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A B S T R A C T

In this paper, we consider the replicator-mutator dynamics for pairwise social dilemmas where the payoff
entries are random variables. The randomness is incorporated to take into account the uncertainty, which is
inevitable in practical applications and may arise from different sources such as lack of data for measuring
the outcomes, noisy and rapidly changing environments, as well as unavoidable human estimate errors. We
analytically and numerically compute the probability that the replicator-mutator dynamics has a given number
of equilibria for four classes of pairwise social dilemmas (Prisoner’s Dilemma, Snow-Drift Game, Stag-Hunt
Game and Harmony Game). As a result, we characterise the qualitative behaviour of such probabilities as a
function of the mutation rate. Our results clearly show the influence of the mutation rate and the uncertainty
in the payoff matrix definition on the number of equilibria in these games. Overall, our analysis has provided
novel theoretical contributions to the understanding of the impact of uncertainty on the behavioural diversity
in a complex dynamical system.
1. Introduction

Evolutionary game theory (EGT), which combines the analysis of
game theory with that of dynamic evolutionary processes, provides a
powerful mathematical and simulation framework for the study of dy-
namics of frequencies of competing strategies in large populations [1–
3]. This framework has been successfully used for the investigation of
the evolution of collective behaviours such as cooperation, coordina-
tion, trust and fairness, and recently, for understanding several pressing
societal challenges such as climate change and pandemics mitigation
and advanced technology governance [4–10].

However, existing works on evolutionary game theory mainly focus
on deterministic games which could not capture the different random
factors that define the interactions, in particular the game payoff
matrix [4,5,11]. That is, these works assume that the outcomes of
interactions for any group of strategists (aka the game payoff matrix)
can be defined in advance with certainty. However, the uncertainty in
defining such outcomes is in general unavoidable which can arise from
a diversity of possible sources, including lack of data for measuring
the outcomes, noisy and rapidly changing environments, as well as
unavoidable human estimate errors [12–15].

∗ Corresponding author.
E-mail addresses: lxc156@student.bham.ac.uk (L. Chen), cxd087@student.bham.ac.uk (C. Deng), h.duong@bham.ac.uk (M.H. Duong), T.Han@tees.ac.uk

(T.A. Han).

On the other hand, existing works that capture such uncertainty
factors in EGT usually assume the payoff entries of the game are general
random variables whose distributions are not known a priori [16–20].
In this line, random social dilemma games where the payoff entries
satisfy certain ordering required for particular social dilemmas were
also analysed [20,21]. These approaches are useful to provide generic
properties of the underlying dynamical systems , including patterns of
evolutionary stable equilibria [22] and the statistical properties of the
quantity and distribution of the (stable) equilibrium points [16–18,23].
Additionally, random games were used to study which population
structure can strongly promote cooperation [24].

However, it might be the case that in many domains/scenarios,
some knowledge about the payoff entries is available. In particular,
some of the payoff entries might fluctuate around certain known values,
which are for example estimated through data analysis or given by
domain experts. Capturing the available information in the analysis is
essential to more accurately describe system dynamics and evolution-
ary outcomes. For example, several experimental studies estimate the
entries in the fitness matrix from in vitro data of interactions between
microbial populations, for evolutionary game theory analysis [25–27].
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In this paper, we bridge this gap by analytically investigating the
statistic of the number of equilibrium points in pairwise social dilemma
games where some payoff entries are drawn from a random distribution
with a known mean value and variance. We will consider the full space
of (symmetric) two-player games in which players can choose either
to cooperate or defect (see detailed definitions in Section 1.2) [4,28].
These games have been shown to provide important abstract frame-
works to capture collective behaviours in a wide range of biological
and social interactions such as cooperation and (anti-)coordination. We
adopt in our analysis the replicator-mutator dynamics (see Sections 2.1
and 2.2) to model the evolutionary process, capturing both selection
and mutation, allowing us to generate insights on how uncertainty in
the interaction outcomes and these stochastic factors together influence
equilibrium outcomes. Note that most previous works on random games
consider replicator equations [16–18], which is a simple version of
the replicator-mutator ones where mutation is assumed to be negli-
gible, already general enough to encompass a variety of biological
contexts from ecology to population genetics and from prebiotic to
social evolution [29]. A similar setting to our work was considered
in [30,31] for studying the impact of uncertainty on the evolution
of cooperation, but their analysis was purely based on simulations
and did not use replicator or replicator-mutator equations. Moreover,
there has been a particular interest in studying average and maximal
numbers of equilibrium points in a dynamical system [18,32,33]. Our
analysis provides close forms for the probability of a concrete number
of equilibria to occur, thus generalising these results.

The rest of the paper is organised as follows. In Section 2 we
provide the background regarding replicator-mutator dynamics and
summarise the main results of the paper. Detailed proofs will follow
in Sections 3–5.

2. Background and main results

2.1. The replicator-mutator dynamics

The replicator-mutator equation describes the evolution dynamics
in a population of different strategies being in co-presence, where se-
lection and mutation are both captured. It is an well established math-
ematical framework that integrates the unavoidable mutation observed
in various biological and social settings [34–39]. This framework has
been utilised in many application domains, including evolution of
collective behaviours [11,40], social networks dynamics [41], language
evolution [42], population genetics [43], and autocatalytic reaction
networks [44].

We consider an infinitely large population consisting of 𝑛 different
trategies 𝑆1,… , 𝑆𝑛. Their frequencies are denoted, respectively, by
1,… , 𝑥𝑛, where ∑𝑛

𝑖=1 𝑥𝑖 = 1. These strategies undergo selection where
heir frequency, 𝑆𝑖, is determined by its fitness (i.e. average payoff), 𝑓𝑖,
hich is obtained through interactions with others in the population.
uch interactions happen within randomly selected pairs of individu-
ls playing a social dilemma game (see details below). By means of
utation, individuals in the population might change their strategy to

nother randomly selected strategy, given by the so-called mutation
atrix: 𝑄 = (𝑞𝑗𝑖), 𝑗, 𝑖 ∈ {1,… , 𝑛}. Here, 𝑞𝑗𝑖 stands for the probability

f an 𝑆𝑗 individual changing its strategy to 𝑆𝑖, satisfying that
𝑛
∑

𝑗=1
𝑞𝑗𝑖 = 1, ∀1 ≤ 𝑖 ≤ 𝑛. (1)

enoting vector x = (𝑥1, 𝑥2,… , 𝑥𝑛) and 𝑓 (x) = ∑𝑛
𝑖=1 𝑥𝑖𝑓𝑖(x) the popula-

ion’s average fitness, we can describe the replicator-mutator equation
s follows [45–48]

̇ 𝑖 =
𝑛
∑

𝑗=1
𝑥𝑗𝑓𝑗 (x)𝑞𝑗𝑖 − 𝑥𝑖𝑓 (x), 1 ≤ 𝑖 ≤ 𝑛. (2)

t is important to note that the replicator dynamics can be reproduced
rom (2) with 𝑄 being the identity matrix (i.e. no mutation). This paper
2

nvestigates the equilibrium points of the replicator-mutator dynamics,
hich are solutions in [0, 1]𝑛 (more concretely, on a (n−1)-dimensional

simplex satisfying the normalisation ∑𝑛
𝑖=1 𝑥𝑖 = 1) of the following

system of equations

𝑔𝑖(𝐱) = 0, 1 ≤ 𝑖 ≤ 𝑛,

where 𝑔𝑖(x), 𝑖 = 1,… , 𝑛, denotes the right-hand side of (2)

𝑔𝑖(x) ∶=
𝑛
∑

𝑗=1
𝑥𝑗𝑓𝑗 (x)𝑞𝑗𝑖 − 𝑥𝑖𝑓 (x).

In general, knowing equilibrium points in a dynamical system allows
us to study states where different strategies might co-exist in the
population, indicating the possibility of polymorphism. However, for
𝑛 > 2 this is a challenging problem since one needs to deal with a
system of multivariate nonlinear equations. In this paper, we will focus
on two-player two-strategy games, but with random payoff entries, and
characterise the statistics of the number of equilibrium points.

2.2. Pairwise social dilemmas

Now let us consider a pairwise game with two strategies 𝑆1 and 𝑆2
with a general payoff matrix and mutation matrix given below

𝑆1 𝑆2
( )

𝑆1 𝑎11 𝑎12
𝑆2 𝑎21 𝑎22

, 𝑄 =

𝑆1 𝑆2
( )

𝑆1 𝑞11 𝑞12
𝑆2 𝑞21 𝑞22

where 𝑎11 ∈ R is the payoff that a player using strategy 𝑆1 obtains
when interacting with another player, who is also using strategy 𝑆1.
Other notations are interpreted similarly. Denoting 𝑥, 𝑥 ∈ [0, 1], as 𝑆1’s
frequency (and thus 1− 𝑥 as 𝑆2’s frequency), the fitness of the strategy
𝑆1 and 𝑆2, as well as of the population, are given by

𝑓1(𝑥) = 𝑎11𝑥 + 𝑎12(1 − 𝑥), 𝑓2(𝑥) = 𝑎21𝑥 + 𝑎22(1 − 𝑥),

and 𝑓 (𝑥) = 𝑥𝑓1(𝑥) + (1 − 𝑥)𝑓2(𝑥).

Substituting these expressions into (2), we obtain the following
replicator-mutator equation for a general two-player two-strategy game

�̇� = 𝑞11𝑎11𝑥
2 + 𝑞11𝑥(1 − 𝑥)𝑎12 + 𝑞21𝑥(1 − 𝑥)𝑎21 + 𝑞21𝑎22(1 − 𝑥)2

− 𝑥
(

𝑎11𝑥
2 + (𝑎12 + 𝑎21)𝑥(1 − 𝑥) + 𝑎22(1 − 𝑥)2

)

. (3)

We assume that the mutation matrix is symmetric, that is 𝑞12 = 𝑞21 =∶ 𝑞,
where 0 ≤ 𝑞 ≤ 0.5 models the strength of the mutation. Thus, according
to (1), 𝑞11 = 𝑞22 = 1 − 𝑞. Eq. (3) is reduced to

�̇� =
(

𝑎12 + 𝑎21 − 𝑎11 − 𝑎22
)

𝑥3+
(

𝑎11 − 𝑎21 − 2(𝑎12 − 𝑎22)

+ 𝑞(𝑎22 + 𝑎12 − 𝑎11 − 𝑎21)
)

𝑥2

+
(

𝑎12 − 𝑎22 + 𝑞(𝑎21 − 𝑎12 − 2𝑎22)
)

𝑥 + 𝑞𝑎22. (4)

It can be seen that the right hand side of Eq. (4) is reduced to 𝑞𝑎22 when
𝑥 = 0 and to −𝑞𝑎11 when 𝑥 = 1. Thus, for non-zero mutation (i.e. 𝑞 > 0),
𝑥 = 0 and 𝑥 = 1 are not equilibrium points when 𝑎11 or 𝑎22 is not equal
0, respectively. It is also noteworthy that only the differences 𝑎21 − 𝑎11
and 𝑎12 − 𝑎22 matter for determining the equilibria when there is no
mutation (i.e. 𝑞 = 0).

Next, we consider a well-established parameterisation of pairwise
social dilemmas, for random game analysis [49–51]. In these games,
players can choose to cooperate or defect in each interaction. Mutual
cooperation (punishment) would lead to a payoff 𝑅 (𝑃 ). Unilateral
cooperation leads to payoff 𝑆 while unilateral defection leads to payoff
𝑇 . Without loss of generality, we normalise 𝑅 = 1 and 𝑃 = 0 in all
games, and that 0 ≤ 𝑎21 = 𝑇 ≤ 2 and −1 ≤ 𝑎12 = 𝑆 ≤ 1. We focus on four
important social dilemma games, characterised by different orderings
of the payoff entries
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d

(i) the Prisoner’s Dilemma (PD): 2 ≥ 𝑇 > 1 > 0 > 𝑆 ≥ −1 (both
players defect),

(ii) the Snow-Drift (SD) game: 2 ≥ 𝑇 > 1 > 𝑆 > 0 (players prefer
unilateral defection to mutual cooperation),

(iii) the Stag Hunt (SH) game: 1 > 𝑇 > 0 > 𝑆 ≥ −1 (players prefer
mutual defection to unilateral cooperation),

(iv) the Harmony (H) game: 1 > 𝑇 ≥ 0, 1 ≥ 𝑆 > 0 (both players
cooperate).

s motivated in the introduction, to be more realistic and to capture the
arious possible uncertainty, we will consider random games, where 𝑇
r 𝑆 or both 𝑇 and S are random variables. Hence, the number of equi-
ibrium points for these social dilemma games is also a random variable.
he aim of this paper is to compute its probability distribution, as a
unction of the mutation strength 𝑞.

.3. Main results

Our main results, Theorems 1 and 2 below, provide explicit for-
ulas for the probability distribution, that is the probability that the

eplicator-mutator dynamics has a certain number of equilibria, for the
our social dilemmas above where 𝑇 or 𝑆 is random and the other is
ixed. We also numerically investigate the case where both 𝑇 and 𝑆 are
andom. The distinction between these cases is necessary since 𝑇 and

play different roles in the games, due to the fact that 𝑅 is selected to
e higher than 𝑃 and this has an effect on how mutation affects payoffs
nd equilibria. The obtained explicit formulas also enable us to derive
nteresting qualitative behaviours of the probabilities. Overall, our
esults clearly show the non-trivial influence of the mutation strength
nd the role of 𝑇 and 𝑆 in the equilibrium outcomes.

We now summarise the main analytical results of the paper. See
subsequent sections for further details and other qualitative results.

Theorem 1 (𝑇 is Random). Suppose that 𝑇 is normally distributed with
mean 𝑇0 and variance 𝜎2, i.e. 𝑇 ∼  (𝑇0, 𝜎2), and 𝑆 is a given number
where 𝑇0 and 𝑆 satisfy the corresponding ordering in each of the social
dilemmas above. Let 𝑇1, 𝑇2, 𝑇3 and 𝑠1, 𝑠2 be defined in (11), (12) and (13).
Then, for all games, the probability that the replicator-mutator has two
equilibria is given by

𝑝2 =
1
2
− 1

2
erf

(𝑇3 − 𝑇0
𝜎
√

2

)

.

The probability that the replicator-mutator has three equilibria is given as
follows. First, for SD and H games

𝑝3 = 1 − 𝑝2.

Now, for PD and SH games

𝑝3 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
2

[

1 + erf
(𝑇1 − 𝑇0

𝜎
√

2

)

]

, if 𝑆 ≤ 𝑠1,

1
2

[

1 + erf
(𝑇1 − 𝑇0

𝜎
√

2

)

+ erf
(𝑇3 − 𝑇0

𝜎
√

2

)

− erf
(𝑇2 − 𝑇0

𝜎
√

2

)

]

, if 𝑠1 < 𝑆 < 𝑠2,

1
2

[

1 + erf
(𝑇3 − 𝑇0

𝜎
√

2

)

]

, if 𝑆 ≥ 𝑠2.

hus the probability that the replicator-mutator has one equilibrium is, for
D and H games 𝑝1 = 0, and for PD and SH games, 𝑝1 = 1 − 𝑝2 − 𝑝3.
Furthermore, as a function of 𝑞, the probability 𝑝2 is decreasing in

D and H games, but is increasing in PD and SH games and satisfies the
ollowing small mutation limit

lim
→0

𝑝2 =

{

1, in SD and H games,
3

0, in PD and SH games.
In addition, in SD and H games, it holds that

𝑝2 ≥
1
2
− 1

2
erf

(

−
𝑆 + 𝑇0
𝜎
√

2

)

> 1
2
.

Theorem 2 (𝑆 is Random). Suppose that 𝑆 is normally distributed with
mean 𝑆0 and variance 𝜎2, i.e. 𝑆 ∼  (𝑆0, 𝜎2), and 𝑇0 is a given number
so that 𝑇0 and 𝑆 satisfy the corresponding ordering in each of the social
dilemmas above. Let 𝑆1, 𝑆2 be defined in (20). The probabilities that
the replicator-mutator dynamics has 1, 2 and 3 equilibria are given by,
respectively,

𝑝1 = 1 − 𝑝2 − 𝑝3,

𝑝2 =
1
2
− 1

2
erf(−

𝑞𝑇0
1−𝑞 − 𝑆0
√

2𝜂
),

3 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
2
+ 1

2
erf(

𝑆1 − 𝑆0
√

2𝜂
), if 𝑇0 >

(1−𝑞)2

1−2𝑞 ,

1
2
+ 1

2
erf(

𝑆1 − 𝑆0
√

2𝜂
) + 1

2
erf(

−𝑞𝑇0
1−𝑞 − 𝑆0

√

2
𝜂)

−1
2
erf(

𝑆2 − 𝑆0
√

2𝜂
), if 𝑇0 <

(1−𝑞)2
1−2𝑞 .

.

s a consequence, 𝑝2 is always increasing as a function of 𝑞 and satisfies
the following lower and upper bounds

1
2
− 1

2
erf(

−𝑆0
√

2𝜂
) < 𝑝2 <

1
2
− 1

2
erf(

−𝑇0 − 𝑆0
√

2𝜂
).

In the following we will provide detailed proofs for these main
results. In Section 3 we study the case where 𝑇 is random and 𝑆 is
eterministic. We compute the probability that the replicator-mutator
ynamics has 𝑝𝑘 (𝑘 ∈ {1, 2, 3}) equilibria, both analytically and numer-

ically by sampling the payoff matrix space. Similar results where 𝑆 is
andom and 𝑇 is deterministic are obtained in Section 4. In Section 5

we numerically investigate the case where both 𝑇 and 𝑆 are random.
A summary and outlook is given in the final section, Section 6.

3. 𝑻 is random

We first consider the case where only 𝑇 is random. Specifically, we
assume that

𝑇 = 𝑇0 + 𝜀𝑇 , (5)

where 𝜀𝑇 is a centred random variable. Suppose that 𝜀𝑇 is a centred
ormal distribution, 𝜀𝑇 ∼  (0, 𝜎2), and 𝑇0 is a fixed number. It follows
hat

∼  (𝑇0, 𝜎2).

This means that we have partial information about the value of
, which is randomly fluctuating (perturbed) around a deterministic
alue 𝑇0. In practical applications, this may come from estimations
ased on an expert’s advice or data simulations. By taking the value
f the variance smaller and smaller, the value of 𝑇 is more and more
oncentrated around 𝑇0, and in particular, by sending the variance to
ero, we recover deterministic games.

Note that, the choice of the fixed value of 𝑆 will partially determine
hich game is played. Indeed, when 𝑆 < 0 the game will either be a PD
r SH, and when 𝑆 > 0, it will either be an H or HD game. We anticipate
hat the qualitative outcomes will exhibit a significant dependence on
he sign of 𝑆.

.1. Equilibrium points

By simplifying the right hand side of (4), equilibria of a social
ilemma game are roots in the interval [0, 1] of the following cubic
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equation
(

𝑇 +𝑆 −1
)

𝑥3 +
(

1−𝑇 −2𝑆 + 𝑞(𝑆 −1−𝑇 )
)

𝑥2 +
(

𝑆 + 𝑞(𝑇 −𝑆)
)

𝑥 = 0. (6)

It follows that 𝑥 = 0 is always an equilibrium.
If 𝑞 = 0, (6) reduces to

(𝑇 + 𝑆 − 1)𝑥3 + (1 − 𝑇 − 2𝑆)𝑥2 + 𝑆𝑥 = 0,

which has solutions

𝑥 = 0, 𝑥 = 1, 𝑥∗ = 𝑆
𝑆 + 𝑇 − 1

.

ote that for SH and SD games 𝑥∗ ∈ (0, 1), thus it is always an (internal)
quilibrium. On the other hand, for PD-games and H-games, 𝑥∗ ∉ (0, 1),

thus it is not an equilibrium.
If 𝑞 = 1

2 then the above equation has two solutions 𝑥1 = 1
2 and

2 = 𝑇+𝑆
𝑇+𝑆−1 . In PD, SD and H games, 𝑥2 ∉ (0, 1), thus they have two

equilibria 𝑥0 = 0 and 𝑥1 = 1
2 . In the SH game: if 𝑇 + 𝑆 < 0 then the

game has three equilibria 𝑥0 = 0, 𝑥1 = 1
2 and 0 < 𝑥2 < 1; if 𝑇 + 𝑆 ≥ 0

then the game has only two equilibria 𝑥0 = 0, 𝑥1 =
1
2 .

Now we consider the case 0 < 𝑞 < 1
2 . For non-zero equilibrium

points we solve the following quadratic equation

ℎ(𝑥) ∶= (𝑇+𝑆−1)𝑥2+(1−𝑇−2𝑆+𝑞(𝑆−1−𝑇 ))𝑥+𝑆+𝑞(𝑇−𝑆) =∶ 𝑎𝑥2+𝑏𝑥+𝑐 = 0, (7)

where we define

𝑎 = 𝑇 + 𝑆 − 1, 𝑏 = 1 − 𝑇 − 2𝑆 + 𝑞(𝑆 − 1 − 𝑇 ), 𝑐 = 𝑆 + 𝑞(𝑇 − 𝑆). (8)

Note that for 𝑞 > 0, ℎ(1) = −𝑞 < 0. Thus, in contrast to the replicator
dynamics [52], 𝑥 = 1 is no longer an equilibrium in the replicator-

utator dynamics for all social dilemma games when 𝑞 > 0. The fact
that for 𝑞 > 0, 𝑥 = 0 is an equilibrium is due to the assumption
𝑎22 = 𝑃 = 0, while 𝑥 = 1 is not an equilibrium is due to the assumption
𝑎11 = 𝑅 > 𝑃 = 𝑎22 = 0, a property whereby mutual cooperation is
more beneficial than mutual defection for social dilemma interactions.
Therefore we only need to seek for internal equilibria 0 < 𝑥 < 1.

Set 𝑡 ∶= 𝑥
1−𝑥 , then we obtain

ℎ(𝑥)
(1 − 𝑥)2

= (𝑎 + 𝑏 + 𝑐)𝑡2 + (𝑏 + 2𝑐)𝑡 + 𝑐 = −𝑞𝑡2 + (−𝑞 − 𝑎 + 𝑐)𝑡 + 𝑐 ∶= 𝑔(𝑡).

Thus, an equilibrium point of a social dilemma can be found from a
positive solution of the following quadratic equation

𝑔(𝑡) = −𝑞𝑡2+(−𝑞−𝑎+𝑐)𝑡+𝑐 = −𝑞𝑡2−((1−𝑞)(𝑇 −1)+𝑞𝑆)𝑡+𝑆+𝑞(𝑇 −𝑆). (9)

Using this relation, subsequently we provide numerical simulations
and analytical results for the probability 𝑝𝑘 that each of the game
mentioned above has a certain number, 𝑘 ∈ {1, 2, 3}, of equilibria. For
the quadratic function 𝑔(𝑡), the discriminant is given by

𝛥 = (𝑞 + 𝑎 − 𝑐)2 + 4𝑞𝑐, (10)

where 𝑎 and 𝑐 are defined in terms of 𝑇 and 𝑆 in (8). The number of
positive roots of 𝑔 is characterised in the following three cases:

(a) 𝑔 has no positive roots, which happens when 𝑔 has no real roots
(𝛥 < 0) or 𝑔 has only negative roots (𝛥 ≥ 0, 𝑡1 ≤ 0, 𝑡2 ≤ 0). In this
case, the replicator-mutator equation has only one equilibrium
𝑥 = 0.

(b) 𝑔 has one positive root, which happens when 𝑔 has a positive
double root (𝛥 = 0, 𝑡1 = 𝑡2 > 0) or when 𝑔 has one positive
and one negative root (𝛥 > 0, 𝑡1𝑡2 < 0). In this case, the
replicator-mutator equation has two equilibria.

(c) 𝑔 has two positive roots (𝛥 > 0, 𝑡1 + 𝑡2 > 0, 𝑡1𝑡2 > 0), thus the
replicator-mutator equation has three equilibria.

Using (8) we can write

𝛥 = (𝑞 + 𝑎 − 𝑐)2 + 4𝑞𝑐
2

4

= [𝑞 + 𝑇 + 𝑆 − 1 − (𝑆 + 𝑞𝑇 − 𝑞𝑆)] + 4𝑞[𝑆 + 𝑞(𝑇 − 𝑆)]
= (1 − 𝑞)2𝑇 2 + 2[(𝑞 − 𝑞2)𝑆 + 𝑞2 + 2𝑞 − 1]𝑇

+ 𝑞2𝑆2 + 2𝑞(1 − 𝑞)𝑆 + (𝑞 − 1)2,

hich is a quadratic function of 𝑇 whose discriminant is given by

2𝑞3 − 𝑞2 − (2𝑞3 − 3𝑞2 + 𝑞)𝑆 = 𝑞(2𝑞 − 1)[𝑞 − (𝑞 − 1)𝑆].

herefore

(i) If 2𝑞3 − 𝑞2 − (2𝑞3 − 3𝑞2 + 𝑞)𝑆 > 0, then 𝛥 = 0 has two distinct
solutions.

(ii) If 2𝑞3−𝑞2−(2𝑞3−3𝑞2+𝑞)𝑆 = 0, then 𝛥 = 0 has only one solution.
(iii) If 2𝑞3−𝑞2−(2𝑞3−3𝑞2+𝑞)𝑆 < 0, then 𝛥 = 0 has no real solutions.

f (𝑞 − 1)𝑆 ≤ 𝑞, then 𝛥 = 0 has solutions

1 =
−((1 − 𝑞)𝑞𝑆 + 𝑞2 + 2𝑞 − 1) − 2

√

2𝑞3 − 𝑞2 − (2𝑞3 − 3𝑞2 + 𝑞)𝑆
(1 − 𝑞)2

, (11)

𝑇2 =
−((1 − 𝑞)𝑞𝑆 + 𝑞2 + 2𝑞 − 1) + 2

√

2𝑞3 − 𝑞2 − (2𝑞3 − 3𝑞2 + 𝑞)𝑆
(1 − 𝑞)2

. (12)

In addition, we also have the following:

𝑇1 + 𝑇2 =
𝑞 + 𝑎 − 𝑐

−𝑞
=

𝑞 + 𝑇 + 𝑆 − 1 − (𝑆 + 𝑞𝑇 − 𝑞𝑆)
−𝑞

=
𝑞 + 𝑇 − 𝑞𝑇 + 𝑞𝑆 − 1

−𝑞
,

𝑇1𝑇2 =
𝑐
−𝑞

=
𝑆 + 𝑞𝑇 − 𝑞𝑆

−𝑞
.

Define

𝑠1 =
−𝑞(1 − 𝑞)
1 − 2𝑞

, 𝑠2 =
𝑞

𝑞 − 1
, and 𝑇3 =

(𝑞 − 1)𝑆
𝑞

. (13)

Note that since 0 < 𝑞 < 1∕2, 𝑠1 ∈ (−∞, 0), 𝑠2 ∈ (−1, 0) and 𝑠1 < 𝑠2. In
addition, if 𝑆 = 𝑠1 then 𝑇2 = 𝑇3 and if 𝑆 = 𝑠2 then 𝑇1 = 𝑇2. Furthermore,
the condition that (𝑞 −1)𝑆 ≤ 𝑞 will always hold when 𝑆 > 0, that is for
SD and H games.

3.2. Probability that the replicator-mutator has two equilibria

We first compute the probability 𝑝2 that the replicator-mutator
equation has two equilibria, which amounts to compute the probability
that 𝛥 = 0, 𝑡1 = 𝑡2 > 0 or 𝛥 > 0, 𝑡1𝑡2 < 0:

𝑝2 = P
{

𝛥 = 0, 𝑡1 = 𝑡2 > 0
}

+ P
{

𝛥 > 0, 𝑡1𝑡2 < 0
}

= 𝑝21 + 𝑝22.

We note that when 𝛥 = 0 has no solution, P{𝛥 = 0, 𝑡1 = 𝑡2 > 0} = 0.
When 𝛥 = 0 has two solutions 𝑇1 and 𝑇2 (𝑇1 may equal to 𝑇2 here, but
it does not matter), then P{𝛥 = 0, 𝑡1 = 𝑡2 > 0} is given by

𝑃 (𝑇 = 𝑇1) + 𝑃 (𝑇 = 𝑇2).

ince in both cases (Gaussian and uniform distributions) 𝑇 follows a
ontinuous distribution, we have 𝑃 (𝑇 = 𝑇1) = 𝑃 (𝑇 = 𝑇2) = 0. It follows
hat 𝑝21 = 0. Thus

2 = 𝑝22 = P{𝛥 > 0, 𝑡1𝑡2 < 0},

hich is equivalent to the probability that 𝑇 > 𝑇3. Since 𝑇 ∼  (𝑇0, 𝜎2),
e obtain

2 = P(𝑇 > 𝑇3) (14)

= ∫

∞

𝑇3

1

𝜎
√

2𝜋
exp

(−(𝑥 − 𝑇0)2

2𝜎2
)

𝑑𝑥

= 1
√

𝜋 ∫

∞

𝑇3−𝑇0
𝜎
√

2

exp(−𝑡2)𝑑𝑡 (by changing of variable 𝑡 =
𝑥 − 𝑇0
𝜎
√

2
)

= 1
√

𝜋

⎡

⎢

⎢

⎣

∫

∞

0
exp(−𝑡2)𝑑𝑡 − ∫

𝑇3−𝑇0
𝜎
√

2

0
exp(−𝑡2)𝑑𝑡

⎤

⎥

⎥

⎦

= 1 − 1erf
(𝑇3 − 𝑇0

√

)

2 2 𝜎 2



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 180 (2024) 114565L. Chen et al.

T
o

L
H
a

𝑝

I

𝑞

l
T
d

o

𝑝

𝑝
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𝑝

N

𝑞
h

T
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𝑝

𝑇

A

c

(

s

= 1
2
− 1

2
erf

( (𝑞 − 1)𝑆∕𝑞 − 𝑇0
𝜎
√

2

)

,

where erf(⋅) is the error function

erf(𝑧) ∶= 2
√

𝜋 ∫

𝑧

0
𝑒−𝑡

2
𝑑𝑡.

he following lemma presents some interesting qualitative properties
f 𝑝2.

emma 1. As a function of 𝑞, the probability 𝑝2 is decreasing in SD and
games, but is increasing in PD and SH games. As a consequence, for SD
nd H games, it holds that

2 ≥
1
2
− 1

2
erf

(

−
𝑆 + 𝑇0
𝜎
√

2

)

> 1
2
. (15)

n addition,

lim
→0

𝑝2 =

{

1, in SD and H games,
0, in PD and SH games.

It is worth mentioning that the monotonicity and the small mutation
imits above are independent of the specific values of 𝑆, 𝑇0 and 𝜎.
he lower bound (15) indicates that in SD and H games, 𝑝2 is always
ominant over 𝑝1 and 𝑝3 since 𝑝1 + 𝑝2 + 𝑝3 = 1. For instance, in the SD

game, with the specific values 𝑆 = 0.5, 𝑇0 = 1.5, 𝜎 = 1 we obtain

𝑝2 ≥
1
2
− 1

2
erf(−

√

2) ≈ 0.97725,

and in the H game with the specific values 𝑆 = 0.5, 𝑇 = 0.5, 𝜎 = 1, we
btain

2 ≥
1
2
− 1

2
erf(−1∕

√

2) ≈ 0.8413.

Proof. Let 𝑧 =
(𝑞 − 1)𝑆∕𝑞 − 𝑇0

𝜎
√

2
, then

2 =
1
2
− 1

2
erf(𝑧).

herefore, using the chain rule and the fact that 𝑑
𝑑𝑧 erf(𝑧) =

2
√

𝜋
𝑒−𝑧2 , we

btain
𝑑𝑝2
𝑑𝑞

=
𝑑𝑝2
𝑑𝑧

𝑑𝑧
𝑑𝑞

= − 1
√

𝜋
𝑒−𝑧

2 𝑆

𝜎𝑞2
√

2
.

ince 𝑆 is positive in SD and H games but is negative in PD and SH
ames, 𝑑𝑝2

𝑑𝑞 is negative in SD and H games but is positive in PD and SH
ames. Thus the probability 𝑝2, as a function of 𝑞, is decreasing in SD
nd H games, but is increasing in PD and SH games. As a consequence,
or SD and H games, we have

2 ≥ 𝑝2|𝑞=1∕2 =
1
2
− 1

2
erf

(

−
𝑆 + 𝑇0
𝜎
√

2

)

.

ow we establish the limit of 𝑝2 as 𝑞 tends to 0. Since 0 < 𝑞 < 1
2 we

have

lim
𝑞→0

𝑧 =

{

−∞, if 𝑆 > 0,
+∞, if 𝑆 < 0.

Together with the fact that

lim
𝑧→±∞

erf(𝑧) = ±1,

we obtain

lim
𝑞→0

𝑝2 =
1
2
− 1

2
lim
𝑞→0

erf(𝑧) =

{

1, if 𝑆 > 0,
0, if 𝑆 < 0.

Applying this to the underlying games, we achieve

lim
𝑞→0

𝑝2 =

{

1, in SD and H games,
5

0, in PD and SH games. □
3.3. Probability that the replicator-mutator has three equilibria

Now we compute the probability 𝑝3 that the replicator-mutator
equation has three equilibria. We consider the following cases, depend-
ing on the ordering between 𝑆 and 𝑠1 < 𝑠2.

(C1) 𝑆 > 𝑞∕(𝑞 − 1) = 𝑠2
Then, recalling that when 0 < 𝑞 < 1∕2, then 2𝑞3 − 𝑞2 − (2𝑞3 − 3𝑞2 +

)𝑆 = 𝑞(2𝑞 − 1)[𝑞 − (𝑞 − 1)𝑆] < 0. Therefore, 𝛥 > 0 always holds. It also
olds that 𝑇3 <

1 − (𝑆 + 1)𝑞
1 − 𝑞

. Therefore,

{

𝑇 ∶ 𝛥 > 0, 𝑇 <
1 − (𝑆 + 1)𝑞

1 − 𝑞
, 𝑇 < 𝑇3

}

= {𝑇 ∶ 𝑇 < 𝑇3}.

hus, when (𝑞 − 1)𝑆 > 𝑞, the probability 𝑝3 that the replicator-mutator
ynamics has three equilibria is given by

3 = P(𝑇 < 𝑇3) = 1 − P(𝑇 > 𝑇3) = 1 − 𝑝2

= 1
2
+ 1

2
erf

(𝑇3 − 𝑇0
𝜎
√

2

)

.

It implies that in this case, 𝑝1 = 0. Note that, SD and H games always
satisfy this case since 𝑠2 = 𝑞

𝑞−1 < 0 < 𝑆. Thus, we obtain for SD and H
games:

𝑝1 = 0, 𝑝2 =
1
2
− 1

2
erf

( (𝑞 − 1)𝑆∕𝑞 − 𝑇0
𝜎
√

2

)

,

𝑝3 = 1 − 𝑝2 =
1
2
+ 1

2
erf

( (𝑞 − 1)𝑆∕𝑞 − 𝑇0
𝜎
√

2

)

.

(C2) 𝑆 = 𝑠2
Then 2𝑞3 − 𝑞2 − (2𝑞3 − 3𝑞2 + 𝑞)𝑆 = 0, we obtain that

≠ −
𝑞(1 − 𝑞)𝑆 + 𝑞2 + 2𝑞 − 1

(1 − 𝑞)2
⇔ 𝛥 > 0. (16)

direct computation shows that −
𝑞(1 − 𝑞)𝑆 + 𝑞2 + 2𝑞 − 1

(1 − 𝑞)2
< 𝑇3. Thus,

the probability that the replicator-mutator equation has 3 equilibria is
again 𝑝3 = P(𝑇 < 𝑇3). Thus we obtain the same results as in the previous
ase.

C3) 𝑠1 < 𝑆 < 𝑠2
In this case since 2𝑞3−𝑞2−(2𝑞3−3𝑞2+𝑞)𝑆 > 0, 𝛥 = 0 has two distinct

olutions 𝑇1 and 𝑇2. In addition, we have
1 − (𝑆 + 1)𝑞

1 − 𝑞
> 𝑇3 > 𝑇2.

It implies that the probability of the replicator-mutator equation having
three equilibria is

𝑝3 = P(𝑇 < 𝑇1) + P(𝑇2 < 𝑇 < 𝑇3)

= ∫

𝑇1

−∞

1

𝜎
√

2𝜋
exp

(−(𝑥 − 𝑇0)2

2𝜎2
)

𝑑𝑥 + ∫

𝑇3

𝑇2

1

𝜎
√

2𝜋
exp

(−(𝑥 − 𝑇0)2

2𝜎2
)

𝑑𝑥

= 1
2

[

1 + erf
(𝑇1 − 𝑇0

𝜎
√

2

)

+ erf
(𝑇3 − 𝑇0

𝜎
√

2

)

− erf
(𝑇2 − 𝑇0

𝜎
√

2

)

]

.

(C4) 𝑆 ≤ 𝑠1
Similarly to case (𝐶3), 𝛥 = 0 has two distinct solutions 𝑇1 and 𝑇2

and
1 − (𝑆 + 1)𝑞

1 − 𝑞
≤ 𝑇3, 𝑇1 ≤

1 − (𝑆 + 1)𝑞
1 − 𝑞

≤ 𝑇2.

Thus the probability that replicator-mutator equation has three equi-
libria is given by

𝑝3 = P(𝑇 < 𝑇1)

= ∫

𝑇1 1
√

exp
(−(𝑥 − 𝑇0)2

2

)

𝑑𝑥

−∞ 𝜎 2𝜋 2𝜎
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𝑆

= 1
2
+ 1

2
erf

(𝑇1 − 𝑇0
𝜎
√

2

)

.

Bringing all cases together, we obtain, in PD and SH games, the
probability that the replicator-mutator equation has three equilibria is

𝑝3 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
2

[

1 + erf
(𝑇1 − 𝑇0

𝜎
√

2

)

]

, if 𝑆 ≤ 𝑠1,

1
2

[

1 + erf
(𝑇1 − 𝑇0

𝜎
√

2

)

+ erf
(𝑇3 − 𝑇0

𝜎
√

2

)

− erf
(𝑇2 − 𝑇0

𝜎
√

2

)

]

, if 𝑠1 < 𝑆 < 𝑠2,

1
2

[

1 + erf
(𝑇3 − 𝑇0

𝜎
√

2

)

]

, if 𝑆 ≥ 𝑠2.

he three cases in the formula above can be written in terms of 𝑞 as
ollows

3 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
2

[

1 + erf
(𝑇1 − 𝑇0

𝜎
√

2

)

]

, if 0 ≤ 𝑞 ≤ 𝑞1,

1
2

[

1 + erf
(𝑇1 − 𝑇0

𝜎
√

2

)

+ erf
(𝑇3 − 𝑇0

𝜎
√

2

)

− erf
(𝑇2 − 𝑇0

𝜎
√

2

)

]

, if 𝑞1 < 𝑞 < 𝑞2,

1
2

[

1 + erf
(𝑇3 − 𝑇0

𝜎
√

2

)

]

, if 𝑞2 ≤ 𝑞 ≤ 1
2 ,

where 𝑞1 and 𝑞2 are respectively unique solutions of

𝑞(𝑞 − 1)
1 − 2𝑞

= 𝑆 and 𝑞
𝑞 − 1

= 𝑆.

We note that when 𝑞2 ≤ 𝑞 ≤ 1
2 then 𝑝3 = 1 − 𝑝2, thus 𝑝1 = 0. Using the

bove formula, in principle, we can derive qualitative properties for 𝑝3
s a function of 𝑞 as in Lemma 1. However, to compute the derivatives
f 𝑇1 and 𝑇2 with respect to 𝑞 and determine their signs for general

are very complicated for general 𝑆. In the following example, we
demonstrate such a result for the specific value 𝑆 = −0.5.

Example 1. For 𝑆 = −0.5, we obtain the following formula for 𝑝3
epending on the value of 𝑞

3 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
2

[

1 + erf
(𝑇1 − 𝑇0

𝜎
√

2

)

]

, if 𝑞 ≤ 2−
√

2
2 ,

1
2

[

1 + erf
(𝑇1 − 𝑇0

𝜎
√

2

)

+ erf
(𝑇3 − 𝑇0

𝜎
√

2

)

− erf
(𝑇2 − 𝑇0

𝜎
√

2

)

]

, if 2−
√

2
2 ≤ 𝑞 ≤ 1

3 ,

1
2

[

1 + erf
(𝑇3 − 𝑇0

𝜎
√

2

)

]

, if 1
3 ≤ 𝑞 ≤ 1

2 .

From the above analytical formula, we can study the behaviour of 𝑝3
s a function of 𝑞. For 0 < 𝑞 < 2−

√

2
2 , we have

𝑑𝑝3
𝑑𝑞

= 1

𝜎
√

2𝜋
exp

[

−
(𝑇1 − 𝑇0)2

2𝜎2
]𝑑𝑇1
𝑑𝑞

< 0.

or 2−
√

2
2 < 𝑞 < 1

3 ,

𝑑𝑝3
𝑑𝑞

= 1

𝜎
√

2𝜋

(

exp
[

−
(𝑇1 − 𝑇0)2

2𝜎2
]𝑑𝑇1
𝑑𝑞

+ exp
[

−
(𝑇3 − 𝑇0)2

2𝜎2
]𝑑𝑇3
𝑑𝑞

− exp
[

−
(𝑇2 − 𝑇0)2

2𝜎2
]𝑑𝑇2
𝑑𝑞

)

> 0.
6

For 1
3 < 𝑞 < 1

2 ,

𝑑𝑝3
𝑑𝑞

= 1

𝜎
√

2𝜋
exp

[

−
(𝑇3 − 𝑇0)2

2𝜎2
]𝑑𝑇3
𝑑𝑞

< 0

Thus as a function of 𝑞, 𝑝3 is decreasing in (0, 2−
√

2
2 ), is increasing in

( 2−
√

2
2 , 13 ) and then is decreasing again in ( 13 ,

1
2 ).

3.4. Numerical simulations

In Fig. 1 we plot the probabilities that PD, SD, SH and H games have
1, 2 or 3 equilibria for different values of 𝑞 using the analytical formula
obtained in the previous section (see Theorem 1). For validation, these
probabilities are also computed by sampling over 106 realisations of 𝑇
from the normal distribution  (𝑇0, 1) and then calculating the solutions
of 𝑔(𝑡) = 0. In these simulations, the value 𝑆0 (respectively, 𝑇0) is taken
to be the middle point in the interval that 𝑆 (respectively, 𝑇 ) belongs
to in each corresponding game, that is 𝑆0 = −0.5 in PD and SH games
and 𝑆0 = 0.5 in SD and H games (respectively, 𝑇0 = 1.5 in PD and
SD games, 𝑇0 = 0.5 in SH and H games). It can be clearly seen that
the simulation results are in accordance with the analytical ones. In
particular, we observe that, as a function of 𝑞, the probability 𝑝2 is
decreasing in SD and H games, and is increasing in PD and SH games.

In Fig. 2 we plot the probabilities that PD, SD, SH and H games
have 1, 2 or 3 equilibria for different values of 𝜎 (fixing 𝑞 = 0.25),
using the analytical formula obtained in the previous section. The value
𝑆0 (respectively, 𝑇0) is taken to be the middle point in the interval
that 𝑆 (respectively, 𝑇 ) belongs to in each corresponding game, that
is 𝑆0 = −0.5 in PD and SH games and 𝑆0 = 0.5 in SD and H games
(respectively, 𝑇0 = 1.5 in PD and SD games, 𝑇0 = 0.5 in SH and H
games).

4. 𝑺 is random

In this section, we consider the case where only 𝑆 is random,
assuming that

𝑆 = 𝑆0 + 𝜀𝑆 ,

where 𝜀𝑆 ∼ 𝑁(0, 𝜂2). Then we have

𝑆 ∼ 𝑁(𝑆0, 𝜂
2).

As in Section 3, we will compute the probability that the replicator-
mutator dynamics has 𝑘 ∈ {1, 2, 3} equilibria, which is the same as the
probability that the polynomial 𝑔 defined in (9) has 𝑘 − 1 ∈ {0, 1, 2}
positive roots. This has been characterised in three corresponding cases
(a), (b) and (c) in Section 3.1.

4.1. The probability that the replicator-mutator has two equilibria

In this section, we compute the probability that the replicator-
mutator dynamics has 2 equilibria, which amounts to computing the
probability that the quadratic polynomial 𝑔 defined in (9) has 1 positive
root. This can happen in two different cases below.
(C1) 𝛥 = 0, 𝑞 + 𝑎 − 𝑐 < 0.

Let �̂� ∶= 𝑇 − 1 and

(�̂� , 𝑆) ∶= 𝑞 + 𝑎 − 𝑐 = (1 − 𝑞)(𝑇0 − 1) + 𝑞𝑆, (17)

𝑌 (�̂� , 𝑆) ∶= 𝑐 − 𝑞 = 𝑞(𝑇0 − 1) + (1 − 𝑞)𝑆. (18)

hen, the equation 𝛥 = 0 can be rewritten as
2 + 4𝑞𝑌 = −4𝑞2. (19)

ubstituting 𝑋 and 𝑌 in (17) and (18) to (19), we get

=
−(1 − 𝑞)(𝑇0 + 1) ± 2

√

𝑇0(1 − 2𝑞)
,

𝑞
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𝛥

𝑆
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Fig. 1. Probabilities 𝑝1 , 𝑝2 , 𝑝3 that the replicator-mutator dynamics has respectively 1, 2, 3 equilibria as functions of the mutation rate 𝑞 in PD, SD, SH and H games when 𝑇 is
random and 𝑆 is fixed. The values from analytical analysis and numerical samplings are in accordance.
T

w
e

𝑝

with −1−(𝑇0−1)𝑞
1−𝑞 < 𝑆 < −𝑞𝑇0

1−𝑞 . Since 𝑆 is a continuous random variable,
he probability that this case occurs is 0.
C2) 𝛥 > 0 and 𝑐 ≥ 0.

It follows from (18) that 𝑐 ≥ 0 is equivalent to 𝑌 ≥ −𝑞, which gives

≥
−𝑞𝑇0
1 − 𝑞

.

rom (17) and (18), we have

= 𝑋2 + 4𝑞𝑌 + 4𝑞2

= ((1 − 𝑞)(𝑇0 − 1) + 𝑞𝑆)2 + 4𝑞(𝑞(𝑇0 − 1) + (1 − 𝑞)𝑆) + 4𝑞2

= 𝑞2𝑆2 + 2𝑞(1 − 𝑞)(𝑇0 + 1)𝑆 + 4𝑞2𝑇0 + (1 − 𝑞)2(𝑇0 − 1)2.

Thus 𝛥 can be seen as a quadratic polynomial of 𝑆 with a leading
coefficient 𝑞2 > 0 and its discriminant is given by

𝛥 = 16𝑞2𝑇0(1 − 2𝑞) > 0

since for 0 < 𝑞 < 1
2 . Thus The equation 𝛥 = 0 have two real solutions,

1 < 𝑆2, given by

1 =
(𝑞 − 1)(𝑇0 + 1) − 2

√

𝑇0 − 2𝑞𝑇0
𝑞

, 𝑆2 =
(𝑞 − 1)(𝑇0 + 1) + 2

√

𝑇0 − 2𝑞𝑇0
𝑞

.

(20)
7

o proceed, we need to compare −𝑞𝑇0
1−𝑞 with 𝑆2. We have

−𝑞𝑇0
1−𝑞

𝑆2
=

−𝑞𝑇0
1 − 𝑞

𝑞
(𝑞 − 1)(𝑇0 + 1) + 2

√

𝑇0 − 2𝑞𝑇0

=
𝑞2𝑇0

𝑞2𝑇0 + (𝑞 − 1)2 + (1 − 2𝑞)𝑇0 + 2
√

𝑇0 − 2𝑞𝑇0
< 1.

Since both −𝑞𝑇0
1−𝑞 and 𝑆2 are negative, it follows that −𝑞𝑇0

1−𝑞 > 𝑆2.
Therefore

P(𝛥 > 0, 𝑌 ≥ −𝑞) = P(𝑆 >
−𝑞𝑇0
1 − 𝑞

).

Since 𝑆 ∼  (𝑆0, 𝜂2), the probability that 𝑔 has a unique positive root,
hich is the probability that the replicator-mutator dynamics have two
quilibria, is given by

2 = ∫

∞

−𝑞𝑇0
1−𝑞

1

𝜂
√

2𝜋
𝑒
−(𝑥−𝑆0)

2

2𝜂2 𝑑𝑥

= 1 − 1erf(
−𝑞𝑇0
1−𝑞 − 𝑆0
√

).

(21)
2 2 2𝜂
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h

T
w

𝑝

Fig. 2. The probabilities 𝑝1 , 𝑝2 and 𝑝3 that the replicator-mutator dynamics has respectively 1, 2 and 3 equilibria as functions of 𝜎, the variance of the random variable T, in PD,
SD, SH and H games when 𝑇 is random and 𝑆 is fixed.
I

p

𝑝

Lemma 2. As a function of 𝑞, the probability 𝑝2 is increasing in all games.
As a consequence,

1
2
− 1

2
erf(

−𝑆0
√

2𝜂
) < 𝑝2 <

1
2
− 1

2
erf(

−𝑇0 − 𝑆0
√

2𝜂
).

Proof. Let 𝑧 ∶=
−𝑞𝑇0
1−𝑞 −𝑆0

𝜂
√

2
. Then 𝑝2 =

1
2 −

1
2 erf(𝑧). Thus, since 𝑇0 > 0, we

ave
𝑑𝑝2
𝑑𝑞

=
𝑑𝑝2
𝑑𝑧

𝑑𝑧
𝑑𝑞

= 1
√

𝜋
𝑒−𝑧

2 𝑇0
𝜂
√

2(1 − 𝑞)2
> 0.

hus 𝑝2 is increasing as a function of 𝑞, see Fig. 3. As a consequence,
e obtain the following lower and upper estimates for 𝑝2:

2|𝑞=0 =
1
2
− 1

2
erf(

−𝑆0
√

2𝜂
) < 𝑝2 < 𝑝𝑒|𝑞=1∕2 =

1
2
− 1

2
erf(

−𝑇0 − 𝑆0
√

2𝜂
). □

The following example illustrates the above lemma.

Example 2. In the SD game, with the specific values 𝑆 = 0.5, 𝑇0 =
1.5, 𝜂 = 1 we get

1
2
− 1

2
erf(−0.5∕

√

2) = 0.691462 < 𝑝2 <
1
2
− 1

2
erf(−2∕

√

2) = 0.97725.

In the PD game, with 𝑇0 = 1.5, 𝑆0 = −0.5, 𝜂 = 1, we get

1 − 1 erf(0.5∕
√

2) = 0.308538 < 𝑝 < 1 − 1 erf(−1∕
√

2) = 0.8413.
8

2 2 2 2 2
In the SH game, with 𝑇0 = 0.5, 𝑆 = −0.5, 𝜂 = 1, we get

1
2
− 1

2
erf(0.5∕

√

2) = 0.308538 < 𝑝2 <
1
2
− 1

2
erf(0) = 0.5.

n the H game, with 𝑇0 = 𝑆0 = 0.5, 𝜂 = 1, we get

1
2
− 1

2
erf(−0.5∕

√

2) = 0.691462 < 𝑝2 <
1
2
− 1

2
erf(−1∕

√

2) = 0.8413.

We notice that in SD and H games, 𝑝2 is always dominant.

4.2. The probability that the replicator-mutator has three equilibria

In this section, we compute the probability 𝑝3 that the replicator-
mutator has three equilibria, that is the probability that 𝑔 has two
ositive roots. We have

3 = P(𝛥 > 0, 𝑐 < 0, (−𝑞 − 𝑎 + 𝑐) > 0) = P(𝛥 > 0, 𝑌 < −𝑞, 𝑋 < 0)

= P(𝛥 > 0, 𝑆 <
(𝑞 − 1)(𝑇0 − 1)

𝑞
, 𝑆 <

−𝑞𝑇0
1 − 𝑞

).

To proceed, by comparing (𝑞−1)(𝑇0−1)
𝑞 with −𝑞𝑇0

1−𝑞 and with 𝑆1, 𝑆2, we
obtain 2 cases.

(i) When 𝑇0 >
(1−𝑞)2
1−2𝑞 , then we have

−𝑞𝑇0 > 𝑆2 >
(𝑞 − 1)(𝑇0 − 1)

> 𝑆1.
1 − 𝑞 𝑞
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Fig. 3. Probabilities 𝑝1 , 𝑝2 , 𝑝3 that the replicator-mutator dynamics has respectively 1, 2, 3 equilibria, as functions of the mutation strength 𝑞 in PD, SD, SH and H games when 𝑆
s random and 𝑇 is fixed. The values from analytical analysis and numerical samplings are in accordance.
𝑝

Thus, the probability 𝑝3 in this case is given by

𝑝3 = P(𝑆 < 𝑆1).

(ii) When 𝑇0 <
(1−𝑞)2
1−2𝑞 , then we have

(𝑞 − 1)(𝑇0 − 1)
𝑞

>
−𝑞𝑇0
1 − 𝑞

> 𝑆2 > 𝑆1.

Thus, the probability 𝑝3 in this case is given by

𝑝3 = P(𝑆 < 𝑆1) + P(𝑆2 < 𝑆 <
−𝑞𝑇0
1 − 𝑞

).

Therefore, since 𝑆 ∼  (𝑆0, 𝜂2), the probability of having three equilib-
ria is given by

𝑝3 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

1
2
+ 1

2
erf(

𝑆1 − 𝑆0
√

2𝜂
), if 𝑇0 >

(1 − 𝑞)2

1 − 2𝑞
,

1
2
+ 1

2
erf(

𝑆1 − 𝑆0
√

2𝜂
) + 1

2
erf(

−𝑞𝑇0
1−𝑞 − 𝑆0

√

2
𝜂)

− 1
2
erf(

𝑆2 − 𝑆0
√

), if 𝑇0 <
(1 − 𝑞)2

1 − 2𝑞
.

9

⎩
2𝜂
In conclusion:

𝑝2 =
1
2
− 1

2
erf(−

𝑞𝑇0
1−𝑞 − 𝑆0
√

2𝜂
),

3 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
2
+ 1

2
erf(

𝑆1 − 𝑆0
√

2𝜂
), if 𝑇0 >

(1−𝑞)2
1−2𝑞 ,

1
2
+ 1

2
erf(

𝑆1 − 𝑆0
√

2𝜂
) + 1

2
erf(

−𝑞𝑇0
1−𝑞 − 𝑆0

√

2
𝜂)

−1
2
erf(

𝑆2 − 𝑆0
√

2𝜂
), if 𝑇0 <

(1−𝑞)2
1−2𝑞 .

,

𝑝1 = 1 − 𝑝2 − 𝑝3.

4.3. Numerical simulations

In Fig. 3 we show the probabilities that PD, SD, SH and H games
have 1, 2 or 3 equilibria for different values of 𝑞 using the analytical
formula obtained in the previous section (see Theorem 2). Moreover,
for validation, these probabilities were calculated by sampling over
106 realisations of 𝑆 from the normal distribution  (𝑆0, 1) and then
calculating the solutions of 𝑔(𝑡) = 0. The values of 𝑇 and 𝑆 are
0 0
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Fig. 4. Probabilities 𝑝1 , 𝑝2 , 𝑝3 that the replicator-mutator dynamics has respectively 1, 2, 3 equilibria, as functions of the mutation strength 𝑞 in PD, SD, SH and H games when both
𝑇 and 𝑆 are random. The values are numerically obtained from 106 samplings.
the middle points of the corresponding intervals as in Section 3.4. It
can be seen that the numerical results are clearly in accordance with
theoretical ones. We can also observe that, 𝑝2 is always increasing as a
function of 𝑞, as stated in Theorem 2.

5. Both 𝑻 and 𝑺 are random: numerical investigations

In this section, we numerically compute the probabilities 𝑝1, 𝑝2 and
𝑝3 when both 𝑇 and 𝑆 are random. In Fig. 4, we show their values
obtained from averaging over 106 random samples of 𝑇 and 𝑆 with
the corresponding distribution in each game. Namely, 𝑇 and 𝑆 have
Gaussian distributions with means chosen corresponding to one of the
social dilemma games. In our simulations, for PD, 𝑇 ∼ 𝑁(1.5, 1) and
𝑆 ∼ 𝑁(−0.5, 1); for SD, 𝑇 ∼ 𝑁(1.5, 1) and 𝑆 ∼ 𝑁(0.5, 1); for SH,
𝑇 ∼ 𝑁(0.5, 1) and 𝑆 ∼ 𝑁(−0.5, 1); and, for H game, 𝑇 ∼ 𝑁(0.5, 1) and
𝑆 ∼ 𝑁(0.5, 1). We observe that 𝑝2 tends to increase in all games, while
𝑝1 and 𝑝3 exhibit more complex behaviours. We aim to study this more
complex case analytically in future work.

6. Summary and outlook

In this paper, we have studied pair-wise social dilemmas where
the payoff entries are random variables. The randomness is necessary
to capture the uncertainty that is unavoidable in practical applica-
tions, which may come from different sources, both subjective and
10
objective, such as lack of data, fluctuating environment as well as
human estimate errors. We have focused on four important social
dilemma games, namely Prisoner’s Dilemma, the Snow-Drift game, the
Stag-Hunt game and the Harmony game. For each game, we have
analytically computed, and numerically validated, the probability that
the replicator-mutator dynamics has a certain number of equilibria,
studying their qualitative behaviour as a function of the mutation rate.
Our results have clearly shown that the mutation rate and randomness
from the payoff matrix have a strong impact on the equilibrium out-
comes. Thus, our analysis has provided novel theoretical contributions
to the understanding of the impact of uncertainty on the behavioural
diversity in a complex dynamical system.

Here we have assumed that the payoff entries are standard normal
distributions; however, from formulas such as Eq. (14), our results can
be easily extended to other distributions. One natural and challenging
problem for future work is to generalise the equilibrium analysis of
the present work to multi-player and multi-strategy games where the
payoff entries satisfy more complex conditions. Another direction is
to trajectorially characterise statistical properties of the full dynamical
systems.
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