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Abstract
The human visual system has limited capacity in simultaneously processing multiple visual inputs. Consequently, humans
rely on shifting their attention from one location to another. When viewing an image of complex scenes, psychology studies
and behavioural observations show that humans prioritise and sequentially shift attention among multiple visual stimuli. In
this paper, we propose to predict the saliency rank of multiple objects by inferring human attention shift. We first construct a
new large-scale salient object ranking dataset, with the saliency rank of objects defined by the order that an observer attends to
these objects via attention shift. We then propose a new deep learning-based model to leverage both bottom-up and top-down
attention mechanisms for saliency rank prediction. Our model includes three novel modules: Spatial Mask Module (SMM),
Selective Attention Module (SAM) and Salient Instance Edge Module (SIEM). SMM integrates bottom-up and semantic
object properties to enhance contextual object features, from which SAM learns the dependencies between object features
and image features for saliency reasoning. SIEM is designed to improve segmentation of salient objects, which helps further
improve their rank predictions. Experimental results show that our proposed network achieves state-of-the-art performances
on the salient object ranking task across multiple datasets. Code and data are available at https://github.com/SirisAvishek/
Attention_Shift_Ranks.
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1 Introduction

In recent years, research on salient object detection has grown
extensively. It aims to locate objects that attract human visual
attention. Reliable prediction of human visual attention often
benefits downstream high-level applications such as image
parsing (Lai & Gong, 2016), image captioning (Xu et al.,
2015a), person re-identification (Zhao et al., 2013) andmany
more (Borji, 2018). Most saliency methods (Qin et al., 2019;
Zhao &Wu, 2019; Zhao et al., 2019; Wu et al., 2019a; Pang
et al., 2020; Wei et al., 2020) propose to model salient object
detection as a binary prediction problem, where all predicted
objects are given the same value and importance. Humans,
however, are shown to have the ability to sequentially select
and shift attention from one region or object to another (Koch
& Ullman, 1987; Itti & Koch, 2000). Such an ability allows
humans to deal with multiple simultaneous visual inputs,
given the limited capacity of our visual system (Neisser,
2014). Modelling this ability is important for the under-
standing of how humans interpret images, and helps improve
the performance of relevant applications, e.g., autonomous
driving (Palazzi et al., 2018) and robot-human interactions
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(Schillaci et al., 2013).Here,we interpret and define the order
of objects attended to by this human ability as saliency rank-
ing. This new task can provide similar benefits to traditional
salient object detection and further introduces rank ordering
information, which can be useful in downstream applications
that would leverage the knowledge of human attention shifts
on objects in an image. In robotic interaction, rank order can
enable the robot to assess a scene and prioritise its tasks or
dynamically plan its actions (Chang et al., 2010). It would
also benefit the image captioning task where enhanced cap-
tions can be generated to reflect the importance of objects
(Tavakoli et al., 2017; Cornia et al., 2018). Such importance
can be determined by object rank order information for an
input image. We believe that salient object ranking can be
applied in video applications such asVR and automated driv-
ing. In VR applications, salient object ranking can be utilised
to prioritise graphics rendering power for certain objects of
interest while reducing rendering for others in immersive
environments (Sitzmann et al., 2018). In terms of automated
driving, rank order could be used to prioritise the danger
degree and action/response towards the identified objects of
importance for increased situational awareness (Arvanitis et
al., 2023). Progressive data transmission can be improved
for target devices with limited computational resources, by
prioritising specific objects for compression and others for
detail retention based on rank order (Park et al., 2017).

Some early works apply attention shift in applications
such as visual search (Itti & Koch, 2000) and scene anal-
ysis (Itti et al., 1998). They use a saliency map, which
represents the visual saliency of each region in the scene,
to guide the selection of the attended regions, and model
attention shift as the shifting of attention from one region
to another in the order of decreasing values in the saliency
map (Koch&Ullman, 1987; Itti&Koch, 1999). In these early
works, only low-level features (e.g., colour, intensity and ori-
entation) are computed to generate the saliency map. Amore
recent work of Gorji and Clark (2017) models attentional
push, which refers to how scene actors (humans) maymanip-
ulate the attention (gaze direction/location) of observers in
viewing an image. This work heavily relies on the gaze-
following concept (Recasens et al., 2015), which constrains
attention to only social image scenarios (images with at least
one human actor). It also limits attention to a single shift from
a person in a scene to some other region.

The research of relative ranking of salient objects was first
introduced in Islam et al. (2018). Their relative ranking is
inferred from the agreement of binary object saliency among
multiple observers. The study (Islamet al., 2018) ismotivated
by the fact that observers are likely to have different views
of what objects are considered salient. In their implemen-
tation, they implicitly assume that multiple objects picked
by the same observer share equal saliency rank (top row of
Fig. 1). However, simultaneous attention to multiple objects

Fig. 1 The first row shows an image from the PASCAL-S dataset (Li
et al., 2014b). It is used for saliency ranking in Islam et al. (2018). We
can see that multiple objects can be given the same saliency rank. The
second row shows an image from our proposed dataset with distinct
ground-truth saliency ranks, motivated by psychological studies. The
color (red→ purple) indicates the saliency rank (1→5)

is not supported by behavioural observations, because divid-
ing attention among multiple objects often leads to poorer
performance (Desimone & Duncan, 1995) and may not truly
reflect howhumans shift their attention.Multiple objectswith
the same rank would also make it difficult to model the order
of attention shift.

The authors of Islamet al. (2018) have since extended their
work and propose a new COCO-SalRank dataset (Kalash et
al., 2019). Unlike the rankmodified PASCAL-S dataset, their
new dataset does not contain tied saliency ranks. However,
their ground-truth rank generation uses hand-designed cri-
teria for producing fixation maps, which are then applied to
determine instance ranks. Similarly, Liu et al. (2021a) follow
Kalash et al. (2019) for the relative salient object ranking task.
They also propose a new saliency ranking dataset by utilis-
ing the fixation maps from the SALICON (Jiang et al., 2015)
dataset with MS-COCO (Lin et al., 2014). Both Kalash et al.
(2019) and Liu et al. (2021a) model relative saliency ranking
based on fixation maps that are generated from applying a
Gaussian filter onto fixation data. They do not consider the
process of shifting attention that is performed by the human
visual system.

Inspired by the above saliency and psychological studies
(Neisser, 2014), we aim in this work to investigate saliency
rank that models human attention shift. Our idea follows psy-
chology studies that humans attend to one object at a time
in a complex scene (Koch & Ullman, 1987). We define our
task as detecting salient instances in an image, while infer-
ring human attention shifts on these instances. It differs from
traditional salient object detection in that our task priori-
tises salient object rank order rather than simply detecting
the most salient objects. We first propose a new saliency
ranking dataset collected based on attention shift. Different
from Kalash et al. (2019) and Liu et al. (2021a), we consider
that the first object attended by an individual should have
the highest saliency. Subsequent attended objects should be
associated with descending saliency values (i.e., attention
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Fig. 2 Example of saliency rank prediction and comparison. a Example
input image, b corresponding ground-truth (GT) saliency rank, c corre-
sponding GT saliency rank (colourised), d saliency rank prediction by
RSDNet (Islam et al., 2018), e corresponding saliency rank by RSDNet
with only GT objects (overlaid and colourised), f salient object and seg-
mentation proposed by our model, g our salient object rank prediction,
h our corresponding saliency rank with only GT objects (overlaid and
colourised)

shift towards objects of lower saliency values). Consider-
ing that multiple observers may have different saliency rank
orders among them, we average their rank orders to obtain
the ground-truth saliency rank (Sec. 3.2). We perform a user
study and show that such a human attention shift on object
instances correlates with the object saliency rank. Figure1
(bottom row) shows a sample, where each object in an image
is assigned a distinct saliency rank (from value 1 to 5) corre-
sponding to the order of attention shift.

Traditional saliency models often introduce many false
positive saliency to non-salient objects and the background
(Fig. 2d). When the shape of the objects is not captured well
(Fig. 2d), it further impacts the saliency rank prediction of the
objects (Fig. 2e). Motivated by the above observations, we
propose a saliency rank prediction method to infer human
attention, leveraging both bottom-up and top-down atten-
tion to determine the saliency rank of individual objects. Our
model utilises object proposals for object segmentation and
object rank prediction. This allows our network to perform
saliency reasoning on the object level and capture individual
salient instances, while most prior works (e.g., (Islam et al.,
2018)) perform at region level and are unable to distinguish
between multiple objects properly.

Furthermore, generating accurate segmentation of indi-
vidual instances is important for predicting salient objects. In
complex image scenes,multiple objects tend to overlap or are
closely located to one another. If clear boundaries between
objects are not captured, then the accuracy of segmentation

will drop and features for discriminating the saliencybetween
objects can also become poorer (Fig. 2d–e). To tackle this
issue, we further propose a Salient Instance Edge Module
(SIEM) to enhance boundary and complete segmentation
of salient objects. We pair SIEM with the instance mask
segmentation branch in order to mutually improve the seg-
mentation of salient instance masks and edges. Such a design
is essential to further boost the performance of saliency rank-
ing, as it enables the network to distinguish salient instances
from the background and other objects better.

The main contributions of this work include:

• We propose a new research problem to infer human
attention shift through salient object ranking. The task
is inspired by psychological and behavioural studies. It
goes beyond human-object interactions (Recasens et al.,
2015) by also modelling object-object attention shift.

• We propose a new large-scale dataset for our salient
object ranking task. The generation of our GT saliency
rank is justified by our user study.

• We propose a deep learning approach to jointly predict
saliency ranks of salient object instances and their cor-
responding object masks, with bottom-up and top-down
attention mechanisms.

• We introduce a new Salient Instance Edge Module
(SIEM) to enhance the segmentation of salient instances,
which further boosts saliency ranking performances.

• We adopt a new nDCG metric for evaluation. Exten-
sive experimental evaluations and analyses show that the
proposed model outperforms SOTA methods on salient
object ranking.

This manuscript extends our preliminary work that was
presented in CVPR (Siris et al., 2020). In this work, wemake
the following four major extensions: First, we have updated
Sect. 2 with the latest relevant works, and also compared
our method with these works. Second, we propose a new
Salient Instance Edge Module (SIEM) to improve segmen-
tation quality of salient instances and further increase the
performance of saliency ranking. Third, we have made sig-
nificant modifications to our preliminary architecture in Siris
et al. (2020), including the introduction of list-wise ranking
loss for saliency ranking instead of formulating it as rank-id
classification, top-12 object proposals for salient object and
rank reasoning, and end-to-end training with warm-up and
fine-tuning. Finally, we have added further experiments to
evaluate the proposed method, including additional compar-
isons with state-of-the-arts, ablation study, introducing a new
metric for saliency ranking, and evaluation on an additional
dataset.
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2 RelatedWork

2.1 Salient Object Detection

Salient object detection can be categorised into bottom-
up, top-down, or a combination of both. Here, we focus
on those that combine both bottom-up and top-down
approaches. Early methods that combine bottom-up and top-
down approaches use hand-crafted and computational-based
features. Bottom-up features often come from local and
global contrasts in color, intensity and orientation (Judd et
al., 2009). Top-down features often relate to the specific tasks
at hand. Notable examples include using high-level face fea-
tures (Xu et al., 2015b), photography bias (Judd et al., 2009),
person and car detector (Borji, 2012), gist features (Peters &
Itti, 2007) and gaze patterns learnt from performing specific
tasks (Borji et al., 2012). With the advance of Convolutional
Neural Networks (CNNs), CNN features are leveraged to
improve the performance of saliency detection (Gao et al.,
2020). Some works (Pan et al., 2016) use a simple stack of
convolution and deconvolution layers, while some others (Li
& Yu, 2015; Song et al., 2018) design multi-scale networks
to capture contextual information for saliency inference.

Recent studies further incorporate a top-down pathway
(Zhang et al., 2017; He et al., 2017b; Zhang et al., 2018).
High-level semantics in the top layers are refined with the
low-level features in the shallow layers through side con-
nections (Zhao & Wu, 2019; Pang et al., 2020; Zhao et al.,
2020; Tang et al., 2021). The refinement generates a bet-
ter representation at each layer (Hou et al., 2017) and is
thought to imitate the bottom-up (low-level stimuli) and top-
down (visual understanding) human visual process (Wang
et al., 2019a). Wang et al. (2018b) follow the relationship
between eye fixation and object saliency previously studied
in Li et al. (2014b) and propose to use fixation maps to guide
saliency in a top-down manner. In Zhao et al. (2019) and
Zhou et al. (2020), saliency features are complemented with
edge information at various resolutions, in order to improve
the accuracy of salient object segmentation and their bound-
aries.Wei et al. (2020) further propose to decompose saliency
maps into body and detail maps. The body map contains the
central area of objects, while the detail map focuses on the
boundaries of objects. Li et al. (2021) pair salient object and
camouflaged object detection to learn contradictory informa-
tion and enhance the performance of the two tasks. Siris et al.
(2021) proposes to exploit semantic segmentation of things
and stuff categories for extracting high-level scene context
features.

The abovemethodsmimic the human visual process using
both bottom-up and top-down pathways. Our network is
also CNN-based and contains both bottom-up and top-down
pathways. However, our bottom-up mechanism comes from
salient object proposals (inspired by Anderson et al. (2018),

which focuses on the captioning task). These salient object
proposals produce features that largely capture the whole
object, while traditional methods usually capture patches or
parts of an object. We further introduce spatial size and loca-
tionof object proposals in ourmodel tomodel the relationship
between the objects and scene for boosting saliency ranking.
Our top-down mechanism considers the operation of explicit
object-level features generated from object proposals, and
further integrates high-level image semantics obtained from
a backbone network. Note that most salient object detection
methods only perform binary saliency prediction, not pro-
viding clear segmentation between salient instances. Further,
they do not consider different saliency values between indi-
vidual objects. To the best of our knowledge, we are the first
to model salient object rank order according to the attention
shift with bottom-up and top-down mechanisms.

2.2 Ranking in Saliency

Ranking of salient objects is a relatively new problem. It is
introduced by Islam et al. (2018), in which they define object
ranks as the degree of agreement among multiple observers
who consider if objects are salient. In our work, we define
the saliency rank differently as the sequential order of dis-
tinct objects attended by an observer one at a time through
attention shift. The order is related to a descending level of
saliency values of the objects that attract human attention.
Our definition is closer to human visual attention and is moti-
vated by psychological studies and behavioural observations
(Neisser, 2014), where multiple attentions of foci are not
supported (Desimone & Duncan, 1995). Both Islam et al.
(2018) and the extended work (Kalash et al., 2019) use the
same patch-based network architecture. In contrast, our net-
work is built on object proposals that provide instance-level
features.

A network proposed in Liu et al. (2021a) follows closely
to Islam et al. (2018) and Kalash et al. (2019), and exploits
the same backbone as ours Siris et al. (2020) for generating
object proposals. The difference between ours and Liu et al.
(2021a) is that they use a graph-based module for learning
to rank with a pair-wise ranking loss. Instead, we adopt a
Transformer (Vaswani et al., 2017) to dynamically learn the
relations between objects and image features for ranking.We
also use a simpler network to predict the final object ranks,
and train it with a list-wise ranking loss.

Fang et al. (2021) recently proposed a Position-Preserved
Attention module to incorporate positional information with
object features. They concatenate absolute positional coordi-
natemaps to the featuremaps beforeROIpooling. In contrast,
we propose a Spatial Mask Module to capture object posi-
tional information and concatenate it with object features
after ROI pooling. The main difference between ours and
Fang et al. (2021) is how we extract and embed our posi-
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tional information (more details in Sect. 4.2). In addition, our
module allows explicit learning of the relationship between
object position and scene for saliency ranking.

There are other works that use ranking techniques for
saliency estimation. For example, Zhang et al. (2016) use
graph-based manifold ranking for saliency inference, and Li
et al. (2012) use rank learning to select visual features that
best distinguish salient targets from real distractors. How-
ever, these works use ranking as a formulation to output a
final binary saliency prediction. They do not predict saliency
rank order as in our work. In contrast to our saliency ranking
task, Lv et al. (2021) use fixation detection to help segment
and rank camouflaged objects.

2.3 AttentionMechanism

Attention mechanism has been shown to be effective in
improving natural language processing (Vaswani et al., 2017)
and many vision tasks (Ma et al., 2018; Jiao et al., 2019).
The attention mechanism discussed here can be consid-
ered as top-down attention. However, simple concatenation
or element-wise operations on multi-level features may not
improve saliency prediction (Wang et al., 2018a) as noisy and
non-relevant features may impact the saliency network (Lin
et al., 2018). To address this problem, Lin et al. (2018) com-
pute attention weights using convolutional layers on the local
pixel neighbourhood. Zhang et al. (2018) consider message
passing to capture rich contextual information from multi-
level feature maps and use a gating function to control the
rate of message passing. Wang et al. (2018a) introduces a
recurrent mechanism to gather multi-scale contextual infor-
mation and iteratively refine convolutional features. Liu et al.
(2021b) propose a Transformer-based network to unify RGB
and RGB-D salient object detection.

All these object saliency techniques apply attentionmech-
anisms on region or patch-level features to find the most
salient areas, while suppressing areas that do not contribute
to saliency. In our case, we compute attention explicitly on
the object-level and determine which objects (not regions)
are most relevant. We further use an attention mechanism
with high-level scene semantics to guide the prediction of
salient object ranks.

Wang et al. (2020) also apply attention onto object-level
features obtained from an object detector. However, they take
a video as input and generate object, noun, and verb features
from three distinct sub-networks. They then perform atten-
tion between object and noun features, and between object
and verb features to classify noun and verb, respectively, for
action recognition. Both Recasens et al. (2015) and Gorji
and Clark (2017) employ the gaze-following concept to find
objects or regions that are likely gazed by humans. They
incorporate a gaze-pathway that takes human head regions
and locations to generate a mask. The mask indicates the

likely locations that humans would gaze towards. Combin-
ing with a saliency map, they produce the final gaze saliency.
Unlike these works, our method is not limited to only social
scenes. We explore attention shift among multiple generic
objects, which is more challenging as objects that influence
attention shift may not be present especially when the objects
in a scene have limited interactions.

Fan et al. (2019a) introduce saliency shift across temporal
video frames. The objective is to predict the shift of salient
objects in dynamic scenes (inter-frame), but they do not cap-
ture ranking or attention shifts among objects within a frame
(intra-frame).

2.4 Edge-Aware Saliency Methods

To further improve salient object detection, edge information
is introduced to enhance object boundary segmentation qual-
ity (Zhang et al. 2017; Li et al. 2018). Two approaches have
been considered to enforce object boundary quality. The first
approach uses a hybrid loss, where a term for the edge loss
is combined with the binary segmentation loss (Feng et al.,
2019; Qin et al., 2019; Zhao &Wu, 2019) for saliency train-
ing. The second approach uses an edge detectionmodule, and
jointly trains it with salient object detection (Lin et al., 2019;
Wang et al., 2019b; Zhao et al., 2019). Wu et al. (2019b)
develop a module to bi-directionally pass messages and
refine features between the salient object detection and edge
detection tasks. Su et al. (2019) investigate the selectivity-
invariance dilemma for salient object detection. They build
a three-stream network consisting of a boundary localisation
stream for effectively selecting salient boundaries, interior
perception stream to capture object features that are invariant
to appearance changes, and a transition compensation stream
for completing the segmentation between object interiors and
boundaries.With some similarities,Wei et al. (2020) propose
to decomposeground-truth saliency label into body anddetail
maps. The detailed map contains the edges of salient objects
and nearby pixels, while the bodymap concentrates on pixels
near the body center of salient objects.

In this work, we couple an edge detection module with
the mask segmentation branch. Unlike existing edge-based
methods, our edge network performs edge detection on the
object level, where the boundaries andmask of salient objects
are segmented individually. This enables the network to focus
segmentation on individual instances while reducing dis-
tracting features from areas outside the region of interest.
Additionally, we implement the coupling of our mask seg-
mentation and edge detection with a simpler design, where
the interaction operations between the two streams are imple-
mented by an addition and a subtraction operation. Addition
operation improves the overall shape of object segmentation
whilst the subtraction operation enhances boundary features.

123



International Journal of Computer Vision (2024) 132:964–986 969

3 New Attention Shift Dataset

3.1 Data Collection

To our knowledge, there are no large-scale datasets avail-
able for salient object ranking based on attention shift.
Hence, we propose a new large-scale salient object ranking
dataset, by combining the widely used MS-COCO dataset
(Lin et al., 2014) with the SALICON dataset (Jiang et al.,
2015). MS-COCO contains complex images with ground-
truth object segmentation, while SALICON is built on top
of MS-COCO to provide mouse-trajectory-based fixations.
The SALICON dataset provides two sources of fixation
data: 1) fixation point sequences and 2) fixation maps for
each image. We exploit these two sources and consider
three approaches to generate our ground-truth saliency rank
annotations. The first approach awards higher saliency val-
ues to objects fixated early in a fixation sequence. The
second approach uses the pixels intensity values from a
fixation map. The third approach focuses on the order of
distinct objects that were fixated without repetition. The
first and second approaches are each expanded into four
methods. In total, we consider nine methods (summarised
in Table 1) to generate possible ground-truth annotations,
which we will discuss below. We do not know which
methods would reflect the way that humans rank multi-
ple objects in terms of saliency. We carry out a user study
in Sect. 3.2, and provide some analysis on our dataset in
Sect. 3.3.

We consider up to top-10 objects in the user study, but use
top-5 for saliency ranking prediction. We believe that top-
5 ranks are a good setting, as they contain clear and easy to
define ranks of the top-5 objects. In addition, it is challenging
enough, and the saliency differences among the lower ranks
(ranks beyond 5) often become minuscule and ambiguous.
Further, humans can consistently identify up to 4-6 salient
objects at a glance (He et al., 2017b; Kaufman et al., 1949).
Hence, top-5 salient objects should be a reasonable choice
for the number of GT ranks.

Approach 1: For each image, we follow the fixation points in
a fixation sequence and assign descending saliency scores to
the fixated image pixels.We repeat this scoring of pixels over
all observers’ fixation data. The saliency rank of an object
can be computed by aggregating these saliency scores that
the object contains (i.e., the higher the aggregated score, the
more salient the object and the higher the rank). The number
of fixation points varies among observers, leading to a large
difference in scores.

We first assign scores to pixel values using fixation points
from the SALICON (Jiang et al., 2015) dataset. We then
obtain the score for each object based on the values of pixels
belonging to the object. Specifically, for every image I ∈
R
W×H of dimension W × H , there are N observers. Let F j

be thefixation sequence obtained fromoneof the N observers
j ∈ [1, N ] and a fixation f j

i with index order i ∈ [1, t] that
represents the i th fixation in the sequence F j of length t . We
assign a score to image pixel p if the fixation f j

i falls on p
using:

vp =
N∑

j

t∑

i

g( f j
i ), if f j

i = p, (1)

g( f j
i ) = 1 − i

t
, (2)

where vp denotes the score of pixel p ∈ I aggregating from
all N observers’ fixation data. Function g takes the temporal
order i th of a fixation point in the sequence into account, and
assigns a lower value to a fixation point if it is latter in the
sequence.

To build our dataset on the idea of attention shift for
saliency ranking, we focus on the order of fixation points. By
doing so, we are able to closely define ground-truth saliency
rank based on the sequential shift of attention, as observed
by humans (Koch & Ullman, 1987). We thus do not take into
account the duration of the fixation points in our formulation
for two main reasons. First, there are large variances in the
duration of fixations among different observers. Second, it
is difficult (if not impossible) to obtain the exact duration of

Table 1 Comparison of nine
different methods for generating
ground-truth saliency rank order

Approach Method Source Data Process

1 FixSeq-avg Fixation sequence Average rank score

1 FixSeq-max Fixation sequence Max rank score

1 FixSeq-avgPmax Fixation sequence Average + maximum score

1 FixSeq-avgMmax Fixation sequence Average × maximum score

2 FixMap-avg Fixation map Average rank score

2 FixMap-max Fixation map Max rank score

2 FixMap-avgPmax Fixation map Average + maximum score

2 FixMap-avgMmax Fixation map Average × maximum score

3 DistFixSeq Fixation sequence First T unique fixation sequence
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each fixation point whilst the fixations are obtained from a
re-sampling process (Jiang et al., 2015). In contrast, using
the order of fixation points would ensure that there is a con-
sistent gap between the scores of each pair of consecutive
fixation points, leading to a higher stability in the final object
scoring.

Next, we try to accommodate the varying sizes of objects
in an image. Larger objects may collect more fixations from
observers and be considered more salient with higher ranks.
However, small objects that are rare may also be more salient
even if there are fewer fixations. As we are unsure which
methods bestmodel howhuman ranks,wedevelop fourmeth-
ods to aggregate scores for subsequent object saliency ranks,
namely: (1st) FixSeq-avg (average score), (2nd) FixSeq-
max (maximum score), (3rd) FixSeq-avgPmax (average +
maximum score) and (4th) FixSeq-avgMmax (average ×
maximum score). Let o be one of the objects in an image
I , |o| be the number of pixels in o, and vop be the score of a
pixel p ∈ o inside an object. We define:

FixSeq-avg(o, I ) = 1

|o|
∑

p∈o
vop, (3)

FixSeq-max(o, I ) = max
p∈o (v

o
p), (4)

FixSeq-avgPmax(o, I ) = FixSeq-avg(o, I )

+FixSeq-max(o, I ), (5)

FixSeq-avgMmax(o, I ) = FixSeq-avg(o, I )

×FixSeq-max(o, I ). (6)

For a given image, FixSeq-avg (Eq. 3) calculates the final
score of an object by taking the average values of pixels
belonging to the object. It takes into account the size dif-
ferences between objects. In FixSeq-max (Eq. 4), the final
score of an object is the maximum value vop of all its pixels. It
ranks objects higher if they are observed earlier in the fixation
sequence. It does not consider the object size. For themethods
FixSeq-avgPmax (Eq. 5) and FixSeq-avgMmax (Eq. 6), we
consider weighting the final scores by performing addition
or multiplication with the results from Eqs. 3 and 4, respec-
tively. The use of addition in FixSeq-avgPmax is a shorthand
of averaging the effect of both FixSeq-avg and FixSeq-max
values. FixSeq-avgMmax considers to weight FixSeq-avg by
multiplying FixSeq-max. We then sort all objects in descend-
ing order of the saliency score, and each object is given a
distinct rank.
Approach 2 We use the fixation maps in this approach as
the source for the saliency score. We directly take intensity
values from the fixation map as pixel scores vp. Similar to
Approach 1, we define four methods to generate the final
scores for each object. Accordingly, we have (5th) FixMap-
avg (average score), (6th) FixMap-max (maximum score),
(7th) FixMap-avgPmax (average + maximum score) and

Fig. 3 Screenshot of the annotation tool used by the participants during
the user study. Participants are not told how the maps are generated.
They are asked to go through all maps and pick a map that best respects
the “order of attractiveness”. The green box indicates the map picked
by one of the participants (Color figure online)

(8th) FixMap-avgMmax (average×maximum score). These
fourmethods compute the final object scores in the sameway
as their counterparts in Approach 1 (i.e., Eq. 3-6). Again, we
consider the first distinct T objects, and assign the saliency
rank in the order of descending scores.
Approach 3 This approach also considers temporal order.
However, we only focus on the first T distinct objects and
ignore repeated fixations on already visited objects. In addi-
tion,we directly assign a score to thewhole object if a fixation
point resides in its segmentation. We term this method as
(9th) DistFixSeq. Specifically, we define a new sequence f̂ ni
by removing fixations that fall on objects already visited by
earlier fixations in f ni . We then define DistFixSeq, for each
object o in an image I , as:

DistFixSeq(o, I ) = 1

N

N∑

j

T∑

i

h( f̂ j
i ), if f̂ ni ∈ o (7)

h( f̂ ni ) = T − i, (8)

where T = 10. Function h assigns higher scores to objects
if they are observed earlier. Equation 7 takes into account
only the first T objects and averages the final scores across
all N observers. We obtain the object ranks in the order of
descending scores.

3.2 User Study

Weperformauser studywith 11participants tofindoutwhich
of these nine methods produce more consistent ground-truth
attention shift order based on human judgment. For each
image, the participants were presented with the image and
the nine corresponding saliency rankmaps arranged in a grid.
Figure3 shows an example screenshot of the annotation tool
used in the user study. After a briefing session on how to
use the annotation tool, each participant is told to observe
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Fig. 4 a Pick rates of maps by 11 participants in our user study across 2500 images. Thesemaps are generated by ninemethods that we experimented
with in Sect. 3.1. b Distribution of ground-truth salient instances of all object categories in each data split of our dataset

Fig. 5 Average rank score of each object category in the proposed dataset

the image first, and then pick a map that shows objects with
“order of decreasing attractiveness”. No other instructions or
information were given, to avoid task-based bias and prior
knowledge. The participants were considered to be in a neu-
tral state condition, with no other effects (e.g., emotions)
influencing their visual attention and judgment. Participants
are not told how the maps are generated. Each participant
was asked to annotate a set of 2500 images. These images
are randomly sampled from our dataset. Participants anno-
tate them in 5 sessions (500 images each). Each annotation
session lasts under an hour on average. It takes around 11s
on average for participants to select one of the nine gener-
ated maps for a single image. The user study took a total
of 52.5h to complete. After the annotation task, participants
were rewarded with a £25 Amazon gift voucher.

Figure 4a shows that, on average, the map generated by
(9th) DistFixSeq has the highest number of picks. The map
aligns most with the order of attractiveness of objects. It sug-
gests that the temporal order of fixated objects (attention
shift) is vital for determining the strength of attractiveness
among multiple objects. Attractiveness of objects is consid-
ered as attracting attention towards the objects and reflects
their saliency strength (Zhang et al., 2008).

We can further see that there aremore picks of themethods
from Approach 1 (maps generated from temporal fixation)
than those from Approach 2 (maps generated from fixation

map only, without temporal data). This suggests that ignor-
ing the temporal fixation order, or using the order by fixation
intensity alone, does not always capture the expected order of
saliency (attractiveness of objects). These results correlate to
the idea of attention shift by descending saliency values in Itti
and Koch (2000), and prompt our definition of saliency rank
order via attention shift. It supports us to use (9th)DistFixSeq
from Approach 3 to generate the ground-truth saliency rank-
ing for the development of our rank prediction technique.

3.3 Dataset Analysis

Our dataset is adapted from MS-COCO (Lin et al., 2014)
and SALICON (Jiang et al., 2015), and thus share similar
characteristics. All existing popular datasets (e.g., ECSSD
(Yan et al., 2013), DUTS-OMRON (Yang et al., 2013),
PASCAL-S (Li et al., 2014b), HKU-IS (Li & Yu, 2015),
DUTS (Wang et al., 2017b)) target binary salient object
detection while ours focuses on salient object ranking.
Our dataset contains more complex images and is the
largest in size. Note that all other datasets do not include
individual object labels, making them ill-suited for our
task.

We report that the average number of objects per image
in our dataset is around 11 (maximum of 68). The “person”
object category occurs most frequently in the dataset. This
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Fig. 6 Architecture Overview. Our model consists of a backbone
network, Selective Attention Module (SAM), Spatial Mask Module
(SMM), Salient Instance EdgeModule (SIEM), and network for salient
object ranking.WeuseMaskR-CNN (He et al., 2017a) as our bottom-up
backbone to provide object proposals with FPN (Lin et al., 2017), and

objectmask segmentation from the segmentation branch. Themask seg-
mentation is coupledwithSIEMto exchangemask and edge information
for boosting instance segmentation. The bottom-up SMM extracts low-
level features of the proposed objects, while the top-down SAMextracts
high-level contextual attention features

is expected as most photo images target people as the sub-
ject. Additionally,many images contain crowdof peoplewith
small individual annotations, causing the total count to be
4-16 times greater than other categories. Correspondingly,
“person” objects receive the most instances of ground-
truth saliency, which aligns with previous observations that
humans usually attract attention (Judd et al., 2009). Fig-
ure4b shows the distribution of ground-truth salient instances
of each object category in our dataset. Figure5 shows the
average rank of each object category based on instances,
given the ground-truth saliency.We can see that large objects
(e.g., “train”, “airplane”) have fewer instances per image, and
some animal categories (e.g., “cat”, “dog”, “elephant”) have
a larger rank average score than the “person” object. We
also find that object categories relating to appliances (e.g.,
“refrigerator”, “microwave”) have quite high scores, which
mainly come from indoor scenes with no other object(s) of
interest.

4 Proposed Approach

Wepropose aCNN-basedmodel to predict saliency rankwith
a bottom-up bias stimuli (Itti et al., 1998; Borji & Itti, 2012),
which we find useful in picking up the most salient objects in
the scene. The saliency rank, especially on those less salient
objects, may be related to the scene structure and observer
interpretation (Einhäuser et al., 2008). Hence, saliency rank
modelling requires higher-level cues and prior knowledge
(Gao et al., 2009).

The proposed network architecture consists of five mod-
ules, namely, a backbone network based on Mask R-CNN
(He et al., 2017a), a Spatial Mask Module (SMM), Selec-

tiveAttentionModule (SAM), Salient Instance EdgeModule
(SIEM) and a Saliency RankNetwork, as illustrated in Fig. 6.

Mask R-CNN generates object proposals as a bottom-up
approach similar to Anderson et al. (2018). This provides us
with individual object features and allows us to learn seman-
tics information on the object level in subsequent modules.
We make a small modification to the existing instance detec-
tion branch inMaskR-CNN.Specifically,wemodify thefinal
object class detection layer to only predict two classes (salient
or background). The instance detection branch is fine-tuned
to detect salient objects on our dataset. We use spatial masks
from SMM as a low-level cue, which embeds the relative
size and location of each object in the image. SAM then com-
pares the features of each object to the global semantic image
features in order to determine relevant target salient objects.
Thismodule provides a top-down attentionmechanism and is
motivatedbypsychophysical findings that humans frequently
gaze towards interesting objects. It encapsulates important
scene semantics (Xu et al., 2014) and interpretation due to
eye gazes (Einhäuser et al., 2008). We adopt the segmenta-
tion branch of Mask R-CNN to produce segmentation for the
object instances. The segmentation branch is coupled with
SIEM to jointly enhance the prediction of salient instance
segmentation and edges. The pairing of instance segmen-
tation and edges cooperatively boost their prediction. The
joint supervision helps the network distinguish instances
and their saliency rank from other objects and background.
Such design is essentially different from existing edge-based
methods (Sect. 2.4). Finally, we infer saliency rank of object
instances with a small ranking network.
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Fig. 7 Details of the spatial mask module (SMM)

4.1 Backbone Network

Objectness and object proposals for binary salient object
detection have been explored (Feng et al. 2011; Siva et al.
2013;Zhang et al. 2016a). Feng et al. (2011) extend the global
rarity principle (rare and less frequently occurring objects are
likely to be salient) to derive object saliency. It uses a sliding-
window mechanism to determine if the features inside the
windows contain foreground or background features. Feng
et al. (2011) andZhang et al. (2016a) further extend it tomany
sliding windows of various scales. Fan et al. (2019b) present
a model architecture much like the Mask R-CNN (He et al.,
2017a). They produce object proposals by adopting the Fea-
ture Pyramid Network (FPN) (Lin et al., 2017) and propose
a salient instance segmentation branch that extends the seg-
mentation branch in the Mask R-CNN. The purpose of their
network is to perform salient-instance segmentation, while
we investigate salient object ranking based on attention shift
order. Inspired by these works, we adopt Mask R-CNN as
the backbone of our model and to provide efficient object
proposals and segmentation. The FPN serves as a bottom-up
attentive mechanism (Anderson et al., 2018).

To model saliency in the object-level, we apply RoIAlign
(He et al., 2017a) and three fully connected layers (FCs)
to extract object-level features, oi ∈ R

448, for each
object proposal, leading to a set of object features O =
{o1, o2, . . . , oM }, where M = 12 is the maximum number
of object proposals. We further take the pyramid features
“P5” from the FPN as the high-level features input to SAM
for top-down attention. The segmentation branch generates
pixel-wise segmentation of objects for a clearer final saliency
map.

4.2 Spatial MaskModule (SMM)

Understanding the relationship betweenobject properties and
scene context can help select relevant targets in a complex
scenario (Torralba, 2003). For example, very small objects in
a scene may not attract human attention. Objects close to the
centre of the image may be more salient due to the “center
bias” concept (Yang et al., 2013; Judd et al., 2009). These
motivate us to include low-level objects properties (e.g., size

and locations) to learn contextual features that model the
relationship between objects and scene.

Using the bounding boxes of object proposals, we gener-
ate a spatial mask for each object. Spatial masks embed the
size and location of the proposed objects in relation to the
visual scene.We capture such informationwith a binarymask
(i.e., assigning a value of 1 to pixels within a bounding box,
and 0 otherwise). We pass the spatial masks through three
convolutional layers to compress each of them into a 64-D
feature vector. Each set of spatial features is then combined
with the corresponding object features via a concatenation
layer (Fig. 7). It is similar to the procedure of positional
encoding in the Transformer (Vaswani et al., 2017) before
the attention. This module can be considered as a process of
combining bottom-up and semantic attributes of objects (Xu
et al., 2014).

4.3 Selective AttentionModule (SAM)

A straightforward choice to model how humans attend one
object to another would be a recurrent strategy. Such a strat-
egy is computation and memory-intensive, especially when
there are a lot of objects in an image (like those in our pro-
posed dataset). To model all relationships of objects and
their associated attention shift probabilities in a potential
sequence, it would easily lead to an exponential growth prob-
lem as the number of proposals increases. Instead of using
recurrent strategy tomodel attention shift, we get inspirations
from recent task-based techniques (Cao et al., 2015; Yang et
al., 2016; Wang et al., 2017a; Vaswani et al., 2017; Ma et al.,
2018;Wang et al., 2018c), whichwere greatly benefited from
some forms of attention mechanisms. These mechanisms are
often designed to dynamically weight relevant features or
entities tailored to certain taskswhile suppressing the distrac-
tors. Here, we consider that an attention mechanism would
be useful to infer the way observers shift their attentions
because it encapsulates important scene semantics (Xu et al.,
2014) and interpretation due to eye gaze (Einhäuser et al.,
2008). In addition, though human actors in an image would
affect observers to shift their gazes (Gorji &Clark, 2017), we
consider that individual generic objects may not necessarily
have such a strong influence on attention shift. For generic
images (e.g., non-human scenes and images with little inter-
actions among objects), we consider that the scene structure
and relationship between objects may have a stronger influ-
ence on attention shift (Peters & Itti, 2007). We thus develop
a Selective Attention Module (SAM) to compute top-down
attention by comparing object features individually to the
image scene features.

We build the attention module using Scaled Dot-Product
Attention (Vaswani et al., 2017) (Fig. 8) with image and
object features. We use the pyramid features, “P5”, from the
backbone network as the image features. A (1× 1) convolu-
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Fig. 8 Details of the Selective Attention Module (SAM)

tion and global average pooling are applied onto the pyramid
features to obtain our high-level image representation.

Before computing the dot-product, we first project the
object and image features into a 512-D space (Vaswani et
al., 2017). Here, we embed the features of each object into a
separate feature vector using a shared FC layer. Two separate
feature vectors are generated with separate FC layers, both
taking the pooled image features as input. The sets of new fea-
tures from the pooled image features are further repeated M
times. The attention mechanism then uses these embeddings
to performdot product similarity of individual object features
with the image features. We add scaling factor (Vaswani et
al., 2017), and apply softmax activation to obtain the atten-
tion score. Our attention module computes attention scores
with multiple heads (4 heads) in parallel. The idea is that
each attention head learns different high-level information
to guide scoring/weighting for salient targets. The outputs
frommultiple attention heads are concatenated and then sent
through a FC layer. Finally, we add a residual connection and
a FC layer for the module output.

4.4 Salient Instance EdgeModule (SIEM)

Our dataset contains images with many objects and noisy
background features. In these images, salient objects may
be very close to other objects and may have features similar
to the background. This introduces noise to the boundaries
of salient objects and can make it difficult to distinguish
salient objects from other objects or the background. As a
result, accurately segmenting and predicting salient ranks
of multiple salient instances can be challenging. This can
also be seen in Fig. 2d–e, where traditional methods do not
explicitly capture individual objects and can have difficulties
in differentiating between multiple objects. Based on these
observations, we propose the Salient Instance Edge Mod-
ule (SIEM), and jointly train it with the mask segmentation
branch. The coupling of the instance mask and SIEM refines
their predictions mutually. This further propagates enhance-
ment to the salient instance segmentation and ranking tasks.

Fig. 9 Details of the salient instance edge module (SIEM) and Mask
Segmentation. M-Fuse and E-Fuse represent the interaction operations
specific to the mask segmentation and edge module

Both mask segmentation and SIEM have the same struc-
ture, but the connection between the networks differs.
Figure9 shows the structures of SIEM and the mask seg-
mentation branch. Mask segmentation first contains four
convolutional layers. We then add a fusion layer to combine
themask featureswith the edge features by addition. Thefinal
mask segmentation is then generated with a convolutional
layer and a prediction layer. Likewise, SIEM contains four
convolutional layers, a fusion layer, a convolutional layer and
a prediction layer. Here, the fusion layer differs as we sub-
tract the edge features from the mask segmentation features.
The resulting features are then concatenated with a residual
connection. The two fusion layers enable the networks to use
features from the other network to effectively focus on their
particular task. For example, the addition of edge features
to the mask features (M-Fuse) allows the mask segmenta-
tion network to accurately capture the shape of instances,
while the subtraction in the E-Fuse forces the network to
focus around the boundary regions of the mask. Such over-
all design is essentially different from existing edge-based
methods (Sect. 2.4).

4.5 Saliency Rank Network

We employ a simple ranking network to predict rank scores
for salient instances. Our rank network consists of three fully
connected layers and a scoring layer.

During inference, we combine the saliency rank scores
with object segmentation (from the mask segmentation
branch) to generate the final salient object rank map. Like
(Islam et al., 2018), which determines object saliency rank by
the descending average pixel saliency value of each object.
We consider the top-5 saliency rank order of objects from
their descending score values.

4.6 Loss Function

We define our training loss function as:

L = Linst + Ledge + Lrank (9)
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where Linst includes the loss functions for bounding boxes,
classification and segmentation as in the Mask R-CNN (He
et al., 2017a). Ledge is the boundary loss as in (Cheng et al.,
2020). Inspired by the learning to rank problem (Cao et al.,
2007), we adopt the list-wise loss ListMLE (Xia et al., 2008),
as our ranking loss Lrank . The loss computes the probability
of the ideal permutation (ground-truth saliency rank order)
and is defined according to thePlackett-Lucemodel (Marden,
1996).

Lrank = − log P(y|x; g), (10)

P(y|x; g) =
n∏

i=1

exp(g(xy(i)))∑n
k=i exp(g(xy(k)))

, (11)

where the probability P(y|x; g) decomposes the ideal per-
mutation to the product of step-wise conditional probability.
y is the ground-truth saliency rank order (ideal permutation).
g(xy(i)) provides the rank score function for the i-th condi-
tional probability that an object is ranked at the i-th order,
given the top i − 1 objects have been ordered correctly.

Linst and Ledge range from [0-1], while Lrank range from
greater than 1. The larger scale of Lrank can be considered as
naturally adding more weighting to the loss, when compared
with the other losses. Each loss is used to optimise a specific
task (e.g., instance detection, edge detection and saliency
ranking) and they share some layers of the network. The
summation of the losses leads to the optimisation of all tasks
jointly. Due to the larger scale of Lrank , it provides more
contribution to the overall loss and can push the other tasks
(e.g., instance detection and edge detection) to improve the
detection of high rank salient objects. In this study, we leave
the losses to their natural scale anddonot adjust theweighting
of the losses.

5 Experiments

5.1 Experimental Setup

Implementation Details: We fine-tune our backbone com-
ponents of theMaskR-CNNon salient objects before training
our final model on salient object ranking. A pre-trained
ResNet-101 (He et al., 2016) is used to initialise the convo-
lutional layers of the Mask R-CNN. All images for training
and testing are resized to 1024 × 1024 before feeding into
the network. During inference, we resize the output saliency
map back to the original size of 640× 480. Ourmodel is built
on top of the matterport Mask R-CNN framework (Abdulla,
2017)withTensorFlow and trained on anNVIDIARTX3090
GPU. During saliency rank training, we use a warm-up strat-
egy by freezing the backbone layers and training the rest. We
then fine-tune all the layers together. We set the mini-batch

size to 8 during warm-up and 2/4 for fine-tuning depending
onmemory limitations.We train variations of the network for
up to 30 epochs for warm-up and 10 epochs for fine-tuning.
We use the SGD optimizer with gradient norm clipping set
to 5. The learning rate is set to 10−3 for warm-up. For fine-
tuning, we set the learning rate to 10−8 for the backbone
layers and 10−6 for the rest. Momentum and weight decay
are configured as 0.9 and 10−4, respectively.

Datasets:Our dataset employs the same set of images and
fixation sequence from SALICON (Jiang et al., 2015), and
contains object segmentation masks fromMS-COCO (Lin et
al., 2014). The SALICON dataset consists of 10K training,
5K validation and testing images, with no annotations for
the test set. We use the training and validation sets to build
our dataset. We consider saliency ranking based on the fix-
ation sequence of the first 5 distinct objects visited without
repetition (DistFixSeq, Sect. 3). The choice of the method
is supported by our user study. We discard images with no
object annotations, and images containing smaller objects
that are completely enclosed by larger ones. Finally, we use
images containing at least two salient objects (i.e., at least two
ranks) to ensure that we have attention shift for our ranking
task. The dataset is randomly split into 7646 training, 1436
validation and 2418 test images. All images in our dataset
are of size 480x640 (height, width).

Evaluation Metrics: We use the Salient Object Ranking
(SOR) metric (Islam et al., 2018) for evaluation. It is for-
mulated as the Spearman’s Rank-Order correlation between
the rank order of the predicted salient objects and the ground
truth. The correlationmetricmeasures the strength and direc-
tion of the monotonic relationship between two rank order
lists. The measure in [−1, 1] indicates the negative to posi-
tive correlation. We make a simple modification to the SOR
metric, where during the calculation we make sure that there
exists at least two objects predicted as salient with ranks and
those objects are in the ground-truth. This ensures that there
are at least two objects to correlate the rank order otherwise
if only one object exists, then a full score is awarded even
when there are missing salient objects. As a result of this
modification, the SOR results in Table 2 differs from our
previous results (Siris et al., 2020), which does not employ
this minimum of two objects condition. Moreover, the met-
ric is unable to cater for the case when there are no common
objects between the two rank variables. For example, when
one technique predicts a completely different set of objects
from the ground truth, SOR is not defined. Hence, we further
report the number of images used to compute the average
SOR for the whole test set, where the more images used the
more reliable the SOR is. The reported SOR measurements
are normalised to [0,1].

Although the SOR metric provides a good evaluation for
relative rank order, it does not penalise missing rank predic-
tions and incorrect rank positions. Liu et al. (2021a) tries to
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Fig. 10 Demonstration of the true rank position order being ignored by
the SOR metric (Islam et al., 2018). The newly adopted nDCG metric
provides amore reliablemeasure as it penalises bothmissing predictions
and incorrect true rank position

resolve missing rank predictions by setting them to a value
of 0 in their modified SA-SOR metric. However, if multiple
rank predictions are missing and instead assigned a value
of 0, they will have tied ranks and the SOR will not calcu-
late accurate relative rank order. In terms of incorrect rank
positions, this case is mainly found when the number of pre-
dicted ranks is less than the number of ground-truth ranks.
The SORmetric ignores true rank positions and only consid-
ers the relative rank order, in the sense of whether an object
is correctly ranked above or below other objects. Figure10
demonstrates this issue of not penalising true rank positions.
To tackle these problems, we adopt the nDCG (normalised
Discounted Cumulative Gain) (Wang et al., 2013) to mea-
sure the consistency between the predicted and GT ranks.
We define the metric as:

nDCG = DCG

Ideal(DCG)
, (12)

DCG =
k∑

i=1

reli
log2(i + 1)

, (13)

reli = 5 − abs(rGT − rp), (14)

where reli is the relevance score of the ith object. k is the
maximum number of GT objects per image. rGT and rp are
the GT rank and predicted rank of object i . I deal(DCG)

is the best score when the rank order is perfect, which is a
relevance score of 5 for each object.

We also compare with the mean absolute error (MAE),
whichmeasures the average per-pixel difference between the
prediction and ground truth. We calculate MAE between the
original predicted saliency map and the ground-truth map,
before any post-processing of saliency prediction to obtain
the saliency rank. It is an alternative measure for the quality
of both predicted saliency maps and ranks. It also works
even when a technique predicts a completely different set of
objects from the ground truth.

5.2 Quantitative Evaluation

We compare against three relative ranking methods: RSD-
Net (Islam et al., 2018), IL-RSR (Liu et al., 2021a) and
SOR-PPA (Fang et al., 2021). We also compare with thir-
teen state-of-the-art salient object detection methods: S4Net
(Fan et al., 2019b), BASNet (Qin et al., 2019), CPD-R (Wu et
al., 2019a), SCRN (Wu et al., 2019b), PFANet (Zhao &Wu,
2019), EGNet (Zhao et al., 2019), ITSD (Zhou et al., 2020),
MINet (Pang et al., 2020), LDF (Wei et al., 2020), CSNet
(Gao et al., 2020), GateNet (Zhao et al., 2020), VST (Liu
et al., 2021b) and SCAS (Siris et al., 2021). Note that these
methods (except S4Net and SCAS) do not predict object seg-
mentation and instead only provide a single binary saliency
map.

S4Net and SCAS have a similar structure to our backbone
and output object instance segmentation. We modify both
S4Net and SCAS in order to predict up to 6 classes (5 Ranks
+ 1 BG) for each object instead of the binary prediction as in
their original papers (Fan et al., 2019b; Siris et al., 2021) for a
fair comparison.We then use the predicted rank classification
and descending score probabilities to obtain distinct saliency
ranks. Similarly for IL-RSR, we re-train and test their net-
work on our dataset, so that we can obtain rank predictions
for calculating the nDCG score. We only make modification
for the network to train/predict up to 5 ranks and make no
other changes to the rest of the network and original source
code. We note that there are discrepancies in the MAE and
SOR scores between our results and the results reported in
Liu et al. (2021a), even after using their original provided
source code. For the rest of the salient object detection mod-
els and RSDNet, the predicted saliency ranks of ground-truth
objects are obtained by averaging the pixel saliency values.
The object rank is determined by descending order of such
averages.We clarify that RSDNet is directly evaluated on our
dataset using its pre-trained weights. When we try to adapt
and train their model on our dataset (using their available
source code), the model does not converge. We thus use their
modelwith the pre-trainedweights to evaluate on our dataset.

Table 2 shows the experimental results. It shows that
our method outperforms other methods on the proposed
dataset, achieving the best overall performance with better
scores among all performance measurements (MAE, SOR
and nDCG). Note that RSDNet, PFANet and CSNet use all
images during the SOR calculation, as their single binary
saliency maps often contain many false saliency. Noise or
very weak saliency is often propagated throughout the image
and reaches parts of objects. This allows RSDNet, PFANet
and CSNet to obtain saliency rank by averaging object pixel
values to cover most objects. However, their MAE and rank-
ing performance is near the lower end.We have the bestMAE
performance tied with IL-RSR, although IL-RSR has much
lower scores for SOR and nDCG rank metrics. One reason
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Fig. 11 Comparison of the proposed method against state-of-the-art
methods designed for saliency ranking: ASSR (Siris et al., 2020), SOR-
PPA (Fang et al., 2021), IL-RSR (Liu et al., 2021a), and RSDNet (Islam
et al., 2018). The first row shows the input images, while the second row
shows: (i) ground-truth saliency maps, and (ii) ground-truth saliency

ranks. The following rows are predictions from the compared methods:
(i) saliency prediction maps, and (ii) corresponding maps containing
only the predicted ranks of ground-truth objects. Results in (ii) are used
to obtain the predicted saliency ranks for our quantitative evaluation

for this is that IL-RSR is able to capture the overall segmen-
tation of most GT objects, resulting in a good MAE score,
but fails to predict the rank order between objects accurately,
resulting in lower rank scores.

Our extended method proposed in this work has gained a
significant improvement on the SOR rank metric from our
initial work (Siris et al., 2020). It produces the best results
with a 4.43%performance gain over the second best method.

SCRN has the highest nDCG score also tied with our
method, as nDCG awards higher scores for correct predic-
tions of top ranks. Nonetheless, SCRN hasmuch lowerMAE
andSOR scores than ours. This suggests that SCRN ismainly
able to predict the top ranks well, but is unable to correctly
predict the lower ranks.

In general, good rankpredictions should translate into both
high SOR and nDCG scores but low MAE score simultane-
ously.

As our network is based on the matterport Mask R-CNN
framework (Abdulla, 2017), our default input image size is
also 1024x1024 (Table 2). For fairness, we leave the network
parameters of state-of-the-arts at their default. Our prelim-

inary (ASSR) and the new architecture both use the same
default input size.

Table 2 also reports the training and testing run times.
Our network is relatively large as the backbone is based on
Mask R-CNN. This, together with the input size, causes our
network to have longer training and inference times, although
they are not the longest. Lightweight and quick inference
speed can be considered in future work.

5.3 Qualitative Evaluation

Figure 11 showcases qualitative comparison results. We
compare our method with state-of-the-art methods that are
specifically designed for saliency ranking. We can see that
the saliency maps obtained fromRSDNet (Islam et al., 2018)
often do not capture all the GT objects well, which can lead
to incorrect rank predictions. Even if an instance is captured
well by the instance detection method, it is still difficult to
correctly rank the GT objects. In contrast, our method is able
to segment the overall shape of most GT objects and cor-
rectly rank them. It is also able to rank multiple objects in
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Table 3 Comparison with
instance-based SOTA methods
on generalization ability, with
the dataset from Liu et al.
(2021a)

Method MAE↓ SOR↑ #Images used↑ nDCG↑
IL-RSR (Liu et al., 2021a) 0.110 0.782 2695 0.903

SOR-PPA (Fang et al., 2021) 0.119 0.532 2744 0.859

Ours 0.099 0.739 2759 0.915

“#Images used” refers to the number of predicted images usable for SOR calculation. Best and second best
scores are in bold and italics

complex image scenarios, where there are cluttered and sim-
ilar visual features among multiple objects (e.g., fourth and
fifth columns).

5.4 Evaluation on Additional Data

In addition to the experiments on our dataset, we also eval-
uate on the relative saliency ranking dataset from Liu et al.
(2021a). Note that this dataset is not based on attention shift.
They define saliency rank based on the order of maximum
saliency intensity value fromafixationmap.Thefixationmap
does not consider the sequential order of fixations, but rather
simply encapsulates the density of fixation points around
objects. This does not follow the idea of saliency ranking
from the order of sequential shift between multiple objects.
We test our method on the dataset for generalisability. For
this experiment, we modify both our network and SOR-PPA
(Fang et al., 2021) to train and predict up to 8 GT saliency
ranks. Table 3 compares between ours and two instance-
based state-of-the-arts designed for saliency rank prediction.
Note that the evaluation results are based on 2787 test images
from the original 2929 test images. We find that the dataset
in Liu et al. (2021a) contains 142 test images, where the
rank data consists of multiple instances with the same rank
and/or more than 8 GT ranks. Table 3 shows that our method
achieves the best MAE and nDCG scores and second best on
the SOR score. This indicates that our method can predict
most of the ground-truth salient objects well. It is also able
to predict correct ranks for top-ranked objects more consis-
tently, and only experiences some difficulties for ordering
lower-ranked objects. Overall, our method generalizes well
to the dataset from Liu et al. (2021a), even though the dataset
is not built according to our definition of attention shift for
saliency ranking. Given that our method shows strong results
on MAE and nDCG, we believe our method should have
room for improvements (especially on SOR) with further
adjustment on network configuration and training parame-
ters.

Our task of salient object ranking requires the knowledge
of objects. In addition, our network works best if it is trained
and tested on a dataset with given object information. Our
dataset and the dataset from Liu et al. (2021a) can be consid-
ered as a closed dataset, since the test sets mainly contain
seen objects. Here, we test our network in a more open-

Fig. 12 Direct testing of our ranking network on the VRD (Lu et al.,
2016) dataset

world setting with the VRD (Lu et al., 2016) dataset to show
the generalisability of our method. We only show qualita-
tive examples in Fig. 12 with direct testing, as the dataset
does not provide GT saliency ranking data for quantitative
evaluation. Figure12 shows that our method is able to iden-
tify salient objects and rank them quite well (e.g., first three
images from left), especially if the image contains objects that
are defined in our dataset. For object categories not defined in
our dataset, our method also shows potential to capture them.
For example, the shop sign and poster board (fourth image),
lamp (fifth image), iron and ironing board (sixth image) and
guitar (last image).

To our knowledge, there are no video datasets that con-
tain object segmentation and human-eye fixation sequence
data. To explore salient object ranking on the video level,
we directly test our network onto the video VSPW (480p)
(Miao et al., 2021) dataset. Again, we only show the qual-
itative results. Figure13 shows that our network is able to
capture and rank the main objects of interest within the
video/frame. As the video progresses in time, the ranking
of objects changes dynamically with the change of interest
and actions developing in the scene. These examples show
that improving ourmodel for video application is a promising
direction (Table 3).

5.5 Evaluation on Salient Instance Segmentation

Like S4Net (Fan et al., 2019b), our network is able to gener-
ate individual segmentation for each salient object instance.
Hence, we further compare our network, IL-RSR (Liu et
al., 2021a), SCAS (Siris et al., 2021), SOR-PPA (Fang et
al., 2021) and ASSR (Siris et al., 2020) with S4Net on the
salient instance segmentation task. We omit the other state-
of-the-artmethods from this experiment, as they are unable to
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Fig. 13 Direct testing of our ranking network on the VSPW (480p)
(Miao et al., 2021) dataset

Fig. 14 Qualitative comparison for instance-based salient object seg-
mentation with ASSR (Siris et al., 2020), SOR-PPA (Fang et al., 2021),
SCAS (Siris et al., 2021), IL-RSR (Liu et al., 2021a), and S4Net
(Fan et al., 2019b). Instances with 5 different shades of blue are pre-
dicted instances that match with their corresponding GT instances.Red
instances represent false predictions (Color figure online)

produce salient object instances.WeusemeanAveragePreci-
sion (mAPr , r = 0.5/0.7) to measure the performance, as in
Fan et al. (2019b). Table 4 reports the results on our dataset. It
shows that our network outperforms S4Net by a largemargin.
S4Net predicts very few salient objectswhen compared to our
network (as shown in Fig. 14). It usually predicts only one or
two positive salient instances over the images in the test set.
In contrast, Fig. 14 shows that our network can predict multi-
ple instanceswith good segmentation accuracy. It can capture
smaller objects that are difficult to distinguish from the sur-

roundings. Other state-of-art methods tend to introduce false
salient instances and fail to segment all GT instances. Our
network also improves upon our previous work Siris et al.
(2020) and achieves the best performance.

5.6 Ablation Study

We perform an ablation study to evaluate each of the pro-
posed components, as shown in Table 5. The full model
has the best overall performance across all metrics. It pro-
duces the highest SOR and nDCG scores. MAE is also tied
best. Addition of each component to the base model of
the proposed method generally improves the performance
across the metrics. We see a more substantial gain in SOR
performance when we add SIEM. This suggests that explic-
itly using edge information enables the network to improve
object segmentation, consequently boosting rank order pre-
diction. This also shows that SIEM helps to enhance the
captured object features to be more distinctive from those
of other close objects, and thus enable better saliency rea-
soning.

Table 5 also shows the numbers of parameters (#Param-
eters) and calculations (#FLOPS) for each ablated model.
When adding our three modules to the base architec-
ture (BbSR+SMM+SAM+SIEM vs BbSR), the number of
parameters increases only by around ∼11.14%. For the
number of calculations (#FLOPS), the increase is around
ten-fold. This is largely due to the Spatial Mask Module
(SMM) producing binary bounding box masks for each
object.

Figure 15 compares the salient object segmentation accu-
racy between our full model with the Salient Instance Edge
Module against the full model without the edge module. It
shows that the proposed edge module coupled with mask
segmentation enhances the capture of salient instances. Seg-
mentation of both the body and instance boundaries is
improved.

We also perform ablation of the interaction operations spe-
cific to the mask segmentation and edge detection streams.
Table 6 shows that the interaction operations between the
two streams do contribute to a small overall performance

Table 4 Quantitative
comparison with S4Net for the
salient instance segmentation
task on our dataset

Method mAPr@0.5 (%)↑ mAPr@0.7 (%)↑
S4Net (Fan et al., 2019b) 16.7 10.6

IL-RSR (Liu et al., 2021a) 48.2 38.3

SCAS (Siris et al., 2021) 38.6 27.6

SOR-PPA (Fang et al., 2021) 55.1 47.1

ASSR (Siris et al., 2020) 60.6 51.0

Ours 64.4 53.8

Note that we do not compare with other state-of-the-arts since they are unable to perform this task. Best scores
are in bold, second best scores are in italics
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Table 5 Ablation study of the proposed model

Method MAE↓ SOR↑ #Images used↑ nDCG↑ #Parameters (M) #FLOPS (G)

BbSR 0.096 0.787 2373 0.835 ∼68.78 ∼0.22

BbSR+SMM 0.092 0.793 2377 0.842 ∼69.64 ∼2.33

BbSR+SAM 0.093 0.788 2366 0.839 ∼71.27 ∼0.30

BbSR+SIEM 0.092 0.798 2372 0.842 ∼73.17 ∼0.23

BbSR+SMM+SAM 0.092 0.794 2366 0.842 ∼72.04 ∼2.40

BbSR+SMM+SIEM 0.091 0.799 2373 0.842 ∼74.04 ∼2.34

BbSR+SAM+SIEM 0.092 0.795 2371 0.841 ∼75.67 ∼0.31

BbSR+SMM+SAM+SIEM 0.091 0.800 2371 0.843 ∼76.44 ∼2.41

BbSR refers to the backbone network plus the small saliency rank network. M = million. G = giga. Best scores are in bold, second best scores are
in italics

Fig. 15 Qualitative comparison of salient object segmentation between our full model with Salient Instance EdgeModule (SIEM) versus full model
without SIEM

Table 6 Ablation study of the interaction operations (E-Fuse/M-Fuse) between the coupled mask segmentation and edge detection streams

Method MAE↓ SOR↑ #Images used↑ nDCG↑ #Parameters (M) #FLOPS (G)

BbSR+SIEM(w/o E-Fuse/M-Fuse) 0.0923 0.7927 2373 0.8416 ∼71.40 ∼0.227

BbSR+SIEM(E-Fuse) 0.0924 0.7968 2375 0.8432 ∼72.58 ∼0.229

BbSR+SIEM(M-Fuse) 0.0926 0.7989 2375 0.8418 ∼71.99 ∼0.228

BbSR+SIEM(E-Fuse + M-Fuse) 0.0923 0.7986 2372 0.8427 ∼73.17 ∼0.230

BbSR refers to the backbone network plus the saliency rank network. M = million. G = giga. Best scores are in bold, second best scores are in
italics
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Fig. 16 Qualitative comparison of the predicted segmentation between our network and Mask R-CNN. Note that the predictions of Mask R-CNN
have been filtered to show only predicted segmentation of objects that match with the ground truth

gain. We believe that further performance gain may poten-
tially be possible if we adopt more cooperative features with
deeper interactive designs between the mask segmentation
branch and the edge detection module (Chen et al., 2020;
Ke et al., 2021; Kim et al., 2021). We leave this to future
work.

Considering that we utilise Mask R-CNN as our back-
bone architecture, we compare the segmentation quality
between Mask R-CNN and our new network. Figure16
shows that our network can segment individual objects
well (top image), capture the whole body of objects (mid-
dle image), and do not mistakenly group different object
segments together (bird parts mistaken as hand in bottom
image).

Table 7 compares the performance between our base-
line network (BbSR) with multi-class classification loss
versus baseline network with list-wise ListMLE loss. The
table shows that the preliminary architecture with multi-
class classification loss has a better MAE score. However,
this is largely due to the architecture predicting fewer
salient objects, resulting in fewer false saliency values and
lower overall average error from missing predictions of
small low ranked salient objects. The preliminary archi-
tecture performs worse on the SOR ranking metric, which
enforces correct relative rank order betweenmultiple objects.
The performance on the nDCG metric is also poor, as
the metric penalises missing saliency and incorrect rank
positions. Our new architecture obtains consistent and sig-
nificant performance gains, especially in the ranking metrics

(SOR and nDCG) when we use the list-wise ListMLE loss
instead.

Overall, these results show the effectiveness of the pro-
posed components.

5.7 Saliency Ranking on Different Contexts

Our study proposes the first deep network to model human
attention shift. Our approach is based on bottom-up and
top-down inference, which aligns closely with human visual
processing. In the design, we have not fully explored scene
context (we have only used spatial context and global image
features), yet the results are promising. Spatial context cor-
responds to the size and spatial location of objects in relation
to the image scene. The global image context features cor-
respond to prominent features in the image, which establish
the scene setting.

Our network learns to reason the saliency rank of individ-
ual object features against the global features of an image
scene. Such learning can also capture relationships between
separate image features and corresponding saliency ranked
objects. Figure17 showcases examples of different image
scenes containing “vehicles”. The vehicle can be of differ-
ent sizes, at different locations, or adjacent to other vehicles.
Our network learns the relationships between the “vehicle”
objects and context (spatial and global image features), and
determines the correct saliency rank for each object accord-
ingly.

Table 7 Ablation study of the
baseline network with
multi-class classification loss
(our preliminary architecture)
versus the baseline network with
list-wise ListMLE loss (current
architecture)

Method MAE↓ SOR↑ #Images used↑ nDCG↑
BbSR(with multi-class classification loss) 0.089 0.740 2253 0.798

BbSR(with ListMLE loss) 0.096 0.787 2373 0.835

Best and second best scores are in bold and italics
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Fig. 17 Example scenes containing objects in the vehicle category, with input images from our dataset (Top row), GT Ranks (Middle row), and
rank predictions from our method (Last row)

6 Discussion

Wehave conducted a user study to determine the best method
for saliency rank order. The user study involved partici-
pants viewing an image, then selecting one of nine maps
that best mirrored the sequence of decreasing object attrac-
tiveness. The participants were only instructed to view the
image freely without other influences (e.g., prior knowledge
(Li et al., 2014)) or task (Peters & Itti, 2007), other than to
choose the bestmap after viewing the image. Themethod that
leads to the highest-picked map reflects the idea of sequen-
tial attention shift. As a result, our saliency ranking is based
on attention shift and our task definition is derived from a
free-viewing task setting. For future work, it is interesting to
explore task-specific settings and other factors which would
influence saliency. For example, alternative approaches like
task-based saliency ranking (e.g., for driving simulation) can
be investigated to develop new GT saliency ranks.

Our dataset is based on the MS-COCO dataset and can
be considered a closed dataset. The dataset contains a wide
range of object categories which are derived from 80 differ-
ent object categories that correspond to MS-COCO object
and segmentation data. Therefore, generalising our problem
to cover unseen object categories is an interesting but also
challenging problem for future work.

The purpose of this research is to investigate image-based
salient object ranking based on attention shifts. For videos,
there is currently no corresponding fixation sequence and
object segmentation data. An interesting problem for future
work would be to investigate salient object ranking at the
video level.

In this study, we have introduced a list-wise ranking loss
to improve our ranking method from our preliminary archi-
tecture. In our design, we keep a simplified saliency ranking
network and the ranking loss contributes to significant perfor-
mance gain. We believe that there is room to design new and
powerful ranking methods (e.g., complex ranking network,
alternative ranking losses).

We present two examples of failure cases in Fig. 18. The
first cause of failure can develop from our model relying

Fig. 18 Failure cases. (i) GT/predicted saliency maps, and (ii)
GT/predicted maps corresponding only to the ranks of GT objects

on recognising objects in the image and then inferring the
saliency rank on them. When an object is too close to the
camera, ourmodelmay fail to recognise what it is (the person
in the left image) and hence fail to infer correct rank order.
Another failure case occurs from printed objects appearing
inside a book (or picture) in the image, which may also be
detected as separate objects by our model (the two dogs in
the book of the right image).

7 Conclusion

In this paper, we have proposed to study a novel problem
and presented the first saliency rank dataset, based on human
attention shift. The dataset is motivated by psychological
studies and behavioural observations. It is further supported
by our user study that humans attend salient objects one at
a time and in an order of decreasing values of saliency. We
have also proposed a new saliency rank prediction approach
to infer attention shift order. The proposed approach per-
forms favourably against several state-of-the-art methods on
the proposed saliency rank dataset as well as other existing
datasets.

We find that our proposed method can correctly predict
the top saliency ranks, but it does experience difficulties in
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predicting lower ranks, especially on the dataset from Liu
et al. (2021a), which is not constructed by means of human
attention-shift. Correctly predicting the rank order for lower-
ranks is very challenging as the differences among them can
be subtle, and we leave it as a future work to explore.
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