

University of Birmingham

Realizing Continuity Using Stateful Computations
Cohen, Liron; Rahli, Vincent

DOI:
10.4230/LIPIcs.CSL.2023.15

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Cohen, L & Rahli, V 2023, Realizing Continuity Using Stateful Computations. in B Klin & E Pimentel (eds), 31st
EACSL Annual Conference on Computer Science Logic (CSL 2023). Leibniz International Proceedings in
Informatics, vol. 252, Schloss Dagstuhl, pp. 15:1-15:18, 31st EACSL Annual Conference on Computer Science
Logic, CSL 2023, Warsaw, Poland, 13/02/23. https://doi.org/10.4230/LIPIcs.CSL.2023.15

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 30. Apr. 2024

https://doi.org/10.4230/LIPIcs.CSL.2023.15
https://doi.org/10.4230/LIPIcs.CSL.2023.15
https://birmingham.elsevierpure.com/en/publications/8debe8c3-1f98-4abd-9081-664fc6e2e149

Realizing Continuity Using Stateful Computations
Liron Cohen ! Ï

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Vincent Rahli ! Ï

University of Birmingham, UK

Abstract
The principle of continuity is a seminal property that holds for a number of intuitionistic theories such
as System T. Roughly speaking, it states that functions on real numbers only need approximations
of these numbers to compute. Generally, continuity principles have been justified using semantical
arguments, but it is known that the modulus of continuity of functions can be computed using effectful
computations such as exceptions or reference cells. This paper presents a class of intuitionistic
theories that features stateful computations, such as reference cells, and shows that these theories
can be extended with continuity axioms. The modulus of continuity of the functionals on the Baire
space is directly computed using the stateful computations enabled in the theory.

2012 ACM Subject Classification Theory of computation � Type theory; Theory of computation
� Constructive mathematics

Keywords and phrases Continuity, Stateful computations, Intuitionism, Extensional Type Theory,
Constructive Type Theory, Realizability, Theorem proving, Agda

Digital Object Identifier 10.4230/LIPIcs.CSL.2023.15

Supplementary Material Model (Agda Formalization): https://github.com/vrahli/opentt

Funding Liron Cohen: This research was partially supported by Grant No. 2020145 from the United
States-Israel Binational Science Foundation (BSF).

1 Introduction

Continuity is a seminal property in intuitionistic theories which contradicts classical math-
ematics but is generally accepted by constructivists. Roughly speaking, the principle states
that functions on real numbers only need approximations of these numbers to compute.
Brouwer, in particular, assumed his so-called continuity principle for numbers to derive that
all real-valued functions on the unit interval are uniformly continuous [15, 11, 4, 5, 28]. The
continuity principle for numbers, sometimes referred to as the weak continuity principle,
states that all functions on the Baire space (i.e., B � NatNat) have a modulus of continuity.
More concretely, given a function F of type B � Nat and a function α of type B, the principle
states that F �α� can only depend on an initial segment of α, and the length of the smallest
such segment is the modulus of continuity of F at α. This is standardly formalized as follows,
where Bn � rx � Nat ¶ x $ nx� Nat is the set of finite sequences of length n:

WCP � ΠF �B � Nat.Πα�B.KΣn�Nat.Πβ�B.�α�β"Bn�� �F �α��F �β�"Nat�

A number of theories have been shown to satisfy Brouwer’s continuity principle, or
uniform variants, such as N-HAω by Troelstra [29, p.158], MLTT by Coquand and Jaber [8, 9],
System T by Escardó [13], CTT by Rahli and Bickford [24], BTT by Baillon, Mahboubi
and Pedrot [3], to cite only a few (see Sec. 5 for further details). These proofs often rely
on a semantical forcing-based approach [8, 9], where the forcing conditions capture the
amount of information needed when applying a function to a sequence in the Baire space, or
through suitable models that internalize (C-Spaces in [34]) or exhibit continuous behavior
(e.g., dialogue trees in [13, 3]).

© Liron Cohen and Vincent Rahli;
licensed under Creative Commons License CC-BY 4.0

31st EACSL Annual Conference on Computer Science Logic (CSL 2023).
Editors: Bartek Klin and Elaine Pimentel; Article No. 15; pp. 15:1–15:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cliron@cs.bgu.ac.il
https://www.cs.bgu.ac.il/~cliron/
https://orcid.org/0000-0002-6608-3000
mailto:V.Rahli@bham.ac.uk
https://vrahli.github.io/
https://orcid.org/0000-0002-5914-8224
https://doi.org/10.4230/LIPIcs.CSL.2023.15
https://github.com/vrahli/opentt
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Realizing Continuity Using Stateful Computations

Not only can functions on the Baire space be proved to be continuous, but using effectful
computations, as for example described in [20], one can compute the modulus of continuity
of such a function. However, as shown for example by Kreisel [16, p.154], Troelstra [30,
Thm.IIA], and Escardó and Xu [12, 33], continuity is not an extensional property in the
sense that two equal functions might have different moduli of continuity. Therefore, to realize
continuity, the existence of a modulus of continuity has to be truncated as explained, e.g.,
in [12, 33, 24, 25], which is what the K operator achieves in WCP. Following the effectful
approach, continuity was shown to be realizable in [24, 25] using exceptions.

Instead of using exceptions, a more straightforward way to compute the modulus of
continuity of a function on the Baire space is to use reference cells. This was explained, e.g.,
in [20], where the use of references can be seen as the programming counterparts of the more
logical forcing conditions. The computation using references is more efficient than when
using exceptions as it allows computing the modulus of continuity of a function F at a point
α simply by executing F on α, while recording the highest argument that α is applied to,
while using exceptions requires repeatedly searching for the modulus of continuity.

Following this line of work, in this paper we show how to use stateful computations to
realize a continuity principle. This allows deriving constructive type theories that include
continuity axioms where the modulus of continuity is internalized in the sense that it is
computed by an expression of the underlying programming language. Concretely, we do so for
TTu

C [6], which is a family of extensional type theories parameterized by a type modality u,
and a choice type C, which are presented in more details in Sec. 2. More precisely, we prove
in this paper that all TTu

C functions are continuous for some instances of u and C: namely
for “non-empty” equality modalities, and reference-like stateful choice operators. Our proof
is for a variant of the weak continuity principle (see Thm. 13), which we show to be inhabited
by a program that relies on a choice operator to keep track of the modulus of continuity of a
given function, following Longley’s method [20]. This variant is restricted to “pure” functions
F , α, and β without side effects, and Sec. 4.1 discusses issues arising with impure functions.

Roadmap. After recalling in Sec. 2 the main aspects of TTu

C that are relevant to the results
presented in this paper, Sec. 3 instantiates and extends TTu

C with additional components,
which are, in turn, used in Sec. 4 to validate continuity using stateful computations. One key
contribution of this paper, discussed in Sec. 3, is the fact that TTu

C now allows computations
to modify the current world, which is accounted for in its forcing interpretation. Another
key contribution, discussed in Sec. 4, is the internalization of the modulus of continuity of
functions, in the sense that it can be computed by a TTu

C expression and used to validate the
continuity principle. Finally, Sec. 5 concludes and discusses the related work on continuity.

2 Background

This section recalls TTu

C , a family of type theories parameterized by a choice operator C,
and a metatheoretical modality u, which allows typing the choice operators. See [6] for
further details. The choice operators are time-progressing elements that we will in particular
instantiate with references. Sec. 3 carves out a sub-family for which we can validate
computationally relevant continuity rules as shown in Sec. 4.

2.1 Metatheory
Our metatheory is Agda’s type theory [1]. The results presented in this paper have been
formalized in Agda, and the formalization is available here: https://github.com/vrahli/
opentt/. We use ¾,¿,0,1,�, in place of Agda’s logical connectives in this paper. Agda

https://github.com/vrahli/opentt/
https://github.com/vrahli/opentt/

L. Cohen and V. Rahli 15:3

v " Value ��� vt (type) ¶ λx.t (lambda) ¶ � (constant)
¶ n (number) ¶ inl�t� (left injection) ¶ δ (choice name)
¶ �t1, t2� (pair) ¶ inr�t� (right injection)

vt " Type ��� Πx�t1.t2 (product) ¶ rx � t1 ¶ t2x (set) ¶ t1�t2 (disjoint union)
¶ Σx�t1.t2 (sum) ¶ t1�t2"t (equality) ¶ �t (time truncation)
¶ Ui (universe) ¶ Nat (numbers)

t " Term ��� x (variable) ¶ v (value) ¶ !t (read)
¶ t1 t2 (application) ¶ fix�t� (fixpoint) ¶ let x, y � t1 in t2 (pair destructor)
¶ case t of inl�x�� t1 | inr�y�� t2 (injection destructor)

�λx.t� u (w t�x¯u�
fix�v� (w v fix�v�

!δ (w choice?�w, δ�

let x, y � �t1, t2� in t (w t�x¯t1; y¯t2�

case inl�t� of inl�x�� t1 | inr�y�� t2 (w t1�x¯t�
case inr�t� of inl�x�� t1 | inr�y�� t2 (w t2�y¯t�

Figure 1 Core syntax (above) and small-step operational semantics (below).

provides an hierarchy of types annotated with universe labels which we omit for simplicity.
Following Agda’s terminology, we refer to an Agda type as a set, and reserve the term type
for TTu

C ’s types. We use P as the type of sets that denote propositions; N for the set of
natural numbers; and B for the set of Booleans true and false. We use induction-recursion
to define the forcing interpretation in Sec. 3.2, where we use function extensionality to
interpret universes. We do not discuss this further here and the interested reader is referred
to forcing.lagda in the Agda code for further details.

2.2 Worlds
To capture the time progression notion which underlines choice operators, TTu

C is parameter-
ized by a Kripke frame [18, 19] defined as follows:

▶ Definition 1 (Kripke Frame). A Kripke frame consists of a set of worlds W equipped with
a reflexive and transitive binary relation F.

Let w range over W . We sometimes write w ¬

G w for w F w ¬. Let Pw be the collection of
predicates on world extensions, i.e., functions in ¾w ¬

G w.P. Note that due to F’s transitivity,
if P " Pw then for every w ¬

G w it naturally extends to a predicate in Pw¬ . We further define
the following notations for quantifiers. ¾F

w�P � states that P " Pw is true for all extensions
of w, i.e., P w ¬ holds in all worlds w ¬

G w. ¿Fw�P � states that P " Pw is true at an extension
of w, i.e., P w ¬ holds for some world w ¬

G w. For readability, we sometime write ¾F

w�w ¬

.P �

(or ¿Fw�w ¬

.P �) instead of ¾F

w�λw ¬

.P � (or ¿Fw�λw ¬

.P �), respectively.

2.3 TTu

C’s Syntax and Operational Semantics
Fig. 1 recalls TTu

C ’s syntax and operational semantics, where the blue boxes highlight the
time-related components, and where x belongs to a set of variables Var. For simplicity,
numbers are considered to be primitive. The constant � is there for convenience, and is used
in place of a term, when the particular term used is irrelevant. Terms are evaluated according
to the operational semantics presented in Fig. 1’s lower part. In what follows, we use all
letters as metavariables for terms. Let t�x¯u� stand for the capture-avoiding substitution of
all the free occurrences of x in t by u.

CSL 2023

https://github.com/vrahli/opentt/blob/master/forcing.lagda

15:4 Realizing Continuity Using Stateful Computations

Types are syntactic forms that are given semantics in Sec. 3.2 via a forcing interpretation.
The type system contains standard types such as dependent products of the form Πx�t1.t2 and
dependent sums of the form Σx�t1.t2. For convenience we write t1 � t2 for the non-dependent
Π type; True for 0�0"Nat; False for 0�1"Nat; and T for �T � False�.

Fig. 1’s lower part presents TTu

C ’s small-step operational semantics, where t1 (w t2
expresses that t1 reduces to t2 in one step of computation w.r.t. the world w. We omit the
congruence rules that allow computing within terms such as: if t1 (w t2 then t1�u�(w t2�u�.
We denote by � the reflexive transitive closure of (, i.e., a �w b states that a computes
to b in '0 steps. We also write a ¹w b if a computes to b in all extensions of w, i.e., if
¾
F

w�w ¬

.a �w¬ b�. We write �w for the symmetric and transitive closure of �w.
TTu

C includes time-progressing notions that rely on worlds to record choices and provides
operators to access the choices stored in a world, which we now recall. Choices are referred to
through their names. A concrete example of such choices are reference cells in programming
languages, where a variable name pointing to a reference cell is the name of the corresponding
reference cell. To this end, TTu

C ’s computation system is parameterized by a set N of choice
names, that is equipped with a decidable equality, and an operator that given a list of names,
returns a name not in the list. This can be given by, e.g., nominal sets [23]. In what follows
we let δ range over N , and take N to be N for simplicity. TTu

C is further parameterized
over abstract operators and properties recalled in Defs. 2 and 4–6, which we show how to
instantiate in Ex. 7. Definitions such as Def. 2 provide axiomatizations of operators, and in
addition informally indicate their intended use. Choices are defined abstractly as follows:

▶ Definition 2 (Choices). Let C N Term be a set of choices,1 and let κ range over C. We
say that a computation system contains �N , C�-choices if there exists a partial function
choice? "W � N � C. Given w "W and δ " N , the returned choice, if it exists, is meant
to be the last choice made for δ according to w. C is said to be non-trivial if it contains two
values κ0 and κ1, which are computationally different, i.e., such that �κ0 �w κ1� for all w.

A choice name δ can be used in a computation to access choices from a world as follows:
!δ (w choice?�w, δ� (as shown in Fig. 1). This allows getting the last δ-choice from the
current world w. The quotienting type operator � allows assigning types to such expressions
that compute to different values in different worlds. For example, as defined in Fig. 2, while
Nat is the type of expressions that when they compute to i in w1 must also compute to i

in w2 G w1, �Nat is the type of expressions that can compute to i in w1 and to another
number j in w2 G w1. This is used to assign types to computations involving choices. For
example, !δ inhabits �Nat when its choices are numbers.

Note that the above definition of choice? is a slight simplification of the more general
notion of choices presented in [6]. There, the choice? function was of type W � N � N� C.
The additional N component enables a more general notion of choice operators, including ones
in which the history is recorded. In references, which is the notion of choices we especially
focus on in this paper, one only maintains the latest update and so the N component becomes
moot. Thus, for simplicity of presentation, we elide the N component in this paper, but full
details are available in the Agda implementation.

TTu

C also includes the notion of a restriction, which allows assuming that the choices
made for a given choice name all satisfy a pre-defined constraint. Here again we simplify the
concept for choices without history tracking.

1 To guarantee that C N Term, one can for example extend the syntax to include a designated constructor
for choices, or require a coercion C � Term. We opted for the latter in our formalization.

L. Cohen and V. Rahli 15:5

▶ Definition 3 (Restrictions). A restriction r " Res is a pair �res, d� consisting of a function
res " C � P and a default choice d " C such that �res d� holds. Given such a pair r , we
write r�d for d.

Intuitively, res specifies a restriction on the choices that can be made at any point in
time and d provides a default choice that meets this restriction (e.g., for reference cells, this
default choice is used to initialize a cell). For example, the restriction �λκ.κ " N, 0� requires
choices to be numbers and provides 0 as a default value. To reason about restrictions, we
require the existence of a “compatibility” predicate as follows.

▶ Definition 4 (Compatibility). We say that C is compatible if there exists a predicate
comp " N �W � Res � P, intended to guarantee that restrictions are satisfied, and which is
preserved by F: ¾�δ � N ��w1, w2 �W��r � Res�.w1 F w2 � comp�δ, w1, r�� comp�δ, w2, r�.

TTu

C further requires the ability to create new choice names as follows.

▶ Definition 5 (Extendability). We say that C is extendable if there exists a function
νC "W � N , where νC�w� is intended to return a new choice name not present in w, and
a function startνC "W � Res �W, where startνC�w, r� is intended to return an extension
of w with the new choice name νC�w� with restriction r , satisfying the following properties:

Starting a new choice extends the current world: ¾�w �W��r � Res�.w F startνC�w, r�
Initially, the only possible choice is the default value of the given restriction, i.e.:
¾�r � Res��w �W��κ � C�.choice?�startνC�w, r�, νC�w�� � κ � κ � r�d
A choice is initially compatible with its restriction:
¾�w �W��r � Res�.comp�νC�w�, startνC�w, r�, r�

Lastly, TTu

C requires the ability to update a choice as follows.

▶ Definition 6 (Mutability). We say that C is mutable if there exists a function update "
W � N � C �W such that if w "W, δ " N , κ " C, then w F update�w, δ, κ�.

From this point on, we will only discuss choices C that are compatible, extendable and
mutable. The abstract notion of choice operators has many concrete instances. This paper
focuses on one concrete instance – mutable references.

▶ Example 7 (References). Reference cells, which are values that allow a program to
indirectly access a particular object, are choice operators since they can point to different
objects over their lifetime. Formally, we define references to numbers, Ref, as follows
(see worldInstanceRef.lagda for details):
Non-trivial Choices Let N � N and C � N, which is non-trivial, e.g., take κ0 � 0 and

κ1 � 1.
Worlds Worlds are lists of cells, where a cell is a quadruple of (1) a choice name, (2) a

restriction, (3) a choice, and (4) a Boolean indicating whether the cell is mutable. F is
the reflexive transitive closure of two operations that allow (i) creating a new reference
cell, and (ii) updating an existing reference cell. We define choice?�w, δ� so that it simply
accesses the content of the δ cell in w.

Compatible comp�δ, w, r� states that a reference cell named δ with restriction r was created
in the world w (using operation of type (i) described above), and that the current value
of the cell satisfies r .

Extendable νC�w� returns a reference name not occurring in w; and startνC�w, r� adds a
new reference cell to w with name νC�w� and restriction r (using operation of type (i)
mentioned above).

Mutable update�w, δ, κ� updates the reference δ with the choice κ if δ occurs in w, and
otherwise returns w (using operation of type (ii) mentioned above).

CSL 2023

https://github.com/vrahli/opentt/blob/master/worldInstanceRef.lagda

15:6 Realizing Continuity Using Stateful Computations

3 Instantiating TTu

C

To validate continuity, we need to internalize some semantical properties of TTu

C that were
introduced in [6] and recalled in Sec. 2. Concretely, we instantiate (and extend) TTu

C with
the following components, which are formally defined next.

An operator that allows us to make a choice. This has far-reaching consequences, as a
computation can now modify its current world. We generalize TTu

C ’s semantics accordingly.
This is an internalization of the mutability requirement.
An operator to generate a “fresh” choice name. This is an internalization of the extend-
ability requirement.
A type that states the “purity” of an expression, i.e., that the expression has no side
effects. This will allow us to formalize the variant of the continuity principle we validate.
Sec. 4.1 provides further details.

3.1 Syntax & Operational Semantics
We extend TTu

C ’s syntax as follows:

t " Term ���� ¶ choose�t1, t2� ¶ νx.t ¶ let x � t1 in t2

¶ if t1 $ t2 then t3 else t4 ¶ t1 � t2

vt " Type ���� ¶ pure ¶ t1 = t2 ¶ Kt

As in Sec. 2.3, the blue boxes highlight the time-related component. The term pure is
the type of “pure” terms, i.e. terms that do no contain choice names. The term t1 = t2 is an
intersection type, which is inhabited by the inhabitants of both t1 and t2. Finally, Kt turns a
type t into a subsingleton type that equates all elements of t. The expression choose�δ, t�

makes the δ-choice t; while νx.t creates a “fresh” choice name w.r.t. t, thereby internalizing
the notion of extendability presented in Def. 5. The term let x � t1 in t2 is a call-by-value
operator that allows evaluating t1 to a value before proceeding with t2. We write t1;t2 for
let x � t1 in t2 where x does not occur free in t2.

We extend TTu

C ’s operational semantics as follows. We turn the ternary relation a �w b

into a four-place relations a �
w1
w2 b which captures that a computes to b starting from the

world w1 and updating it so that the resulting world is w2 at the end of the computation.
Most computations do not modify the current world except choose�t1, t2�.

�λx.t� u (
w
w t�x¯u�

fix�v� (
w
w v fix�v�

!δ (w
w choice?�w, δ�

let x, y � �t1, t2� in t (w
w t�x¯t1; y¯t2�

case inl�t� of inl�x�� t1 | inr�y�� t2 (
w
w t1�x¯t�

case inr�t� of inl�x�� t1 | inr�y�� t2 (
w
w t2�y¯t�

In addition we now have the following computations:

if n $ m then t1 else t2 (
w
w t1, if n $ m

if n $ m then t1 else t2 (
w
w t2, if m & n

n �m (
w
w n �m

let x � v in t2 (
w
w t2�x¯v�

The semantics of choose�t1, t2� is defined as follows:

choose�δ, t� (
w
update�w,δ,t� �

L. Cohen and V. Rahli 15:7

Choosing a δ-choice t using choose�δ, t� results in a corresponding update of the current
world, namely update�w, δ, t�. The computation returns �, which is reminiscent of reference
updates in OCaml for example, which are of type unit. As mentioned in Def. 2, we
require C N Term so that choices can be included in computations. In addition, because
update "W � N � C �W , for update�w, δ, t� to be well-defined for t " Term, we require a
coercion from Term to C so that t can be turned into a choice, and update can be applied to
that choice. This coercion is left implicit for readability. We further require that applying
this coercion to a choice κ returns κ, which is used to validate the assumption Ass3 discussed
in Sec. 4.2.

▶ Example 8. We saw in Ex. 7, that C can for example be instantiated to be N. A coercion
from Term to C can then turn n into n and all other terms to 0, which satisfies the requirement
that choices are mapped to the same choices.

Finally, we describe how νx.t computes. Intuitively, it selects a “fresh” choice name δ

and instantiate the variable x with δ. Formally, it computes as follows:

νx.t (
w
startνC�w,r� t�x¯νC�w��

where r is the restriction �λc.�c " N�, 0�, which constrains the choices to be numbers, with
default value 0. Other restrictions could be supported, for example by adding different ν

symbols to the language and by selecting during computation the appropriate restriction
based on the ν operator at hand. This is however left for future work as we especially focus
here on the choices presented in Ex. 8.
▶ Remark 9 (Freshness). The fresh operator used in [24] computes νx.a by reducing a to b,
and then returning νx.b, thereby never generating new fresh names. As opposed to that
fresh operator, which was based on nominal sets, the one introduced in this paper cannot
put back the “fresh” constructor at each step of the small step derivation, otherwise a
multi-step computation would not be able to use a choice name to keep track of the modulus
of continuity of a function across multiple computation steps by recording it in the current
world. One consequence of this is that this fresh operator cannot guarantee that it generates
a truly “fresh” name that does not occur anywhere else (therefore, it does not satisfy the
nominal axioms). For example �νx.x� δ might generate the name δ because it does not occur
in the local expression νx.x.

Formally, a �
w1
w2 b is the reflexive and transitive closure of (, i.e., it holds if a in world w1

computes to b in world w2 in 0 or more steps. Thanks to the properties of startνC presented
in Def. 5, and the properties of update presented in Def. 6, computations respect F:

▶ Lemma 10 (Computations respect F). If a �
w1
w2 b then w1 F w2.

3.2 Forcing Interpretation
TTu

C ’s semantics is similar to the one presented in [6], which we recall and extend in Fig. 2.
It is interpreted via a forcing interpretation in which the forcing conditions are worlds. This
interpretation is defined using induction-recursion as follows: (1) the inductive relation
w è T1�T2 expresses type equality in the world w; (2) the recursive function w è t1�t2"T

expresses equality in a type. We further use the following abstractions: w è type�T � for
w è T �T , w è t"T for w è t�t"T , and w è T for ¿�t � Term�.w è t"T . Note that a major
difference is that while a ¹w b is still defined as ¾F

w�w ¬

.a �w¬ b� as in [6], a �w¬ b is now defined
as ¿�w ¬¬

�W�.a �
w¬

w¬¬ b to account for the fact that computations can now update the current

CSL 2023

15:8 Realizing Continuity Using Stateful Computations

Numbers:
w è Nat�Nat ¿ True
w è t�t

¬

"Nat ¿ uw�w ¬

.¿�n � N�.t ¹w¬ n 0 t
¬

¹w¬ n�

Products:
w è Πx�A1.B1�Πx�A2.B2 ¿ Famw�A1, A2, B1, B2�

w è f�g"Πx�A.B ¿ uw�w ¬

.¾�a1, a2 � Term�.w ¬

è a1�a2"A� w ¬

è f a1�g a2"B�x¯a1��

Sums:
w è Σx�A1.B1�Σx�A2.B2 ¿ Famw�A1, A2, B1, B2�

w è p1�p2"Σx�A.B ¿ uw�w ¬

.¿�a1, a2, b1, b2 � Term�.w ¬

è a1�a2"A 0 w ¬

è

b1�b2"B�x¯a1� 0 p1 ¹w¬ �a1, b1� 0 p2 ¹w¬ �a2, b2��

Sets:
w è rx � A1 ¶ B1x�rx � A2 ¶ B2x ¿ Famw�A1, A2, B1, B2�

w è a1�a2"rx � A ¶ Bx ¿ uw�w ¬

.¿�b1, b2 � Term�.w ¬

è a1�a2"A 0 w ¬

è b1�b2"B�x¯a1��

Disjoint unions:
w è A1�B1�A2�B2 ¿ w è A1�A2 0 w è B1�B2

w è a1�a2"A�B ¿ uw�w ¬

.¿�u, v � Term�.�a1 ¹w¬ inl�u�0 a2 ¹w¬ inl�v�0w ¬

è u�v"A�1

�a1 ¹w¬ inr�u� 0 a2 ¹w¬ inr�v� 0 w ¬

è u�v"B��

Equalities:
w è �a1�b1"A���a2�b2"B� ¿ w è A�B 0¾

F

w�w ¬

.w ¬

è a1�a2"A� 0¾
F

w�w ¬

.w ¬

è b1�b2"B�

w è a1�a2"�a�b"A� ¿ uw�w ¬

.w ¬

è a�b"A�

(note that a1 and a2 can be any term here)
Time-Quotiented types:

w è �A��B ¿ w è A�B

w è a�b"�A ¿ uw�w ¬

.�λa, b.¿�c, d � Value�.a �w c 0 b �w d 0 w è c�d"A�
�

a b�

Subsingletons:
w è KA�KB ¿ w è A�B

w è a�b"KA ¿ uw�w ¬

.w ¬

è a�a"A 0 w ¬

è b�b"A�

Purity:
w è pure�pure ¿ True
w è a1�a2"pure ¿ namefree�a1� 0 namefree�a2�

Binary intersections:
w è A1 =B1�A2 =B2 ¿ w è A1�A2 0 w è B1�B2

w è a1�a2"A =B ¿ uw�w ¬

.w ¬

è a1�a2"A 0 w ¬

è a1�a2"B�

Modality closure:
w è T1�T2 ¿ uw�w ¬

.¿�T
¬

1, T
¬

2 � Term�.T1 ¹w¬ T
¬

1 0 T2 ¹w¬ T
¬

2 0 w ¬

è T
¬

1�T
¬

2�

w è t1�t2"T ¿ uw�w ¬

.¿�T
¬

� Term�.T ¹w¬ T
¬

0 w ¬

è t1�t2"T
¬

�

Figure 2 Forcing Interpretation.

world. We also define a ¹!w b as ¾F

w�w ¬

.a �
w¬

w¬ b�, capturing the fact that the computation
does not change the initial world (this is used in Thm. 12). Fig. 2 defines in particular the
semantics of pure, which is inhabited by name-free terms, where namefree�t� is defined
recursively over t and returns false iff t contains a choice name δ or a fresh operator of the form
νx.t. There, we write R

� for R’s transitive closure, which is used to prove the transitivity
of time-quotiented types, in the sense of Thm. 12. We also write Famw�A1, A2, B1, B2�

for w è A1�A2 0 ¾
F

w�w ¬

.¾�a1, a2 � Term�.w ¬

è a1�a2"A1 � w ¬

è B1�x¯a1��B2�x¯a2��.

L. Cohen and V. Rahli 15:9

This forcing interpretation is parameterized by a family of abstract modalities u, which we
sometimes refer to simply as a modality, which is a function that takes a world w to its
modality uw " Pw � P. We often write uw�w ¬

.P � for uwλw ¬

.P . As in [6], to guarantee that
this interpretation yields a standard type system in the sense of Thm. 12, we require that
the modalities satisfy certain properties reminiscent of standard modal axiom schemata [10],
which we repeat here for ease of read:

▶ Definition 11 (Equality modality). The modality u is called an equality modality if it
satisfies the following properties:

u1 (monotonicity of u): ¾�w �W��P � Pw�.¾w ¬

G w. uw P � uw¬ P .

u2 (K, distribution axiom): ¾�w �W��P, Q � Pw�. uw �w ¬

.P w ¬

� Q w ¬

�� uwP � uwQ

u3 (C4, i.e., u follows from uu): ¾�w �W��P � Pw�. uw �w ¬

. uw¬ P �� uwP

u4: ¾�w �W��P � Pw�.¾
F

w�P �� uwP

u5 (T , reflexivity axiom): ¾�w �W��P � P�. uw �w ¬

.P �� P

▶ Theorem 12. Given a computation system with choices C and an equality modality u,
TTu

C is a standard type system in the sense that its forcing interpretation induced by u satisfy
the following properties (where free variables are universally quantified):

transitivity: w è T1�T2 � w è T2�T3 � w è T1�T3 w è t1�t2"T � w è t2�t3"T � w è t1�t3"T
symmetry: w è T1�T2 � w è T2�T1 w è t1�t2"T � w è t2�t1"T

computation: w è T �T � T ¹!w T
¬

� w è T �T
¬ w è t�t"T � t ¹!w t

¬

� w è t�t
¬

"T

monotonicity: w è T1�T2 � w F w ¬

� w ¬

è T1�T2 w è t1�t2"T � w F w ¬

� w ¬

è t1�t2"T

locality: uw�w ¬

.w ¬

è T1�T2�� w è T1�T2 uw�w ¬

.w ¬

è t1�t2"T �� w è t1�t2"T
consistency: w è t"False

Proof. The proof relies on the properties of the equality modality. For example: u1 is used
to prove monotonicity when w è T1�T2 is derived by closing under uw; u2 and u4 are used,
e.g., to prove the symmetry and transitivity of w è t�t

¬

"Nat; u3 is used to prove locality;
and u5 is used to prove consistency. See props3.lagda for further details. ◀

As indicated in Thm. 12, and as opposed to the counterpart of the theorem in [6],
w è T �T and w è t�t"T are no longer closed under all computations. For example, when
T � Nat, if t ¹w t

¬ and t ¹w n, does not necessarily give us that t
¬

¹w n. An example is
t � �choose�δ, 1�;if !δ $ 1 then 0 else 1�, which reduces to t

¬

� �if !δ $ 1 then 0 else 1�
and also to 1 in all worlds, but t

¬ does not reduce to 1 in all worlds, because δ could be
initialized differently in different worlds. However, the following holds by transitivity of ¹w:
t
¬

¹w t � w è t�t"Nat � w è t�t
¬

"Nat. Similarly, the following also holds by transitivity
of ¹w: w è T �T � T

¬

¹w T � w è T �T
¬. Finally, note that, as indicated in Thm. 12, this

semantics is closed under β-reduction, as β-reduction does not modify the current world.

4 Proof of Continuity

We can now state the version of Brouwer’s continuity principle that we validate in this
paper, along with its realizer. For this we first introduce the following notation: Πpa�A.B �

Πa��A = pure�.B, which quantifies over pure elements of type A.

▶ Theorem 13 (Continuity Principle). The following continuity principle, referred to as
CONTp, is valid w.r.t. the semantics presented in Sec. 3.2:

ΠpF �B � Nat.Πpα�B.KΣn�Nat.Πpβ�B.�α�β"Bn�� �F �α��F �β�"Nat� (1)

CSL 2023

https://github.com/vrahli/opentt/blob/master/props3.lagda

15:10 Realizing Continuity Using Stateful Computations

and is inhabited by

λF.λα.�mod�F, α�, λβ.λe.�� (2)

where mod�F, α� is the modulus of continuity of the function F " B � Nat at α " B and is
computed by the following expression:

mod�F, α� � νx.�choose�x, 0�;F �upd�x, α��;!x � 1�
upd�δ, α� � λx.�let y � x in ��if !δ $ y then choose�δ, y� else ��;α�y���

More precisely, the following is true for any world w:

w è λF.λα.�mod�F, α�, λβ.λe.��"CONTp

The rest of this section describes the proof of this theorem (see continuity in continu-
ity7.lagda for details). First, we intuitively explain how mod�F, α� computes the modulus of
continuity of a function F at a point α. This is done using the following steps:
1. selecting, using ν, a fresh choice name δ (the variable x gets replaced with the freshly

generated name δ when computing mod), with the appropriate restriction (here a restriction
that requires choices to be numbers as mentioned in Sec. 3.1);

2. setting δ to 0 using choose�x, 0� (where x is δ when this expression computes);
3. applying F to a modified version of α, namely upd�δ, α�, which computes as α, except

that in addition it increases δ’s value every time α is applied to a number larger than the
last chosen one;

4. returning the last chosen number using !x (again x is δ when this expression computes),
increased by one in order to return a number higher than any number F applies α to.

We divide the proof of the validity of the continuity principle, i.e., that it is inhabited by
the expression presented in Eq. (2), into the following three components, where F " B � Nat
and α " B:

Proving that the modulus is a number, i.e., mod�F, α� " Nat;
Proving that mod�F, α� returns the highest number that α is applied to in the computation
it performs;
Given β " B, proving that F �α� and F �β� return the same number if α and β agree up
to mod�F, α�.

4.1 Purity
According to Nat’s semantics, to prove that mod�F, α� " Nat w.r.t. a world w, we have to
prove it computes to the same number in all extensions of w. However, this will not be the
case if F or α have side effects. For example, if F is λf.f�!δ0�;0, for some choice name δ0,
then it could happen that f gets applied to 0 in some world w1 if !δ0 returns 0, and to 1 in
some world w2 G w1 if !δ0 returns 1. As mod�F, α� returns the highest number that F applies
its argument to, then mod�F, α� would in this instance return different numbers in different
extensions, and would therefore not inhabit Nat.

Therefore, to validate a version of continuity which requires the modulus of continuity
to be time-invariant as in Eq. (1), one can require that both F and α are pure (i.e.,
name-free) terms. Thanks to Πp, we get to assume that both F and α are in pure and
therefore are name-free. Note that it would not be enough to use the following pattern:
ΠF �B � Nat.�F�F"pure� � . . . , because then for the continuity principle to even be a
type, we would have to prove that F is name-free to prove that F�F"pure is a type, only
knowing that F " B � Nat, which is not true in general.

https://github.com/vrahli/opentt/blob/master/continuity7.lagda
https://github.com/vrahli/opentt/blob/master/continuity7.lagda

L. Cohen and V. Rahli 15:11

Let us now mention a potential solution to avoid such a purity requirement, as well as some
difficulties it involves, which we leave investigating to future work. One could try to validate
instead the following version of the continuity axiom, where B�n � rx � Nat ¶ x $� nx� Nat,
assuming the existence of some type x $� n that can relate an x " Nat with an n " �Nat:

ΠF �B � Nat.Πα�B.KΣn��Nat.Πβ�B.�α�β"B�n�� �F �α��F �β�"Nat�

A first difficulty with this is the type x $� n, which to prove that it holds in some world w
would require proving that x is equal to all possible values that n can take in extensions of w.
Another related difficulty is that it is at present unclear whether this rule can be validated
constructively. More precisely, proving its validity would require:
(1) Proving that mod�F, α� " �Nat, which is now straightforward.
(2) Next, we have to prove that Πβ�B.�α�β"B�mod�F,α�� � �F �α��F �β�"Nat�, i.e., given

β " B such that α�β"B�mod�F,α�, we have to prove F �α��F �β�"Nat. The assumption
α�β"B�mod�F,α� tells us that given k " Nat such that k $� mod�F, α�, α�k��β�k�"Nat.
As mentioned above, for k $� mod�F, α� to be true, it must be that k is less than
mod�F, α� in all extensions of the current world. However, without the purity constraint,
mod�F, α� can compute to different numbers in different extensions.

Going back to our goal F �α��F �β�"Nat, given the semantics of Nat presented in Fig. 2,
to prove this it is enough to assume that F �upd�δ, α�� computes to some number m in
some world w, and to prove that F �β� also computes to m in w. We can then inspect
the computation F �upd�δ, α�� �

w
w1 k, where δ is the name generated by mod�F, α�, and

show that it can be converted into a computation F �β� �
w
w2 k, by replacing α�i� with β�i�,

whenever we encounter such an expression. To do this, we need to know that α�i� and β�i�

compute to the same number using α�β"B�mod�F,α�. However, we only know that i is less
than mod�F, α� in w, which is not enough to use this assumption, as i might be greater than
mod�F, α� in some other world w ¬. We can address this issue using classical logic to prove
that there exists a w ¬

G w such that for all w ¬¬

G w, the smallest number that α is applied to
in the computation of mod�F, α� w.r.t. w ¬ is less than the number that mod�F, α� computes
to w.r.t. w ¬¬. In the argument sketched above we can then use w ¬ instead of w.

4.2 Assumptions
Before we prove that the continuity principle is inhabited, we will summarize here the
assumptions we will be making to prove this result, where r is a restriction that requires
choices to be numbers (see continuity-conds.lagda for details):

�Ass1� ¾�w �W��P � Pw�. uw P � ¿
F

w�P �

�Ass2� ¾�δ � N ��w �W��n � N�. comp�δ, w, r�
� ¾

F

update�w,δ,n��w
¬

.¿�k � N�.choice?�w ¬

, δ� � k�

�Ass3� ¾�δ � N ��w �W��k � N�.comp�δ, w, r�� choice?�update�w, δ, k�, δ� � k

Ass1 requires the modality u to be non-empty in the sense that for uwP to be true,
it has to be true for at least one extension of w. This is true about all topological bar
spaces (see �¿W in mod.lagda), and therefore about the Kripke, Beth, and Open modalities
which are derived from such spaces [6, Sec.6.2]. Ass2 requires that the “last” choice of a
r-compatible choice name δ is indeed a number. Ass3 guarantees that retrieving a choice
that was just made will return that choice.

CSL 2023

https://github.com/vrahli/opentt/blob/master/continuity-conds.lagda
https://github.com/vrahli/opentt/blob/master/mod.lagda

15:12 Realizing Continuity Using Stateful Computations

The last two assumptions are true about Ref, the formalization of references to numbers
presented in Ex. 7 (see for example contInstanceKripkeRef.lagda for the proof that TTu

C
instantiated with a Kriple modality and references satisfies these properties). In addition both
are true about another kind of stateful computations, namely a variant of the formalization of
free choice sequences [15, 31, 27, 26, 17, 32, 21] presented in [6, Ex.5], where new choices are
pre-pended as opposed to being appended in [6] (see for example contInstanceKripkeCS.lagda
for the proof that TTu

C instantiated with a Kriple modality and choice sequences satisfies
these properties).

4.3 The Modulus is a Number
In this section we prove that mod�F, α� " Nat. More precisely, we prove the following
(see testM-NAT in continuity1.lagda for details):

▶ Theorem 14 (The Modulus is a Number). If namefree�F �, namefree�α�, w è F"NatB,
and w è α"B, for some world w, then

uw�w ¬

.¿�n � N�.mod�F, α� ¹w¬ n� (3)

To prove the above, we will make use of the fact that w è upd�δ, α�"B and therefore also
w è F �upd�δ, α��"Nat, i.e., by the semantics of Nat presented in Fig. 2, we have for some
fresh name δ:

uw�w ¬

.¿�n � N�.F �upd�δ, α�� ¹w¬ n�. (4)

But for this we first need to start computing mod�F, α� to generate a fresh name δ according
to the current world. If that current world is some world w ¬

G w (obtained, for example, using
u4 from Def. 11 on Eq. (3)), then we need to be able to get that F �upd�δ, α�� computes to a
number w.r.t. w ¬, which Eq. (4) might not provide. This is the reason for assumption Ass1.

Going back to the proof of Eq. (3), we use u4, and have to prove ¿�n � N�.mod�F, α� ¹w1 n

for some w1 G w. We then:
(A) first have to find a number n such that mod�F, α� computes to n w.r.t. w1,
(B) and then that it does so also for all w ¬

1 G w1.

Let us prove (A) first. We now start computing mod�F, α� w.r.t. w1. We generate a
fresh name δ � νC�w1�, and have to prove that choose�δ, 0�;F �upd�δ, α��;!δ � 1 computes
to a number w.r.t. w2 � startνC�w1, r� that satisfies comp�δ, w2, r� (by the properties of
startνC presented in Def. 5). We keep computing this expression and have to prove that
F �upd�δ, α��;!δ � 1 computes to a number w.r.t. w3 � update�w2, δ, 0�.

From Ass1 and Eq. (4), we obtain w5 G w and n " N such that F �upd�δ, α�� ¹w5 n,
from which we obtain by definition that there exists a w6 such that F �upd�δ, α�� �

w5
w6 n.

Now, because F and α are name-free, we can derive that there exists a w4 such that
F �upd�δ, α�� �

w3
w4 n (see differNF�APPLY-upd in terms7.lagda). It now remains to prove

that n;!δ � 1, computes to a number w.r.t. w4. It is then enough to prove that !δ computes
to a number k w.r.t. w4, in which case n;!δ � 1 computes to k�1 w.r.t. w4. To prove this we
make use of Ass2 which states that r constrains the δ-choices to be numbers. Using this and
the facts that comp�δ, w2, r� and w2 F w4 (by F’s transitivity since w3 F w4 by Lem. 10 and
w2 F w3 by Def. 6), we deduce that there exists a k " N such that choice?�w4, δ� � k, and
therefore !δ computes to k w.r.t. w4, and n;!δ� 1 computes to k�1 w.r.t. w4, which concludes
the proof of (A).

https://github.com/vrahli/opentt/blob/master/contInstanceKripkeRef.lagda
https://github.com/vrahli/opentt/blob/master/contInstanceKripkeCS.lagda
https://github.com/vrahli/opentt/blob/master/continuity1.lagda
https://github.com/vrahli/opentt/blob/master/terms7.lagda

L. Cohen and V. Rahli 15:13

To prove ¿�n � N�.mod�F, α� ¹w1 n, we then instantiate the formula with k�1, and have
to prove mod�F, α� ¹w1 k�1. We already know that mod�F, α� �

w1
w4 k�1 (i.e., part (A)), and

we now prove our statement labeled (B) above, i.e., that it does so in all extensions of w1 too.
To prove (B) we assume a w ¬

1 G w1 and have to prove that mod�F, α� computes to k�1
w.r.t. w ¬

1. As before, we start computing mod�F, α� w.r.t. w ¬

1, and generate a fresh name
δ
¬

� νC�w ¬

1�, and have to prove that F �upd�δ¬, α��;!δ¬ � 1 computes to k�1 w.r.t. w ¬

3 �

update�w ¬

2, δ
¬

, 0�, where w ¬

2 � startνC�w ¬

1, r�. As F and α are name-free, t1 � F �upd�δ, α��

and t2 � F �upd�δ¬, α�� behave the same except that when t1 updates δ with a number, t2
updates δ

¬ with that number.
Using a syntactic simulation method, we will prove that because t1 and t2 are “similar”

(which is captured by Def. 15 below), choice?�w3, δ� � choice?�w ¬

3, δ
¬

�, and t1 �
w3
w4 t

¬

1, then
t2 �

w¬

3
w¬

4
t
¬

2 such that t
¬

1 and t
¬

2 are also “similar” and choice?�w4, δ� � choice?�w ¬

4, δ
¬

�. Note
that choice?�w3, δ� and choice?�w ¬

3, δ
¬

� return the same choice because choice?�w3, δ� �

choice?�update�w2, δ, 0�, δ� � 0 and choice?�w ¬

3, δ
¬

� � choice?�update�w ¬

2, δ
¬

, 0�, δ
¬

� � 0. To
derive these equalities, we need assumption Ass3 that relates choice? and update.

Let us now define the simulation mentioned above (see differ in terms3.lagda for details):

▶ Definition 15. The similarity relation t1 �δ1,δ2,α t2 is true iff

�t1 � upd�δ1, α� 0 t2 � upd�δ2, α��

1 �t1 � x 0 t2 � x� 1 �t1 � � 0 t2 � �� 1 �t1 � n 0 t2 � n�

1 �t1 � λx.a 0 t2 � λx.b 0 a �δ1,δ2,α b�

1 �t1 � �a1 b1� 0 t2 � �a2 b2� 0 a1 �δ1,δ2,α a2 0 b1 �δ1,δ2,α b2�

1 . . .

Most cases are omitted in this definition as they similar to the ones presented above. Note
however that crucially terms of the form δ or νx.t are not related, and that those are the only
expressions not related, thereby ruling out names except when occurring inside upd through
the first clause.

As discussed above, a key property of this relation is then (see differ� in terms6.lagda for
details):

▶ Lemma 16. If t1 �δ1,δ2,α t2, choice?�w1, δ1� � choice?�w2, δ2�, t1 �
w1
w¬

1
t
¬

1, namefree�α�,
comp�δ1, w1, r�, and comp�δ2, w2, r�, then there exist w ¬

2 and t
¬

2 such that t2 �
w2
w¬

2
t
¬

2, t
¬

1 �δ1,δ2,α

t
¬

2, and choice?�w ¬

1, δ1� � choice?�w ¬

2, δ2�.

which we prove by induction on the computation t1 �
w1
w¬

1
t
¬

1.

We therefore obtain that there exist t
¬

2 and w ¬

4 such that F �upd�δ¬, α�� �
w¬

3
w¬

4
t
¬

2, n �δ,δ¬,α t
¬

2

and choice?�w ¬

4, δ
¬

� � choice?�w4, δ� � k. Furthermore, by definition of the similarity relation,
t
¬

2 � n. We obtain that F �upd�δ¬, α��;!δ¬�1 �w¬

3
w¬

4
n;!δ¬�1 and so F �upd�δ¬, α��;!δ¬�1 �w¬

3
w¬

4
!δ¬�1.

Because choice?�w ¬

4, δ
¬

� � k, we finally obtain F �upd�δ¬, α��;!δ¬ � 1 �w¬

3
w¬

4
k�1, which concludes

the proof of (B), and therefore that mod�F, α� " Nat.

4.4 The Modulus is the Highest Number
We now prove that mod�F, α� returns the highest number that α is applied to in the
computation it performs (see steps-sat-isHighestN in continuity3.lagda for details):

CSL 2023

https://github.com/vrahli/opentt/blob/master/terms3.lagda
https://github.com/vrahli/opentt/blob/master/terms6.lagda
https://github.com/vrahli/opentt/blob/master/continuity3.lagda

15:14 Realizing Continuity Using Stateful Computations

▶ Theorem 17 (The Modulus is the Highest Number). If mod�F, α� �
w
w¬ n such that mod�F, α�

generates a fresh name δ and choice?�w ¬

, δ� � i, then for any world w0 occurring along this
computation, it must be that choice?�w0, δ� � j such that j & i.

As shown above, we know that for any world w1 there exist w2 " W and k " N such that
mod�F, α� �

w1
w2 k�1. As in Sec. 4.3, we start computing mod�F, α� w.r.t. the current world w1,

and generate a fresh name δ � νC�w1�, and deduce that

F �upd�δ, α��;!δ � 1 �w¬¬

1
w2 k�1 (5)

where w ¬

1 � startνC�w1, r� and w ¬¬

1 � update�w ¬

1, δ, 0�. Furthermore, by Ass2, there must be
a n " N such that choice?�w2, δ� � n.

We now want to show that if n $ m, for some m " N (which we will instantiate with k�1),
then it must also be that for any world w along the computation in Eq. (5), if choice?�w, δ� � i

then i $ m. This is not true about any computation, but it is true about the above because
upd only makes a choice if that choice is higher than the “current” one. To capture this,
we define the property Updδ,α�t�, which captures that the only place where δ occurs in t is
wrapped inside upd�δ, α�. That is, Updδ,α�t� is true iff t �δ,δ,α t. We can then prove the
following result by induction on the computation (see continuity3.lagda):

▶ Lemma 18. Let α be a closed name-free term, and t be a term such that Updδ,α�t� and
t �

w1
w2 u, and let choice?�w2, δ� � n, such that n $ m, then for any world w along the

computation t �
w1
w2 u if choice?�w, δ� � i then i $ m.

Applying this result to F �upd�δ, α��;!δ� 1 �w¬¬

1
w2 k�1 and instantiating m with k�1, we obtain

that for any world w along that computation if choice?�w, δ� � i then i $ k�1.

4.5 The Modulus is the Modulus
We now prove the crux of continuity, namely that F returns the same number on functions
that agree up to mod�F, α� (see eqfg in continuity6.lagda for details):

▶ Theorem 19 (The Modulus is the Modulus). If w è α�β"Bn then w è F �α��F �β�"Nat.

First, we prove that w è F �α��F �upd�δ, α��"Nat, which follows from the semantics of Π and
Nat presented in Fig. 2, and in particular the fact that w è α�upd�δ, α�"B. It is therefore
enough to prove that F �upd�δ, α�� and F �β� are equal in Nat. Relating F �upd�δ, α�� and
F �β� instead of F �α� and F �β� allows getting access to the values that α gets applied to in
the computation F �α� as they are recorded using the choice name δ. We can then use these
values to prove that F �upd�δ, α�� and F �β� behave similarly up to applications of α in the
first computation, which are applications of β in the second, and that these applications
reduce to the same numbers because the arguments, recorded using δ, are less than mod�F, α�.

However, even though upd�δ, α� and α are equal in B, they behave slightly differently
computationally as upd�δ, α� turns the call-by-name computations α�t� into call-by-value
computations by first reducing t into an expression of the form i. By typing, we know that
F �upd�δ, α�� and F �β� compute to numbers, and to relate the two computations to prove
that they compute to the same number, we first apply a similar transformation to F �β�. Let
cbv be defined as follows:

cbv�f� � λx.let y � x in f�y�.

https://github.com/vrahli/opentt/blob/master/continuity3.lagda
https://github.com/vrahli/opentt/blob/master/continuity6.lagda

L. Cohen and V. Rahli 15:15

It is straightforward to derive that w è F �β��F �cbv�β��"Nat from the semantics of Π and
Nat presented in Fig. 2. It is therefore enough to prove that F �upd�δ, α�� and F �cbv�β��
are equal in Nat.

Because F �upd�δ, α�� �
w
w¬ n, by Lem. 18 for any world w0 along this computation if

choice?�w0, δ� � i then i $ k�1, where k�1 is the number computed by mod�F, α�.
We now prove that F �upd�δ, α�� and F �cbv�β�� both compute to n through another

simulation proof that relies on the following relation (see updRel in continuity4.lagda for
details):

▶ Definition 20. The similarity relation t1 �δ,α,β t2 is true iff

�t1 � upd�δ, α� 0 t2 � cbv�β��
1 �t1 � x 0 t2 � x� 1 �t1 � � 0 t2 � �� 1 �t1 � n 0 t2 � n�

1 �t1 � λx.a 0 t2 � λx.b 0 a �δ,α,β b�

1 �t1 � �a1 b1� 0 t2 � �a2 b2� 0 a1 �δ,α,β a2 0 b1 �δ,α,β b2�

1 . . .

Most cases are omitted in this definition as they similar to the ones presented above. Note
however that crucially terms of the form δ or νx.t are not related, and that those are the only
expressions not related, thereby ruling out names except when occurring inside upd through
the first clause.

A key property of this relation is as follows, which captures the fact that t1 �δ,α,β t2
is preserved by computations, and which we prove by induction on the computation
(see steps-updRel in continuity5.lagda for details):

▶ Lemma 21. If t1 �δ,α,β t2, α and β agree up to k, t1 �
w
w¬ t

¬

1 and for any world w0 along
this computation if choice?�w0, δ� � i then i $ k�1, then t2 �

w
w t

¬

2 such that t
¬

1 �δ,α,β t
¬

2.

Therefore, because F �upd�δ, α�� �δ,α,β F �cbv�β�� (as F is name-free) and F �upd�δ, α��

computes to n, it must be that F �cbv�β�� also computes to n, which concludes our proof of
Thm. 13.

5 Conclusion and Related Works

We have shown in this paper how to validate a continuity principle for a subset of the TTu

C
family of type theories, such that the modulus of continuity of functions is internalized, i.e.,
computed using an expression of the underlying computation system. In particular, we have
used stateful computations, and have discussed some of the challenges arising from such
impure computations. As mentioned in the introduction, and as recalled below, this is not
the first proof of continuity, however to the best of our knowledge, this is the first proof of an
“internal” validity proof of continuity that relies on stateful computations. Furthermore, the
proof presented above relies on an “internal” notion of probing through the use of stateful
computations internal to the computation language of the type theory, while approaches
such as [8, 9, 34] rely on a meta-theoretic (or “external”) notion of probing.

Troelstra proved in [29, p.158] that every closed term t " NB of N-HAω has a provable
modulus of continuity in N-HAω – see also [4] for similar proofs of the consistency of continuity
with various constructive theories.

Coquand and Jaber [8, 9] proved the uniform continuity of a Martin-Löf-like intensional
type theory using forcing. Their method consists in adding a generic element f as a constant
to the language that stands for a Cohen real of type 2N, and defining the forcing conditions

CSL 2023

https://github.com/vrahli/opentt/blob/master/continuity4.lagda
https://github.com/vrahli/opentt/blob/master/continuity5.lagda

15:16 Realizing Continuity Using Stateful Computations

as approximations of f. They then define a suitable computability predicate that expresses
when a term is a computable term of some type up to approximations given by the forcing
conditions. The key steps are to (1) first prove that f is computable and then (2) prove that
well-typed terms are computable, from which they derive uniform continuity: the uniform
modulus of continuity is given by the approximations.

Similarly, Escardó and Xu [34] proved that the definable functionals of Gödel’s sys-
tem T [14] are uniformly continuous on the Cantor space C (without assuming classical logic
or the Fan Theorem). For that, they developed the C-Space category, which internalizes
continuity, and has a Fan functional which computes the modulus of uniform continuity of
functions in C � N. Relating C-Space and the standard set-theoretical model of system T,
they show that all System T functions on the Cantor space are uniformly continuous. Fur-
thermore, using this model, they show how to extract computational content from proofs in
HAω extended with a uniform continuity axiom, which is realized by the Fan functional.

In [13], Escardó proves that all System T functions are continuous on the Baire space
and uniformly continuous on the Cantor space without using forcing. Instead, he provides
an alternative interpretation of system T, where a number is interpreted by a dialogue tree,
which captures the computation of a function w.r.t. an oracle of type B. Escardó first proves
that such computations are continuous, and then by defining a suitable relation between
the standard interpretation and the alternative one, that relates the interpretations of all
system T terms, derives that for all system T functions on the Baire space are continuous.

In [24, 25], the authors proved that Brouwer’s continuity principle is consistent with
Nuprl [7, 2] by realizing the modulus of continuity of functions on the Baire space also using
Longley’s method [20], but using exceptions instead of references. The realizer there is more
complicated than the one presented in this paper as it involves an effectful computation that
repeatedly checks whether a given number is at least as high as the modulus of continuity,
and increasing that number until the modulus of continuity is reached. We do not require
such a loop, and can directly extract the modulus of continuity of a function.

In [3] the authors prove that all BTT [22] functions are continuous by generalizing the
method used in [13]. Their model is built in three steps as follows: an axiom model/translation
adds an oracle to the theory at hand; a branching model/translation interprets types as
intensional D-algebras, i.e., as types equipped with pythias; and an algebraic parametricity
model/translation that relates the two previous translations by relating the calls to the
pythia to the oracle. Their models allows deriving that all functions are continuous, but does
not allow “internalizing” the continuity principle, which is the goal of this paper.

References
1 Agda wiki. URL: http://wiki.portal.chalmers.se/agda/pmwiki.php.
2 Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton, Christoph Kreitz, Lori

Lorigo, and Evan Moran. Innovations in computational type theory using Nuprl. J. Applied
Logic, 4(4):428–469, 2006. doi:10.1016/j.jal.2005.10.005.

3 Martin Baillon, Assia Mahboubi, and Pierre-Marie Pédrot. Gardening with the pythia A
model of continuity in a dependent setting. In Florin Manea and Alex Simpson, editors, CSL,
volume 216 of LIPIcs, pages 5:1–5:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.CSL.2022.5.

4 Michael J. Beeson. Foundations of Constructive Mathematics. Springer, 1985.
5 Douglas Bridges and Fred Richman. Varieties of Constructive Mathematics. London Math-

ematical Society Lecture Notes Series. Cambridge University Press, 1987. doi:10.1017/
CBO9780511565663.

http://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.1016/j.jal.2005.10.005
https://doi.org/10.4230/LIPIcs.CSL.2022.5
https://doi.org/10.1017/CBO9780511565663
https://doi.org/10.1017/CBO9780511565663

L. Cohen and V. Rahli 15:17

6 Liron Cohen and Vincent Rahli. Constructing unprejudiced extensional type theories with
choices via modalities. In Amy P. Felty, editor, FSCD, volume 228 of LIPIcs, pages 10:1–10:23.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.FSCD.2022.
10.

7 Robert L. Constable, Stuart F. Allen, Mark Bromley, Rance Cleaveland, J. F. Cremer,
Robert W. Harper, Douglas J. Howe, Todd B. Knoblock, Nax P. Mendler, Prakash Panangaden,
James T. Sasaki, and Scott F. Smith. Implementing mathematics with the Nuprl proof
development system. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.

8 Thierry Coquand and Guilhem Jaber. A note on forcing and type theory. Fundam. Inform.,
100(1-4):43–52, 2010. doi:10.3233/FI-2010-262.

9 Thierry Coquand and Guilhem Jaber. A computational interpretation of forcing in type theory.
In Epistemology versus Ontology, volume 27 of Logic, Epistemology, and the Unity of Science,
pages 203–213. Springer, 2012. doi:10.1007/978-94-007-4435-6_10.

10 M. J. Cresswell and G. E. Hughes. A New Introduction to Modal Logic. Routledge, 1996.
11 Michael A. E. Dummett. Elements of Intuitionism. Clarendon Press, second edition, 2000.
12 Martín H. Escardó and Chuangjie Xu. The inconsistency of a Brouwerian continuity principle

with the Curry-Howard interpretation. In TLCA 2015, volume 38 of LIPIcs, pages 153–164.
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.TLCA.2015.
153.

13 Martín Hötzel Escardó. Continuity of Gödel’s system T definable functionals via effectful forcing.
Electr. Notes Theor. Comput. Sci., 298:119–141, 2013. doi:10.1016/j.entcs.2013.09.010.

14 Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge University
Press, 1989.

15 Stephen C. Kleene and Richard E. Vesley. The Foundations of Intuitionistic Mathematics,
especially in relation to recursive functions. North-Holland Publishing Company, 1965.

16 Georg Kreisel. On weak completeness of intuitionistic predicate logic. J. Symb. Log., 27(2):139–
158, 1962. doi:10.2307/2964110.

17 Georg Kreisel and Anne S. Troelstra. Formal systems for some branches of intuitionistic analysis.
Annals of Mathematical Logic, 1(3):229–387, 1970. doi:10.1016/0003-4843(70)90001-X.

18 Saul A. Kripke. Semantical analysis of modal logic i. normal propositional calculi. Zeitschrift
fur mathematische Logik und Grundlagen der Mathematik, 9(5-6):67–96, 1963. doi:10.1002/
malq.19630090502.

19 Saul A. Kripke. Semantical analysis of intuitionistic logic i. In J.N. Crossley and M.A.E.
Dummett, editors, Formal Systems and Recursive Functions, volume 40 of Studies in Logic and
the Foundations of Mathematics, pages 92–130. Elsevier, 1965. doi:10.1016/S0049-237X(08)
71685-9.

20 John Longley. When is a functional program not a functional program? In ICFP’99, pages
1–7. ACM, 1999. doi:10.1145/317636.317775.

21 Joan R. Moschovakis. An intuitionistic theory of lawlike, choice and lawless sequences. In Logic
Colloquium’90: ASL Summer Meeting in Helsinki, pages 191–209. Association for Symbolic
Logic, 1993.

22 Pierre-Marie Pédrot and Nicolas Tabareau. An effectful way to eliminate addiction to
dependence. In LICS 2017, pages 1–12. IEEE Computer Society, 2017. doi:10.1109/LICS.
2017.8005113.

23 Andrew M Pitts. Nominal sets: Names and symmetry in computer science, volume 57 of
cambridge tracts in theoretical computer science, 2013.

24 Vincent Rahli and Mark Bickford. A nominal exploration of intuitionism. In Jeremy Avigad
and Adam Chlipala, editors, CPP 2016, pages 130–141. ACM, 2016. Extended version: http:
//www.nuprl.org/html/Nuprl2Coq/continuity-long.pdf. doi:10.1145/2854065.2854077.

25 Vincent Rahli and Mark Bickford. Validating brouwer’s continuity principle for numbers
using named exceptions. Mathematical Structures in Computer Science, pages 1–49, 2017.
doi:10.1017/S0960129517000172.

CSL 2023

https://doi.org/10.4230/LIPIcs.FSCD.2022.10
https://doi.org/10.4230/LIPIcs.FSCD.2022.10
https://doi.org/10.3233/FI-2010-262
https://doi.org/10.1007/978-94-007-4435-6_10
https://doi.org/10.4230/LIPIcs.TLCA.2015.153
https://doi.org/10.4230/LIPIcs.TLCA.2015.153
https://doi.org/10.1016/j.entcs.2013.09.010
https://doi.org/10.2307/2964110
https://doi.org/10.1016/0003-4843(70)90001-X
https://doi.org/10.1002/malq.19630090502
https://doi.org/10.1002/malq.19630090502
https://doi.org/10.1016/S0049-237X(08)71685-9
https://doi.org/10.1016/S0049-237X(08)71685-9
https://doi.org/10.1145/317636.317775
https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1109/LICS.2017.8005113
http://www.nuprl.org/html/Nuprl2Coq/continuity-long.pdf
http://www.nuprl.org/html/Nuprl2Coq/continuity-long.pdf
https://doi.org/10.1145/2854065.2854077
https://doi.org/10.1017/S0960129517000172

15:18 Realizing Continuity Using Stateful Computations

26 Anne S. Troelstra. Choice sequences: a chapter of intuitionistic mathematics. Clarendon Press
Oxford, 1977.

27 Anne S. Troelstra. Choice sequences and informal rigour. Synthese, 62(2):217–227, 1985.
28 Anne S. Troelstra and Dirk van Dalen. Constructivism in Mathematics An Introduction,

volume 121 of Studies in Logic and the Foundations of Mathematics. Elsevier, 1988.
29 A.S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. New

York, Springer, 1973.
30 A.S. Troelstra. A note on non-extensional operations in connection with continuity and

recursiveness. Indagationes Mathematicae, 39(5):455–462, 1977. doi:10.1016/1385-7258(77)
90060-9.

31 Mark van Atten and Dirk van Dalen. Arguments for the continuity principle. Bulletin
of Symbolic Logic, 8(3):329–347, 2002. URL: http://www.math.ucla.edu/~asl/bsl/0803/
0803-001.ps, doi:10.2178/bsl/1182353892.

32 Wim Veldman. Understanding and using Brouwer’s continuity principle. In Reuniting the
Antipodes — Constructive and Nonstandard Views of the Continuum, volume 306 of Synthese
Library, pages 285–302. Springer Netherlands, 2001. doi:10.1007/978-94-015-9757-9_24.

33 Chuangjie Xu. A continuous computational interpretation of type theories. PhD thesis,
University of Birmingham, UK, 2015. URL: http://etheses.bham.ac.uk/5967/.

34 Chuangjie Xu and Martín Hötzel Escardó. A constructive model of uniform continuity.
In TLCA 2013, volume 7941 of LNCS, pages 236–249. Springer, 2013. doi:10.1007/
978-3-642-38946-7_18.

https://doi.org/10.1016/1385-7258(77)90060-9
https://doi.org/10.1016/1385-7258(77)90060-9
http://www.math.ucla.edu/~asl/bsl/0803/0803-001.ps
http://www.math.ucla.edu/~asl/bsl/0803/0803-001.ps
https://doi.org/10.2178/bsl/1182353892
https://doi.org/10.1007/978-94-015-9757-9_24
http://etheses.bham.ac.uk/5967/
https://doi.org/10.1007/978-3-642-38946-7_18
https://doi.org/10.1007/978-3-642-38946-7_18

	1 Introduction
	2 Background
	2.1 Metatheory
	2.2 Worlds
	2.3 TT^{Box}_{C}'s Syntax and Operational Semantics

	3 Instantiating TT^{Box}_{C}
	3.1 Syntax & Operational Semantics
	3.2 Forcing Interpretation

	4 Proof of Continuity
	4.1 Purity
	4.2 Assumptions
	4.3 The Modulus is a Number
	4.4 The Modulus is the Highest Number
	4.5 The Modulus is the Modulus

	5 Conclusion and Related Works

