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ABSTRACT
Objectives Analysis of routinely collected electronic 
health data is a key tool for long- term condition research 
and practice for hospitalised patients. This requires 
accurate and complete ascertainment of a broad range 
of diagnoses, something not always recorded on an 
admission document at a single point in time. This study 
aimed to ascertain how far back in time electronic hospital 
records need to be interrogated to capture long- term 
condition diagnoses.
Design Retrospective observational study of routinely 
collected hospital electronic health record data.
Setting Queen Elizabeth Hospital Birmingham (UK)- linked 
data held by the PIONEER acute care data hub.
Participants Patients whose first recorded admission 
for chronic obstructive pulmonary disease (COPD) 
exacerbation (n=560) or acute stroke (n=2142) was 
between January and December 2018 and who had a 
minimum of 10 years of data prior to the index date.
Outcome measures We identified the most common 
International Classification of Diseases version 10- coded 
diagnoses received by patients with COPD and acute 
stroke separately. For each diagnosis, we derived the 
number of patients with the diagnosis recorded at least 
once over the full 10- year lookback period, and then 
compared this with shorter lookback periods from 1 year 
to 9 years prior to the index admission.
Results Seven of the top 10 most common diagnoses in 
the COPD dataset reached >90% completeness by 6 years 
of lookback. Atrial fibrillation and diabetes were >90% 
coded with 2–3 years of lookback, but hypertension and 
asthma completeness continued to rise all the way out to 
10 years of lookback. For stroke, 4 of the top 10 reached 
90% completeness by 5 years of lookback; angina pectoris 
was >90% coded at 7 years and previous transient 
ischaemic attack completeness continued to rise out to 10 
years of lookback.
Conclusion A 7- year lookback captures most, but not all, 
common diagnoses. Lookback duration should be tailored 
to the conditions being studied.

BACKGROUND
Multiple long- term conditions (MLTCs) 
(multimorbidity) are an important but under-
studied challenge to healthcare systems.1 
MLTCs, defined as two or more long- term 
health conditions, are common with an esti-
mated global prevalence of 37%.2 The preva-
lence in old age is even higher, reaching 80% 
by the age of 80 years in the UK.3 Much of 
the research on MLTCs to date has used large 
population- based datasets or has focused on 
primary care data; there has been compara-
tively little work on MLTCs within the hospital 
environment.4 Understanding the associa-
tions, consequences and pathways of care for 
MLTCs within hospital is critical if we are to 
understand how best to prevent the adverse 
consequences of MLTCs and deliver better 
care for hospitalised patients.5

Analysis of routinely collected electronic 
healthcare records (EHRs) affords the oppor-
tunity to study MLTCs at scale, across a wide 
range of patient groups. Use of routine data 

STRENGTHS AND LIMITATIONS OF THIS STUDY
 ⇒ We analysed common conditions associated with 
two different index conditions underlying hospital 
admission.

 ⇒ Our mature, large hospital dataset enabled us to 
study a variety of conditions and analyse longitudi-
nal trends over 10 years.

 ⇒ Less common associated conditions were not stud-
ied and may require different lookback periods for 
effective capture.

 ⇒ Our analysis was confined to a single electronic hos-
pital record and the required lookback periods could 
differ between hospitals.
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enables inclusion in analyses of those who would not be 
able to join traditional consented studies, such as those 
with dementia or with critical illness. The accurate iden-
tification of which long- term conditions affect hospital-
ised patients is central to the study of MLTCs in patients 
admitted to hospital. In the UK, diagnoses within EHRs 
are recorded at discharge, but can also be recorded 
during admissions. The quality and completeness of diag-
nostic coding are highly variable however,6 7 and exam-
ining diagnoses coded during a single admission may not 
provide a complete picture of all diagnoses affecting an 
individual.

Aggregating diagnoses from a series of hospital admis-
sions provides an opportunity to improve the complete-
ness of recording, but it is unclear how far back through 
an EHR researchers should look. Different EHRs have 
been in existence for different amounts of time, and 
comparison between EHRs may introduce bias if different 
lookback times introduce differences in the completeness 
of diagnostic recording. Understanding the complete-
ness of diagnostic recording for a given lookback period 
would help to avoid under- recording of diagnoses in both 
research analyses and clinical applications. This in turn 
would enable analysis teams to make informed judge-
ments about what records and which conditions to study 
when analysing routinely collected electronic health data.

The aim of this analysis was therefore to investigate how 
far back we need to look in order to capture the majority 
of diagnoses documented from previous admissions, and 
whether there are differences between diagnoses in what 
the minimum lookback period should be.

METHODS
Hospital and data sources
The Queen Elizabeth Hospital Birmingham (QEHB) is a 
National Health Service (NHS) acute hospital providing 
secondary and tertiary care services to adults in a large 
urban and suburban catchment area in England, UK. 
The hospital has 1269 beds including 80 level 2/3 
intensive care beds and an emergency department that 
assesses >300 patients per day. QEHB uses an EHR (PICS, 
Birmingham Systems) containing time- stamped, struc-
tured records including demographics, location, time 
of admission and discharge. It also contains details of all 
treatments and investigations, and physiological measure-
ments such as pulse, blood pressure and respiratory rate 
derived from the National Early Warning Score version 
2. Diagnoses are currently coded using the Systematised 
Nomenclature of Medicine–Clinical Terms (SNOMED) 
system, and historically used International Classification 
of Diseases version 10 (ICD- 10). The EHR has been in 
place since 1999 and the Trust is a paperless environment 
for all care provision and planning.

For this analysis, we used two data extracts. We extracted 
data on all acute admissions between 1 January 2018 and 
31 December 2018 with a discharge diagnosis of chronic 
obstructive pulmonary disease (COPD) exacerbation (as 

a primary or secondary diagnosis). We also used SNOMED 
codes recorded in the EHR to resolve whether a diagnosis 
coded as ‘COPD unspecified’ was due to acute exacer-
bation. Using this time period enabled us to avoid any 
distorting effects from the COVID- 19 pandemic. We took 
the date of the first hospital admission for COPD exac-
erbation in 2018 as the index date, and extracted data 
on age, sex and all hospital diagnoses coded by ICD- 10 
discharge codes within 10 years prior to the admission 
under study. For the second data extract, we repeated the 
procedure but extracted data on all acute admissions with 
a discharge diagnosis of stroke. We chose COPD exac-
erbation and stroke as exemplar conditions as they are 
common causes of admission to hospital and are associ-
ated with a substantial burden of comorbidity.

Approval by PIONEER Data Trust Committee
Governance and linkage processes for PIONEER data 
have been published previously.8

Patient and public involvement
The ADMISSION grant programme was co- designed 
with a panel of patients including patients with MLTCs. 
Two public co- applicants form part of the management 
team for the ADMISSION Programme, and studies within 
ADMISSION including this analysis are discussed with 
the ADMISSION Patient Advisory Group, who provide 
input on the design, interpretation and dissemination of 
results.

Analyses
We derived diagnoses made during, or at discharge, from 
ICD- 10 codes recorded in the EHR over the 10 years prior 
to the index admission date. Code lists used for each 
diagnosis are given in online supplemental material; the 
conditions selected were based on conditions previously 
used in UK Biobank,9 modified to remove diagnoses less 
likely to be coded in hospital discharge data. Code lists 
were reviewed by clinicians in the research team prior 
to data extraction. We then examined the percentage of 
diagnoses that were captured by looking back from the 
date of index admission for increasing periods of time 
from 1 year to 10 years. We compared the proportion of 
patients with diagnoses captured for each lookback period 
with the number of diagnoses captured with 10 years of 
lookback. Only individuals with a full 10 years of EHR 
data were included in the analyses. We chose a threshold 
of 90% completeness against which to report results; this 
threshold was agreed by clinician authors as representing 
a balance between accuracy and achievability.

RESULTS
We included 560 individuals in the COPD exacerbation 
analysis dataset (32 were excluded due to incomplete 
lookback data) and 2142 individuals in the acute stroke 
dataset (189 were excluded due to incomplete look-
back data). A flow chart depicting selection of patient 

https://dx.doi.org/10.1136/bmjopen-2023-080678
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admissions is shown in figure 1. A total of 73 different 
diagnoses were recorded for those with COPD exacer-
bation (median three per individual) and a total of 80 
different diagnoses were recorded for those with acute 
stroke (median six per individual). Table 1 shows details 
of individuals in each dataset, along with the top 10 most 
common diagnoses recorded in each dataset.

Figure 2 shows the percentage of each condition 
detected per year of lookback in the COPD dataset, 
using the number recorded over the full 10- year look-
back period as reference. Seven of the top 10 reached 
90% completeness by 6 years, but two conditions (asthma 
and hypertension) continued to show increases in 
coding completeness with increasing duration of look-
back through to 10 years. Figure 3 shows similar data for 
the acute stroke dataset; there was considerable hetero-
geneity, from dementia (90% by 3 years) and myocar-
dial infarction (90% by 4 years) through to diabetes 
mellitus (90% by 5 years) and angina pectoris (90% by 7 
years). Previous transient ischaemic attack (TIA) coding 
completeness continued to increase through to 10 years 
with no flattening of the curve.

DISCUSSION
Both cohorts in our study had a high prevalence of 
MLTCs, reinforcing the need for methodological studies 
in this area to ensure the robustness of analyses using 
routine data. Our results suggest that a 7- year lookback 
is sufficient to capture some but not all common diag-
noses for patients admitted with COPD exacerbation or 
acute stroke. For most diagnoses investigated, the preva-
lence curves flatten out between 6 and 7 years, suggesting 
that additional years of lookback add few additional diag-
noses. There were however notable exceptions, particu-
larly hypertension and asthma in the COPD cohort, and 
previous TIA in the acute stroke cohort. For these diag-
noses, the curves did not flatten at 10 years, suggesting 
that even longer periods of lookback may be required 
to gain complete diagnostic data. These data suggest 
that the duration of lookback needs to be tailored to the 
condition of interest.

Our results give a useful indication of what the 
minimum lookback time in hospital EHRs might need 
to be, but we are not able to ascertain why lookback 
time varies between diagnoses. Conditions which are the 

Figure 1 Flow chart showing selection of patient episodes for inclusion in analysis. COPD, chronic obstructive pulmonary 
disease.
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direct cause of hospital admission may be more likely to 
be recorded, and patients who have frequent hospital 
admissions may be more likely to have their associated 

diagnoses recorded. Conditions relevant to a partic-
ular specialty (for example, respiratory diagnoses when 
admitted under a respiratory team) may be more likely to 

Table 1 Study population details

COPD dataset Stroke dataset

N 560 2142

Mean age (years) (SD) 71 (11) 73 (13)

Female sex (%) 296 (52) 1064 (50)

Median number of comorbid conditions (IQR)* 3 (1–5) 6 (4–8)

Top 10 previously diagnosed conditions† Name Frequency (%) Name Frequency (%)

  1 COPD 560 (100) Stroke 1729 (81)

  2 Heart failure 227 (41) Atrial fibrillation 843 (39)

  3 Asthma 206 (37) TIA 832 (39)

  4 Atrial fibrillation 197 (35) All diabetes 804 (38)

  5 Depression 182 (33) Heart failure 631 (29)

  6 Anxiety 180 (32) COPD 525 (25)

  7 All diabetes 159 (28) Myocardial infarction 519 (24)

  8 Hypertension 151 (27) Angina 491 (23)

  9 Myocardial infarction 137 (24) Dementia 432 (20)

  10 Angina 126 (23) Depression 426 (20)

*In addition to the index condition (COPD or stroke).
†Recorded at an admission prior to the index admission.
COPD, chronic obstructive pulmonary disease; TIA, transient ischaemic attack.

Figure 2 COPD exacerbation top 10 previously diagnosed conditions. COPD, chronic obstructive pulmonary disease.
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be recorded than those not associated with the admitting 
specialty. Further work is required to test these hypoth-
eses. For some diagnoses, reliance on coded, structured 
diagnostic data is likely to remain inadequate as not all 
diagnoses are written down in hospital records. Even 
for those diagnoses that are written down, many are not 
recorded or coded in a structured manner.10 Extracting 
these diagnoses requires additional work, for instance, by 
interrogating unstructured EHR data using techniques 
such as natural language processing,11 by using additional 
data sources, for instance, prescribing records12 or labora-
tory data,13 and by linkage to alternative sources of diag-
nostic data (for instance, data from primary care).14 Our 
results help to highlight diagnoses for which this work is 
particularly needed.

Strengths of our approach include the use of routinely 
collected electronic healthcare data and the interro-
gation of two common diagnostic reasons for hospital 
admission. Using routinely collected electronic health 
data for MLTC research enables inclusion of a wide range 
of patients. This includes groups excluded from tradi-
tional cohort studies because of inability to consent due 
to illness or cognitive impairment, or who belong to other 
groups underserved by research such as socioeconomi-
cally disadvantaged groups.15

Routine data also enable the use of very large sample sizes 
and can provide detailed longitudinal follow- up incorpo-
rating a wide range of conditions and outcomes. We were 
unable to look back further than 10 years without a reduc-
tion in the number of patients included in the analysis, 
and we have confined our analysis to the most common 
conditions associated with each index condition. Other 
less common conditions may require different lookback 
periods. Our choice of conditions was based on those 
previously analysed in UK Biobank, but UK Biobank does 
not use an exhaustive list of conditions and it is possible 
that other common and important conditions were not 
included in our analysis. Our choice of a 90% threshold 
for reporting analyses is to a degree arbitrary; different 
degrees of completeness may be appropriate for different 
analyses and only individual research or analysis teams 
can make a judgement as to what degree of completeness 
is appropriate for a particular analysis. Finally, our analysis 
is confined to a single hospital, and lookback times may 
vary across different healthcare organisations, which may 
vary in how well they code different diagnoses. Future 
research to replicate our work in different hospitals and 
in different index conditions would be useful to increase 
the generalisability of our findings.

Figure 3 Acute stroke top 10 previously diagnosed conditions. COPD, chronic obstructive pulmonary disease; TIA, transient 
ischaemic attack.
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In summary, while a 7- year lookback appears adequate 
to capture some common diagnoses associated with 
COPD exacerbation and acute stroke admissions, there 
is considerable variability between diagnoses. These find-
ings will help both research teams and clinical teams 
decide what length of lookback they need to employ to 
ensure that capture of diagnoses is sufficiently complete 
for the intended purpose, whether this is for research, 
clinical audit or as part of routine healthcare delivery. 
For EHRs with only a short lookback window, this may 
mean that certain diagnoses are not amenable to accu-
rate interrogation. The variability in lookback suggests 
that researchers need to evaluate diagnoses in the specific 
EHR system that they use to be sure that diagnosis capture 
is suitably complete for the conditions they wish to study.
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