
⎛⎝log

1

δ − BE
μ

+ V E

δμ

⎞⎠ L
μ

(47)

is sufficient to ensure the error floor E[L(θT )]− L∗ = O(δ).
As in the bound (33), which holds for ε = 0, the contri-

bution due to the variance termV E in (46) can be made arbi-
trarily small by keeping the learning rate η sufficiently small.
In contrast, the bias due to gate noise, which is quantified
by the term BE in (45), prevents bound (46) from vanishing.
Therefore, according to the bound (46), the noise-induced
bias causes a floor equal to BE/μ on the achievable error
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δ. For error levels δ > BE/μ, by (47), the induced bias BE
entails a larger number of SGD iterations to converge.

V. IMPACT OF QUANTUM ERROR MITIGATION
As seen in the previous section, the quantum gate noise in-
duces a bias in the gradient estimator (36). In this section,
we first introduce the quasi-probabilistic error mitigation
(QEM) technique introduced in [2]. We then study the con-
vergence of SGD (12) when QEM is employed in evaluating
the stochastic gradient estimator on the noisy PQC.

A. QUASI-PROBABILISTIC ERROR MITIGATION
QEM aims to recover the ideal expected value 〈H〉|�(θ )〉 =
Tr (HU θ (ρ0)) of observable H under the quantum state
U θ (ρ0) produced by the noiseless PQC. As illustrated in
Fig. 2, this is done via a quasi-probabilistic combination of
the implementable operations in the set 	 (see Section II-C).
To explain QEM, consider the dth ideal unitary map U θd

d (·).
QEM expresses the ideal unitary operation U θd

d (·) as a linear
combination of implementable operations in set 	 as

U θd
d (·) =

∑
s

qd,sOθd
s (·), with Oθd

s ∈ 	 (48)

where the quasi-probabilities qd,s are real numbers. Specif-
ically, with the noise model (16) and (17) described in Sec-
tion II-C, decomposition (48) applies with the operations
Oθd
s (·) = E ◦ Ps ◦ U θd

d (·), for s = 0, . . . , 4n − 1, wherePs is
the string of Pauli operations as defined in (21) [2]. Note that
we have identified for convenience the Pauli string Ps with
an integer s ∈ {0, 1, . . . , 4n − 1}, rather than with a binary
string s ∈ {0, 1, 2, 3}n as shown in Section II-D. This map-
ping between bit strings and integers is standard [37, Sec.
3.4].
With the noise model (16) and (17), (48) can be then

expressed equivalently via the following quasi-probabilistic
representation (QPR) [2]

U θd
d (·) = Zd

4n−1∑
s=0

sgn (qd,s)pd,sOθd
s (·) (49)

where Oθd
s (·) = E ◦ Ps ◦ U θd

d (·) and

Zd =
4n−1∑
s=0
|qd,s| (50)

is the l1-norm of the vector qd collecting all quasi-
probabilities for the dth gate; and

pd,s = |qd,s|
Zd

, for s = 0, . . . , 4n − 1 (51)

is a probability mass function satisfying
∑4n−1

s=0 pd,s = 1.
By the trace-preserving property of the ideal and noisy
operations, the quasi-probabilities satisfy the equality∑4n−1

s=0 qd,s = 1 and the inequality Zd ≥ 1.
Using (49), QEM can ideally recover the overall unitary

(15) implemented by the noiseless PQC as

U θ (·) = Z
∑
sD

psD sgn (qsD )Oθ
sD (·) (52)

Algorithm 1: QEM via MC Sampling.

Input: Ideal unitary gates {U θd
d }Dd=1, set of

implementable operations 	, and number of circuits Nc
Output: {sgn(qsDl )}

Nc
l=1, {Oθ

sDl
}Ncl=1 and 〈H〉ρsD1:Nc (θ )

1: Using (48) obtain the quasi-probability vector
qd = [qd,s]

4n−1
s=0 , for d = 1, . . . ,D.

2: Compute Zd and Z using (50), and pd,s using (51)
3: for l = 1, . . . ,Nc do
4: for d = 1, . . . ,D do
5: Sample sd ∼ pd,s to choose the parameterized

gate Oθd
sd

6: end for
7: Compute sgn (qsDl

) =∏D
d=1 sgn (qd,sd )

8: Compute
〈H sgn 〉ρ

sDl
= sgn (qsDl

) Tr (HOθ

sDl
(ρ0))

9: end for
10: Return { sgn (qsDl

)}Ncl=1, {Oθ

sDl
}Ncl=1 and

〈H〉ρ
sD1:Nc

(θ ) = Z
Nc

∑
l〈H sgn 〉ρ

sDl

where sD = (s1, . . . , sD) is a D-dimensional vector with
s j ∈ {0, . . . , 4n − 1} for j = 1, . . . ,D;Oθ

sD
(·) = OθD

sD ◦ . . . ◦
Oθ1
s1 (·) is the corresponding noisy circuit composed of feasi-

ble operations from set	; Z =∏D
d=1 Zd is the product of the

normalizing constants; psD =
∏D

d=1 pd,sd is the probability
of choosing the sDth circuit implementing operation Oθ

sD
(·);

and we have sgn (qsD ) =
∏D

d=1 sgn (qd,sd ) with sgn being
the sign function. Note that the sum in (52) is over all 4nD

values of string sD. As illustrated in Fig. 2, QEM can thus
exactly recover the true expected observable as

Tr (HU θ (ρ0)) = Z
∑
sD

psD sgn (qsD )〈H〉ρsD (θ ) (53)

where

ρsD (θ ) = Oθ
sD (ρ0) (54)

is the quantum state obtained by applying the sDth noisy
circuitOθ

sD
(·); and 〈H〉ρsD (θ ) = Tr (HρsD (θ )) is the expected

observable under the sDth quantum state.
Evaluating (53) becomes practically infeasible as the num-

ber n of qubits or the number D of unitary maps grows,
since the number of terms in the sum (52) grow as 4nD. Con-
sequently, in practice, quasi-probabilistic error mitigation
is implemented via a Monte Carlo sampling of Nc circuits
{sD1 , . . . , sDNc} := sD1:Nc in an i.i.d manner from the distribution
psD [2], [38]. This, in turn, gives an unbiased estimator of the
QEM-mitigated expected observable (53) as

〈H〉ρ
sD1:Nc

(θ ) = Z
Nc∑
l=1

1

Nc
sgn (qsDl

)〈H〉ρ
sDl

(θ ). (55)

We refer to Algorithm 1 for a summary of QEM.
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B. QEM-BASED GRADIENT ESTIMATOR
In this section, we describe the QEM-based gradient estima-
tor used to mitigate the bias due to gate noise. At each itera-
tion t, the QEM-based gradient estimator ĝQEM

t is obtained in
two steps. In the first step, the gradient estimator samples Nc
noisy circuits {Oθ t−1

sDl
}Ncl=1, with the current parameter vector

θ t−1. This is done by using the distribution psD as described
in Algorithm 1. For each lth sampled noisy circuit, the gra-
dient estimator then applies the parameter-shift rule as

[ĝQEM
t,l ]d = 1

2

(
〈̂H〉ρ

sDl
(θ t−1+ π

2 ed )
− 〈̂H〉ρ

sDl
(θ t−1− π

2 ed )

)
(56)

with l = 1, . . . ,Nc. In (56), the term 〈̂H〉ρsD (θ ) denotes an
empirical estimator of the expected observable 〈H〉ρsD (θ ), ob-
tained from NQEM i.i.d. measurements {HsD

1 , . . . ,HsD
NQEM
} of

observableH under the sampled noisy quantum state ρsD (θ ).

This yields the output HsD
j = hy with probability

psD (y|θ ) = Tr (�yρsD (θ )). (57)

Finally, the dth component of the gradient estimator,
[ĝQEM
t ]d is obtained as[

ĝQEM
t

]
d
= Z

Nc

Nc∑
l=1

sgn (qsDl
)
[
ĝQEM
t,l

]
d

(58)

by averaging the product of the per-circuit gradient esti-
mation [ĝQEM

t,l ]d in (56) over the Nc sampled circuits, and
multiplying by the normalizing constant Z. The QEM-based
gradient estimator is described in Algorithm 2.
To enable ease of comparison of the convergence behavior

of the QEM-based gradient estimator with the gradient esti-
mators described in previous sections, we fix the measure-
ment budget to Nm shots for the total of Nc circuits. In other
words, we fix NQEM = Nm/Nc number of measurement shots
on each sampled circuit.

C. PROPERTIES OF THE GRADIENT ESTIMATE
The QEM-based gradient estimator of (58) has two sources
of randomness, namely the randomness arising from sam-
pling noisy circuits {Oθ

sDl
}Ncl=1, as well as that arising from the

quantummeasurements. Accordingly, we can decompose the
QEM-based gradient estimator in (58) as

ĝQEM
t = gt + ξ

QEM
t (59)

where ξ
QEM
t denotes the total noise due to shot noise

and circuit sampling noise that satisfies E[ξ QEM
t ] = 0 and

var (ξ QEM
t ) = E[‖ĝQEM

t − gt‖2], with the expectation taken
over the randomly sampled noisy circuits as well as over
quantum measurements. It can be seen that the following
equality holds (see proof in Appendix E)

var
(
ξ
QEM
t

)
= E

[
‖ĝQEM

t − g circ
t ‖2

]
+ E

[
‖g circ

t − gt‖2
]

(60)

Algorithm 2: QEM-Based SGD.

Input: Initialization θ0, number of iterations T ,
number of circuit samples Nc, learning rate {ηt}
Output: Final iterate θT

1: Set t = 1
2: while t ≤ T do
3: Set θ = θ t−1
4: Get {sgn(qsDl )}

Nc
l=1, {Oθ

sDl
}Ncl=1 from Algorithm 1

5: for d = 1, . . . ,D do
6: Set gd = [·]
7: for l = 1, . . . ,Nc do
8: Implement Oθ± π

2 ed
sDl

(ρ0)

9: Compute [ĝQEM
t,l ]d using (56)

10: Set gd[l] = sgn (qsDl
)[ĝQEM

t,l ]d
11: end for
12: Compute [ĝQEM

t ]d = Z
Nc

∑Nc
l=1 gd[l]

13: end for
14: Update parameter vector as θ t ← θ − ηt ĝ

QEM
t

15: Update t ← t + 1
16: end while
17: Return final parameter iterate θT

where[
g circ
t

]
d
= Z

2Nc

Nc∑
l=1

sgn (qsDl
)

×
(
〈H〉ρ

sDl
(θ t+ π

2 ed )
− 〈H〉ρ

sDl
(θ t− π

2 ed )

)
(61)

is the shot-noise free estimate of the gradient obtained via Nc
noisy sampled circuits. While the first term of (60) captures
the impact of finite number, NQEM = Nm/Nc, of measure-
ments made per sampled noisy circuit, the second term cap-
tures the impact of sampling finite number of noisy circuits
on the variance of the QEM-based gradient estimator. With
this insight, the following theorem provides bounds on the
variance of the QEM-based gradient estimator.
Theorem V.1: The following inequality holds for the vari-

ance of the QEM-based gradient estimator:

c1(γ )var (ξ
E
t ) ≤ var

(
ξ
QEM
t

)
≤ VQEM (62)

where var (ξEt ) defined as in (43); we have c1(γ ) ≥ 0; and

VQEM = NhDZ2 Tr (H2)

2Nm
sup

θ∈RD,y∈{1,...,Nh}
EsD[ν(psD (y|θ ))]

+ Z2D‖H‖2∞
Nc

(63)

satisfies the inequality

VQEM ≥ c1(γ )V E + c2(γ )D‖H‖2∞
Nc

(64)

where c2(γ ) ≥ 1 and psD (y|θ ) is defined as in (57). Further-
more, in the special case of the depolarizing channel, the
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inequality c1(γ ) ≥ 1 is satisfied, and both c1(γ ) and c2(γ )
are nondecreasing functions of γ with c1(0) = c2(0) = 1.
Proof: Proof can be found in Appendix E. �
Theorem V.1 highlights three key points. First, as can be

seen from (62), the variance of the QEM-based gradient
estimator is at least c1(γ ) times the variance of the unmiti-
gated gradient estimator. For depolarizing noise, the function
c1(γ ) ≥ 1 is nondecreasing with γ , implying that QEM-
based gradient estimator has larger variance than the biased
noisy gradient estimator.
Second, the upper bound VQEM in (63) on the variance

of the QEM-based gradient estimator comprises the contri-
bution of shot noise, as captured by the first term, as well
as of the circuit sampling noise, as captured by the second
term. Accordingly, the bound (63) suggests that, even when
an infinite number of circuits is sampled, i.e., whenNc→∞,
the finite number of per-circuit measurements results in a
nonzero variance. Finally, inequality (64) relates the bound
VQEM of the variance with QEM to the bound V E obtained
without QEM, as defined in (43). Noting that functions c1(γ )
and c2(γ ) are nondecreasing with γ for depolarizing noise,
the inequality in (64) suggests that the variance of the QEM-
based estimator generally increases with gate noise.

D. CONVERGENCE OF QEM-BASED SGD
Based on the analysis of the stochastic gradient in the pre-
vious section, we have the following convergence result for
SGD using the QEM-based gradient estimator ĝQEM

t .
Theorem V.2: Under Assumption III.1, for any given ini-

tial point θ0, the following bound on the optimality gap holds
for the SGD employing QEM-based gradient estimator in
(58), given any fixed learning rate ηt = η ≤ 1/L

E[L(θT )]− L∗ ≤ (1− ημ)T (E[L(θ0)]− L∗)

+ 1

2

[
ηLVQEM

μ

]
(65)

where the expectations are taken over quantum measure-
ments and noisy circuit samples, and VQEM is defined as
in (62). Furthermore, given some target error level δ > 0,
for learning rate η = η QEM ≤ min{ 1L ,

δμ

LVQEM }, a number of
iterations

TQEM = Õ
(
log

1

δ
+ VQEM

δμ

) L
μ

(66)

is sufficient to ensure the error E[L(θT )]− L∗ = O(δ).
Theorem V.2 can be used to compare the convergence of

QEM-based SGD with that of the SGD under shot and gate
noise in Theorem IV.1. While the presence of quantum gate
noise forces SGD to settle at an error floor of O(δ) with δ >

BE/μ, QEM can achieve any error floor, O(δ) for δ > 0, in
a finite number TQEM of iterations. We refer to Section I for
further discussion on this result.

FIGURE 4. Hardware-efficient ansatz used in the experiments. The gates
in the dashed box are repeated L times.

VI. EXPERIMENTS
In this section, we present numerical results concerning the
VQE to solve a weighted max-cut combinatorial optimiza-
tion problem.

A. WEIGHTED MAX-CUT HAMILTONIAN
Consider an undirected graph G = (V,E ) with V =
{1, . . . , n} denoting the set of vertices of the graph and
E ⊆ V ×V denoting the set of edges. Each edge (i, j) ∈ E
has an associated weight wi, j > 0 such that wi, j = w j,i. A
cut of the graph defines a partition of the vertices into two
distinct subsets. Specifically, a cut assigns a binary variable
xv ∈ {0, 1} to each vertex v ∈ V depending on whether
it belongs to one subset or to the other. In the weighted
max-cut optimization problem, the goal is to find the cut that
maximizes the sum of the weights of the edges that connect
the vertices belonging to the two distinct subsets, i.e., of the
edges crossing the cut. This corresponds to maximizing the
cost function

C(x) =
∑

(i, j)∈E
wi, jxi(1− x j )+

∑
i

wi,ixi (67)

over the binary vector x = (x1, . . . , xn) with xi ∈ {0, 1} for
all i = 1, . . . , n. Note that (67) also imposes an additional
penalty on the self-weights assigned to each vertices via the
second summation.
The objective function in (67) can be converted to an

Ising Hamiltonian via the mapping xi �→ (1− Zi)/2 where
Zi = (I ⊗ . . . I ⊗ Z ⊗ I ⊗ . . .⊗ I) denotes an n-qubit opera-
tor that applies a Pauli-Z gate on the ith qubit. The weighted
max-cut problem of maximizing the cost in (67) over x can
be then equivalently expressed as minimizing the expected
value 〈H〉|�(θ )〉 of the Ising Hamiltonian

H =
n∑
i=1

wi,iZi +
∑
i< j

wi, jZiZ j (68)

over the quantum state |�(θ )〉. To produce the state |�(θ )〉 =
U (θ )|0〉, we consider the hardware-efficient ansatz adopted
in [8], as shown in Fig. 4. Accordingly, the PQC comprises
of single-qubit Pauli Y -rotation gates Ry(θ ), as well as two-
qubit cnot gates. The dashed box in Fig. 4 represents a layer
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FIGURE 5. Convergence analysis of the SGD—when exact gradients can be computed, when only shot-noise is present, when shot and gate noise are
present, and when QEM is employed—as a function of the number of iterations for n = 3 qubit system subjected to depolarizing noise on the CNOT gates.
The learning rate is ηt = 0.4/t ; Nc = 8; Nm = 400; L = 2 and (left) ε = 0.02 and (right) ε = 0.1.

of the PQC, which can be repeated to obtain deep variational
quantum circuits.

B. RESULTS
We first consider a simple complete graph G with n =
3 vertices and a random 3× 3 weight matrix w =
[0.41, 0.44, 0.55; 0.44, 0.97, 0.22; 0.55, 0.22, 0.89] whose
(i, j)th element wi, j denotes the weight of the edge (i, j) ∈
E. We consider the PQC defined by the hardware-efficient
ansatz in Fig. 4 with two layers, i.e., with L = 2. The PQC is
initialized to the state |+〉⊗n by setting the last rotation angle
on each qubit to π/2 and setting all other rotation angles
to zero [8]. We assume that depolarizing noise, with error
probability ε, acts only on the cnot gates, resulting in a PQC
with eight noisy gates.
We use the open-source quantum computing framework

Qiskit [39] to simulate our experiments. In particular, the
noise model in our numerical simulations is constructed by
making use of the NoiseModel class available in the Aer
library of Qiskit. We use the function add_quantum_error
to add depolarizing two-qubit error on each of the cnot
gates with desired error strength. The assumption that the
depolarizing noise acts only on cnot gates is motivated by
the experimental observations that noisy cnot gates yield
larger error in measurement outcomes as compared to noisy
single-qubit gates [28].
In Fig. 5, we study the convergence of SGD when exact

gradients can be computed; when only shot noise is present,
with number of measurements Nm = 400; when both shot
and gate noise are present, with the latter modeled by the
mentioned depolarizing noise with error probability ε; and
when QEM is used to combat gate noise with number of
sampled noisy circuits Nc = 8. We compare the figure on
the left, corresponding to a smaller noise of ε = 0.02, with
that on the right with a larger noise level of ε = 0.1. The
error levels are chosen to be comparablewith the experiments
in [28] and [40].
For each of the three scenarios, namely shot noise,

shot+gate noise, and QEM, we conduct ten experiments with

the SGD iterations starting from the same fixed initial point
θ0 to obtain a set of parameter iterates. In each experiment,
the cost 〈H〉|�(θ t )〉 corresponding to the obtained parameter
iterate θ t , for t = 1, . . . ,T , is evaluated exactly (i.e., Nm→
∞). The mean of the costs over the experiments is indicated
by the bold curve, while the spread is indicated by the lighter
shadows.
Overall, the experimental findings of Fig. 5 corroborate

our theoretical analysis. In particular, by comparing the two
figures in Fig. 5, we observe that a larger strength of the
depolarizing noise causes a larger error floor for SGD in the
presence of shot and gate noise. In contrast, QEM achieves
a lower error floor under both low and high noise strengths.
When the noise strength is smaller and a sufficient number
of circuits are sampled as in Fig. 5(left), the variance of
the QEM-based estimator is reduced (see Table 2), thereby
ensuring convergence at a rate comparable to the shot-noise
only case. In contrast, when the noise strength is larger, by
Theorem V.1, QEM requires more circuits to be sampled per
iteration.
In Fig. 6, we study the exact loss L(θT ) (evaluated

with Nm→∞) of the SGD iterate after T = 10 iterations
when exact gradient can be computed; when shot-noise
is present, with Nm = 10 240 measurement shots; when
shot and gate noise are present; and when QEM is
employed to mitigate the bias, as a function of the
increasing noise level ε. The figure in the left corresponds
to smaller number, Nc = 7, of circuit samples, while
the figure on the right corresponds to Nc = 10. The
max-cut problem has n = 5 vertices and a random
5× 5 weight matrix w = [0.42, 0.43, 0.55, 0.96, 0.22;
0.44, 0.89, 0.07, 0.87, 0.01; 0.55, 0.07, 0.77, 0.18, 0.15;
0.96, 0.87, 0.18, 0.77, 0.51; 0.22, 0.01, 0.15, 0.51, 0.84].
As before, we use the harware-efficient ansatz in Fig. 4, with
L = 1 layer and depolarizing noise assumed to act only on
cnot gates. We fix the learning rate as ηt = 0.14.

It can be seen from Fig. 6 that the presence of gate noise
induces a significant bias as the strength of the noise in-
creases. For large noise level, QEM successfully lowers the
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FIGURE 6. Cost function L(θT ) after T = 10 iterations of the SGD when only shot noise is present, when both shot and gate noise are present, and when
QEM is employed, as a function of the noise level ε. (Left) Circuit samples Nc = 7 and (right) Nc = 10. Other parameters are set as n = 5, L = 1,
Nm = 10 240, and ηt = 0.14. Ground state eigenvalue for the max-cut problem is −3.24.

FIGURE 7. Cost function L(θT ) after T = 10 iterations of the SGD when only shot noise is present, when both shot and gate noise are present, and when
QEM is employed, as a function of the number of circuit samples Nc . (Left) Low noise level ε = 0.03 and (right) high noise level (ε = 0.25). Other
parameters are set as n = 5, L = 1, Nm = 10240, and ηt = 0.14. Ground state eigenvalue for the max-cut problem is −3.24.

bias induced by gate noise. However, when the noise strength
is small, comparing the figures in the left and right shows that
the higher variance of the QEM, resulting due to small Nc,
may offset the benefit of QEM. Finally, Fig. 7 demonstrates
the impact of increasing number of circuit samples on the
loss L(θT ) of the SGD iterate after T = 10 iterations. The
experimental setting is same as in Fig. 6. As can be seen
from the figure, increasing the number of circuit samples
significantly reduces the variance of the QEM and ensure
performance close to the SGD with perfect error mitigation
(blue curve).

VII. CONCLUSION
This article seeks an answer to the following question: Can
quasi-probabilistic error mitigation (QEM) be beneficial in
improving the convergence of SGD for the implementation
of VQEs in NISQ devices? By analyzing the convergence
properties of SGD for VQEs, we have shown that the quan-
tum gate noise inherent in the operation of NISQ devices
results in a nonzero error floor. Achieving lower error levels
requires the use of QEM. However, for larger error levels, the
increase in the variance of the stochastic gradient estimate
caused by QEM may entail the need for a larger number of
SGD iterations when QEM is deployed. In particular, when

the noise strength is high and insufficient time is available
at each SGD iteration to sample circuits for QEM, QEM
may require a larger number of iterations to converge to the
desired error level. Conversely, when the number of circuits
sampled per iteration is sufficiently large, QEM can yield
a significant reduction in the number of SGD iterations as
compared to a conventional system without error mitigation.

APPENDIX A
PROOF OF LEMMA 3.1
To prove Lemma 3.1, we fix the iteration index t, which
is dropped from the notation. Let Xd,± = 〈̂H〉|�(θ± π

2 ed )〉 −〈H〉|�(θ± π
2 ed )〉 denote the difference between the estimated

and true expectation of the observable H under the quantum
state |�(θ ± π

2 ed )〉 whose dth parameter is phase-shifted
by ±π/2. For brevity, we also henceforth use the notation
|�d,±〉 = |�(θ ± ed π

2 )〉. The variance of the gradient esti-
mate (26) can be written as

var (ξ ) = E

[
D∑
d=1

(
1

2

(
〈̂H〉|�d,+〉 − 〈̂H〉|�d,−〉

)

−1

2

(〈H〉|�d,+〉 − 〈H〉|�d,−〉
))2

]
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=
D∑
d=1

1

4
E
[
(Xd,+ − Xd,−)2

]

=
D∑
d=1

1

4

(
E
[
X2
d,+

]
+ E

[
X2
d,−

])
(69)

where the expectation is with respect to theNmmeasurements
of the quantum state |�(θ + ed π

2 )〉 and theNmmeasurements
of the quantum state |�(θ − ed π

2 )〉 for d = 1, . . . ,D. The
random variables Xd,+ and Xd,− are, thus, independent for
d = 1, . . . ,D, which results in the equality in (69).

The expectation E[X2
d,+] is equal to the variance

var (〈̂H〉|�d,+〉) of the random variable 〈̂H〉|�d,+〉. LetY be the
random variable that defines the index of the measurement of
the observable H, and let us write as H = hY for the corre-
spondingmeasurement output.We denote asWy = I{Y = y},
for y = 1, . . . ,Nh, the Bernoulli random variable determin-
ing whether Y = y (Wy = 1) or not (Wy = 0). Noting that the
quantum measurements are i.i.d., it follows from the defini-
tion of expectation 〈̂H〉|�d,+〉 in (27) that

E
[
X2
d,+

]
= 1

Nm
var

⎛⎝ Nh∑
y=1

hyWy

⎞⎠ (70)

= 1

Nm
E

⎡⎢⎣
⎛⎝ Nh∑
y=1

hy
(
Wy − p

(
y
∣∣∣θ + ed π

2

))⎞⎠2
⎤⎥⎦

(71)

(a)≤ 1

Nm

⎛⎝ Nh∑
y=1

h2y

⎞⎠ Nh∑
y=1

var (Wy) (72)

(b)= 1

Nm

⎛⎝ Nh∑
y=1

h2y

⎞⎠ Nh∑
y=1

ν
(
p
(
y
∣∣∣θ + ed π

2

))

≤ Nh
Nm

⎛⎝ Nh∑
y=1

h2y

⎞⎠ ν = Nh Tr (H2)

Nm
ν (73)

where (a) follows from the Cauchy–Schwarz inequality; (b)
follows since the variance of the Bernoulli random variable
Wy can be computed as

var (Wy) = E[W 2
y ]− (E[Wy])

2 = ν
(
p
(
y
∣∣∣θ + ed π

2

))
with ν(x) = x(1− x) for x ∈ (0, 1). The last inequality fol-
lows from the definition of the quantity ν in (30).
In a similar way, it can be shown that the following in-

equality holds:

E[X2
d,−] ≤

Nh Tr (H2)

Nm
ν. (74)

Using these in (69) then yields the inequality

var (ξ ) ≤ DNh Tr (H2)ν

2Nm
(75)

concluding the proof.

APPENDIX B
SMOOTHNESS OF LOSS FUNCTION L(θ)
In the following lemma, we show that the loss function
L(θ ) in (6) is indeed always L-smooth for a constant L that
depends on the number of PQC parameters D, and on the
observable H. In contrast, the loss function L(θ ) need not
necessarily satisfy the PL-condition.
Lemma B.1: The loss function L(θ ) as defined in (6) is

L-smooth with L = D3/2∑Nh
y=1 |hy|.

Proof: To prove the this result, we note that the smooth-
ness condition can be equivalently written as the inequality
‖∇2L(θ )‖2 ≤ L on the Hessian ∇2L(θ ). We then note the
following steps:

[∇2L(θ )]i, j = ∂2L(θ )

∂θ j∂θi
(76)

(a)= 1

4
Tr

[
H
(
�
(
θ + eiπ2 + e j

π

2

)
−�

(
θ + eiπ2 − e j

π

2

)
−�

(
θ − eiπ2 + e j

π

2

)
+�

(
θ − eiπ2 − e j

π

2

))]
(b)≤ 1

4

∣∣∣∣ Tr [H (
�
(
θ + eiπ2 + e j

π

2

)
−�

(
θ + eiπ2 − e j

π

2

)
− �

(
θ − eiπ2 + e j

π

2

)
+�

(
θ − eiπ2 − e j

π

2

))]∣∣∣∣
(c)≤ ‖H‖∞

4

∥∥∥∥� (
θ + eiπ2 + e j

π

2

)
−�

(
θ + eiπ2 − e j

π

2

)
−�

(
θ − eiπ2 + e j

π

2

)
+�

(
θ − eiπ2 − e j

π

2

)∥∥∥∥
1

(77)

(d)≤ ‖H‖∞
4

(∥∥∥∥� (
θ+eiπ2 +e j

π

2

)
−�

(
θ+eiπ2 − e j

π

2

) ∥∥∥∥
1

+
∥∥∥∥−�

(
θ − ei

π

2
+ e j

π

2

)
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+�
(
θ − eiπ2 − e j

π

2

)∥∥∥∥
1

)
(e)≤ ‖H‖∞ ≤

Nh∑
y=1
|hy|. (78)

The equality in (a) follows from a double application of
parameter shift rule [8]; the inequality in (b) follows since the
inequality x ≤ |x| holds for x ∈ R; (c) follows from tracial
matrix Hölder’s inequality, i.e., | Tr (A†B)| ≤ ‖A‖∞‖B‖1
[41]; (d) follows from the triangle inequality of the trace
norm, ‖A‖1 =

√
Tr (AA†) [42]; inequality (e) follows

since the trace norm of a density matrix is bounded
as 0 ≤ ‖ρ‖1 ≤ 2 [42]; and the last inequality follows
from triangle inequality and the inequality ‖�y‖∞ ≤ 1,

i.e., ‖H‖∞ = ‖
∑Nh

y=1 hy�y‖∞ ≤
∑Nh

y=1 |hy|‖�y‖∞ ≤∑Nh
y=1 |hy|. This in turn implies the inequalities ‖∇2L(θ )‖2 ≤√
D‖∇2L(θ )‖∞ ≤ D3/2∑Nh

y=1 |hy|. �
In contrast to the smoothness assumption, the convexity of

the loss function L(θ ) in Assumption III.1 is not always satis-
fied. It provides a useful working condition for the analysis,
which was also adopted in[10] and[34]. Convexity may be
recovered by applying the optimization approach for PQC
detailed in [43]. We leave an investigation of this idea to
future works.

APPENDIX C
PROOF OF LEMMA 4.1
We first obtain an upper bound on the variance var (ξEt ) =
E[‖ĝEt − gEt ‖2] of the gradient estimator. As shown in
Appendix A, we drop the index t and define Xd,± =
〈̂H〉ρE (θ±ed π

2 )
− 〈H〉ρE (θ±ed π

2 )
as the difference between the

estimated and true expectation of the observable H under
the noisy quantum state ρE (θ ± π

2 ed ). By (69), we have the
equality

var (ξE ) =
D∑
d=1

1

4

(
E
[
X2
d,+

]
+ E

[
X2
d,−

])
(79)

where E[X2
d,±] = var

(
〈̂H〉ρE (θ±ed π

2 )

)
. Recall from (27) the

following definition:

〈̂H〉ρE (θ+ed π
2 )
=

Nh∑
y=1

hy
Nm

Nm∑
j=1

I{Y E
j = y} (80)

of estimated expectation of the observable under noisy state
ρE (θ + ed π

2 ) holds, where Y
E
j is the random variable corre-

sponding to the index of the jth measurement of the observ-
able H. In a manner similar to (73), it can be shown that the
following upper bound holds:

E[X2
d,±] ≤

Nh Tr (H2)

Nm
sup

θ∈RD,y∈{1,...,Nh}
ν(pE (y|θ )) (81)

where pE (y|θ ) is defined in (35). Using (81) in (79) yields
the upper bound (43).

To obtain the relation in (44), we use the decomposition
(40) of the noisy quantum state ρE (θ ) as a convex combina-
tion of the noiseless ideal state �(θ ) and of the error density
matrix ρ̃(θ ), defined in (41). With the definition (41), the
following set of relation holds for any y ∈ {1, . . . ,Nh} and
θ ∈ RD:

ν(pE (y|θ )) = ((1− γ )p(y|θ )+ γ p̃(y|θ ))
× (1− (1− γ )p(y|θ )− γ p̃(y|θ ))

= (1− γ )p(y|θ ) (1− (1− γ )p(y|θ ))
+ γ p̃(y|θ ) (1− (1− γ )p(y|θ ))
− γ (1− γ )p(y|θ ) p̃(y|θ )− γ 2 p̃(y|θ )2

= (1− γ )ν(p(y|θ ))+ γ
[
(1− γ )p2(y|θ )

+ p̃(y|θ ) (1− (1− γ )p(y|θ ))

−(1− γ )p(y|θ ) p̃(y|θ )− γ p̃(y|θ )2
]

= (1− γ )ν(p(y|θ ))+

γ
[
(1−γ )(p(y|θ )− p̃(y|θ ))2+ p̃(y|θ )− p̃(y|θ)2

]
= (1− γ )ν(p(y|θ ))
+ ν((1−γ ))(p(y|θ )− p̃(y|θ ))2+γ ν( p̃(y|θ )).

We now analyze the bias term. By (38), we have the
equality

‖bias‖2 =
D∑
d=1

1

4

(
Tr

(
H
(
ρE

(
θ + ed π

2

)
− ρE

(
θ − ed π

2

)
−�

(
θ + ed π

2

)
+�

(
θ − ed π

2

)))2
(82)

(a)≤
D∑
d=1

1

4
‖H‖2∞

(∥∥∥∥ρE
(
θ+ed π

2

)
−�

(
θ+ed π

2

)∥∥∥∥
1

+
∥∥∥∥ρE

(
θ − ed π

2

)
−�

(
θ − ed π

2

)∥∥∥∥
1

)2

(83)

(b)≤ 4D‖H‖2∞γ (84)

where the inequality in (a) follows from tracial matrix
Hölder’s inequality and the triangle inequality for trace
norm [42]. To obtain the inequality in (b), we use the follow-
ing relationship between trace distance and quantum fidelity

F (ρ, σ ) =
(
Tr (
√

ρσ
√

ρ )
)2

[42]:∥∥∥∥ρE
(
θ ± e j π2

)
−�

(
θ ± e j π2

)∥∥∥∥
1

≤ 2

√
1− F

(
ρE

(
θ ± e j π2

)
, �

(
θ ± e j π2

))
. (85)
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Furthermore, the quantum fidelity in (85) can be upper
bounded using (40) as

F (ρE (θ ), �(θ )) = 〈�(θ )|ρE (θ )|�(θ )〉
= (1− γ )〈�(θ )|�(θ )|�(θ )〉
+ γ 〈�(θ )|ρ̃(θ )|�(θ )〉

= (1− γ )+ γ 〈�(θ )|ρ̃(θ )|�(θ )〉 (86)

≥ 1− γ (87)

for all θ ∈ RD. Here, the last inequality follows since the den-
sity operator is positive semidefinite, making the second term
in (86) nonnegative. Using (87) in (85) yields the inequality
in (84).

APPENDIX D
ADDITIONAL PROPERTIES
In this section, we provide the following additional properties
of the variance term ν(pE (y|θ )) defined in (44). All these
properties can be easily verified using the definition (44), and
hence, we omit the detailed derivations here.

1) The inequality ν(pE (y|θ )) ≥ (1− γ )ν(p(y|θ ))+
γ ν( p̃(y|θ )) holds for all y ∈ {1, . . . ,Nh} and θ ∈ �.

2) ν(pE (y|θ )) is a concave function of γ . It is increasing
in the range γ ∈ [0, γ ∗(y, θ )), and decreasing in the
range γ ∈ [γ ∗(y, θ ), 1), where

γ ∗(y, θ ) = min

{
1, 0.5

(
1− ν(p(y|θ ))− ν( p̃(y|θ ))

( p̃(y|θ )− p(y|θ ))2
)}

.

(88)

APPENDIX E
PROOF OF THEOREM 5.1
In this section, we first compute the variance of the QEM-
based stochastic gradient estimator (58). With the notation
θ td,± = θ t ± ed π

2 , we have the equalities

var
(
ξ
QEM
t

)
= E[‖ĝQEM

t − gt‖2] (89)

= E[‖ĝQEM
t − g circ

t + g circ
t − gt‖2] (90)

(a)= E[‖ĝQEM
t − g circ

t ‖2]︸ ︷︷ ︸
A

+E[‖g circ
t − gt‖2]︸ ︷︷ ︸

B

(91)

where the expectation is over measurements as well as over
sampled noisy circuits, and we used the definition[

g circ
t

]
d
= Z

2Nc

Nc∑
l=1

sgn (qsDl
)

×
(
〈H〉ρ

sDl
(θ td,+ ) − 〈H〉ρsDl (θ

t
d,− )

)
. (92)

The equality in (a) follows from the equality E[(ĝQEM
t −

g circ
t )T (g circ

t − gt )|sD1:Nc] = 0 with the expectation taken
over the quantum measurements conditioned on the sampled
noisy circuit indices sD1:Nc . We now analyze each of the terms

in (91) separately. The first term A in (91) evaluates as shown
in (93) at the bottom of this page

A =
D∑
d=1

Z2

4N2
c

× E

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

Nc∑
l=1

sgn (qsDl
)

⎛⎜⎜⎜⎝〈̂H〉ρsDl (θ td,+ ) − 〈H〉ρsDl (θ td,+ )︸ ︷︷ ︸
A1,l

+〈H〉ρ
sDl

(θ td,− ) − 〈̂H〉ρsDl (θ
t
d,− )︸ ︷︷ ︸

A2,l

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

2⎤⎥⎥⎥⎦
(a)= Z2

4N2
c

D∑
d=1

var

(
Nc∑
l=1

sgn (qsDl
)(A1,l + A2,l )

)

(b)= Z2

4N2
c

D∑
d=1

Nc∑
l=1

E[A21,l + A22,l] (93)

where the equality in (a) follows by noting that for the
random variable C =∑Nc

l=1Cl , with Cl = sgn (qsDl
)(A1,l +

A2,l ), we have the equality E[C|sD1:Nc] = 0, where the ex-
pectation is over quantum measurements conditioned on the
indices sD1:Nc of the sampled circuits. The equality in (b) fol-
lows since random variables Cl for l = 1, . . . ,Nc, are inde-
pendent, enabling the equality var (C) =∑Nc

l=1 var (Cl ). Fur-
thermore, we have var (Cl ) = E[(A1,l + A2,l )2], which is in
turn equal to E[A21,l + A22,l], since, conditioned on a sampled

noisy circuit, the expectation E[A1,lA2,l |sDl ] = 0 holds.
Now, following an analysis similar to (71), defining the

Bernoulli random variableWy,sDl
= {Y QEM

sDl
= y}, withY QEM

sDl
being the random variable that denotes the index of the mea-
surement of the observable H, we obtain the inequality

E[A21,l |sDl ]

= 1

Nm/Nc
E

⎡⎢⎣
⎛⎝ Nh∑
y=1

hy
(
Wy,sDl

− psDl
(y|θ td,+)

)⎞⎠2 ∣∣∣sDl
⎤⎥⎦
(94)

≤ Tr (H2)

Nm/Nc

Nh∑
y=1

ν
(
psDl

(y|θ td,+)
)

. (95)

A similar bound can be obtained for the term E[A22,l |sD1:Nc].
Using (95), we first obtain an upper bound on the term A

in (93) as

A ≤ Z2

4N2
c

Tr (H2)

Nm/Nc

D∑
d=1

Nc∑
l=1

⎛⎝ Nh∑
y=1

EsDl

[
ν
(
psDl

(y|θ td,+)
)]
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+
Nh∑
y=1

EsDl

[
ν
(
psDl

(
y|θ td,−

))]⎞⎠ (96)

≤ NhDZ2 Tr (H2)

2Nm
sup

θ∈RD,y∈{1,...,Nh}
EsD

[
ν
(
psD (y|θ )

)]
(97)

where we used the notation E• to represent the expectation
over the random variable in the subscript •.
To get a lower bound on the term A, we start by observing

that

E[A21,l] = EsDl

[
E
[
A21,l |sDl

]]
(98)

(a)≥ psD={0}DE
[
A21,l |sD = {0}D

]
(99)

= psD={0}DNcvar
(
〈̂H〉ρE (θ td,+ )

)
(100)

with the inequality in (a) obtained by lower bounding the
outer expectation in (98) with the choice of the sD = {0}Dth
circuit. This determines the noisy operation Oθ

sD
(·) with

Pauli operator P0 acting on all gates times the probability
psD={0}D . With this choice of sampled circuit, we then have
that psDl

(y|θ td,±) = pE (y|θ td,±) and Wy,sDl
= I{Y E = y}. This

results in the last equality with var (〈̂H〉ρE (θ td,+ )
) defined as

in (80). Similar bound holds for E[A22,l]. Subsequently, one
obtains the lower bound

A ≥ Z2

4Nc
psD={0}D

D∑
d=1

[
Ncvar

(
〈̂H〉ρE (θ td,+ )

)
+Ncvar

(
〈̂H〉ρE (θ td,− )

)]
(101)

= Z2psD={0}Dvar (ξ
E
t ) = c1(γ )var

(
ξEt
)

(102)

with var (ξEt ) defined as in (79).
We now evaluate the second term B in (91). Toward this,

we note the inequality

B =
D∑
d=1

E

[([
g circ
t

]
d
− [gt ]d

)2]

=
D∑
d=1

Nc∑
l=1

Z2

4N2
c

× var

(
sgn

(
qsDl

)[
〈H〉ρ

sDl
(θ td,+ ) − 〈H〉ρ

sDl

(
θ td,−

)
])

(a)≤
D∑
d=1

Nc∑
l=1

Z2

4N2
c

× E

[(
sgn (qsDl

)

[
〈H〉ρ

sDl
(θ td,+ ) − 〈H〉ρsDl (θ

t
d,− )

])2
]
(103)

= Z2

4Nc

D∑
d=1

EsD

[(
〈H〉ρsD (θ td,+ ) − 〈H〉ρsD (θ td,− )

)2]

= Z2

4Nc

D∑
d=1

EsD

[(
Tr

(
H
(
ρsD (θ

t
d,+)− ρsD (θ

t
d,−)

)))2]

(b)≤ Z2‖H‖2∞
4Nc

D∑
d=1

EsD

[
‖ρsD

(
θ td,+

)− ρsD (θ
t
d,−)‖21

]
(c)≤ DZ2‖H‖2∞

Nc
(104)

where in (a) we used var (X ) ≤ E[X2]. The inequality in
(b) follows by the application of the tracial matrix Hölder’s
inequality [41], and the inequality (c) follows since trace
norm between density matrices is upper bounded by 2 [42].
Noting the inequality B ≥ 0 and using (102), we get the

following lower bound:

var
(
ξ
QEM
t

)
≥ c1(γ )var (ξEt ).

Furthermore, using (97) and (104) in (91) yields the upper
bound VQEM of (63).
To show the relation in (64), we start with the upper bound

on term A obtained in (97). One can lower bound this term
as

NhDZ2 Tr (H2)

2Nm
sup

θ∈RD,y∈{1,...,Nh}
EsD[ν(psD (y|θ ))]

≥ NhDZ2 Tr (H2)psD={0}D
2Nm

sup
θ∈RD,y∈{1,...,Nh}

ν(pE (y|θ ))

= Z2psD={0}DV
E = c1(γ )V

E (105)

where V E is as defined in (43). Together with the bound in
(104), we then get the inequality

VQEM ≥ c1(γ )V E + c2(γ )D‖H‖
2∞

Nc
(106)

with c2(γ ) = Z2.
Finally, we analyze the scalar functions c1(γ ) and c2(γ )

when the quantum noise channel in (17) is depolarizing. In
this case, [44, Th. 2] gives the equalities

Zd =
1+ (1− 21−2n

)(
1− (1− γ )1/D

)
(1− γ )1/D

(107)

and

pd (0) = 22n − 1+ (1− γ )1/D

22n
(
1+ (1− 21−2n)(1− (1− γ )1/D)

) (108)

for d = 1, . . . ,D. Note that the inequalities Zd ≥ 1 and
dZd
dγ ≥ 0 holds, whereby Zd is a nondecreasing function of γ .
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FIGURE 8. Convergence analysis of the SGD as a function of the number of iterations when exact gradients can be computed, when only shot-noise is
present, when shot and gate noise are present, and when QEM is employed (n = 3 qubit system subjected to depolarizing noise on the CNOT gates). The
learning rate is set as ηt = 0.5/t ; Nc = 8; and Nm = 400. (Left) Low noise with ε = 0.09;. (Right) Large noise with ε = 0.25. The loss function L(θt ) is
evaluated during testing by taking Nm measurements of a gate-noise free PQC.

Subsequently, we have the equality c2(γ ) = Z2 = (Zd )2D ≥
1 and c2(γ ) is a nondecreasing function of γ .
We now analyze the term c1(γ ) = Z2psD={0}D =

(Z2d pd,s=0)
D, where we have Z2d pd,s=0 = num

den with

num = (22n+1 − 4+ 21−2n)+ (1− γ )1/D(5− 4/22n − 22n)

− (1− γ )2/D(1− 21−2n)
and den = 22n(1− γ )2/D. The following two properties can
be easily verified. First, we show that

num− den

=
(
22n+1 − 4+ 21−2n

)
+ (1− γ )1/D

(
5− 4/22n − 22n

)
− (1− γ )2/D(1− 21−2n + 22n)

(a)≥
(
22n+1 − 4+ 21−2n

)
+ (1− γ )1/D(5− 4/22n − 22n

− 1+ 21−2n − 22n)

=
(
22n+1 − 4+ 21−2n

)
−(1− γ )1/D

(
−4+ 2/22n + 22n+1

)
≥ 0

where inequality (a) follows since (1− γ )2 ≤ (1− γ ) and
the last inequality follows since (1− γ )1/D ≤ 1. As a conse-
quence, we have the equality Z2d pd,s=0 = num/den ≥ 1, and
thus, the inequality c1(γ ) ≥ 1.
Lastly, it can be verified that

d(Z2d pd,s=0)
dγ

= d

dγ

num

den
= 1

D(1− γ )2/D+1

×
(
4− 8

22n
+ 4

24n

)
+ 1

D(1− γ )1/D+1

(
5

22n
− 4

24n
− 1

)
≥ 1

D(1− γ )1/D+1

(
3− 3

22n

)
≥ 0 (109)

holds, where the last inequality follows by the inequal-
ity (1− γ )2 ≤ (1− γ ). Consequently, Z2d pd,s=0, and thus
c1(γ ), are nondecreasing functions of γ .

APPENDIX F
ADDITIONAL EXPERIMENTS
In Fig. 5 of Section VI, we have evaluated the performance
of the parameter iterate θ t of the SGD in terms of the loss
function L(θ ) in (6), which can be estimated in practice given
an infinite measurements on a gate-noise free PQC during
testing. In this section, we assume that during testing, a gate-
noise free PQC with the same measurement budget as that
during training is available. As can be seen from Fig. 8, ob-
tained under the same conditions as Fig. 5, the finite number
of measurements of the PQC made during testing induces a
larger variance on the evaluated loss function for all settings.
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